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A period of inflation in the early Universe produces a nearly scale-invariant spectrum of gravita-
tional waves over a huge range in wavelength. If the amplitude of this gravitational wave background
is large enough to be detectable with microwave background polarization measurements, it will also
be detectable directly with a space-based laser interferometer. Using a Monte Carlo sampling of
inflation models, we demonstrate that the combination of these two measurements will strongly
constrain the expansion history during inflation and the physical mechanism driving it.
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I. INTRODUCTION

The pursuit of comsological B-mode microwave back-
ground polarization [1, 2] at large angular scales has seen
a burst of attention in the past year since the BICEP2
experiment [3] announced the possibility of a detection in
March 2014. Further investigation has revealed that the
dominant source of this signal is actually galactic dust [4–
7] rather than being cosmological in nature. This does
not rule out the existance of cosmological B-modes, but it
is now clear that detecting a cosmological B-mode signal
at significantly lower amplitude than the BICEP2 sig-
nal requires better characterization of foreground polar-
ization signals via multi-frequency measurements. If we
ultimately measure a primordial B-mode signal, it may
provide an otherwise unobtainable window into physics
at extremely high energies and the evolution of the Uni-
verse during its earliest moments.

A period of exponential expansion in the early Uni-
verse, known as inflation, resolves several observational
difficulties with the standard cosmological model (e.g.,
[8–17]). Such a period of expansion can be driven by
some component with a nearly constant energy density,
such as the potential energy of an effective scalar field
(the “inflaton”). During this epoch, quantum fluctua-
tions in the inflaton field are amplified into classical den-
sity perturbations which grow by gravitational instability
into the structures visible in the Universe today. Like-
wise, quantum fluctuations in the tensor components of
the inflating spacetime are amplified into a stochastic
background of gravitational waves, with a nearly scale-
invariant power spectrum and an amplitude depending
on the energy scale of inflation. Once generated, these
tensor perturbations propagate almost freely through the

Universe, their wavelengths increased by the expansion of
the Universe and their amplitudes decreased by the same
factor once the wavelength comes inside the horizon.

The hallmark of an inflationary gravitational wave
background is its extremely wide range in wavelengths,
roughly from the scale of the horizon today down to ter-
restrial scales. If inflation occurred when the tempera-
ture of the Universe was around the Grand Unification
scale of 1016 GeV, the gravitational wave background will
produce a pattern of B-mode polarization large enough
to be seen by upcoming experiments. Remarkably, an
inflationary tensor perturbation signal of roughly this
amplitude will likely also be detectable directly with fu-
ture space-based laser interferometers [18–27]. Direct
detection will probe wavelengths that are 15 orders of
magnitude smaller than those inducing microwave back-
ground signals; measurements at these two scales span
a large portion of the observable inflation epoch, and
may therefore reveal the physical process driving infla-
tion.Gravitational wave backgrounds of smaller ampli-
tude are more difficult to detect at both cosmological
and local scales.

A recent paper showed that an interferometric detec-
tion of the inflationary tensor signal will provide qualita-
tively new information about inflation, namely a precise
measurement of any departure from a pure power-law
spectrum [28]. If we can obtain information about infla-
tion at widely varying scales, a natural question arises:
ultimately, how well can the history of inflation, and
the physics driving it, be determined? Here, we deter-
mineconstraints on the expansion history during infla-
tion, as well as the corresponding effective potential gov-
erning the evolution of the inflaton, from future measure-
ments at both microwave background and interferometer
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scales. We use a Monte Carlo method to generate ran-
dom inflation models with an initially slowly varying in-
flaton value (the so-called “slow roll” condition) at the
time when perturbations on the scale of the horizon today
are generated [29, 30] and which satisfy current measure-
ments [7]. Of these models, only a very small fraction
satisfy tensor amplitude constraints at the few percent
level on both scales, and the resulting expansion histo-
ries during inflation are strongly constrained.

Other recent works use similar techniques to constrain
inflation. Ref. [31] considers only microwave background
measurements; our results show that the additional infor-
mation from an interferometric detection greatly restricts
the range of acceptable inflation models. Ref. [23] focused
on detectability of tensor perturbations in specific models
by interferometers of a given sensitivity. We extend this
work to consider the generic features of inflation models
satisfying a particular pair of B-mode polarization and in-
terferometer measurements. Ref. [22] considered models
with the largest interferometer signals. We also consider
interferometer measurements with sufficient sensitivity to
constrain both the amplitude and spectral index of tensor
perturbations at local scales, providing additional ability
to discriminate between inflationary expansion histories.

II. METHODS

We compute the dynamical history and resulting scalar
and tensor perturbation spectra for random inflation
models chosen via the technique of Monte Carlo inflation
flow potential reconstruction [29, 30]. The dynamics of
an inflation model can be written in terms of the value of
an effective scalar field φ (the “inflaton”) and its potential
energy V (φ); inflation occurs when the energy density is
dominated by the inflaton potential energy. The field φ
will evolve towards the minimum of the potential as in-
flation progresses. It is convenient to use the value of the
effective inflaton field φ during inflation as a time param-
eter; this can be done as long as φ evolves monotonically
to smaller values. The Hubble parameter during infla-
tion, H ≡ (1/a)da/dt with a(t) the scale factor, can be
used to construct a hierarchy of “slow-roll parameters”
[32]
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where primes are derivatives with respect to φ and the
Planck mass mPl sets the energy units. The evolution of
the parameters during inflation is determined by a system

of first-order linear equations [29, 33],
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In these equations the time variable is the number of ex-
pansion e-folds before the end of inflation N ≡ ln(aend/a)
where
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Given a solution for ε(φ), H(φ) can be obtained from the
definition of ε, which then requires normalization given
the observed amplitude of the scalar power spectrum [34].
The effective potential V (φ) then follows from the equa-
tion of motion for H(φ),
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=
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Pl

V (φ). (4)

Particular models of inflation are obtained by choosing
initial values for the slow-roll parameters; their dynami-
cal evolution corresponds to some trajectory in the slow-
roll parameter space. In practice, we truncate the hier-
archy Eqs. (2) above ` = 8 (corresponding to a restricted
subset of exact inflation models) and then evolve the evo-
lution equations until inflation ends, which we take as the
condition ε = 1. Once the slow-roll parameters are all
determined throughout inflation as a function of N , the
primordial comoving curvature perturbation δρ/ρ arising
from the scalar perturbations and the tensor/scalar ratio
r are, to second-order in the slow roll parameters, given
by [32, 35],

δρ

ρ
' H

2πmPl

√
ε
,

r ' 16ε [1− C (σ + 2ε)] (5)

with C ≡ 4(ln 2 + γ) − 5 = 0.0814514, where γ ' 0.577
is Euler’s constant, and using the WMAP normaliza-
tion convention for r [36]. Then the perturbation am-
plitudes as a function of N can be converted to ampli-
tudes as a function of comoving wavenumber k at the
end of inflation by the relation a(N)H(N) = k. Gen-
erating scalar and tensor perturbations for a random
sampling of inflation models is thus reduced to choosing
random initial points in the slow-roll parameter space.
The resulting primordial scalar perturbation power spec-
trum P (k) ' AS(k/k0)nS−1 and tensor power spectrum
PT (k) ' AT (k/k0)nT are both approximate power laws
on cosmological scales around k0 = 0.05 Mpc−1, with
r ≡ AT /AS .

We initially generate 2 × 104 models within an ellip-
soidal parameter space region with principal axes 0.952 <
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nS < 0.981 and 0.0 < r < 0.1; these ranges are consistent
with the 95% confidence region from current Planck [34],
WMAP polarization [37], and BICEP2/Keck+Planck
microwave background measurements [7], as well as
baryon acoustic oscillation measurements from the Sloan
Digital Sky Survey Data Release 9 [38], the 6dF Galaxy
Survey [39], and the WiggleZ Dark Energy Survey [40]
(shown in Fig. 5 of Ref. [41]), while the running of
the scalar spectral index was restricted to be arbitrar-
ily small (−0.001 < dnS/d ln k < 0.001). Note that the
most recent Planck release [42] provides a constraint of
−0.015 < dnS/d ln k < 0.011 at 95% confidence. We
have not adjusted for this allowed range of values as it
will not alter the conclusions of this work and by the
time the measurements discussed here are achieved, con-
straints on dnS/d ln k will likely be at least as strong as we
are considering. For simplicity, parameter degeneracies
have not been considered. More specifically, this is done
by initially setting φ0 = 0, H(φ0) = 1, and randomly
selecting ε ∈ [0, 0.1], σ ∈ [−0.1, 0.], 3λ ∈ [−0.05, 0.05],
4λ ∈ [−0.005, 0.005], 5λ ∈ [−5 × 10−4, 5 × 10−4], 6λ ∈
[−5 × 10−5, 5 × 10−5], 7λ ∈ [−5 × 10−6, 5 × 10−6], and
8λ ∈ [−5 × 10−7, 5 × 10−7] with a uniform probability
distribution. The models are then freely evolved to the
end of inflation when ε = 1. If inflation lasts for the de-
sired 60 efoldings of expansion, the expansion rate is then
renormalized to the amplitude of the scalar power spec-
trum. Those models that produce consistent values of
r, nS, and dnS/d ln k at N = 60 as stated above are then
saved. The full tensor spectrum is then computed by
exact numerical evaluation of the mode equation for the
cosmological background defined by the selected solution
to the flow equations, in place of the slow-roll approxi-
mation in Eq. (5). The corresponding inflation potential
V (φ) is also computed numerically for each model. Mod-
els are not restricted to remain slowly-rolling throughout
this evolution (as is appearent in Fig. 1 and Fig. 2, where
models evolve more rapidly and steepen). In particular,
toward the end of inflation (low values of N), a departure
from slow-roll is required for inflation to come to an end.

We then select the subset of models consistent with
tensor amplitudes at cosmological scales corresponding
to a fiducial tensor-scalar ratio of r = 0.05±0.001, a pre-
cision obtainable by currently anticipated experiments.

Given the tensor perturbation spectrum from a par-
ticular inflation model, we obtain the tensor spectrum
in the present Universe using well-known techniques for
computing the transfer function for the amplitudes and
wavelengths [21, 43–45], assuming the standard ΛCDM
cosmology [34]. For simplicity, we assume that the re-
heating phase after inflation, in which the energy density
stored in the kinetic energy of the inflaton field is con-
verted to a thermal bath of relativistic particles, occurs
rapidly on a time scale short compared to the Hubble
time. We then compute a signal for both B-mode polar-
ization and laser interferometry from the tensor pertur-

bations in each model.
The most recent joint analysis by the Planck and BI-

CEP2/Keck collaborations limit the tensor-scalar ratio to
r < 0.12 at 95% C.L. [7]. For interferometers, a stochas-
tic gravitational wave power spectrum is often expressed
as ΩGW(f), the fraction of critical density in gravita-
tional waves per unit logarithmic frequency interval. We
assume a particular fiducial model of the local tensor per-
turbations with an amplitude of ΩGW = 8.2 × 10−17 at
a frequency of f = 0.25 Hz. We then consider a mea-
surement of this amplitude with a 2σ standard error of
around 8%: this corresponds to the reference strain sen-
sitivity u

√
Sbase(f) of the DECIGO effective interferom-

eter design given in Fig. 2 of [46], with u = 1/5, 3 years of
observation, and a low-frequency cutoff of 0.2 Hz to min-
imize the contaminating astrophysical foreground signal
from white dwarf binaries. We also assume perfect re-
moval of neutron star and black hole binary signals. (One
interferometer design attaining these specifications com-
prises four sets of three detectors with optimal sensitivity
around 1 Hz. Each group can effectively generate two
independent interferometers by taking appropriate com-
binations of data streams from the set. Pairs of these
groups will have overlapping orbits to facilitate correla-
tion analysis. Such an experiment is clearly ambitious,
but achievable with known technology at a cost compa-
rable to current large physics and astronomy efforts.) A
particular inflation model is considered consistent with
the fiducial interferometer signal if its amplitude is within
the 2σ range for ΩGW over the frequency band from 0.2
to 20 Hz.

III. RESULTS

Of the 2 × 104 models generated, 568 are consistent
with a fiducial cosmological amplitude corresponding to
r = 0.05 ± 0.001 for modes that exited the horizon 60
efoldings before the end of inflation. Fig. 1 displays the
expansion rate, H, and the effective potential driving the
expansion, V , for this subset in violet. The left panels
demonstrate the evolution of the expansion rate and po-
tential, respectively, as they are plotted as a function of
the time analog representing the number of efoldings be-
fore the end of inflation. The right panels show the same
quantities as a function of the effective scalar field driv-
ing inflation, thus illustrating the physical behavior of
the expansion and energy during inflation.

The addition of direct detection constraints by an in-
terferometer further decreases the allowed family of mod-
els. A local scale measurement of ΩGW(k0 = 1.6 ×
1014 Mpc−1) = 8.2 × 10−17 corresponds to modes that
were driven outside the causal horizon approximately 20
efoldings before the end of inflation. Models consistent
with this fiducial amplitude within 8% (the 2σ confi-
dence interval for a DECIGO-like experiment with sen-
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FIG. 1: The expansion rates in the form of the Hubble parameter, H, and the effective potentials driving the evolution of the
expansion, V , are shown. All models consistent with r = 0.05±0.001 at cosmological scales are plotted in violet. Those models
that are also consistent at local scales with ΩGW(k0 = 1.6× 1014Mpc−1) = (8.2± 0.69)× 10−17 are plotted in blue. Note that
modes with wave number k = 1.6× 1014Mpc−1 correspond to frequencies f = 0.25 Hz. Right Column: H and V as a function
of the number of efoldings before the end of inflation in the top and bottom panels respectively. Right Column: H and V as a
function of the effective scalar field, φ driving inflation in the top and bottom panels respectively.

sitivy scaled by u = 1/5 at this fiducial amplitude) are
displayed in Fig. 1 in blue. This additional local scale
constraint reduces the number of allowed models to 93,
16% of those consistent with the future cosmological con-
straints and 0.5% of those consistent with current mea-
surements.

Qualitatively, all models consistent with constraints at
cosmological and local scales show similar behavior, as il-
lustrated by the blue curves in the left panels in Fig. 1 be-
tween N = 60 and N = 20. A slight increase in the range
of model behavior can be seen for 40 > N > 20, which
then translates to a widening of possibilities toward the
end of inflation when the fields are departing from slow-
roll conditions. Without intermediate and late inflation-
ary epoch constraints on the tensor spectral amplitudes,
we can identify properties of the local scale spectrum in
order to further constrain the family of models permissi-
ble by observation. Specifically, the variety of allowable
model amplitudes during intermediate and late time in-
flationary epochs will also reveal a distribution of spectral
tilts, nT , at local scales. For example, the blue curves in

Fig. 1, demonstrate a distribution of spectral tilts, nT, for
modes with wave numbers of k = 1.6 × 1014Mpc−1 that
exited the horizon 20 efoldings before inflation ended.
This distribution is shown in Fig. 2.

A group of allowed models are clustered around spec-
tral tilts of nT = −0.06 at local scales. The tail in the dis-
tribution toward higher values of nT is easily associated
with the models in Fig. 1 that fall more rapidly during
intermediate epochs and then require a plateauing behav-
ior in order to satisfy the required number of efoldings of
expansion. These models all lie below the simpler main
group of curves during intermediate times and above to-
ward the end of inflation. These outlying models can be
ruled out if interferometric measurements obtained sensi-
tivity levels to constrain the tilt to nT = −0.06± 0.02 or
better. In order to achieve these constraints at 95% confi-
dence, the previously discussed DECIGO experiment will
need a sensitivity level scaling parameter u = 1/25, an
additional factor of 5 below the strain sensitivity (or a
factor of 25 below the sensitivity to ΩGW) used above
(u = 1/5). This is a factor of 625 increase in sensitivity
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FIG. 2: The distribution of spectral tilts of models consistent with cosmological constraints with amplitudes corresponding
to r = 0.05 ± 0.001 and at local scales with ΩGW = (8.2 ± 0.69) × 10−17 at 95% confidence for modes with wavenumber
k = 1.6× 1014Mpc−1 that exited the horizon 20 efoldings before the end of inflation.

to ΩGW beyond the base design for DECIGO.
Applying these spectral tilt constraints to the models

consistent at both cosmological and local scales as shown
in blue in Fig. 1 (albeit without constricting the con-
straints on local scale amplitudes), we further reduce the
number of consistent models to 78. This subset is illus-
trated in Fig. 3 in black, plotted over the models shown
in Fig. 1. To further illustrate the distribution of each of
these subsets of models, Fig. 4 indicates the mean and
the band containing 95% of the models about the mean
for each family of curves shown in Fig. 3. Here, the blue
curves from Fig. 3 have their mean plotted as blue and
the 95% spread of models shown as gray. Similarly for
the violet curves from Fig. 3, the mean and 95% spread
of models about the mean are shown in Fig. 4 as black
and violet respectively. Although this additional con-
straint has not greatly reduced the number of allowed
models,it has significantly restricted the qualitative form
of the permissible models. If the local scale spectral in-
dex were measured to be nT = −0.02± 0.02, only a few
models with more complex potential shapes would be
consistent.

This conclusion will hold even for a tensor spectrum

with a lower amplitude than the fiducially chosen value,
provided that the amplitude can still be measured on
both scales with similar fractional errors as used here.
Of course, the lower the amplitude, the more technically
challenging these measurements become. For amplitudes
significantly below r = 10−3, confusion with the residual
gravitational lensing signal will prevent measurement of
the tensor amplitude using B-mode polarization [47, 48],
while the binary confusion limit becomes an increasing
problem for interferometer measurements.

IV. DISCUSSION

These results clearly demonstrate the capacity of com-
bined measurements of the tensor power spectrum at
both microwave background and interferometric scales
to constrain the history and physics of inflation. The
family of inflation models consistent with both measure-
ments is vastly restricted compared to inflation models
consistent only with an amplitude measurement at a sin-
gle scale. Furthermore, the combined measurements de-
termine the inflaton potential and expansion history over
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FIG. 3: The same models as shown in Fig. 1. The smaller subset of models that have local scale tensor spectral tilts of
nT ∈ [−0.08,−0.04] are plotted in black.

a wide range of field values and evolutionary epochs. We
have assumed B-mode polarization measurements of the
tensor amplitude with precision at the r = 0.001 level;
upcoming polarization experiments with increased sen-
sitivity and frequency coverage are expected to surpass
this (see, e.g., [49]). We also assume a future interferome-
ter measurement of the tensor amplitude at the 8% level,
which will be challenging but feasible if there is in fact
a measureable cosmological tensor signal. Pushing the
sensitivity of interferometric experiments farther opens
the possibilty of further restricting the family of allowed
models via the tilt of the spectra at these scales. Clearly
such a measurement vastly restricts the behavioral vari-
ety of consistent inflationary models.

It may seem surprising that the tilt of the tensor spec-
trum varies so greatly between scales corresponding to
60 and 20 efoldings before the end of inflation. Recall,
however, that during slow-roll ε ∝ (V ′/V )2, where the
prime indicates the derivative with respect to the effec-
tive scalar field φ and V is the effective potential of that
scalar field. As illustrated in Fig. 1 and 3, the potentials
drop by a factor of approximately 3 between N = 60 and
N = 20. When plotted as a function of φ, this roughly
corresponds to the interval of φ/mPl ∈ [0.0, 1.0]. In this

interval, the slope of the potential steepens only slightly.
Taking both the slight steepening of the slope and the
drop in the value of the potential into consideration, we
estimate epsilon to increase by a factor of at least 9. Our
fiducial selection of models at N = 60 have amplitudes
corresponding to r = 0.05±0.001 and have tilts centered
on nT = −6.25 × 10−3 (as to be expected according to
the slow-roll consistency relation, r = −8nT). Moving
to N = 20 and increasing ε by a factor of roughly 9
then results in a distribution of tilts at these scales to
be centered on roughly nT ≈ −0.06. This is consistent
with what we have found in the distribution of tilts at
local scales, as illustrated in Fig. 2, and is indicative of
the dominance of slow-roll behavior throughout these 40
efoldings of evolution. The outlying models underwent
brief departures from slow-roll evolution before return-
ing to ensure the necessary number of efoldings of ex-
pansion are completed. This behavior directly translates
to the tilt of the spectrum at local scales, thus providing
a probe of the expansion history and effective potential
driving inflation during epochs corresponding to other-
wise unmeasureable scales.

We have made the simplifying physical assumption
that reheating after inflation happens quickly, i.e. on
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FIG. 4: The mean and 95% spread about the mean of models shown in Fig. 3. Here the potentials and expansion rates consistent
with r = 0.05± 0.001 with 2σ confidence at cosmological scales (corresponding to 60 efoldings before the end of inflation), as
well as at local scales (corresponding to 20 efoldings before the end of inflation) with 8%, 2σ error on the amplitude have their
mean plotted in blue and the spread of models illustrated as a gray band. The set of models that additionally have spectral
tilt constraints at local scales in the range of −0.08 < nT < −0.04 have their mean plotted in black with their spread about
the mean as a violet band.

a time scale less than a Hubble time, so it has little effect
on the expansion history of the Universe. Some models
of reheating take significantly longer than this, resulting
in a period of matter-dominated expansion prior to the
usual radiation-dominated era which can modify the ten-
sor amplitude at small scales (e.g., [50]). Measurements
of both the tensor amplitude and the scalar spectral index
will give interesting constraints on the duration of any re-
heating epoch [51]. An extension of the present analysis
to include reheating will be considered elsewhere.

The numerical analysis in this paper does not have a
rigorous quantification of Monte Carlo coverage of the
inflation model space. The truncation of the slow-roll hi-
erarchy at a given order results in only a particular subset
of inflation models in the allowed model space. Larger
computational efforts can include higher-order trunca-
tions, effectively expanding the model space which is
explored, and more total models in each Monte Carlo,
which will sharpen statistical conclusions. It is unlikely
that models not available in our 8th-order slow-roll hier-
archy will change our conclusions in a qualitative sense,

since the allowed models span a wide range of potentials,
as is visible in Fig. 1. However, whether rare successful
models exist which are clearly different from the family
of models identified here is an interesting open question.
These rare cases may be further constrained by additional
sources of information.

The results presented here show that a detection of in-
flationary tensor perturbations at two widely separated
scales, the cosmological scale via B-polarization of the
microwave background and the Earth-Moon scale via a
space-based laser interferometer, will determine the dy-
namical history of the Universe during the inflation era.
In turn, such measurements will give strong constraints
on fundamental physics at energy scales of 1016 GeV,
inaccessible by any other means.
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