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Robust model comparison disfavors power law cosmology

Daniel L. Shafer∗

Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040, USA

Late-time power law expansion has been proposed as an alternative to the standard cosmological
model and shown to be consistent with some low-redshift data. We test power law expansion
against the standard flat ΛCDM cosmology using goodness-of-fit and model comparison criteria. We
consider Type Ia supernova (SN Ia) data from two current compilations (JLA and Union2.1) along
with a current set of baryon acoustic oscillation (BAO) measurements that includes the high-redshift
Lyman-α forest measurements from BOSS quasars. We find that neither power law expansion nor
ΛCDM is strongly preferred over the other when the SN Ia and BAO data are analyzed separately
but that power law expansion is strongly disfavored by the combination. We treat the Rh = ct
cosmology (a constant rate of expansion) separately and find that it is conclusively disfavored by all
combinations of data that include SN Ia observations and a poor overall fit when systematic errors
in the SN Ia measurements are ignored, despite a recent claim to the contrary. We discuss this claim
and some concerns regarding hidden model dependence in the SN Ia data.

I. INTRODUCTION

Despite the general observational success of ΛCDM in
describing the detailed properties of the Universe and its
expansion, some alternative models for expansion have
been proposed. A notable alternative is power law cos-
mology, where the scale factor evolves purely as a func-
tion of the proper time (age) to some constant power.
While constraints from Big Bang nucleosynthesis sug-
gest that a power law model cannot describe the com-
plete expansion history of the Universe [1, 2], it may be
more plausible as a description of a low-redshift modified-
gravity alternative to the cosmological constant. For in-
stance, power law expansion could result from a coupling
of classical fields to spacetime curvature, regardless of
matter content (e.g. [3]). Theoretical motivation aside, it
is instructive to compare alternative models with ΛCDM
to test the robustness of the data and their ability to
discriminate between competing models.

Power law expansion has been shown (e.g. [4–6]) to
be consistent with a variety of cosmological probes for
a power law exponent in the range 1 . n . 1.5. More
recently, Dolgov et al. [7] studied power law cosmology
using current data from observations of Type Ia super-
novae (SNe Ia) and baryon acoustic oscillations (BAO).
They found that low-redshift power law cosmology is a
good fit to the SN Ia data if the power law exponent
has a value n ' 1.5. Here we will study similar data,
but rather than simply constrain the model parameters
and confirm that one can find a good fit, we would like
to explicitly compare power law cosmology with ΛCDM.
We will use several alternative model comparison statis-
tics to determine if (and if so, how strongly) various data
combinations prefer power law expansion over ΛCDM.

A similar alternative to ΛCDM is the so-called Rh = ct
universe proposed by Melia and Shevchuk [8], where
Rh = c/H(t) is the Hubble radius. Though presented
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as a distinct model, the expansion history of Rh = ct
matches that of a power law with exponent n = 1 (a con-
stant rate of expansion). Note that a constant rate of
expansion has been studied earlier [9, 10] under the name
“linear coasting cosmology.”

Whether or not the Rh = ct model is unphysical has
been debated in the literature. Aside from the nucleosyn-
thesis arguments [1, 2] that apply to power law expan-
sion in general, Lewis [11] points out that the Rh = ct
universe, which is constrained to have an effective equa-
tion of state w̄ = −1/3, requires either that Ωm = 0 or
that the dark energy equation of state evolves in an un-
physical way at early times. In a response, Melia [12]
argues that the assumption of a conserved matter field is
not justified even at late times, though one might view
this as rather contrived. The idea of Rh as a meaningful
cosmic horizon has also been challenged [13, and refer-
ences therein]. Setting these important concerns aside,
we may still ask whether the observations favor Rh = ct
expansion as a phenomenological description of the late
Universe.

An analysis by Bilicki and Seikel [14] determined that
the Rh = ct universe is ruled out by both SN Ia data
and H(z) data (from BAO and cosmic chronometers)
separately, though, as pointed out in [15], the conclu-
sions are based heavily on visual inspection of plots of
reconstructed dynamical quantities. While there is noth-
ing wrong with this dynamical approach, and while the
inconsistency with Rh = ct indeed appears quite signif-
icant, direct model comparison can quantify the prefer-
ence of the data and appropriately account for differences
in model complexity. That analysis also ignores system-
atic errors in the SN Ia measurements, and these are
significant for current data. In addition, proponents of
Rh = ct cosmology have argued [16, 17] that using SN
Ia data may be unfair anyway because of hidden model
dependence.

In this paper, we test both power law cosmology and,
separately, the Rh = ct cosmology against ΛCDM us-
ing current data and robust model comparison statistics.
The outline of the rest of the paper is as follows. In
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Sec. II, we briefly review these three models for cosmic
expansion. In Sec. III, we describe the datasets we will
use, and in Sec. IV, we review the goodness-of-fit and
model comparison statistics. Our results are presented
in Sec. V. Finally, in Sec. VI, we discuss the issue of hid-
den model dependence in the SN Ia data, explaining why
there is no real problem, before summarizing our conclu-
sions.

II. MODELS

In this section, we briefly describe the three models we
wish to compare: ΛCDM, power law cosmology, and the
Rh = ct cosmology.

A. ΛCDM

The flat ΛCDM model is considered the standard
model of modern cosmology, and it is motivated by a
combination of physics and empirical observations. In
the ΛCDM framework, the present-day Universe consists
mostly of cold dark matter and the simplest form of dark
energy, the cosmological constant Λ. The ΛCDM model
is usually described as having six free parameters (e.g.
Ωm, Ωch

2, Ωbh
2, ns, As, τ), remarkably simple for a

model that describes the Universe as a whole (for com-
parison, the Standard Model of particle physics has 19
free parameters). Moreover, if the focus is only on late-
time relative expansion, there is really only one free pa-
rameter, which we take to be Ωm. For a flat universe,
the present cosmological-constant density is fixed to the
value ΩΛ = 1− Ωm, and the comoving angular diameter
distance r(z) coincides with the line-of-sight comoving
distance:

r(z) =
c

H0

∫ z

0

dz′

E(z′)
, (1)

E(z) ≡ H(z)

H0
=
√

Ωm(1 + z)3 + (1− Ωm) . (2)

Note that, since we are focusing on low-redshift expan-
sion only, we can ignore contributions to H(z) from ra-
diation or relativistic neutrinos, which have a negligible
impact on expansion to the precision we are concerned
with here.

B. Power law and Rh = ct cosmology

In power law cosmology, the scale factor evolves with
proper time (age) as

a(t) =

(
t

t0

)n

, (3)

where a0 = a(t0) = 1 is the present value. In this case,
we have

E(z) = (1 + z)1/n, (4)

so that

r(z) =
c

H0
×


(1 + z)1−1/n − 1

1− 1/n
, n 6= 1 ,

ln(1 + z), n = 1 .

(5)

Here there is one free parameter, the power law exponent
n, which can be restricted to be in the range 0 < n <∞
if we agree we live in an expanding universe. Since the
data combinations we will analyze here all exclude n ≤ 0
anyway, this restriction does not affect our analysis.

The Rh = ct universe [8], though proposed as a dis-
tinct model, has an expansion history that matches that
of a power law with n = 1. In the definition, Rh is the
gravitational radius, which is equivalent to the Hubble
radius Rh = c/H(t) for a flat universe, so one can also
write Ht = 1 to describe this model. The comoving an-
gular diameter distance is then given by the second case
in Eq. (5). There are no free parameters in this model,
so only nuisance parameters associated with the data can
be varied.

Note that we are assuming a flat universe for these
models as well, an assumption which can be relaxed
(e.g. [7]). Flatness is empirically motivated (e.g. [18])
for ΛCDM-like models, where Ωk is constrained to be
small, but the tightest constraints are somewhat model-
dependent since they rely on CMB observations (see
Sec. III B). On the other hand, if the inflationary pic-
ture is correct, we still have strong theoretical motiva-
tion to assume a flat universe, and we proceed with this
assumption.

III. DATA SETS

We now describe in some detail the data used in the
analysis. It is crucial that we only choose data whose
interpretation is independent of the cosmological model.
To this end, we consider SN Ia observations as well as
measurements of the BAO feature in large-scale struc-
ture. These are among the most mature, well-studied,
and robust probes of dark energy and cosmic expansion
at present. In this section and also in Sec. VI, we discuss
some important issues related to the model-independence
of these data.

We intentionally do not use some other measurements
of distance and expansion rate, such as cosmic chronome-
ters (e.g. [19, 20]), which measure H(z) directly by esti-
mating the ages of passively evolving galaxies. While
very promising, this method is newer and less well-
studied, and the systematic errors on individual measure-
ments are often as large as the statistical errors. In ad-
dition, we leave out measurements of the CMB distance
because the measurement is at least somewhat model-
dependent (see Sec. III B).
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A. SN Ia data

Type Ia supernovae (SNe Ia) are very bright standard
candles (or standardizable candles) that are useful for
measuring cosmological distances. SNe Ia alone provided
the first convincing evidence for accelerated cosmic ex-
pansion [21, 22]. Today, not only have we observed many
more SNe, but we have also improved our understanding
of their light curves and performed rigorous analyses of
systematic errors (e.g. [23–26]). Although measurements
of CMB anisotropies and large-scale structure can con-
strain the matter content of the Universe and even the
dark energy equation of state, SNe Ia have an impor-
tant role in breaking degeneracies to achieve precision
constraints on dark energy.

The distance modulus of a SN at redshift z is given by

µ(z) = 5 log10

[
H0

c
DL(z)

]
, (6)

where DL(z) = (1 + z) r(z) is the luminosity distance.
Here we have defined the distance modulus without the
H0 term, which is degenerate with the SN Ia absolute
magnitude (see below).

Useful correlations between the peak luminosity of SNe
Ia and both the stretch (or broadness) and photometric
color of their light curves improve the standardization
of SNe Ia by reducing the intrinsic scatter in their lu-
minosities (and simultaneously mitigating potential sys-
tematic effects). Simply put, a broader or bluer SN light
curve corresponds to a brighter SN. More recently, it has
become apparent that properties of the host galaxy cor-
relate with the intrinsic luminosity as well, and under-
standing these effects is the focus of much current work
(e.g. [27–29]). It is now common practice to fit for two
absolute magnitudes, splitting the sample using a stellar
mass cut of the host galaxy. We therefore compare the
predicted distance modulus with its measured value after
light-curve correction:

µobs = m− (M− α s+ β C + P ∆M), (7)

where m is the apparent magnitude in some photometric
band, s and C are the stretch and color measures, which
are specific to the light-curve fitter (e.g. SALT2 [30])
employed, and P ≡ P (M∗ > 1010M�) is the probability
that the SN occurred in a high-stellar-mass host galaxy.
The stretch, color, and host-mass coefficients (α, β, and
∆M , respectively) are nuisance parameters that should
ideally be constrained along with any cosmological pa-
rameters. The constant M = M − 5 log10[H0/c× 10 pc]
absorbs the H0 term from Eq. (6) and is yet another
nuisance parameter.

Recent analyses (see below) have concentrated on esti-
mating correlations between measurements of individual
SNe in order to appropriately account for the numer-
ous systematic effects which must be controlled in order
to improve constraints significantly beyond their current
level. A complete covariance matrix for SNe Ia includes

estimates of all identified systematic errors in addition to
the intrinsic scatter and other statistical errors. The χ2

statistic is then calculated in the usual way for correlated
measurements:

χ2 = ∆µᵀC−1∆µ , (8)

where ∆µ = µobs − µ(θ) is the vector of residuals be-
tween the observed, corrected distance moduli and the
theoretical predictions that depend on the set of cosmo-
logical model parameters θ and C is the NSN ×NSN co-
variance matrix for the observed distance moduli.

In this work, we use current SN Ia datasets from two
alternative analyses: the joint light-curve analysis (JLA)
of SNe from the Supernova Legacy Survey (SNLS) and
the Sloan Digital Sky Survey (SDSS) and the Supernova
Cosmology Project’s Union2.1 compilation.

1. JLA

The joint light-curve analysis (JLA) [31] includes re-
calibrated SNe from the first three years of SNLS [23, 32]
as well as the complete SN sample from SDSS [33], and
it is the largest combined SN analysis to date. The fi-
nal compilation includes 740 SNe, ∼100 low-redshift SNe
from various subsamples, ∼350 from SDSS at low to in-
termediate redshifts, ∼250 from SNLS at intermediate
to high redshifts, and ∼10 high-redshift SNe from the
Hubble Space Telescope.

We use the SN Ia data and individual covariance
matrix terms provided (http://supernovae.in2p3.fr/
sdss_snls_jla/) to compute the full covariance matrix,
which includes statistical errors and all identified system-
atic errors. The covariance matrix, like the corrected dis-
tance moduli themselves, is a function of the light-curve
nuisance parameters α and β. In the analysis, we vary
all of the SN Ia nuisance parameters (α, β, M, ∆M),
recomputing the covariance matrix whenever α or β is
changed.

2. Union2.1

The Union2.1 analysis [34] from the Supernova Cos-
mology Project (http://supernova.lbl.gov/Union/)
adds ∼15 high-redshift SNe to the Union2 compilation
[35], making Union2.1 the compilation with the most
high-redshift SNe (∼30 at z > 1) to date.

The SN distance moduli provided have been pre-
corrected for stretch, color, and host-mass correlations
using best-fit values for α, β, and ∆M . While we do
include all identified systematic errors via the covariance
matrix provided, we keep α and β fixed at their best-fit
values in the analysis because the covariance matrix is
a function of these parameters and individual covariance
matrix terms are not provided. While fixing α and β
is unlikely to affect the results of our model comparison

http://supernovae.in2p3.fr/sdss_snls_jla/
http://supernovae.in2p3.fr/sdss_snls_jla/
http://supernova.lbl.gov/Union/
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(see Sec. V), it is important to allow the effective value of
the SN Ia absolute magnitude to change, so we let both
M and ∆M vary in the analysis.

B. BAO data

Baryon acoustic oscillations (BAO) are the regular, pe-
riodic fluctuations of visible matter density in large-scale
structure resulting from sound waves propagating in the
early Universe. In recent years, precise measurements of
the BAO scale at a variety of redshifts have proven to
be effective probes of cosmic expansion and dark energy
[36, 37]. The principal observable is the ratio of the BAO
distance scale at low redshift to the comoving sound hori-
zon rd = rs(zd) at the redshift of baryon drag (zd ' 1060,
shortly after recombination at z∗ ' 1090).

Typically the BAO feature is assumed to be isotropic
and is identified from a spherically-averaged power spec-
trum. In this case, the observable is DV (zeff)/rd, where
DV is a spherically-averaged (two transverse and one ra-
dial) distance measure [38] given by

DV (z) ≡
[
r2(z)

cz

H(z)

]1/3

, (9)

where r(z) = (1 + z)DA(z) is the comoving angular di-
ameter distance and H(z) is the Hubble parameter. More
recently, it has become possible to robustly measure ra-
dial and transverse clustering separately, allowing for
anisotropic BAO. In that case, the observables r(zeff)/rd
and c/(H(zeff) rd) are measured separately (but with
some statistical correlation).

We follow [37] and combine recent measurements of
the BAO feature from the Six-degree-Field Galaxy Sur-
vey (6dFGS) [39], the SDSS-II DR7 main galaxy sample
(MGS) [40], and the SDSS-III Baryon Oscillation Spec-
troscopic Survey (BOSS) DR11 LOWZ [41] and CMASS
[42] samples. We also include a combined measurement
from BOSS Lyman-α forest (LyαF) auto-correlation [43]
and cross-correlation [44]. We use pairs of anisotropic
measurements for the CMASS and LyαF samples and
isotropic measurements for the others.

The BAO measurements used in this analysis are sum-
marized in Table I. As discussed in [37], statistical cor-
relations (covariance) between these different samples
should be negligible, so we treat them as independent
in the analysis. Note that the CMASS anisotropic mea-
surements are correlated with coefficient −0.52, while
the LyαF measurements are correlated with coefficient
−0.48.

The likelihood for the BAO observables is not Gaus-
sian far from the peak. For a finite detection significance
of the BAO feature, the actual likelihood will eventually
asymptote to a flat tail, since any value for the observ-
able is equally probable in the event of a non-detection
[45]. This is particularly important to consider when con-
straining parameters to a high confidence level or claim-
ing that a model is a very poor fit to the data.

Sample zeff Observable Measurement

6dFGS 0.106 DV (zeff)/rd 3.047± 0.137

SDSS MGS 0.15 DV (zeff)/rd 4.480± 0.168

BOSS LOWZ 0.32 DV (zeff)/rd 8.467± 0.167

BOSS CMASS 0.57 r(zeff)/rd 14.945± 0.210

BOSS CMASS 0.57 c/(H(zeff) rd) 20.75± 0.730

BOSS LyαF 2.34 r(zeff)/rd 36.489± 1.152

BOSS LyαF 2.34 c/(H(zeff) rd) 9.145± 0.204

TABLE I. Summary of BAO measurements combined in this
analysis. We list the sample from which the measurement
comes, the effective redshift of the sample, the observable
quantity constrained, and its measured value. The anisotropic
measurements from BOSS CMASS are correlated with coeffi-
cient −0.52, while those from BOSS LyαF are correlated with
coefficient −0.48. Otherwise, we assume the measurements to
be statistically independent.

We account for this effect by applying the fitting func-
tion proposed in [45] to approximate the correct likeli-
hood. For a given signal-to-noise ratio (S/N), the usual
∆χ2

G = −2 lnLG for an observable with a Gaussian like-
lihood is replaced by

∆χ2 =
∆χ2

G√
1 + ∆χ4

G

(
S

N

)−4
. (10)

Here, the S/N corresponds to the reported detection sig-
nificance, in units of σ, of the BAO feature. For fur-
ther explanation of this effect and how it relates to BAO
measurements, see [45, 46]. Note that if ∆χ2

G is a com-
bined value for multiple measurements, such as a pair
of anisotropic BAO measurements, the relevant (S/N)2

is the Gaussian ∆χ2 value that corresponds to the de-
tection probability. For instance, (S/N)2 = 6.18 rather
than 4.00 for a 2σ (95.4%) detection and a ∆χ2

G with
two degrees of freedom (see e.g. [47]).

The detection significance quoted for 6dFGS is 2.4σ.
For SDSS MGS, the detection significance is roughly 2σ,
but since the likelihood is non-Gaussian anyway, we ap-
ply Eq. (10) to the publically-available χ2 look-up table.
We also truncate its ∆χ2 contribution at ∆χ2 = 3.43 to
avoid extrapolating beyond the edge of the table. No
detection significance was explicitly quoted for BOSS
LOWZ, so we assume a 4σ detection as a conservative
guess. The quoted detection significance is more than
7σ for BOSS CMASS, but we use a value of 6σ in the
analysis, in case the likelihood becomes non-Gaussian
for other reasons at such a high confidence level. Fi-
nally, for BOSS LyαF, the detection significance is 5σ
for the auto-correlation measurement and roughly 4σ for
the cross-correlation measurement. Since these measure-
ments are almost completely independent (see [43]), we
simply add their publically-available χ2 tables. Although
the combined detection significance is presumably higher,
we apply Eq. (10) to the combined χ2 table assuming a
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significance of only 4σ. We then truncate the ∆χ2 con-
tribution at ∆χ2 = 15.93 (less than 4σ for two degrees
of freedom) to avoid any extrapolation beyond the table.
We have verified that the final results are qualitatively
insensitive to the exact choices here and quantitatively
sensitive to only the LyαF BAO significance, which we
discuss in Sec. V.

Measurements of the BAO scale are typically cali-
brated by the CMB, which effectively fixes the sound
horizon rd by precisely constraining Ωmh

2 and Ωbh
2.

Here we avoid using the CMB to measure the sound
horizon, as this measurement is model-dependent. To
this end, we simply allow rd to be a free parameter, ef-
fectively using only relative distance information from
BAO. This is analogous to SN Ia analysis, where one
usually marginalizes over the SN Ia absolute magnitude,
using only relative distance information to constrain dark
energy. The CMB also provides its own precise mea-
surement of the angular diameter distance to recombi-
nation at z∗ ' 1090 that breaks degeneracies among the
parameters describing expansion. Here we will also leave
out this high-redshift distance measurement; while it can
be thought of as just another BAO measurement (i.e.
r(z∗)/rd), the interpretation is not completely model-
independent because the redshift z∗ of the CMB can-
not be determined without a model. See [37] for further
discussion of these different options for calibrating BAO
measurements.

IV. METHODOLOGY

In this section, we review the statistics we use to deter-
mine goodness-of-fit and perform the model comparison.

A. Goodness of fit

To determine if a model is a good fit to the data, we
minimize χ2 over the free model parameters and calcu-
late the probability P (χ2

min, ν) that a greater χ2
min could

occur due to chance alone for a fit with ν = N − k de-
grees of freedom, where N is the total number of mea-
surements and k is the number of free model parameters.
This probability is given by

P (χ2, ν) =

Γ

(
ν

2
,
χ2

2

)
Γ
(ν

2

) , (11)

where Γ(s, x) is the upper incomplete gamma function,

Γ(s, x) =

∫ ∞
x

ts−1e−tdt , (12)

and Γ(s) = Γ(s, 0) is the (complete) gamma function.

B. Model comparison

We will use three alternative methods for model com-
parison. Formally, the different statistics have different
meanings and are valid under different assumptions, so
obtaining consistent results using different criteria miti-
gates the possibility that invalid assumptions about the
nature of the data will favor one model over another and
lead to invalid conclusions. Each of these statistics ac-
counts for the fact that a simpler model (one with fewer
free parameters) is preferable to a more complex model
if both fit the data similarly well. Note that they do not
require the different models to be nested; while Rh = ct
is nested within power law cosmology, neither is nested
with ΛCDM. For more information about these statis-
tics, and for other interesting uses of model comparison
in cosmology, see [48–54].

The Akaike information criterion (AIC) [55], which
is grounded in information theory, estimates how much
more information is lost when describing data with one
model over another. For a best-fit χ2

min and a model with
k free parameters, AIC is given by

AIC = χ2
min + 2k . (13)

This is an asymptotic expression, and a second-order cor-
rection term can be added to make the criterion more
accurate for a finite number of observations:

AICc = AIC +
2k (k + 1)

N − k − 1
. (14)

This makes a small difference when the number of data
points N is large (e.g. for the SN data) but a significant
difference if N is small (e.g. for the BAO data). Since
AICc reduces to AIC in the limit of large N , we use AICc
instead of AIC throughout the analysis.

The Bayesian information criterion (BIC) [56] is also
an asymptotic expression, and it follows from a Bayesian
argument that considers likelihoods in the exponential
family of probability distributions, which includes the
Gaussian distribution and many other common distri-
butions. BIC selects the model that is a posteriori most
probable. It is given by

BIC = χ2
min + k ln(N) . (15)

BIC typically (though not always) penalizes extra pa-
rameters more severely than AIC.

The Bayes factor B10 indicates the likelihood of one
model relative to another by integrating both likelihoods
over all values of the model parameters, weighting them
by the priors. This statistic is presumably the most ro-
bust, as it considers all values, not just the best-fit values,
of the parameters. It naturally penalizes a model with
more free parameters, especially if those parameters do
not lead to a better fit. In fact, BIC can be considered
an approximation to the logarithm of the Bayes factor.
For a set of data D and two different models M0 and M1

that are described, respectively, by sets of parameters θ0
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and θ1, the Bayes factor indicates the likelihood of M1

relative to M0 and is given by

B10 =

∫
Pr(D|θ1,M1) Pr(θ1|M1) dθ1∫
Pr(D|θ0,M0) Pr(θ0|M0) dθ0

. (16)

For this analysis, we take the prior distributions Pr(θ|M)
to be flat, and we assume that the likelihoods Pr(D|θ,M)
are Gaussian (this assumption is implicit in our defini-
tions of AIC and BIC, where we write χ2

min in place of
the more general −2 ln(Lmax)). We compute the likeli-
hoods numerically over grids of parameter values. Ana-
lytic marginalization overM and ∆M (e.g. Appendix of
[57]) leaves at most four parameters over which to grid,
making this brute-force approach feasible.

V. RESULTS

Table II lists the best-fit values for the model param-
eters, including the nuisance parameters for the SN and
BAO data, for each model discussed in Sec. II and data
combination discussed in Sec. III. Table III shows the
results of the model comparison. For each model and
data combination, we list the number of parameters k
that were varied, the total number of data points N , the
best-fit χ2

min, the probability P (χ2
min, ν) that a greater

χ2
min could occur due to chance alone for degrees of free-

dom ν = N − k, and the likelihood of the model relative
to ΛCDM for the AICc, BIC, and Bayes factor model
comparison statistics. We note that, while statisticians
have proposed various scales that give a qualitative in-
terpretation of the numerical results of model compari-
son statistics (e.g. Jeffreys’ scale for the Bayes factor),
these are obviously rather subjective, so here we simply
discuss the results in terms of relative probabilities (e.g.
exp(−∆BIC/2)) and let the reader judge their signifi-
cance.

From Table III, it is clear that ΛCDM is a good fit
to all of the SN Ia data. When systematic errors are
included, the fit may even be slightly too good, indicat-
ing that the errors may be overestimated. This would
not be surprising, as the SN analyses generally aim to be
conservative when estimating the magnitude of system-
atic errors. A more surprising result is that ΛCDM is
actually not a very good fit to the BAO data. The fit,
with a probability of 0.052, corresponds to a nearly 2σ
discrepancy. This tension has already been noted (e.g.
[37]) and is due to the anisotropic LyαF BAO measure-
ments, with the radial measurement c/(H(2.34) rd) too
high and the transverse measurement r(2.34)/rd too low
for ΛCDM. This is the case regardless of whether Ωm and
rd are constrained by CMB observations (e.g. Planck) or
by the combined set of BAO measurements, as in this
analysis. The similar value of Ωm preferred by both SN
Ia and BAO data means extra tension will not arise when

z

D
V
(z
)/
r d

×
(r

d
/D

V
(z
))

Λ
C
D
M
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FIG. 1. Fits to an isotropic-only version of the BAO data
(black points), where we use the direct isotropic measurement
from BOSS CMASS (z = 0.57) and an isotropic measurement
derived from the LyαF anisotropic measurements (z = 2.34).
We show the best fit to this modified BAO set for ΛCDM
with Ωm and rd varied (solid black), power law cosmology
with n and rd varied (solid blue), and power law cosmology
with n = 1.5 and only rd varied (dashed red), where the value
n = 1.5 is roughly the value required to fit the SN Ia data.

combining the data, and so the combined SN + BAO fits
are still very good.

As we will see below, the uncalibrated galaxy BAO dis-
tances (our set without the LyαF BAO) are not effective
in distinguishing between the expansion models we con-
sider here. Although the galaxy BAO measurements are
more mature and their systematics have been more thor-
oughly studied, there is no obvious reason why we should
ignore the LyαF measurements. The original analyses
[43, 44] investigate some important systematic effects,
and they find no substantial evidence that contamina-
tion from these systematics is large. They also show that
the measurements are generally robust to variations in
the fiducial analysis pipeline. We therefore use the full
set of BAO measurements, including the high-redshift
LyαF BAO, leaving open the possibility that power law
or Rh = ct cosmology improves the fit to the anisotropic
data.

Interestingly, power law cosmology is about as good
a fit to the SN and BAO data separately as ΛCDM. If
systematic errors in the SN data are ignored, ΛCDM is
preferred, but when the systematics are included, the
preference for ΛCDM nearly disappears. Here the AICc
and BIC statistics give identical results simply because
ΛCDM and power law cosmology both have one free
model parameter. Power law expansion is actually a bet-
ter fit to the BAO data, though the model comparison
statistics indicate only a mild preference for power law
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Model Data Ωm n rd ×H0/c α β M ∆M

ΛCDM JLA (Stat) 0.287 - - 0.140 3.14 24.11 -0.060

ΛCDM JLA (Sys) 0.294 - - 0.141 3.10 24.11 -0.070

ΛCDM Union2.1 (Stat) 0.278 - - - - 43.16 0.000

ΛCDM Union2.1 (Sys) 0.295 - - - - 43.17 0.000

ΛCDM BAO 0.285 - 0.0338 - - - -

ΛCDM BAO + JLA (Stat) 0.286 - 0.0338 0.140 3.14 24.11 -0.059

ΛCDM BAO + JLA (Sys) 0.288 - 0.0338 0.141 3.10 24.11 -0.070

ΛCDM BAO + Union2.1 (Stat) 0.282 - 0.0339 - - 43.16 -0.002

ΛCDM BAO + Union2.1 (Sys) 0.288 - 0.0338 - - 43.16 0.001

Power Law JLA (Stat) - 1.56 - 0.139 3.14 24.14 -0.061

Power Law JLA (Sys) - 1.55 - 0.141 3.10 24.13 -0.071

Power Law Union2.1 (Stat) - 1.54 - - - 43.20 -0.022

Power Law Union2.1 (Sys) - 1.44 - - - 43.20 -0.003

Power Law BAO - 0.93 0.0301 - - - -

Power Law BAO + JLA (Stat) - 1.52 0.0333 0.139 3.13 24.14 -0.062

Power Law BAO + JLA (Sys) - 1.45 0.0331 0.140 3.09 24.14 -0.072

Power Law BAO + Union2.1 (Stat) - 1.49 0.0332 - - 43.20 -0.027

Power Law BAO + Union2.1 (Sys) - 1.35 0.0326 - - 43.21 -0.007

Rh = ct JLA (Stat) - - - 0.131 3.13 24.24 -0.083

Rh = ct JLA (Sys) - - - 0.138 3.07 24.23 -0.077

Rh = ct Union2.1 (Stat) - - - - - 43.33 -0.115

Rh = ct Union2.1 (Sys) - - - - - 43.29 -0.026

Rh = ct BAO - - 0.0308 - - - -

Rh = ct BAO + JLA (Stat) - - 0.0308 0.131 3.13 24.24 -0.083

Rh = ct BAO + JLA (Sys) - - 0.0308 0.138 3.07 24.23 -0.077

Rh = ct BAO + Union2.1 (Stat) - - 0.0308 - - 43.33 -0.115

Rh = ct BAO + Union2.1 (Sys) - - 0.0308 - - 43.29 -0.026

TABLE II. Best-fit values of each parameter varied for each model and data combination.

expansion. The Bayes factor, which considers the like-
lihood averaged over the respective parameter spaces, is
particularly indifferent.

The story changes when SN and BAO data are com-
bined, however, and here ΛCDM is strongly favored by
the data. As Table II suggests, the power law expo-
nent preferred by SN data (n ' 1.5) is much higher than
that preferred by BAO data (n = 0.93), and this tension
means that the combination strongly disfavors power law
cosmology relative to ΛCDM, even though power law ex-
pansion is still a good fit overall. The relative probability
that power law cosmology is the “correct” model is at
most 0.0052 ' 1/200, which occurs for the Bayes factor
when the JLA SN compilation is used with systematic
errors included in the analysis.

One might wonder whether the low power law ex-
ponent (n = 0.93) preferred by the BAO data is due
to some effect specific to the anisotropic measure-
ments and the extra degree of freedom they probe.
To investigate this, and to visualize the fit to the
BAO data, we plot an isotropic-only version of the
BAO data in Fig. 1. Here we have used the direct
isotropic measurement from BOSS DR11 CMASS [42],

DV (0.57)/rd = 13.773± 0.134, and an isotropic measure-
ment we derived from the LyαF anisotropic measure-
ments, DV (2.34)/rd = 30.543± 0.570, where we have
propagated the errors and accounted for their correlation.
Note that, while the direct isotropic measurement from
CMASS is in excellent agreement with a measurement in-
ferred in this way, the result is approximately valid only
if systematic errors in the anisotropic measurements are
negligible compared to the statistical errors. Obviously
there is reason to worry that this is not the case for the
LyαF BAO, so our fiducial analysis uses the anisotropic
measurements directly, as recommended in the original
analyses.

This issue aside, it is clear from Fig. 1 that the prefer-
ence for a low power law exponent is not some artifact of
the anisotropic measurements. Here we show fits to the
isotropic-only BAO data for both ΛCDM and power law
cosmology. Power law cosmology is a slightly worse fit
than in the fiducial analysis, with χ2

min = 7.03 (a proba-
bility of 0.071 for three degrees of freedom). ΛCDM is a
good fit now that the tension from the anisotropic LyαF
measurements has effectively canceled, with χ2

min = 1.65
(a probability of 0.65 for three degrees of freedom). We
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Model Data k N χ2
min P (χ2

min, ν) exp(−∆AICc/2) exp(−∆BIC/2) B10

ΛCDM JLA (Stat) 5 740 722.6 0.62 1 1 1

ΛCDM JLA (Sys) 5 740 682.7 0.92 1 1 1

ΛCDM Union2.1 (Stat) 3 580 562.2 0.66 1 1 1

ΛCDM Union2.1 (Sys) 3 580 545.1 0.83 1 1 1

ΛCDM BAO 2 7 11.0 0.052 1 1 1

ΛCDM BAO + JLA (Stat) 6 747 733.6 0.57 1 1 1

ΛCDM BAO + JLA (Sys) 6 747 693.8 0.89 1 1 1

ΛCDM BAO + Union2.1 (Stat) 4 587 573.3 0.61 1 1 1

ΛCDM BAO + Union2.1 (Sys) 4 587 556.1 0.78 1 1 1

Power Law JLA (Stat) 5 740 725.8 0.59 0.20 0.20 0.17

Power Law JLA (Sys) 5 740 682.7 0.92 1.0 1.0 0.84

Power Law Union2.1 (Stat) 3 580 567.6 0.60 0.069 0.069 0.057

Power Law Union2.1 (Sys) 3 580 547.0 0.81 0.39 0.39 0.28

Power Law BAO 2 7 8.8 0.12 3.0 3.0 1.3

Power Law BAO + JLA (Stat) 6 747 748.7 0.41 0.00053 0.00053 0.00065

Power Law BAO + JLA (Sys) 6 747 705.0 0.82 0.0037 0.0037 0.0052

Power Law BAO + Union2.1 (Stat) 4 587 590.1 0.41 0.00022 0.00022 0.00021

Power Law BAO + Union2.1 (Sys) 4 587 567.9 0.67 0.0028 0.0028 0.0026

Rh = ct JLA (Stat) 4 740 855.8 0.0014 3.2×10−29 3.2×10−28 1.0×10−28

Rh = ct JLA (Sys) 4 740 721.3 0.64 1.2×10−8 1.1×10−7 2.0×10−8

Rh = ct Union2.1 (Stat) 2 580 656.7 0.013 8.3×10−21 7.2×10−20 2.3×10−20

Rh = ct Union2.1 (Sys) 2 580 565.7 0.63 9.2×10−5 0.00081 0.00013

Rh = ct BAO 1 7 18.3 0.0056 0.21 0.069 0.42

Rh = ct BAO + JLA (Stat) 5 747 874.1 0.00055 8.3×10−31 8.3×10−30 1.9×10−30

Rh = ct BAO + JLA (Sys) 5 747 739.6 0.52 3.1×10−10 3.0×10−9 5.1×10−10

Rh = ct BAO + Union2.1 (Stat) 3 587 675.0 0.0053 2.2×10−22 2.0×10−21 4.9×10−22

Rh = ct BAO + Union2.1 (Sys) 3 587 584.0 0.49 2.5×10−6 2.2×10−5 4.1×10−6

TABLE III. Results of the model comparison. For each of the models and data combinations, we list the number of parameters
k that were varied, the total number of data points N , the best-fit χ2

min, the probability P (χ2
min, ν) that a greater χ2

min could
occur due to chance alone for degrees of freedom ν = N − k, and the likelihood of the model relative to ΛCDM for the AICc,
BIC, and Bayes factor model comparison statistics.

also plot a power law model with the exponent fixed to
the value n = 1.5, roughly the value required by the SN
Ia data, adjusting only the sound horizon rd to give the
best fit. Since we have assumed the same detection sig-
nificances (6σ for CMASS and 4σ for LyαF) as in the
fiducial analysis, it is no surprise that a smaller value
for the sound horizon, which raises the model relative to
the data, is preferred. Such a model fits the low-redshift
BAO data nicely but misses the LyαF measurement com-
pletely. Increasing the detection significance of the LyαF
measurement would make this discrepancy with the SN
Ia data even more significant, and we believe that our
choice here of 4σ (effectively less when using the χ2 table
for the anisotropic measurements) for the combined auto-
correlation and cross-correlation measurement is conser-
vative.

Focusing separately on the Rh = ct universe, we find
that it is conclusively disfavored relative to ΛCDM for all
data combinations that include SN Ia data, with at most
a relative probability of 0.00081 ' 1/1200, which occurs

for BIC when the Union2.1 SN compilation is used with-
out BAO data and with systematic errors included. If
systematic errors in the SN data are ignored, the Rh = ct
universe is a poor fit to the data (for JLA, the fit proba-
bility of 0.0014 corresponds to a > 3σ discrepancy). The
Rh = ct universe is also a poor fit to the BAO data alone
and, despite the fact that Rh = ct benefits from having
one less free parameter, ΛCDM is slightly preferred by
the model comparison statistics. Note that here, with N
very small, we do not expect the BIC result to be valid,
and indeed we find that the AICc statistic, with its cor-
rection term for finite sample size, is closer to the Bayes
factor result.

Figure 2 illustrates the ΛCDM and Rh = ct fits to the
JLA SN data, which we have binned in redshift by averag-
ing the distance moduli with inverse-covariance weights.
There are two sets of data points because the SN data
were standardized separately for each model, with M,
∆M , α, and β optimized to produce the best fit. While
ΛCDM is clearly a good fit with or without systematic
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errors included, it is apparent by eye that Rh = ct is a
poor fit with statistical errors only. While the overall
fit looks reasonable when systematic errors are included,
there is a clear trend in the residuals, with nearby SNe
too bright and distant SNe too dim.

VI. DISCUSSION

In this analysis, we have used goodness-of-fit and
model comparison statistics to test power law and
Rh = ct cosmology against ΛCDM. Before we summa-
rize our conclusions, we discuss some arguments made
by proponents of the Rh = ct universe [15–17], particu-
larly those about hidden model dependence in the SN Ia
data.

As mentioned in Sec. I, the authors of [15] criticize
the analysis of Bilicki and Seikel [14], pointing out that
the conclusions are based heavily on visual inspection of
plots of reconstructed dynamical quantities (e.g. deriva-
tives of the Hubble parameter). While there is nothing
wrong with a dynamical approach, one would like a way
to quantify the preference of the data. Here we have
used direct model comparison to quantify the relative
likelihoods of the alternative models, appropriately ac-
counting for differences in model complexity. Note that
a similar approach is used in [17].

One of the concerns [16] about the SN Ia data is that
the standardization of the SNe is model-dependent, in the
sense that the parameters α, β, M, and ∆M have been
determined assuming ΛCDM (or a ΛCDM-like model).
This is a valid point in general, but only if one ana-
lyzes distance moduli that have been pre-corrected for
stretch, color, and host-mass correlations. Fixing the SN
Ia absolute magnitude and Hubble constant (thus fix-
ing M) would be even worse. In this analysis, we have
used the public JLA data to vary all of the nuisance pa-
rameters simultaneously with any cosmological parame-
ters ([17] does something similar using an older version
of the SNLS data). It is worth noting that, aside from
adjusting the overall offset in the Hubble diagram M,
allowing the other parameters to vary has a rather small
effect. This is hinted at in Table II, where the best-fit
values for α, β, and even ∆M are similar for the differ-
ent models and regardless of whether systematic errors
are included. This is because these correlations, which
have now been well-established, primarily serve to re-
duce the intrinsic scatter in the Hubble diagram. Only if
there is, for instance, a trend where the fraction of SNe
with high-stretch light curves changes significantly with
redshift would the choice of model affect the value of α
significantly. Note that the SN analyses do consider pos-
sible evolution of α and β and account for this by adding
systematic error.

The authors of [17] go further and argue that, because
the intrinsic scatter is determined by adjusting its value
until the reduced χ2 of the fit is equal to one, the intrin-
sic scatter estimate is model-dependent. This concern

is actually addressed in Section 5.5 of the JLA analy-
sis [31], which explains that one can avoid this problem
by estimating the intrinsic scatter in redshift bins, essen-
tially relying on the fact that the SNe are so constraining,
and the redshift coverage so complete, that no paramet-
ric model needs to be used at all. In other words, the
scatter around the mean in a redshift bin gives the in-
trinsic scatter for that bin directly. Although [31] finds an
apparent trend where the estimated intrinsic scatter de-
creases with increasing redshift, the values are consistent
with a constant, and ultimately a separate value is chosen
for each of the four main subsamples, effectively allowing
for survey-dependent misestimates of other statistical er-
rors. We point out that the approach used in [17], where
σint is constrained along with the other parameters, re-
sults in nearly identical determinations of the intrinsic
scatter whether assuming ΛCDM (σint = 0.103± 0.010)
or Rh = ct (σint = 0.106± 0.010), indicating that even if
the model matters in general, it does not in their case.

Why does [17] come to a different conclusion (that
Rh = ct is modestly favored over ΛCDM) than the
present analysis, where similar SN Ia data is used? Pre-
sumably the reason is that [17] uses only the SNLS SNe,
leaving out the low-redshift samples, the mid-redshift
SDSS SNe, and the high-redshift SNe from the Hub-
ble Space Telescope, without any real justification. This
of course removes much of the discriminating power of
the SN data. In Fig. 2, notice that only considering the
data points in the range 0.4 < z < 1, which roughly cor-
responds to the redshift range dominated by the SNLS
SNe, would make Rh = ct a great fit after the overall
height of the data points (M) is adjusted. Even the trend
in these residuals (presumably due to their statistical cor-
relation) aligns with the Rh = ct expansion. While it is
true that combining observations of SNe from different
instruments into one Hubble diagram is challenging and
can lead to concerns about residual systematic effects, the
most important systematic errors (e.g. photometric cali-
bration) are quantified in current analyses. For some rea-
son, despite their apparent worry about unaccounted-for
systematic effects, the authors of [17] ignore the known
systematic errors altogether, a common trend in the lit-
erature that is usually unjustified and will lead to false
conclusions. Here, for instance, systematic errors sub-
stantially weaken the model-discriminating power of the
SN data; in fact, it is these systematic errors that allow
the Rh = ct universe to be an acceptable overall fit, even
if it is conclusively disfavored by the model comparison.

These concerns notwithstanding, we are confident
in our conclusions, which we summarize as follows.
Given the tension in the BAO data resulting from the
anisotropic LyαF measurements, we find that power law
cosmology is a slightly better model than ΛCDM for
BAO data alone and is only slightly disfavored relative
to ΛCDM for SN Ia data alone. When SN and BAO
data are combined, the different power law exponents
preferred by each create substantial tension such that
ΛCDM is strongly preferred by the model comparison
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FIG. 2. Hubble diagram for the JLA SN compilation, where the measured distance moduli have been standardized separately
for ΛCDM (blue points) and the Rh = ct cosmology (red points). The best-fit (Ωm = 0.29) ΛCDM model (solid blue) is plotted
along with the Rh = ct model (dashed red). We show the SN data without (left panel) and with (right panel) systematic errors
included. The distance moduli are binned in redshift with inverse-covariance weights.

statistics (Table III). While the strength of this prefer-
ence depends on the detection significance of the BOSS
LyαF measurement, our choice here (see Sec. III B) is
conservative. Also, while the preference for a low power
law exponent (n ' 0.9) is due to the LyαF BAO, it is not
due to any subtlety in the anisotropic measurements (see
Fig. 1 and the discussion in Sec. V). In order to recon-
cile the power law exponent from BAO with the higher
value (n ' 1.5) required by SN Ia data, an unaccounted-
for systematic affecting the anisotropic LyαF measure-
ments must avoid cancellation in the isotropic measure-
ment, shifting the value by several times its current error.
Hopefully, new data (e.g. BOSS DR12) will soon improve
these high-redshift BAO measurements, which are clearly
important for distinguishing between alternative models
for expansion, including those considered here.

We have also found that the Rh = ct cosmology is
nearly ruled out when systematic errors in the SN Ia
data are ignored (for JLA, the fit is unlikely at a level
of > 3σ). With systematic errors included, the overall
fit is acceptable, but ΛCDM is conclusively the better
model. The BAO data separately favor ΛCDM, though
only slightly, and combining SN and BAO data simply
strengthens these conclusions.
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