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We explore some particle physics implications of the growing evidence for a helical primordial
magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an
upper bound on the monopole number density, n(t0) < 1 × 10−20 cm−3, which is a “primordial”
analog of the Parker bound for the survival of galactic magnetic fields. Our bound is weaker
than existing constraints, but it is derived under independent assumptions. We also show how
improved measurements of the PMF at different redshifts can lead to further constraints on magnetic
monopoles. Axions interact with the PMF due to the gaγϕE · B/4π interaction. Including the
effects of the cosmological plasma, we find that the helicity of the PMF is a source for the axion
field. Although the magnitude of the source is small for the PMF, it could potentially be of interest
in astrophysical environments. Earlier derived constraints from the resonant conversion of cosmic
microwave background (CMB) photons into axions lead to gaγ . 10−9 GeV−1 for the suggested
PMF strength ∼ 10−14 G and coherence length ∼ 10 Mpc. Finally we apply constraints on the
neutrino magnetic dipole moment that arise from requiring successful big bang nucleosynthesis in
the presence of a PMF and we find µν . 10−16µB .

I. INTRODUCTION

There is growing evidence for the existence of an in-
tergalactic magnetic field from the observation of high
energy gamma rays. It is likely that a magnetic field in
intergalactic space would have been created in the early
universe, since astrophysics alone is not expected to gen-
erate fields on such large length scales. (For a recent re-
view on cosmic magnetic fields, see Ref. [1].) The discov-
ery of a primordial magnetic field (PMF) has important
ramifications for cosmology as it allows one to test mod-
els of magnetogenesis, which are often tied to the physics
of inflation [2] cosmological phase transitions [3, 4], and
baryogenesis [5–7]. The presence of a PMF after cos-
mological recombination can also aid in the formation of
first stars [8] and provide the seed field for the galac-
tic dynamo [9]. Additionally, the existence of a PMF
in our universe opens the opportunity to place indirect
constraints on exotic particle physics models where the
new physics couples to electromagnetism. In this paper
we will investigate the consequences of a PMF for mod-
els that contain magnetic monopoles, axions, and Dirac
neutrinos with a magnetic moment.

Blazars that emit TeV gamma rays are expected
to produce an electromagnetic cascade of lower energy
gamma rays due to electron-positron pair production and
the subsequent inverse Compton up-scattering of cosmic
microwave background (CMB) photons [10–14]. In the
presence of an intergalactic magnetic field, electrons and
positrons directed toward the Earth can be deflected off
of the line of sight, and those that are directed away from
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the Earth can be deflected back toward the line of sight.
As a result the point source flux is depleted in the GeV
band, and the blazar acquires a halo of GeV gamma rays.
The non-observation of these GeV gamma rays was used
to place a lower bound on the magnetic field strength at
the level of B & 10−16 G [15–17]. This bound depends on
modeling of the blazar flux stability and also the plasma
instabilities during propagation, and it may weaken sub-
stantially depending on these assumptions [18–21]. The
search for the GeV halo extended emission has been ongo-
ing [22–26]. Most recently, Chen et al. [27] have found ev-
idence for the halo in a stacked analysis of known blazars
at ∼ 1 GeV energies and interpret it to be due to a field
with strength B ∼ 10−17 − 10−15 G. For reference, mea-
surements of the cosmic microwave background place an
upper bound on the magnetic field strength at the level
of B . 10−9 G [28].

There are theoretical motivations for considering the
possibility that the PMF is helical, i.e. there is an ex-
cess of power in either right- or left-circular polarization
modes. Helical magnetic fields emerge in many mod-
els of magnetogenesis [5–7, 29], and helicity conservation
dramatically impacts the evolution of the PMF, aiding
in its survival and growth [30]. Recently, Tashiro et al.
[31, 32] analyzed the diffuse gamma ray sky at 10-60 GeV
energies to look for the parity-violating signature [33, 34]
of a helical magnetic field. They find evidence for an
intergalactic magnetic field with strength B ∼ 10−14 G
on coherence scales λB ∼ 10 Mpc and with left-handed
helicity. Although the results of Refs. [31, 32] and [27]
appear inconsistent, it may be possible to reconcile them
by noting that the weak bending approximation breaks
down for B ∼ 10−14 G for gamma rays at ∼ 1 GeV ener-
gies [35].

Motivated by these recent results, we investigate if the
existence of a helical PMF can be used to constrain other
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particle physics ideas in a cosmological setting. Our anal-
ysis is sufficiently general that our results will remain rel-
evant even if the gamma ray observation results should
change or go away, e.g. with more data. However, for the
purpose of numerical estimates we will use B ∼ 10−14 G
and λB ∼ 10 Mpc as the fiducial field strength and co-
herence length scale, and we will take the magnetic field
to have maximal (left-handed) helicity.

In Sec. II we consider the interaction of a hypothetical
abundance of cosmic magnetic monopoles and a PMF.
The magnetic field does work on the monopoles, and
its field strength is thereby depleted. The constraints
we obtain in this way are generally weaker than exist-
ing bounds but are obtained under a different set of as-
sumptions. These results are summarized in Fig. 1. We
also discuss how heavy magnetic monopoles can lead to
anomalous scaling of the energy density in the PMF. As
observations of the PMF improve, they can be sensitive
to the anomalous scaling and thus become a tool for fur-
ther constraining magnetic monopoles.

In Sec. III we consider the interaction of an axion (ϕ)

with the PMF through the coupling gaγϕFF̃ . In this
analysis we include the cosmological plasma, and thus
we study the equations of magnetohydrodynamics cou-
pled to an axion. Although we find that the axion has
a negligible effect on the spectrum and evolution of the
PMF, it is interesting to note that this conclusion is not
sensitive to the assumed scale of Peccei-Quinn symmetry
breaking, fa, as long as gaγ ∝ 1/fa. In turn, the PMF
leaves the evolution of the axion condensate largely un-
affected. In principle the PMF damps the axion oscilla-
tions and the helicity of the PMF shifts the equilibrium
point, but these effects are quadratic in the already-small
magnetic field strength.

In Sec. IV we consider the interaction of the neutrino
magnetic dipole moment, µν , with the PMF. Enqvist et
al. [36, 37] have shown that this interaction induces a
spin-flip transition, which cannot be in equilibrium in the
early universe without running afoul of constraints on the
number of relativistic neutrino species. Using their result
with our fiducial value of B ∼ 10−14 G, we evaluate an
upper bound on µν , which is shown in Fig. 2.

We work in the CGS system with ~ = c = 1. The unit
of electric charge is e =

√
α ' 0.085 with α ' 1/137 the

fine structure constant, and the unit of magnetic charge
is em = 1/2e ' 5.9. The magnetic field is measured
in Gauss, and 1 G ' 6.93 × 10−20 GeV2. The reduced
Planck mass is denoted by MP ' 2.4 × 1018 GeV. The
metric signature is (+−−−), and the antisymmetric ten-
sor normalization is ε0123 = +1.

II. MAGNETIC MONOPOLES

A conservative cosmological bound on the energy den-
sity of magnetic monopoles is Ωm ≡ ρm/ρcr < 0.3
where ρm is the energy density in monopoles and ρcr '
10−29 gm c2/ cm3 is the critical cosmological energy den-

sity. The number density of nonrelativistic monopoles is
nm = ρm/m with m the monopole mass, and the cosmo-
logical bound implies

nm < 0.3
ρcr

m
' (2× 10−23 cm−3)

( m

1017 GeV

)−1

. (1)

The bound grows weaker for lighter monopoles since they
contribute less to the energy density for the same number
density.

The existence of the galactic magnetic field leads to
another indirect bound. Magnetic monopoles tend to de-
plete a magnetic field in the same way that free elec-
trons short out a conductor. The survival of the micro-
Gauss galactic magnetic field implies an upper bound on
the directed flux, F , of magnetic charge onto the Milky
Way. Requiring that the time scale for B-field depletion
is longer than the dynamo time scale of B-field regenera-
tion (τdyn ' 108 yr), leads to the so called Parker bound
[38]

F < 0.9× 10−16em cm−2 sec−1 sr−1 . (2)

Assuming that monopoles have unit charge and travel
with velocity v, the Parker bound can be expressed as an
upper bound on the monopole number density:

nm ≈
(4π sr)F
em v

< (4× 10−23 cm−3)
( v

10−3c

)−1

. (3)

Just as the Parker bound is predicated on the existence
of a magnetic field in the Milky Way, we expect that
a similar bound can be inferred from the existence of a
primordial magnetic field in the early universe.

We study a gas of monopoles and antimonopoles im-
mersed in a magnetic field that permeates the cosmo-
logical medium. The monopoles have mass m, magnetic
charge em, and they are homogeneously distributed with
number density nm(t). The magnetic field B(t,x) in-
duces a Lorentz force of

FB = emB (4)

on a monopole at (t,x), and it begins to drift along the
field line with a velocity v. The field does work by push-
ing the monopole, and in this way the monopole extracts
energy from the magnetic field at a rate

ĖB = FB · v . (5)

To solve for the evolution of the magnetic field strength
we must know the monopole velocity. Prior to electron-
positron annihilation, the monopole’s velocity is re-
stricted by elastic scattering with the cosmological
medium, but afterward it can free stream. We will con-
sider each of these cases in turn.

A. Friction Dominated Regime

In the epoch prior to e+e− annihilation the cosmolog-
ical medium was dense with electromagnetically charged
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particles. In this regime, monopoles interact with the
medium through elastic scattering such as M + e± →
M + e± with M the monopole. It is safe to assume that
the monopole’s rest mass is much larger than the kinetic
energy of particles in the plasma. This allows us to char-
acterize the effective interaction with a drag force that
takes the form [60]

Fdrag = −fdragv . (6)

At the time of interest, the scatterers are relativistic with
energy comparable to the temperature T of the plasma,
and they are in thermal equilibrium with number density
n ∼ T 3. For such a system the drag coefficient takes the
form [39, 40]

fdrag ≈ β e2e2
m gemT

2 (7)

where gem(t) is the number of relativistic, charged de-
grees of freedom in thermal equilibrium at time t and
β is an O(1) number related to the spin character and
charge of the scatterers. We will drop β from this point
onward since it is parametrically redundant with gem.
Also note that gem and T depend on time, but this can
be ignored on short time scales as compared to the Hub-
ble time scale.

The monopole’s equation of motion is

m v̇ = emB− fdragv . (8)

We assume that the distance traveled by the monopole
is small compared to the correlation length λB of the
magnetic field, and we treat B as uniform. Eq. (8) im-
mediately gives the terminal velocity of the monopoles,

vterm =
emB

e2e2
mgemT

2
, (9)

which is achieved on a time scale

τterm =
m

e2e2
mgemT

2
. (10)

Comparing with the Hubble time tH ∼ MP /T
2 (radia-

tion era) we have τterm � tH provided that m < gemMP ,
and thus the cosmological expansion is negligible.

At the present cosmic epoch, the photon temperature
is ∼ 10−4 eV and B ∼ 10−14 G. Assuming B ∝ T 2, we
get B ' 106 G at T ' MeV when gem ' 10. These esti-
mates give vterm ' 10−8, which validates our uses of the
non-relativistic equation of motion. As a consequence,
the distance traveled by a monopole during τterm is quite
small, dterm < 10−8τterm. We shall assume that the cor-
relation length of the magnetic field is larger, λB > dterm,
thus justifying our treatment of the magnetic field as be-
ing uniform.

The magnetic field’s response to this current is given
by the magnetic analog of Ampere’s law,

Ḃ = −4π jM = −4πemnmv . (11)

where nm is the number density of monopoles (assumed
equal to the number density of antimonopoles). Here
we have used E = 0 since electric fields are screened
due to the high electrical conductivity of the cosmologi-
cal medium. For typical parameters, the inter-monopole
spacing is small compared to the correlation length of the

magnetic field, n
−1/3
m � λB , and we can interpret nm and

B as coarse grained quantities on this length scale. Then
we insert v = vterm from Eq. (9) into Eq. (11) to get the
solution,

B(t) = B(ti) e
−(t−ti)/τdecay (12)

where the decay time scale of the magnetic field is given
by

τdecay =
e2e2

mgemT
2

4πe2
mnm

. (13)

In obtaining this solution, we have assumed v = vterm

which is justified if the monopoles reach terminal veloc-
ity much more quickly than the decay time scale, i.e.
τdecay � τterm. As we will see below, this condition is
satisfied for the range of parameters of interest to us.

To ensure survival of the magnetic field, we require
that τdecay is much larger than the Hubble time at tem-
perature T ,

tH =
1

2H
' 1.5

MP

g∗T 2
(14)

with H the Hubble parameter and g∗ the effective num-
ber of relativistic degrees of freedom. Substitution of
Eq. (13) into τdecay > tH now leads to a constraint on
the number density of monopoles,

nm <
e2e2

m

6πe2
m

gemg∗T
4

MP
, (15)

when the universe had temperature T .
The strongest bound is obtained when T is smallest.

Since our calculation assumes that monopoles scatter
on relativistic, charged particles with a thermal abun-
dance, the last time at which this is possible is the
epoch of e+e− annihilation. At this time Tann ' 1 MeV,
gem ≈ g∗ ≈ g∗S ' 10.75. To translate this into a
bound on the monopole number density today, denoted
by n0, we multiply by (aann/a0)3 = (g∗S,0T

3
0 /g∗ST

3
ann)

with g∗S,0 ' 3.91 and T0 ' 2.3 × 10−4 eV the temper-
ature of the microwave background photons today. We
find an upper bound on the monopole number density
today,

n0 <
e2e2

m

6πe2
m

g∗S,0g∗gem
g∗S

TannT
3
0

Mp
' 1× 10−20 cm−3 . (16)

If this bound is not satisfied then any primordial mag-
netic field would have been exponentially depleted by the
time of electron-positron annihilation. Due to the close
connection with the Parker bound for survival of galactic
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FIG. 1: A summary of upper bounds on the magnetic
monopole abundance from this work and the literature.
Black: the requirement of survival of the primordial magnetic
field (“primordial Parker bound”), derived here in Eq. (16).
Red: the cosmological abundance bound in Eq. (1). Blue:
direct search constraints [42] (see the magnetic monopole re-
view). Green: the requirement of survival of the Galactic
magnetic field (Parker bound), given by Ref. [43]. Orange:
the requirement of survival of the Galactic seed field (“ex-
tended Parker bound”), given by Ref. [41]. We take v ' 10−3

and assume that monopoles are unclustered, fc ' 1. If the
monopoles are clustered then the Parker bound, extended
Parker bound, and direct search limits move down by a factor
of fc ∼ 105.

magnetic fields, we will refer to Eq. (16) as the “primor-
dial Parker bound.”

In Fig. 1 we compare the primordial Parker bound
in Eq. (16) with other constraints derived previously in
the literature. Since these constraints are typically ex-
pressed as a bound on the monopole flux, we translate
into a bound on the number density using (4π sr)F ≈
fcnv. Here v is the average monopole velocity and
fc = ngalaxy/ncosmo. is the enhancement factor that ac-
counts for clustering of monopoles in the galaxy. For
clustered monopoles fc ∼ 105, but otherwise fc ∼ 1.
For the extended Parker bound calculation of Ref. [41],
we take Bseed = 10−11 G. For the direct search con-
straint we show a relatively conservative and robust limit
of F < 10−15 cm−2 sec−1 sr−1, but stronger constraints
are available for specific monopole parameters [42]. From
the figure, one can see that the primordial Parker bound
becomes stronger than the cosmological bound for light
monopoles, m . 5 × 1013 GeV, but it always remains
weaker than the direct search constraints.

B. Free Streaming Regime

After cosmological electron-positron annihilation the
number density of these scatterers decreases by a factor
of ∼ 10−10. The monopoles experience very little drag
force, and they can be accelerated freely by the magnetic
field. For a uniform and static magnetic field, the solution
of Eq. (8) with fdrag = 0 is simply v = emBt/m, or for
an inhomogenous field with domains of size λB we find

v(t) ∼ emBλB
m

√
t

λB
(17)

if the motion is diffusive. The monopole becomes rela-
tivistic when v(trel) ∼ 1 and comparing this time with
the present age of the universe gives

trel

t0
∼
(

m

emBt0

)2
t0
λB
∼ 1018

(
m

MP

)2
t0
λB

. (18)

With λB ∼ Mpc and t0 ∼ 10 Gpc, we find that
monopoles are relativistic today if m . 108 GeV, and
they are non-relativistic otherwise.

The above estimate ignores backreaction of the
monopoles on the PMF. To check for consistency, we
compare the kinetic energy in monopoles ρkin to the en-
ergy density available in the PMF ρB = B2/8π. For rel-
ativistic monopoles we should have ρB > ρkin � mnm,
and this provides an upper bound on the number density
of monopoles for which the velocity estimate in Eq. (17)
can be expected to hold. Taking B ∼ 10−14 G we find

nm � 10−35

(
108 GeV

m

)
cm−3 . (19)

Since are interested in much larger number densities, as
indicated by the bound in Eq. (16), we cannot use the
velocity relation in Eq. (17), but instead the monopole
and magnetic field equations will need to be evolved si-
multaneously.

Without friction to provide a means of energy dissi-
pation, the monopoles cannot deplete the magnetic field
strength. Instead there is a conservative exchange of en-
ergy between the magnetic field and the kinetic energy of
the monopoles. This co-evolution can lead to an anoma-
lous departure from the usual power law scaling behav-
ior of the magnetic field energy density if the monopoles
are non-relativistic. This can be seen from the following
argument. In the absence of the monopole gas, the en-
ergy density in the magnetic field redshifts like radiation
ρB ∼ (1+z)4 where z is the cosmological redshift. Mean-
while the kinetic energy stored in a gas of non-relativistic
particles redshifts more quickly. We can write the kinetic
energy density as ρkin = nmp

2/(2m) where p is the typi-
cal momentum and nm is the monopole number density.
Since p ∼ (1 + z) and nm ∼ (1 + z)3, the kinetic energy
density redshifts like ρkin ∼ (1 + z)5. If energy is trans-
ferred quickly between the monopoles and magnetic field
then we might expect ρB ∼ ρkin. ∼ (1 + z)9/2 where 9/2
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is the average of 4 and 5. This result is confirmed by the
full calculation, which we will now present.

Once again we consider a gas of monopoles coupled
to a magnetic field, but we now include the effects of
cosmological expansion. Let Xλ(τ) be the world line of
a monopole, and let Uλ(τ) = dXλ/dτ be its 4-velocity.
The monopole equation of motion, given previously by
Eq. (8), is now replaced by

m

[
dUλm
dτ

+ ΓλµνU
µ
mU

ν
m

]
= emF̃

λ
µU

µ
m (20)

where Γλµν is the Christoffel symbol. The magnetic analog
of Ampere’s law in Eq. (11) is now replaced by

∇αF̃αβ = 4πjβM (21)

where ∇α is the covariant derivative. The magnetic cur-
rent density jµM arises from monopoles with velocity Uµm
and antimonopoles with velocity Uµm̄. It can be written
as

jµM = em (nm U
µ
m − nm̄ U

µ
m̄) , (22)

and it satisfies the conservation law

∇µjµM = 0 . (23)

The spatial component of the 4-velocity is the comoving
peculiar velocity (Um)i = U im, and with an additional
factor of a we form the physical peculiar velocity (vm)i =
aU im. Neglecting the electric field and spatial gradients,
the system of equations can be put into the form

∂η(avm) =
em
m

(a2B) (24a)

a∂η(a2B) = −4πem(a3nm) (avm) (24b)

∂η
(
a3nm

)
= 0 (24c)

where dη = dt/a = da/Ha2 is the conformal time coor-
dinate. The third equation implies that the number of
monopoles per comoving volume is conserved; n0 = a3nm
is the number density of monopoles today. Then if not
for the additional factor of a in the second equation, the
solutions would simply be oscillatory with angular fre-
quency

ωpl =

√
4πe2

mn0

m
. (25)

This is just the usual formula for plasma frequency, but
instead of electron charge, mass, and density, here we
find the corresponding parameters for the monopole gas.

To solve these equations we must relate a to η. Dur-
ing the radiation era we have η = ηi + (a − ai)/Hia

2
i ≈

a/Hia
2
i , and the solution is

B =

(
a

ai

)−9/4 [
J0(φ) B1 + Y0(φ) B2

(a/ai)−1/4

]
(26a)

vm =

(
a

ai

)−3/4 [
φ J1(φ) v1 + φ Y1(φ) v2

(a/ai)1/4

]
(26b)

where

φ ≡ 2ω̃ ηi
ai

√
a . (27)

At late times φ � 1, and all of the Bessel functions go
to zero with an envelop ∼ φ−1/2 ∼ a−1/4. Then the
terms in square brackets do not scale with a and we find
B ∼ a−9/4 and vm ∼ a−3/4. One can check that the
energy densities scale in the same way

ρB =
|B|2

8π
∝ a−9/2 (28a)

ρkin. =
m

2
|vm|2 nm ∝ a−9/2 , (28b)

which confirms our earlier argument.
During the matter era we have η = ηi + 2(

√
a −

√
ai)/Hia

3/2
i ≈ 2

√
a/Hia

3/2
i , and the solution is

B =

(
a

ai

)−9/4 ∑
s=±1

(
a

ai

) i
4 s
√

4ω̃2η2i /ai−1

Bs (29a)

vm =

(
a

ai

)−3/4 ∑
s=±1

(
a

ai

) i
4 s
√

4ω̃2η2i /ai−1

vs . (29b)

For typical parameters we have 4ω̃2η2
i /ai � 1, and the

solution is oscillatory with a power law envelope. We find
the same anomalous scaling as in the radiation era, cf.
Eq. (28). If we remove the monopoles from the problem
by sending nm, ω̃ → 0 then the would-be oscillatory fac-
tors become a power law decay, and we regain the usual
scaling B ∼ a−2 and vm ∼ a−1.

This anomalous scaling does not provide constraints on
the monopole number density. However, it does affect the
way that we translate constraints on the magnetic field in
the early universe into the value of the magnetic field to-
day. Measurements of the cosmic microwave background
restrict the magnetic field energy density to be less than
∼ 10−5 of the photon energy density at the time of re-
combination [28]

ρB(zrec) . 10−5ργ(zrec) . (30)

Using the scaling relations, ρB ∼ (1 + z)9/2 and ργ ∼
(1 + z)4 this inequality implies that the magnetic field
energy density today is bounded by

ρB,0 . 10−5ργ,0(1 + zrec)−1/2

' (3× 10−10 G)2

(
1 + zrec

1300

)−1/2

(31)

where ργ,0 ≈ 2π2T 4
0 /30 is the CMB energy density to-

day. If it were not for the anomalous redshifting, the
constraint on the B-field strength would be weaker by a
factor of (1 + zrec)1/4 ' 6.

The anomalous scaling of the field strength in Eq. (28)
can become a tool in the future as measurements of the
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PMF improve. By measuring the magnetic field strength
at different redshifts, say by using TeV blazars at differ-
ent distances, we can directly probe the anomalous scal-
ing, and hence obtain a new handle on the relic density
of non-relativistic magnetic monopoles.

III. AXIONS

Consider an axion ϕ(x) coupled to the electromagnetic
field Aµ(x). The Lagrangian takes the form [44]

L =
1

2
(∂µϕ)2 − m2

a

2
ϕ2 − 1

16π
FµνF

µν

− gaγ
16π

ϕFµν F̃
µν −Aµjµ (32)

where F̃µν = 1
2ε
µναβFαβ is the dual field strength ten-

sor, and jµ = (ρ, j) is the electromagnetic current arising
from the charged Standard Model fields. Our analysis
is sufficiently general to apply to any axion or axion-like
particle described by Eq. (32), but as a fiducial refer-
ence point we will consider a QCD axion with Peccei-
Quinn scale of fa ' 1010 GeV, an axion mass of ma ≈
Λ2
qcd/fa ' 1 meV, and a photon-axion coupling constant

gaγ ≈ α/(2πfa) ' 10−13 GeV−1.
The classical axion condensate obeys the field equation

�ϕ+m2
aϕ =

gaγ
4π

E ·B (33)

where we have used Fµν F̃
µν = −4E ·B. The electromag-

netic field evolves according to the constraint equation

∂µF̃
µν = 0 (34)

and the modified field equation

∂µF
µν + gaγ ∂µϕF̃

µν =
4π

c
jν . (35)

In terms of the electric and magnetic vector fields we have

∇ ·B = 0 (36a)

∇×E +
1

c

∂B

∂t
= 0 (36b)

∇ ·E + gaγ∇ϕ ·B = 4πρ (36c)

∇×B− 1

c

∂E

∂t
− gaγϕ̇B− gaγ∇ϕ×E =

4π

c
j . (36d)

Note the presence of the additional terms arising from
the spatio-temporal variation of the axion field.

We seek to study the coevolution of the coupled ax-
ion and electromagnetic fields. Eqs. (33) and (36) de-
scribe a non-dissipative system. Dissipation is introduced
as the electromagnetic field couples to charged particles
in the cosmological medium, which opens an avenue for
energy to be lost in the form of heat. This coupling

is parametrized by the conductivity σ which appears in
Ohm’s law

j = σ (E + v ×B) (37)

where v(t,x) is the local velocity of the plasma. Prior
to the epoch of e+e− annihilation, free charge carriers
were abundant and the cosmological medium had a high
conductivity [45]

σ ≈ T/α (38)

where α ' 1/137 is the fine structure constant. Ohm’s
law allows us to eliminate j and thereby reduce the sys-
tem of equations in four unknowns {E,B, j, ϕ} to a set
of equations describing only three unknowns:

ϕ̈−∇2ϕ+m2
aϕ =

gaγ
4π

E ·B (39a)

Ḃ = −∇×E (39b)

Ė = ∇×B− gaγϕ̇B− gaγ∇ϕ×E

− 4πσE− 4πσv ×B . (39c)

In the MHD approximation (nonrelativistic flow) we can
neglect the displacement current since it is negligible
compared to the curl of the magnetic field, |Ė|/|∇×B| ∼
(v/c)2 � 1 [46]. Then Eq. (39c) becomes algebraic in E,
and we can solve it to eliminate E from the remaining
equations. Focusing now on a homogenous axion field,
the system of equations reduces to

ϕ̈+ g2
aγ

ηd|B|2

4π
ϕ̇+m2

aϕ =
gaγηd

4π
B ·∇×B (40a)

Ḃ = ∇× (v ×B) + ηd∇2B + gaγηdϕ̇∇×B (40b)

where

ηd ≡
1

4πσ
≈ α

4πT
(41)

is the magnetic diffusivity, assumed to be homogenous.
Eqs. (40a) and (40b) together with the Navier-Stokes
equation for the plasma velocity v are the final equations
to be solved. We first solve Eq. (40b) to determine the
effect of the axion on the magnetic field, and afterward
we will consider the evolution of the axion according to
Eq. (40a).

A. Effect of Axion on Magnetic Field

In order to solve Eq. (40b) for the B-field we must know
the fluid velocity, which appears in the advection term,
∇ × (v × B). Since our primary interest is in the co-
evolution of the magnetic field and the axion, not in the
magnetohydrodynamics, we will neglect this term [61].
Since Eq. (40b) is linear in B, and we assume that ϕ
is homogenous, we can solve the equation by first per-
forming a Fourier transform. For a given mode k let
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(e1(k), e2(k), e3(k)) form a right-handed, orthonormal
triad of unit vectors with e3(k) = k/|k|. It is convenient
to introduce the right- and left-circular polarization vec-
tors by

e±(k) =
e1(k)± ie2(k)√

2
. (42)

Note that ik×e±(k) = ±|k|e±(k). The mode decompo-
sition is given by

B(t,x) =

∫
d3k

(2π)3
eik·x

∑
s=±

bs(t, |k|)es(k) . (43)

With this replacement, Eq. (40b) becomes

ḃ±(t, k) = −ηdk
2b±(t, k)± gaγηd k ϕ̇ b±(t, k) (44)

where we have written k = |k|. The last term of this
equation, essentially the chiral-magnetic effect [47], has
been studied previously in the context of axions [48] and
cosmology [49, 50]. The solution is

b±(t, k) = b±(ti, k) e−k
2(t−ti)ηd e±k/kax(t) (45)

where we have defined the wavenumber

kax(t) ≡ 2

gaγ∆ϕ(t)ηd
(46)

and ∆ϕ(t) = ϕ(t)−ϕ(ti) is the change in the axion field.
The prefactor in Eq. (45) is the initial spectrum of the
magnetic field which will depend on the PMF genera-
tion mechanism. The first exponential is the usual diffu-
sive decay term, which exponentially suppresses modes
on a length scale shorter than k−1

diff =
√

(t− ti)ηd '
10−1

√
t/T . The second exponential only kicks in at small

length scales where k > kax. Then it leads to a suppres-
sion of one polarization mode and enhancement of the
other, depending on the sign of ∆ϕ(t).

The value of ∆ϕ(t) depends on the solution for the
axion field as well as the initial time ti. We expect that
the misalignment mechanism sets the initial condition
ϕ(ti) ∼ ±fa. The subsequent evolution is determined
by solving Eq. (40a), which we will turn to in the next
section. For the moment we will assume that the axion
evolution is not significantly affected by the presence of
the magnetic field, and the solution is the standard one:
the axion remains “frozen” at ϕ(ti) until the time of the
QCD phase transition when it begins to oscillate around
ϕ = 0 with angular frequency ω = ma [51]. Then we can
approximate

∆ϕ(t) ≈

{
0 t < tqcd
sfa t > tqcd

(47)

where s = sign[ϕ(ti)]. Using this approximation we can
estimate kax. Prior to the QCD phase transition, ∆ϕ is
small and kax is large, meaning that none of the modes

receive the enhancement or suppression from the axion
coupling. This is reasonable since the axion is deriva-
tively coupled, and as long as it is stationary there will
be no effect on the magnetic field. After the QCD tran-
sition, we can estimate

kax ≈
4πσ

gaγfa
≈ 4πT

αgaγfa
(48)

using Eqs. (38) and (41). Note that this result is insen-
sitive to the Peccei-Quinn scale, and as long as gaγ =
α/(2πfa) we have k−1

ax ≈ α2/(8π2T ) ' 10−6T−1.
The solution in Eq. (45) can also be written as

b±(t, k) = b±(ti, k) eK
2(t−ti)ηd e−(k∓K)2(t−ti)ηd (49)

where

K(t) ≡ 1

kax(t− ti)ηd
=
gaγ∆ϕ(t)

2(t− ti)
. (50)

This representation of the solution is convenient, because
all the spectral information is contained in the second
factor. One of the helicity modes has a Gaussian spec-
trum peaked at |K(t)| > 0 with width

√
1/(t− ti)ηd,

and the other helicity mode peaks at k = 0. Estimating
kax as above, we find that the associated length scale of
the spectral peak corresponds to K−1 ≈ kaxtηd ' 600t,
which is larger than the scale of the cosmological horizon
dH ∼ t.

It appears that the presence of an axion condensate
coupled to electromagnetism has a negligible impact on
the evolution of a primordial magnetic field, unless there
are situations in which ∆ϕ can be much larger than fa.

We note that our analysis ignores the possibility of
turbulence in the primordial plasma. It would be of in-
terest to include both turbulence and the axion coupling
in future studies.

B. Effect of Magnetic Field on Axion

Next we will investigate the effect of a background
magnetic field on the axion condensate. We have seen
that the magnetic field is approximately unmodified on
length scales larger than the diffusion length, k−1

diff ∼√
ηdt (cf., Eq. (45)). In this regime Eq. (40a) can be

rewritten as

ϕ̈+ 2
ϕ̇

τdecay
+
ϕ

τ2
a

= H (51)

where

τdecay ≡
8π

g2
aγηd〈|B|2〉

, (52)

τa ≡
1

ma
, (53)

H ≡ gaγηd

4π
〈B ·∇×B〉, (54)
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and the angled brackets 〈·〉 denote spatial averaging. The
axion condensate evolves like a damped and driven har-
monic oscillator, where the damping and driving forces
are induced by the magnetic field background. As we
discuss below, it is interesting that the driving force is
associated with the helicity of the magnetic field.

The magnetic-induced damping of axion oscillations
is parametrized by the time scale τdecay. To determine
when this damping will be relevant for the evolution of
the axion, we compare it with the cosmological time
scale, given by Eq. (14). To express 〈|B|2〉 = B2 in
terms of the magnetic field strength today, B0, we use
B = B0(a0/a)2 ' 10B0(T/T0)2 where the factor of 10 is
related to the number of relativistic degrees of freedom
in the early universe and today. Then the ratio is found
to be

τdecay

tH
≈ 16π2g∗

75

T 4
0

αg2
aγMPB2

0T
(55)

' 1016 (10−13 GeV−1)2

g2
aγ

(1010 GeV)

T

(10−14 G)2

B2
0

.

This estimate suggests that the magnetic-induced decay
of the axion field is negligible for a typical Peccei-Quinn
scale and B-field strength. If the B-field strength today
were as large as B0 ∼ 10−9 G and the Peccei-Quinn scale
was as low as fa ∼ TeV, then τdecay would be compara-
ble to the Hubble time at T ≈ fa. As the temperature
decreases, the magnetic-induced decay becomes less rel-
evant.

It is interesting that the magnetic field also induces a
driving force, parametrized by H. The pseudoscalar H
is related to the helicity of the magnetic field. This is
perhaps more evident from the initial form of the axion
field equation, Eq. (33), where E ·B is equal to the rate
of change of the helicity density −(1/2)d(A ·B)/dt plus
a divergence, which vanishes upon spatial averaging. If
the power in the magnetic field is localized on a particular
length scale λB we can estimate 〈B ·∇×B〉 ∼ B2/λB ∼
300(B2

0/λB0
)(T/T0)5 where we used λB ∼ 3λB,0(T0/T ).

Prior to the QCD phase transition we can neglect the
mass and drag terms in Eq. (51), and the solution is
simply ϕ = Ht2/2. Since the axion is massless, there is
no restorative potential, and the helical magnetic field
leads to an unbounded growth of the axion condensate.
Although this analysis neglects the Hubble drag, we can
estimate the maximum field excursion in one one Hubble
time to be Ht2H/2. Comparing with the Peccei-Quinn
breaking scale, the corresponding angular excursion is

∆θ ≈ Ht
2
H

fa
≈ 75

16π2

αgaγM
2
PB

2
0

fag2
∗T

5
0 λB,0

' 10−35

(
B0

10−14 G

)2(
λB,0

10 Mpc

)−1

×
(

gaγ

10−13 GeV−1

)(
fa

1010 GeV

)−1

. (56)

We are led to conclude that for realistic parameters, the
helical PMF does not significantly impact the evolution of
the axion condensate prior to the QCD phase transition.

After the QCD phase transition, the axion mass
reaches its asymptotic value, and the source term dis-
places the minimum of the axion potential from ϕ = 0
to ϕmin = Hτ2

a = H/m2
a. In terms of the angular coordi-

nate:

θmin ≈
Hτ2

a

fa
≈ 25

12π2

αgaγB
2
0T

4

fam2
aλB,0T

5
0

(57)

' 10−47

(
B0

10−14 G

)2(
λB,0

10 Mpc

)−1(
T

200 MeV

)4

×
(

fa
1010 GeV

)−1(
gaγ

10−13 GeV−1

)( ma

1 meV

)−2

.

The temperature dependence enters through B ∼ T 2,
λB ∼ 1/T , and ηd ∼ 1/T , and the fractional shift is
largest at high temperature where B is large and λB
is small. Immediately after the QCD phase transition,
Tqcd ∼ 200 MeV, the fractional shift is already extremely
small. Moreover if the PMF is not helical then H = 0
and there is no shift in the axion potential.

It is interesting that the estimate of Eq. (57) is insensi-
tive to the Peccei-Quinn scale; as long as gaγ = α/(2πfa)
and ma = Λ2

qcd/fa we have gaγ/fam
2
a = α/(2πΛ4

qcd).
Then the primarily challenge toward obtaining a large
effect is the smallness of the magnetic field strength. Al-
though unrelated to primordial magnetic fields, which is
the motivation for this work, it would be interesting to
study the axion condensate in an astrophysical system
where the magnetic field is both helical and strong. For
instance, the field strength in a magnetar can grow as
large as B ∼ 1015 G and the magnetic field in some as-
trophysical jets is known to be helical [52].

C. Axion-Photon Interconversion

Until this point we have focused our attention on the
interplay between the axion condensate and the primor-
dial magnetic field, and we now turn our attention to the
quanta of these fields. In the presence of a background
magnetic field, the interaction in Eq. (32) yields a mix-
ing between axion particles and photons. Typically the
conversion is inefficient, but in the presence of a plasma
the photon acquires an effective mass, and the conver-
sion probability experiences a resonance when mγ = ma

[53]. In the cosmological context, the conversion of pho-
tons into axions may lead to a dimming of the cosmic
microwave background across frequencies. Then mea-
surements of the spectrum of the CMB can be used to
place constraints on the axion-photon coupling and the
magnetic field strength.

Bounds were obtained from the COBE / FIRAS mea-
surement of the CMB spectrum in Ref. [54], and re-
cently a second group [55] has extended the calculation
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to include forecasts for next-generation CMB telescopes,
namely PIXIE and PRISM. The latter references finds
an upper bound on the product of the axion-photon cou-
pling and the r.m.s. magnetic field strength today:

gaγB0 < 10−14 GeV−1 nG (COBE-FIRAS data)

gaγB0 < 10−16 GeV−1 nG (PIXIE/PRISM forecast)
(58)

for a light axion ma < 10−14 eV. For larger axions masses
the bound weakens. Using our fiducial value for the mag-
netic field B0 ' 10−14 G, we can write

gaγ < 10−9 GeV−1

(
B0

10−14 G

)−1

(COBE-FIRAS)

gaγ < 10−11 GeV−1

(
B0

10−14 G

)−1

(PIXIE/PRISM) .

(59)

These bounds are comparable to the direct search limits
from the CAST helioscope [56],

gaγ < 8.8× 10−11 GeV−1 (60)

for ma . 0.02 eV.

IV. DIRAC NEUTRINOS

While the neutrinos are known to be massive particles,
the nature of their mass remains a mystery. If neutrinos
are Dirac particles then the theory contains four light
states per generation: an active neutrino νL, an active
antineutrino, ν̄R, a sterile neutrino νR, and a sterile an-
tineutrino ν̄L. The active states interact through the
weak force, and this allows them to come into thermal
equilibrium in the early universe. The sterile states, on
the other hand, interact only via the Yukawa interaction
with the Higgs boson, and because of the smallness of
the Yukawa coupling yν ∼ mν/v ∼ 10−12, these states
are not expected to be populated.

This story is modified if a strong magnetic field per-
meated the early universe. The nonzero neutrino mass
implies that the neutrino will also have a nonzero mag-
netic moment µν . From Standard Model physics alone
one expects [57, 58]

µsm
ν ' (3× 10−20µB)

mν

0.1 eV
, (61)

where µB ≡ e/2me ' 83.6 GeV−1 is the Bohr magne-
ton, but new physics can increase this value appreciably.
The magnetic field couples to µν and induces the spin-
flip transitions νL → νR and ν̄R → ν̄L, which can be
viewed as the absorption or emission of a photon. If the
spin-flip occurs rapidly in the early universe, the sterile
states would be populated, and the effective number of
relativistic neutrino species would double from Nν = 3 to

6. However, this is not consistent with measured abun-
dances of the light elements, which imply Nν ≈ 3 at
the time of nucleosynthesis [59]. We must therefore re-
quire that the spin-flip transition goes out of equilibrium
prior to the QCD epoch, Tqcd ' 200 MeV, so that the
subsequent entropy injection at the QCD phase transi-
tion can suppress the relative abundance of sterile states
to acceptable levels [51]. This translates into an upper
bound on the neutrino magnetic moment and magnetic
field strength, which was originally discussed by Enqvist
et al. [36, 37].

In the rest of this section we apply the results of
Ref. [37]. The spin-flip transition occurs with a rate

ΓL→R = 〈PνL→νR〉Γtot
W (62)

where 〈PνL→νR〉 is the average conversion probability
and Γtot

W is the total weak scattering rate. The active
neutrinos scatter via the weak interaction which leads
to Γtot

W ' 30G2
FT

5
qcd at the QCD epoch. The conver-

sion probability depends on the magnetic moment and
field strength as 〈PνL→νR〉 ∝ µ2

νB
2, since the interaction

Hamiltonian is Hint = −µν · B. The coefficient takes
different values depending on the relative scale of the
magnetic field domains λB and the weak collision length
LW ≈ (Γtot

W )−1. At the QCD epoch LW ' 1.6×10−2 cm,
which corresponds to a length scale of LW,0 ' 3×1010 cm
today. It is safe to assume that the magnetic field of in-
terest is much larger than this length scale, and therefore
λB � LW . To ensure that the spin-flip transition is out
of equilibrium one must impose ΓL→R < H with H the
Hubble parameter. This inequality resolves to the bound
(see Eq. (37) of Ref. [37])

µνB(tqcd) < (3.5× 102µB G)

√
LW
λB

. (63)

To express this inequality in terms of the B-field strength
and correlation length today, we use B ' 6B0(Tqcd/T0)2

and LW /λB = LW,0/λB,0. This leads to an upper bound
on the neutrino magnetic moment:

µν < (3× 10−16µB)

(
B0

10−14 G

)−1(
λB,0

10 Mpc

)−1/2

.

(64)

If this bound is not satisfied, the sterile neutrino states
will still be thermalized with the active neutrino states at
the time of BBN leading to Nν ≈ 6, which is inconsistent
with the data. If the neutrinos are Majorana particles,
then the sterile states are much heavier, and this bound
does not apply.

The bound in Eq. (64) is represented graphically in
Fig. 2. For comparison we show the SM prediction from
Eq. (61) and the direct search limits. The strongest labo-
ratory constraints arise from elastic ν−e scattering. The
limits are flavor-dependent, but they are typically at the
level of [42]

µν . 10−10µB (direct) . (65)
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FIG. 2: The requirement that spin-flip transitions are out of
equilibrium at the QCD epoch leads to an upper bound the
neutrino magnetic moment given by Eq. (64).

From the figure we see that the indirect early universe
constraint is significantly stronger than the direct con-
straint for B & 10−18 G. This provides the exciting op-
portunity to constrain extensions of the SM that predict
an enhancement to the magnetic moment of Dirac neu-
trinos.

V. SUMMARY

Growing evidence for the existence of an intergalactic
magnetic field has motivated us to consider the effects of
a primordial magnetic field on models of exotic particle
physics in the early universe. We have focused our study
on magnetic monopoles, axions, and Dirac neutrinos with
a magnetic moment. We summarize our results here.

In the context of a universe containing relic magnetic
monopoles, we have derived a “primordial Parker bound”
by requiring the survival of a primordial magnetic field
until the time of electron-positron annihilation. The
bound, which appears in Eq. (16), gives an upper limit on
the cosmological monopole number density today: n0 <
1× 10−20 cm−3. This translates into an upper bound on
the monopole flux in the Milky Way; if the monopoles are
unclustered then F < 3×10−14 cm−2 sec−1 sr−1(v/10−3),
and if they are clustered the bound weakens by a factor of
∼ 105. In Fig. 1 we compare the primordial Parker bound
with other constraints on relic monopoles. If the primor-
dial magnetic field is not generated prior to T ' MeV,
then this bound does not apply.

After e+e− annihilation the monopoles are able to free
stream, and they evolve along with the magnetic field as
described by the system of equations in Eq. (24). The
solution is an analog of the familiar plasma oscillations
(“Langmuir oscillations”) seen in an electron-ion plasma.
In the regime where the plasma oscillations are fast com-
pared to the cosmological expansion, the coupling of the
monopoles to the magnetic field leads to an anomalous
scaling with redshift such that B ∼ a−9/4, vm ∼ a−3/4,
and ρB ∼ ρkin. ∼ a−9/2. The behavior of the coupled
system is effectively the average of the usual scalings for
radiation ρB ∼ a−4 and the kinetic energy of a non-
relativistic gas ρkin. ∼ a−5. If the strength of the inter-
galactic magnetic field could be measured over a range of
redshifts, this would allow for a direct test of the anoma-
lous scaling, and thereby probe relic magnetic monopoles.

We have also studied the effect of a primordial mag-
netic field on the evolution of an axion condensate in the
early universe. We obtain an exact solution to the MHD
equations for the magnetic field in the limit where the ad-
vection term is negligible and the axion is homogenous.
After Peccei-Quinn breaking but prior to the QCD phase
transition, the axion field is frozen, because its mass is
smaller than the Hubble scale, and since the axion is
derivatively coupled, this leads to no effect on the mag-
netic field. Below the QCD scale the axion field begins
to oscillate, and the spectrum of the magnetic field is
distorted as in Eq. (45). One helicity mode of the mag-
netic field is enhanced while the other is suppressed; this
CP-violation is a consequence of the axion’s pseudoscalar
nature. However, the spectral shape of the magnetic field
is only affected on extremely large length scales, as given
by Eq. (50), except in situations where there can be sig-
nificant axion evolution prior to the QCD epoch.

We next study the evolution of the homogenous ax-
ion condensate in the presence of a background mag-
netic field. The axion behaves as a damped and driven
harmonic oscillator, as seen from its equation of mo-
tion Eq. (51). The damping time scale depends on the
strength of the magnetic field and the photon-axion cou-
pling. For typical parameters it is generally larger than
the cosmological time scale, and therefore irrelevant for
the evolution of the axion. It is interesting that the driv-
ing force (source termH) is only operative when the mag-
netic field has a helicity. This can be seen directly from

the interaction L 3 ϕFF̃ where FF̃ ∼ E · B ∼ ḣ is re-
lated to the rate of change of magnetic helicity h = A ·B.
Prior to the QCD phase transition when the axion was
effectively massless, the axion field equation reduces to
ϕ̈ = H. In principle a very strong magnetic field could
cause the axion to grow without bound as ϕ(t) = Ht2/2,
by drawing energy from the magnetic field. For typical
parameters, however, this growth occurs on a time scale
that is much longer than the cosmological time. It may
still be the case that helical magnetic fields occurring in
astrophysical environments are strong enough to lead to
observable signatures.

We have also considered the resonant conversion of
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CMB photons into axions, which leads to a distortion of
the CMB blackbody spectrum [53–55]. Using constraints
on spectral distortions from current and anticipated fu-
ture CMB telescopes, Ref. [55] obtained an upper bound
on the axion-photon coupling. For our fiducial magnetic
field strength this translates into gaγ . 10−9 GeV−1 with

current data, and a forecast of gaγ . 10−11 GeV−1 for
experiments presently under discussion (see Eq. (59)).

Finally we turn to the effect of the primordial mag-
netic field on Dirac neutrinos, which carry a magnetic
moment. In the presence of a magnetic field, left-handed
neutrinos can be converted into right-handed neutrinos.
If this spin-flip process is in equilibrium in the early uni-
verse, the right-handed states would be populated, and
the effective number of relativistic neutrino species would
double from 3 to 6, which is inconsistent with observa-
tions. Requiring that this process is out of equilibrium at
the time of the QCD phase transition leads to an upper
bound on the neutrino magnetic moment and magnetic

field strength. Drawing on the work of Ref. [37], we find
the limit in Eq. (64), which implies µν < 3 × 10−16µB
for our fiducial magnetic field parameters B0 = 10−14 G
and λB = 10 Mpc. As seen in Fig. 2, this bound is signif-
icantly stronger than the direct search limits over most
of the parameter space.
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