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Weak gravitational lensing is a powerful cosmological probe, with non–Gaussian features poten-
tially containing the majority of the information. We examine constraints on the parameter triplet
(Ωm, w, σ8) from non-Gaussian features of the weak lensing convergence field, including a set of mo-
ments (up to 4th order) and Minkowski functionals, using publicly available data from the 154 deg2

CFHTLenS survey. We utilize a suite of ray–tracing N-body simulations spanning 91 points in
(Ωm, w, σ8) parameter space, replicating the galaxy sky positions, redshifts and shape noise in the
CFHTLenS catalogs. We then build an emulator that interpolates the simulated descriptors as a
function of (Ωm, w, σ8), and use it to compute the likelihood function and parameter constraints.
We employ a principal component analysis to reduce dimensionality and to help stabilize the con-
straints with respect to the number of bins used to construct each statistic. Using the full set of
statistics, we find Σ8 ≡ σ8(Ωm/0.27)0.55 = 0.75 ± 0.04 (68% C.L.), in agreement with previous
values. We find that constraints on the (Ωm, σ8) doublet from the Minkowski functionals suffer
a strong bias. However, high-order moments break the (Ωm, σ8) degeneracy and provide a tight
constraint on these parameters with no apparent bias. The main contribution comes from quartic
moments of derivatives.

PACS numbers: 98.80.-k, 95.36.+x, 95.30.Sf, 98.62.Sb
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I. INTRODUCTION

Weak gravitational lensing (hereafter WL) is emerging
as a promising technique to constrain cosmology. Tech-
niques have been developed to construct cosmic shear
fields with shape measurements in large galaxy cata-
logues. Although the shear two–point function (2PCF)
is the most widely studied cosmological probe (see, e.g.
[1]), alternative statistics have been shown to increase
the amount of cosmological information one can extract
from weak lensing fields. Among these, high–order mo-
ments ([2–6]), three–point functions ([7–9]), bispectra
([10–13]), peak counts ([14–21]) and Minkowski Func-
tionals ([22, 23]) have been shown to improve cosmolog-
ical constraints in weak lensing analyses.
In this work, we use the publicly available CFHTLenS

data, consisting of a catalog of ≈4.2 million galax-
ies, combined with a suite of ray-tracing simulations in
91 different cosmological models to derive constraints
on the cosmological parameters Ωm, σ8 and the dark
energy (DE) equation of state w. The statistics we
consider in this work are the Minkowski functionals
(MFs) and the low–order moments (LM) of the con-
vergence field. Cosmological parameter inferences from
CFHTLenS have been obtained using the 2PCF [1], and
a number of authors have investigated the constraining
power of CFHTLenS using statistics that go beyond the
usual quadratic ones. Fu et al. [24] used three–point cor-
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relations as an additional probe for cosmology, and found
modest (10− 20%) improvements over the 2PCF. These
results rely on the third order statistics systematic tests
performed by Simon et al. [25].
Liu et al. [26] have found a more significant (50−60%)

tightening of the Ω and σ8 constraints, utilizing the abun-
dance of WL peaks. Cosmological constraints using WL
peaks in CFHTLenS Stripe82 data have also been inves-
tigated by Liu et. al. [27]. Finally, closest to the present
paper, Shirasaki & Yoshida [28] investigated constraints
from Minkowski Functionals, including systematic errors.
Our study represents two major improvements over pre-
vious work. First, constraints from the MFs in ref. [28]
were obtained through the Fisher matrix formalism, as-
suming linear dependence on cosmological parameters.
Our study utilizes a suite of simulations sampling the cos-
mological parameter space, mapping out the non-linear
parameter-dependence of each descriptor. Second, we in-
clude the LMs as a set of new descriptors; these yield the
tightest and least biased constraints.
This paper is organized as follows: we first give an

overview of the CFHTLenS catalogs, and summarize the
adopted data reduction techniques. Next, we give a de-
scription of our simulation pipeline, including the ray–
tracing algorithm, and the procedure used to sample the
parameter space. We call the statistical weak lensing
observables – the power spectrum, Minkowski function-
als, and moments – ”descriptors” throughout the paper.
We discuss the calculation of the descriptors, including
dimensional reduction using a principal component anal-
ysis, and the statistical inference framework we used. We
then describe our main results, i.e. the cosmological pa-
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rameter constraints. To conclude, we then discuss our
findings and comment on possible future extensions of
this analysis.

II. DATA AND SIMULATIONS

A. CFHTLenS data reduction

In this section, we briefly summarize our treatment of
the public CFHTLenS data. For a more in–depth de-
scription of our data reduction procedure, we refer the
reader to [26].
The CFHTLenS survey covers four sky patches of 64,

23, 44 and 23 deg2 area, for a total of 154 deg2. The
publicly released data consist of a galaxy catalog created
using SExtractor [29], and includes photometric redshifts
estimated with a Bayesian photometric redshift code [30]
and galaxy shape measurements using lensfit [31, 32].
We apply the following cuts to the galaxy catalog:

mask < 1 (see Table B2 in [29]), redshift 0.2 < z < 1.3
(see [31]), fitclass = 0 (which requires the object to
be a galaxy) and weight w > 0 (with larger w indicat-
ing smaller shear measurement uncertainty). Applying
these cuts leaves us 4.2×106 galaxies, 124.7 deg2 sky cov-
erage, and average galaxy density ngal ≈ 9.3 arcmin−2.
The catalog is further reduced by ∼ 25% when one re-
jects fields with non–negligible star–galaxy correlations.
These spurious correlations are likely due to imperfect
PSF removal, and do not contain cosmological signal.
These cuts are consistent with the ones adopted by the
CFHTLenS collaboration (see [24]).
The CFHTLenS galaxy catalog provides us with the

sky position θθθ, redshift z(θθθ) and ellipticity e(θθθ) of each
galaxy, as well as the individual weight factors w(θθθ)
and additive and multiplicative ellipticity corrections
c(θθθ),m(θθθ). Because the CFHTLenS fields are irregularly
shaped, we first divide them into 13 squares (subfields)
to match the shape and ≈ 12 deg2 size of our simulated
maps (see below). These square-shaped subfield maps
are pixelized according to a Gaussian gridding procedure

ē(θθθ) =

∑Ns

i=1 W (|θθθ − θθθi|)w(θθθi)[eobs(θθθi)− c(θθθi)]
∑Ns

i=1 W (|θθθ − θθθi|)w(θθθi)[1 +m(θθθ)]
, (1)

WθG(θθθ) =
1

2πθ2G
exp

(

− θθθ2

2θ2G

)

, (2)

where the smoothing scale θG has been fixed at 1.0 arcmin
(but varied occasionally to 1.8 and 3.5 arcmin for specific
tests described below) and m, c refer to the multiplicative
and additive corrections of the galaxies in the catalog.
Using the ellipticity grid ē(θθθ) as an estimator for the

cosmic shear γ1,2(θθθ), we perform a non–local Kaiser–
Squires inversion [33] to recover the convergence κ(θθθ)

from the E–mode of the shear field,

κ(l) =

(

l21 − l22
l21 + l22

)

γ1(l) + 2
l1l2

l21 + l22
γ2(l). (3)

The simulated κ maps we create below are 12 deg2 in
size and have a resolution of 512 × 512 pixels. The
CFHTLenS catalogs contain masked regions (which in-
clude the rejected fields and the regions around bright
stars). We first create gridded versions of the observed
κ maps matching the size and pixel resolution of our
simulated maps, with each pixel containing the number
of galaxies (ngal) falling within its window. We then
smooth this galaxy surface density map with the same
Gaussian window function as equation (2) and remove
regions where ngal < 5 arcmin2 (see [28]). Regions with
low galaxy number density can induce large errors in the
cosmological parameter inferences.

B. Simulation design

We next give a description of our method to sam-
ple the parameter space with a suite of N–body simula-
tions. We wish to investigate the non–linear dependence
of the descriptors (in this work, Minkowski Functionals
and moments of the κ field) on the parameter triplet
p = (Ωm, w, σ8), while keeping the other relevant pa-
rameters (h,Ωb, ns) fixed to the values (0.7, 0.046, 0.96)
(see [34]). We sampled the D–dimensional (D = 3 in this
case) parameter space using an irregularly spaced grid.
The grid was designed with a method similar to that used
to construct an emulator for the matter power spectrum
in the Coyote simulation suite [35]. Given fixed available
computing resources, the irregular grid design is more ef-
ficient than a parameter grid with regular spacings: to
achieve the same average spacing between models in the
latter approach would require a prohibitively large num-
ber of simulations.
We limit the parameter sampling to a box whose sides

range over Ωm ∈ [0.07, 1], w ∈ [−3.0, 0], σ8 ∈ [0.1, 1.5].
These are large ranges, with most of the corresponding
3D parameter volume ruled out by other cosmological ex-
periments. However, our focus in this work is to quantify
the constraints from CFHTLenS alone, which, by itself
has strong parameter degeneracies. We next map this
sampling box Π into a hypercube of unit side. We want
to construct an irregularly spaced grid consisting of N
points xi ∈ [0, 1]D. Let a design D be the set of this
irregularly spaced N points. Our goal is to find an opti-
mal design, in which the points are spread as uniformly
as possible inside the box. Following ref. [35], we choose
our optimal design as the minimum of the cost function

C(D) =
2D1/2

N(N − 1)

N
∑

i<j

1

|xi − xj |
. (4)



3

This problem is mathematically equivalent to the min-
imization of the Coulomb potential energy of N unit
charges in a unit box, which corresponds to spreading
the charges as evenly as possible. Finding the optimal
design Dm that minimizes (4) can be computationally
very demanding, and hence we decided to use a simplified
approach. Although approximate, the following iterative
procedure gives satisfactory accuracy for our purposes:

1. We start from the diagonal design D0: x
d
i ≡ i/(N−

1) for d = 1...D.

2. We shuffle the coordinates of the par-
ticles in each dimension independently

xd
i = Pd

(

1
N−1 ,

2
N−1 , ..., 1

)

, where P1, ...,PD are

random independent permutations of (1, 2, ..., N).

3. We pick a random particle pair (i, j) and a random
coordinate d ∈ {1, ..., D} and swap xd

i ↔ xd
j .

4. We compute the new cost function. If the value
is less than in the previous step, we keep the ex-
change, otherwise we revert the coordinate swap.

5. We repeat steps 3 and 4 until the relative cost func-
tion change is less than a chosen accuracy parame-
ter ǫ.

We have found that for N = 91 grid points O(105)
iterations are sufficient to reach an accuracy of ǫ ∼ 10−4.
Once the optimal design Dm has been determined, we
invert the mapping Π → [0, 1]3 to arrive at our simulation
parameter sampling ps. We show the final list of grid
points in Table I and Figure 1.
For each parameter point on the grid ps we then run

an N–body simulation and perform ray tracing, as de-
scribed in § II C, to simulate CFHTLenS shear catalogs.
Throughout the rest of this paper, we refer to this set
of simulations as CFHTemu1. Additionally, we have run
50 independent N–body simulations with a fiducial pa-
rameter choice p0 = (0.26,−1.0, 0.8), for the purpose of
accurately measuring the covariance matrices, needed for
the parameter inferences in §III B. This additional suite
of 50 simulations will be referred to as CFHTcov.

C. Ray–Tracing Simulations

The goal of this section is to outline our simulation
pipeline. The fluctuations in the matter density field
between a source at redshift z and an observer located
on Earth will cause small deflections in the trajectories
of light rays traveling from the source to the observer.
We estimate the dark matter gravitational potential run-
ning N–body simulations with N = 5123 particles, using
the public code Gadget2 [36]. We adopted a comoving
box size of 240h−1Mpc, corresponding to a mass resolu-
tion of 7.4 × 109h−1M⊙. The simulations include dark
matter only, and the initial conditions were generated

with N-GenIC at z = 100, based on the linear mat-
ter power spectrum created with the Einstein-Boltzmann
code CAMB [37]. Data cubes were output at redshift in-
tervals corresponding to 80h−1 (comoving) Mpc.

Using a procedure similar to refs. [38, 39], the equation
that governs the light ray deflections can be written in
the form

d2x(χ)

dχ2
= − 2

c2
∇x⊥

Φ(x⊥(χ), χ), (5)

where χ is the radial comoving distance, x⊥ = χβββ refers
to two transverse coordinates (with βββ the angular sky co-
ordinates, using the flat sky approximation)a, x(χ) is the
trajectory of a single light ray, and Φ is the gravitational
potential.

Suppose that a light ray reaches the observer at an
angular position θθθ on the sky: we want to know where
this light ray originated, knowing it comes from a red-
shift zs. To answer this question we need to integrate
equation (5) with the initial condition βββ(0;θθθ) = θθθ up to
a distance χs = χ(zs) to obtain the source angular po-
sition βββ(χs;θθθ). Since light rays travel undeflected from
the observer to the first lens plane, the derivative initial

condition in the Cauchy problem (5) reads β̇ββ(0;θθθ) = 0.

We indicate the derivative of βββ with respect to χ as β̇ββ.
We use our proprietary implementation Inspector Gad-
get (see, e.g., [40]) to solve for the light ray trajecto-
ries based on a discretized version of equation (5) that
is based on the multi–lens–plane algorithm (see [39] for
example). Applying random periodical shifts and rota-
tions to the N–body simulation data cubes, we generate
R = 1000 pseudo–independent realizations of the lens
plane system used to solve (5). Once we obtain the light
ray trajectories, we infer the relevant weak lensing quan-
tities by taking angular derivatives of the ray deflections
A(χs;θθθ) = ∂βββ(χs;θθθ)/∂θθθ and performing the usual spin
decomposition to infer the convergence κ and the shear
components (γ1, γ2),

A(χs;θθθ) = (1−κ(χs;θθθ))III−γ1(χs;θθθ)σ
3−γ2(χs;θθθ)σ

1 (6)

where III is the 2×2 identity and σ1,3 are the first and third
Pauli matrices. We perform this procedure for each of the
R realizations of the lens planes and we obtain R pseudo–
independent realizations of the γγγ weak lensing field. We
use these different random realizations to estimate the
means (from the CFHTemu1 simulations) and covariance
matrices (from the CFHTcov simulations) of our descrip-
tors. Since the random box rotations and translations
that make up the CFHTcov simulations are based on 50
independent N–body runs, we believe the covariance ma-
trices measured from this set to be more accurate than
the ones measured from the CFHTemu1 set.

The convergence κ is related to the magnification,
while the two components of the complex shear γγγ =
γ1 + iγ2 are related to the apparent ellipticity of the
source. Given a source with intrinsic complex ellipticity
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N Ωm w σ8 N Ωm w σ8 N Ωm w σ8 N Ωm w σ8

1 0.136 -2.484 1.034 26 0.380 -2.424 0.199 51 0.615 -1.668 0.185 76 0.849 -0.183 0.821

2 0.145 -2.211 1.303 27 0.389 -0.939 0.454 52 0.624 -2.757 0.327 77 0.859 -1.182 1.415

3 0.155 -0.393 0.652 28 0.399 -1.938 1.500 53 0.634 -1.575 0.976 78 0.869 -2.031 0.227

4 0.164 -2.181 0.313 29 0.409 -2.940 0.737 54 0.643 -2.454 1.444 79 0.878 -2.697 0.524

5 0.173 -0.423 1.231 30 0.418 -1.758 0.383 55 0.652 -1.029 1.458 80 0.887 -0.363 0.439

6 0.183 -0.909 0.269 31 0.427 -2.910 0.411 56 0.661 -0.486 0.892 81 0.897 -0.999 0.468

7 0.192 -1.605 1.401 32 0.436 -0.060 0.878 57 0.671 -2.364 0.793 82 0.906 -1.698 1.273

8 0.201 -2.787 0.807 33 0.446 -1.212 1.486 58 0.681 -2.970 0.610 83 0.915 -2.544 1.175

9 0.211 -0.333 0.341 34 0.455 -2.637 1.373 59 0.690 -1.332 0.482 84 0.925 -0.636 1.259

10 0.221 -1.485 0.666 35 0.464 -2.121 0.906 60 0.700 -0.273 0.283 85 0.943 -2.394 0.835

11 0.239 -1.848 0.962 36 0.474 -1.302 0.114 61 0.709 -2.061 0.425 86 0.953 -1.545 0.355

12 0.249 -2.727 0.369 37 0.483 -1.515 0.680 62 0.718 -1.728 1.472 87 0.963 -2.151 0.510

13 0.258 -1.395 0.241 38 0.493 -0.243 0.297 63 0.728 -0.120 0.596 88 0.972 -0.666 0.694

14 0.267 -2.667 1.317 39 0.502 -1.152 1.189 64 0.737 -2.847 1.203 89 0.981 -1.242 1.048

15 0.276 -0.849 1.429 40 0.512 -0.819 0.849 65 0.746 -0.090 1.118 90 0.991 -1.908 1.020

16 0.286 -1.272 1.104 41 0.521 -2.334 0.538 66 0.755 -0.456 1.359 91 1.000 -1.425 0.708

17 0.295 -1.878 0.100 42 0.530 0.000 0.624 67 0.765 -2.091 1.076 – – – –

18 0.305 -0.879 0.765 43 0.540 -0.030 1.161 68 0.775 -1.122 1.132 – – – –

19 0.315 -2.241 0.638 44 0.549 -1.818 1.287 69 0.784 -1.062 0.779 – – – –

20 0.324 -2.001 1.217 45 0.558 -2.577 1.146 70 0.794 -1.365 0.156 – – – –

21 0.333 -0.213 0.552 46 0.568 -0.516 1.331 71 0.803 -2.607 0.255 – – – –

22 0.342 -2.817 1.062 47 0.577 -3.000 0.948 72 0.812 -1.788 0.722 – – – –

23 0.352 -0.576 1.090 48 0.587 -2.304 0.128 73 0.821 -2.880 0.863 – – – –

24 0.361 -0.606 0.171 49 0.596 -0.696 0.496 74 0.831 -0.759 0.213 – – – –

25 0.370 -0.303 1.345 50 0.606 -0.789 0.142 75 0.840 -2.274 1.387 – – – –

TABLE I. List of the CFHTemu1 grid points in the 3D cosmological parameter space.
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FIG. 1. (Ωm, w) and (Ωm, σ8) projections of the final simulation design. The blue points correspond to the CFHTemu1 simulation
set, which consists of one N–body simulation per point, while the red point corresponds to the CFHTcov simulation set, which
is based on 50 independent N–body simulations.
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es = e1s + ie2s, its observed ellipticity will be modified to

e =











es+g

1+g∗es
|g| ≤ 1

1+ge
∗

s

e∗
s
+g∗ |g| > 1

(7)

where g ≡ γγγ/(1− κ) is the reduced shear.
For each simulated galaxy, we assign an intrinsic ellip-

ticity by rotating the observed ellipticity for that galaxy
by a random angle on the sky, while conserving its magni-
tude |e|. To be consistent with the CFHTLenS analysis,
we adopt the weak lensing limit (|γγγ| ≪ 1, κ ≪ 1), i.e.
g ≈ γγγ and e ≈ es + γγγ. We also add the multiplicative
shear corrections by replacing γγγ with (1+m)γγγ. We note
that the observed ellipticity for a particular galaxy al-
ready contains the lensing shear by large scale structure
(LSS), but the random rotation makes this contribution
at least second order in κ by destroying the shape spa-
tial correlations induced by lensing from LSS. Consistent
with the weak lensing approximation, the lensing signal
from the simulations is first order in κ and hence the
randomly rotated observed ellipticities can be safely con-
sidered as intrinsic ellipticities.
We analyze the simulations in the same way as we ana-

lyzed the CFHTLenS data – constructing the simulated κ
maps as explained in §II A. These final simulation prod-
ucts are then processed together with the κ maps ob-
tained from the data to compute confidence intervals on
the parameter triplet (Ωm, w, σ8).

III. STATISTICAL METHODS

The goal of this section is to describe the framework to
combine the CFHT data and our simulations, and to de-
rive the constraints on the cosmological parameter triplet
(Ωm, w, σ8). Briefly, we measure the same set of statisti-
cal descriptors from the data and from the simulations;
these are then compared in a Bayesian framework in or-
der to compute parameter confidence intervals.

A. Descriptors

The statistical descriptors we consider in this work
are the Minkowski Functionals (MFs) and the low–order
moments (LMs) of the convergence field. The three
MFs (V0, V1, V2) are topological descriptors of the conver-
gence field κ(θθθ), probing the area, perimeter and genus
characteristic of the κ excursion sets Σκ0

, defined as
Σκ0

= {κ > κ0}. Following refs. [22, 23] we use the
following local estimators to measure the MFs from the
κ maps:

V0(κ0) =
1

A

∫

A

Θ(κ(θθθ)− κ0)dθθθ,

V1(κ0) =
1

4A

∫

A

δD(κ(θθθ)− κ0)
√

κ2
x + κ2

ydθθθ, (8)

V2(κ0) =
1

2πA

∫

A

δD(κ(θθθ)−κ0)
2κxκyκxy − κ2

xκyy − κ2
yκxx

κ2
x + κ2

y

dθθθ.

Here A is the total area of the field of view and κx,y de-
notes gradients of the κ field, which we evaluate using
finite differences. In this notation Θ(x) is the Heaviside
function and δD(x) is the Dirac delta function. The first
Minkowski functional, V0, is equivalent to the cumulative
one–point PDF of the κ field, while V1, V2 are sensitive
to the correlations between nearby pixels. The one–point
PDF of the κ field, ∂V0, can be obtained by differentia-
tion ∂V0(κ0) = dV0(κ0)/dκ0.
In addition to these topological descriptors, we con-

sider a set of low–order moments of the convergence field
(two quadratic, three cubic and four quartic). We choose
these moments to be the minimal set of LMs necessary to
build a perturbative expansion of the MFs up to O(σ2

0)
(see [41, 42]). We adopt the following definitions

LM2 : σ2
0,1 = 〈κ2〉, 〈|∇κ|2〉,

LM3 : S0,1,2 = 〈κ3〉, 〈κ|∇κ|2〉, 〈κ2∇2κ〉,

LM4 : K0,1,2,3 = 〈κ4〉, 〈κ2|∇κ|2〉, 〈κ3∇2κ〉, 〈|∇κ|4〉.

(9)

If the κ field were Gaussian, one could express the MFs
in terms of the LM2 moments, which are the only inde-
pendent moments for a Gaussian random field. In re-
ality, weak lensing convergence fields are non–Gaussian
and the MF and LM descriptors are not guaranteed to
be equivalent. Refs. [41, 42] studied a perturbative ex-
pansion of the MFs in powers of the standard deviation
σ0 of the κ field. When truncated at order O(σ2

0), this
can be expressed completely in terms of the LMs up to
quartic order. Such perturbative series, however, have
been shown not to converge [23] unless the weak lensing
fields are smoothed with windows of size ≥ 15′. Because
of this, throughout this work, we treat MF and LM as
separate statistical descriptors.
We note that this choice is somewhat ad-hoc. In gen-

eral, the LMs that contain gradients are sensitive to dif-
ferent shapes of the κ multispectra Pn

κ (l1, ..., ln) because
a particular LMn has the general form

LMn =

∫

dl1...dlnρ(l1...n)P
n
κ (l1...n) (10)

where ρ is a polynomial of order n in the l’s. For exam-
ple for K2 we have ρ(l1234) = l24 and this moment em-
phasizes quadrilateral shapes for which one side is much
larger than the others. On the other hand, for K3 we
have ρ(l1234) = (l1 · l2)(l3 · l4) and this moment is most
sensitive to trispectrum shapes that are close to rectan-
gular. There are moments which include derivatives in
addition to those included in Eq. 9. In the future, we
will investigate whether there is additional constraining
power in these additional quartic moments.
In addition to the MFs and LMs, we consider the an-

gular power spectrum Pl ≡ P 2
l of κ, defined as

〈κ̃(l)κ̃(l′)〉 = (2π)2δD(l + l′)Pl, (11)
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Descriptor Details Nb (linear spacing)

V0, V1, V2 (MF) κ0 ∈ [−0.04, 0.12] 50

Power Spectrum (PS) l ∈ [300, 5000] 50

Moments (LM) – 9

TABLE II. Summary of the descriptors we used, together with
the specifications and the number of bins Nb in each case.

where κ̃(l) is the Fourier transform of the κ field. Previ-
ous works have studied cosmological constraints from the
convergence power spectrum extensively. Here our pur-
pose is to compare the constraints we obtain from the
MFs and LMs to ones present in the literature, which
are based on the use of quadratic statistics (see for ex-
ample [1]). The statistical descriptors used in this work
are summarized in Table II.
When measuring statistical descriptors on κmaps, par-

ticular attention must be paid to the effect of masked
pixels. The MFs and LMs remain well–defined in the
presence of masks, since the estimators in equations (8)
and (9) are defined locally, and can be computed in the
non–masked regions (with the exception of the few pix-
els that are close to the mask boundaries). The situa-
tion is more complicated for power spectrum measure-
ments, which require the evaluations of Fourier trans-
forms and hence rely on the value of every pixel in the
map. Although sophisticated schemes to interpolate over
the masked regions have been studied (see for example
[43]), for the sake of simplicity, we here insert the value
κ = 0 in each masked pixel. Given the uniform spa-
tial distribution of the masked regions in the data, we
expect that masks have a little effect on the power spec-
trum at the range of multipoles in Table II, except for
an overall normalization which will be the same both in
the data and the simulations. Likewise, we believe that
the way we deal with masked sky regions – essentially ig-
noring them – is robust for the MFs and LMs. Since we
apply the same masks to our simulations and the data,
they are unlikely to introduce biases in the resulting con-
straints. Masks, of course, can still affect the sensitivity
and weaken constraints. The impact of the masks and
their treatment has been evaluated for the MFs, obtained
from CFHTLenS, by ref. [28], in which the authors find
that the masked regions are not a dominant source of
systematic effects in the CFHTLenS data.

B. Cosmological parameter inferences

In this section, we briefly outline the statistical frame-
work adopted for computing cosmological parameter con-
fidence levels. We make use of the MFs and LMs, as well
as the power spectrum, as discussed in the previous sec-
tion. We refer to M r

i (p) as the descriptor measured from
a realization r of one of our simulations with a choice of
cosmological parameters p (i.e. from one of the R = 1000
map realizations in this cosmology), and to Di as the

descriptor measured from the CFHTLenS data. In this
notation, i is an index that refers to the particular bin on
which the descriptor is evaluated (for example i can range
from 0 to 9 for the LM statistic and from 0 to Nb − 1 for
a MF measured in Nb different, linearly spaced κ bins,
as indicated in Table II).
Once we make an assumption for the data likelihood

Ld(Di|p) and for the parameter priors Π(p), we can use
Bayes’ theorem to compute the parameter likelihood Lp,

Lp(p|Di) =
Ld(Di|p)Π(p)

NL
. (12)

Here NL is a p–independent constant that ensures the
proper normalization for Lp. We make the usual assump-
tion that the data likelihood Ld(Di|p) is Gaussian [44]

Ld(Di|p) = [(2π)Nb detC]−1/2e−
1

2
χ2(Di|p),

χ2(Di|p) = [D−M(p)]
T
C−1[D−M(p)].

(13)

We assume, for simplicity, that the covariance matrix
C in equation (13) is p–independent and coincides with
C(p0). The simulated descriptors M(p) are measured
from an average over the R = 1000 realizations in the
CFHTemu1 ensemble

Mi(p) =
1

R

R
∑

r=1

M r
i . (14)

The covariance matrix

Cij =
1

R − 1

R
∑

r=1

[M r
i (p0)−Mi(p0)][M

r
j (p0)−Mj(p0)]

(15)
is measured from the R = 1000 realizations in the
CFHTcov ensemble. While eq. (15) gives an unbiased es-
timator of the covariance matrix, its inverse is not an
unbiased estimator of C−1 (e.g. ref. [39]). Given that in
our case R ≫ Nb, we can safely neglect the correction
factor needed to make the estimator for C−1 unbiased.
When computing parameter constraints from the

CFHTLenS weak lensing data alone, we make a flat prior
assumption for Π(p). We postpone using different priors,
incorporating external data, for future work. Parameter
inferences are made estimating the location of the max-
imum of the parameter likelihood in eq. (12), which we
call pML(Di), as well as its confidence contours. The
Nσ–confidence contour of Lp(p|Di) is defined to be the
subset of points in parameter space on which the likeli-
hood has a constant value cN and

∫

L>cN

Lp(p|Di)dp =
1√
2π

∫ N

−N

dxe−x2/2. (16)

Using equation (17) below, and given the low dimen-
sionality of the parameter space we consider (D = 3),
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we are able to directly compute the parameter likeli-
hood eq. (12) for 1003 different combinations of the
cosmological parameters p, arranged in a finely spaced
100× 100× 100 mesh within the prior window Π(p). We
directly compute the maximum likelihood pML(Di) and
the contour levels cN without the need for more sophis-
ticated MCMC methods.
The data likelihood is directly available for parame-

ter combinations on the simulated irregular grid ps. We
use a Radial Basis Function (RBF) scheme to interpolate
M(p) to arbitrary intermediate points. We approximate
the model descriptor as

M(p) =

N
∑

s=1

λsφ(|p − ps|) (17)

where φ has been chosen as a multi-quadric function
φ(r) =

√

1 + (r/r0)2, with r0 chosen as the mean Eu-
clidean distance between the points in the simulated grid
ps. The constant coefficients λs can be determined by
imposing the N constraints M(p = ps) = M(ps), which
enforce exact results at the simulated points. The in-
terpolation computations are conveniently performed us-
ing the interpolate.Rbf routine contained in a Scipy
library [45].
We studied the accuracy of the emulator, built with

the CFHTemu1 simulations, by interpolating the con-
vergence descriptors to the fiducial parameter setting
(Ωm, w, σ8) = (0.26,−1.0, 0.8) and comparing the result
to the one expected from the CFHTcov simulations. Fig-
ure 2 shows that our power spectrum emulator has a
relative error smaller than 20% for the lower multipoles
(l < 500), and comparable to 1% for the higher mul-
tipoles. The MF emulator has a relative error .10%
for the first 30 bins (which correspond to κ values in
[−0.04, 0.08]) and deteriorates due to numerical noise for
the remaining 20 bins. We eliminate the residual im-
pact of these inaccuracies using a dimensionality reduc-
tion framework, which we explain in the next section.
Nevertheless, we do not expect these inaccuracies to af-
fect our conclusions. Figure 2 demonstrates that our em-
ulator is able to distinguish a non–fiducial model from
the fiducial one within numerical errors. We thus found
no need to implement a more sophisticated interpolation
scheme [46].

C. Dimensionality reduction

The main goal of this work is constraining the
cosmological parameter triplet (Ωm, w, σ8) using the
CFHTLenS data. Once the Nσ contours have been ob-
tained, using the procedure and equations (12)–(16) out-
lined above, one may ask whether the choice of binning
affects these contours. Indeed, in our previous work, we
have found that the number of bins, Nb, can have a non-
negligible effect on the contour sizes (see [23] for an ex-
ample with simulated datasets).

In order to ensure that are results are robust with re-
spect to binning choices, we have implemented a Prin-
cipal Component Analysis (PCA) approach. Our physi-
cal motivation for this approach is that, even though we
need to specify Nb numbers in order to fully characterize
a binned descriptor, we suspect that the majority of the
constraining information (of a particular descriptor) is
contained in a limited number of linear combinations of
its binning. In the framework adopted by [35], for exam-
ple, the authors find that the majority of the cosmological
information in the matter power spectrum is contained
in only 5 different linear combinations of the multipoles.
Because of this, we believe that dimensionality reduc-
tion techniques such as PCA can help deliver accurate
cosmological constraints using only a limited number of
descriptor degrees of freedom.
In order to compute the principal components of our

descriptor space, we use the CFHTemu1 simulations, which
sample the cosmological parameters at the N = 91 points
listed in Table I, and allow us to compute the N × Nb

model matrixMpi = Mi(p). Note that this is a rectangu-
lar (non-square) matrix. Following a standard procedure
(see, e.g., ref. [47]), we derive the whitened model matrix

M̃pi, defined by subtracting the mean (over the N = 91
models) of each bin, and normalizing it by its variance
(always over the N = 91 models). Next we proceed with

a singular value decomposition (SVD) of M̃,

USVT =
M̃√
N − 1

, (18)

where Sij = Siδij is a diagonal matrix and V T
ij is the j–th

coordinate (j = 1...Nb) of the i–th principal component

(i = 1...min[Nb, N ]) of M̃, with the index j ranging from
1 to Nb. By construction, V is p–independent.
To rank the Principal Components V T in order of im-

portance, we note that the diagonal matrix S2 is simply
the diagonalization of the model covariance (not to be
confused with the descriptor covariance in eq. (15)),

1

N − 1
M̃TM̃ = VS2VT . (19)

We follow the standard interpretation of PCA compo-
nents, stating that the only meaningful components V T

i

in the analysis (i.e. the ones that contain the relevant
cosmological information) are those corresponding to the
largest eigenvalues S2

i , with the smallest eigenvalues cor-
responding to noise in the model, due to numerical inac-
curacies in the simulation pipeline. We expect our con-
straints to be stable with respect to the number of com-
ponents, once a sufficient number of components have
been included. Using the fact that different principal
components are orthogonal, we perform a PCA projec-
tion on our descriptor space by whitening the descriptors
and computing the dot product with the principal com-
ponents, keeping only the first n components

M(n)rpi = V T (n)ijM̃
r
pj ; D(n)i = V T (n)ijD̃j. (20)
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FIG. 2. Accuracy of the emulator based on the CFHTemu1 simulations. The figure shows the absolute difference between the
descriptor interpolated at the fiducial parameter setting, and the descriptor expected from the CFHTcov simulations (these are
the absoulte values of differences which oscillate around zero). The descriptors are shown in units of the standard deviation in
each bin i (determined from the diagonal elements of the CFHTcov covariance matrix). We show the accuracy results for the
power spectrum (red) and the three Minkowski functionals V0 (green), V1 (blue) and V2 (black). For reference, we also show,
using dashed lines, the difference between the expected CFHTcov descriptors and the interpolated descriptor at the non–fiducial
point p = (0.8,−1.0, 0.5). This non–fiducial point lies beyond the LM 1σ contour from the simulations shown in Figure 3 right
panel, and corresponds to the target accuracy we wish to achieve

Here we indicate with V T (n) the truncation of V T to
the first n rows (i.e. i can now range from 1 to n). As
described above, the expectation is that most of the cos-
mological information is contained in a small number of
components n < Nb. We will describe in detail below the
choice we make for n, together with the sensitivity of our
results to this choice.
Looking at PCA from a geometrical perspective, the

dimensionality reduction problem is equivalent to the ac-
curate reconstruction of the coordinate chart of the de-
scriptor manifold. As outlined in ref. [47], the coordinate
chart constructed with the PCA projection in eq. (20) is
accurate for reasonably flat descriptor manifolds. When
curvature becomes important, more advanced projection
techniques (such as Locally Linear Embedding) have to
be employed. We postpone an investigation of such im-
provements to future work.

IV. RESULTS

This section describes our main results, and is orga-
nized as follows. We begin by showing the cosmologi-
cal constraints from the CFHTLenS data for the triplet
(Ωm, σ8, w), as well as for an alternative parameteriza-
tion, (Ωm,Σ8, w), with Σ8(α) ≡ σ8(Ωm/0.27)α. In the
next section we give a justification on why we fix α to a
value of 0.55. We then use our simulations to perform a

robustness analysis of the parameter confidence intervals
with respect to the number of PCA components used in
the projection. We finally study whether the constraints
can be tightened by combining different descriptors. A
summary with the complete set of results, along with the
relevant Figures, is shown in Table III.

A. Cosmological constraints

We first make use of equations (12)-(16) to compute
the 1σ constraints on cosmological parameters, using
the triplet (Ωm, σ8, w). Figures 3 shows the constraints
in the (Ωm, σ8) plane, marginalized over w, for both
the CFHTLenS data, as well as from the mock data in
our simulations. In Figure 4, we examine constraints
from different sets of moments, as well as using different
smoothing scales. Figure 5 shows the confidence contours
in the (w,Σ8) plane, marginalized over Ωm. As this fig-
ure shows, and as discussed further below, no meaningful
constraints were found on w from CFHTLenS alone.
Because of the relatively small size of this survey, de-

generacies among the parameters can have undesirable
effects on the constraints. The well-known strong de-
generacy between Ωm and σ8 is evident in the long “ba-
nana” shaped contours in Figures 3 and 4. To mitigate
the effect of this degeneracy, in addition to the usual
triplet (Ωm, σ8, w), we consider an alternative parame-
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terization, built with the triplet (α,Σ8, w) where α is a
constant, and Σ8(α) ≡ σ8(Ωm/0.27)α. While Ωm and
σ8 are poorly constrained due to degeneracies, the Σ8(α)
combination lies in the direction perpendicular to the er-
ror “banana” at the pivot point Ωm = 0.27. This is the
direction of the lowest variance L(Ωm, σ8) for a suitable
choice of α, and hence has a much smaller relative un-
certainty. We can derive the optimal value of α from
the full three dimensional likelihood L(Ωm, w, σ8), from
which we can compute the expectation values

E(α) = 〈Σ8(α)〉 ; V(α) = 〈(Σ8(α) − E(α))2〉 (21)

and minimizing the ratio
√
V/E with respect to α. The

expectation values are taken over the entire parameter
box. This procedure yields a value α ≈ 0.55 for the sta-
tistical descriptors that we consider, consistent with what
is found in the literature (see [1] for example). Although
α can mildly depend on the type of descriptor consid-
ered, we choose to keep it fixed, knowing that the width
of the Σ8 likelihood cannot vary significantly with differ-
ent choices of α. We show the probability distribution
of the best-constrained parameter Σ8 (marginalized over
Ωm and w) in Figure 6.

We discuss the results of this section in § V below.

B. Robustness

The cosmological constraints should in principle be in-
sensitive to Nb, once a sufficient number of bins are used,
but inaccuracies in the covariance (due to a limited num-
ber of realizations) can introduce anNb dependence. Our
binning choices are summarized in Table II. Here we
show that the cosmological constraints derived in this
paper are numerically robust, i.e. they are reasonably
stable, once we consider a large enough number n of Prin-
cipal Components.

Figure 7 shows the PCA eigenvalues from the SVD
decomposition of our binned descriptor spaces (follow-
ing the discussion in § III C), as well as the cumulative
sum of these eigenvalues, normalized to unity. Figure 8
shows the dependence of the (Ωm, σ8) constraints on the
number of principal components n.

These figures clearly indicate that we only need a lim-
ited number of components in order to capture the cos-
mological information contained in our descriptors. The
eigenvalues diminish rapidly with n, and, in particular,
the confidence contours converge to good (. 10%) accu-
racy typically for n = 5 − 10 (depending on the descrip-
tor). This finding also addresses the inaccuracy of the
MF emulator at high thresholds, pointed out in Figure 2.
By keeping a limited number of principal components, we
are able to prevent the inaccurate high–threshold bins,
which have a low constraining power, from contributing
to the parameter confidence levels.

C. Combining statistics

Different statistics can include complementary cos-
mological information, allowing their combinations to
tighten the constraints. Previous work using multiple
lensing descriptors in CFHTLenS alone included combin-
ing the power spectrum and peak counts [26], combining
the power spectrum and Minkowski functionals [28] ,and
combining quadratic (2PCF) statistics with cubic statis-
tics derived from the 3PCF of the CFHTLenS κ field [24].
The procedure we adopt here is as follows. Con-

sider two binned descriptors, d1,i, d2,j where the indices
i, j correspond to bin numbers. We first compute each
single–descriptor constraint as a function of the number
of PCA components, as in Figure 8. We then determine
the minimum number of PCA components n1,2 needed
for the constraints to be stable. We next construct the
vector d1×2 = {d1(n1), d2(n2)} and consider this as the
combined (n1 + n2)–dimensional descriptor vector. This
procedure naturally allows us to account for the cross–
covariance between different binned descriptors. An anal-
ogous procedure can be used to combine multiple (three
or more) descriptors.
We show constraints from different descriptor combi-

nations in the (Ωm, σ8) and (w,Σ8) planes in Figure 9,
and on the best-constrained parameter Σ8 in Figure 10.
We also provide a tabulated version of the Σ8 constraints
(1σ) in Table IV. We discuss these findings in the next
section.

V. DISCUSSION

In this section we discuss the results shown in § IV
above, with particular focus on the constraints on cos-
mology.
As pointed out in § III C, the choice of the number

of bins, Nb, is an important issue. In order to ensure
that our results are insensitive to Nb, we adopted a PCA
projection technique to reduce the dimensionality of our
descriptor spaces. The left panel of Figure 7 shows that
the PCA eigenvalues for all of our descriptors decrease by
about 4 orders of magnitude from n = 1 to n = 3. The
right panel of this figure shows that more than 99% of
the descriptor variances are captured by including only
the first n = 3 components.
This does not necessarily mean, however, that the cos-

mological information is captured by the first 3 PCA
components: in principle, one of the higher-n PCA
components could have an unusually strong cosmology-
dependence, and could impact the confidence levels. To
address this possibility, we determined the 1σ contour
sizes as a function of n in Figure 8. This figure shows
that the first 3 components indeed capture essentially all
the information contained in the power spectrum. How-
ever, this is not true for the other descriptors. In partic-
ular, we find that n ≥ 5 components are necessary for V0,
and n ≥ 20 components for V1 and V2, in order for the
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FIG. 3. 1σ (68% CL) constraints on the (Ωm, σ8) parameter doublet using the power spectrum (red), the three Minkowski
functionals (V0: green, V1: blue, V2: black) and the moments (orange). We show the constraints from the data (left panel) and
from a mock observation constructed using the mean of 1000 realizations in the CFHTcov simulation suite (right panel). The
contours are calculated from the parameter likelihood function L marginalized over w. The parentheses near the descriptor
label refer to the number of principal components included.
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(black curves; both left and right panels). In the left panel, we also show constraints obtained adding moments of gradients to
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Parameters Descriptors Short description Relevant Figures

(Ωm, σ8) PS(3),V0(5), V1(20), V2(20),LM(9) 1σ constraints from CFHTLenS
and mock observations

3,3b

(Ωm, σ8) (σ2
i , Si,Ki)

1σ constraints from CFHTLenS
using κ moments

combined at different θG

4,4b

(w,Σ8) PS(3),V0(10), V1(10), V2(10),LM(9) contours from CFHTLenS 5

Σ8 PS(3),V0(10), V1(10), V2(10),LM(9) L(Σ8) from CFHTLenS 6

- PS,V0, V1, V2,LM PCA eigenvalues 7

(Ωm, σ8) PS,V0, V1, V2,LM Stability of contours 8

(Ωm, σ8) PS(3)×V0(5) × V1(20)× V2(20)×LM(9)
constraints from CFHTLenS

combining statistics
9

(w,Σ8) PS(3)×V0(10) × V1(10)× V2(10)×LM(9)
constraints from CFHTLenS

combining statistics
9b

Σ8 PS(3)×V0(10) × V1(10)× V2(10)×LM(9)
L(Σ8) from CFHTLenS
combining statistics

10

TABLE III. Summary of our results and related figures.

Descriptor Σ8 = σ8Ω
0.55
m

PS(3) 0.84+0.06
−0.09

PS(3) × Moments(9) 0.86+0.02

−0.09

V0(10)× V1(10) × V2(10) 0.75+0.07
−0.04

PS(3) ×V0(10)× V1(10)× V2(10) 0.76+0.04

−0.05

PS(3) ×V0(10) × V1(10) × V2(10)× Moments(9) 0.76+0.06

−0.04

TABLE IV. Tabulated values of 1σ constraints on Σ8 corresponding to Figure 10
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FIG. 5. 1σ (68% C.L.) constraints on the (w,Σ8) parameter
doublet from the CFHTLenS data, obtained with the power
spectrum (red), the three Minkowski functionals (V0: green,
V1: blue, V2: black) and the moments (orange). The con-
tours are calculated from the parameter likelihood function L

marginalized over Ωm, and the parentheses near the descrip-
tor label refer to the number of principal components.

(Ωm, σ8) contours to be stable at the ∼5% level. All nine
moments need to be included for the moments contours
to be stable to this accuracy.

These results are slightly different when we study the
(w,Σ8) constraints (with α fixed at α = 0.55 as discussed
above). In this case we find that the optimal choice for
all three MFs is n = 10, while the number of components
required for the PS and Moments remain at n = 3 and
n = 9, respectively. (These results are not shown, but
obtained analogously to the Figures above.)

We now discuss the main scientific findings of this
work. In Figure 3, we show the 1σ constraints on
the (Ωm, σ8) doublet from the CFHTLenS data. The
MF constraints appear to be biased towards the low–
σ8, high–Ωm region. Here and throughout the remain-
der of this paper, by ”biased” (or ”unbiased”) we re-
fer to being incompatible (or compatible) with the con-
cordance fiducial values at 1σ obtained in other ex-
periments. For example, the current best-fit values
of (Ωm, σ8) = (0.32, 0.83), (0.28, 0.82) from cosmic mi-
crowave background anisotropies measured respectively
by the Planck [48] and WMAP [34] satellites lie beyond
the 99% likelihood contours obtained from the three MFs
(not shown).

This discrepancy may be due to uncorrected system-
atics in the CFHTLenS data, amplified by the (Ωm, σ8)
degeneracy. As a test of our analysis pipeline, when we
try to constrain mock observations based on simulations
(shown in the right panel of Figure 3), we recover the cor-
rect input position of the 1σ contours. It is important to
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FIG. 6. The likelihood of the best-constrained parameter
combination Σ8(α) ≡ σ8(Ωm/0.27)α from the CFHTLenS
data, obtained with the power spectrum (red), the three
Minkowski functionals (V0: green, V1: blue, V2: black) and
the moments (orange). The likelihood was computed with a
constant optimized α = 0.55, but marginalized over both Ωm

and w. The parentheses near the descriptor label refer to the
number of principal components.

note, however, that the mock observations to which the
right panel of Figure 3 refers, were built with the mean
of R = 1000 realizations of the CFHTcov simulations. We
found that it is possible to find some rare (10 out of the
1,000) realizations for which the best fit for (Ωm, σ8) lies
in the lower right corner, near the location of the best-fit
from the data. While this could provide an alternative
explanation of the bias from the MFs, the likelihood of
this happening is very small (. 1%).

We observe that the moments give the tightest con-
straint on (Ωm, σ8). Furthermore, this constraint is un-
biased, in the sense defined above: it includes the current
concordance values for these parameters within 1σ. This
leads us to conclude that the bias in the constraints from
the MFs is due to systematic errors, rather than the rare
statistical fluctuations found above. The fact that the
moments are useful for deriving unbiased cosmological
constraints has been noted in previous work, which ex-
amined the biases caused by spurious shear errors [49].

In order to determine the origin of the tight bounds de-
rived from moments, we studied the contribution of each
individual moment to the constraints. Figure 4 shows the
evolution of the (Ωm, σ8) constraints as we add increas-
ingly higher-order moments to the descriptor set. Since
we are constraining 3 cosmological parameters, we start
by considering the set of the three traditional one–point

moments which do not involve gradients, i.e. the vari-
ance, skewness, and kurtosis (σ2

0 , S0,K0). We then add
the remaining six moments of derivatives one by one,
starting from the quadratic moments.

Figure 4 shows that the biggest improvement on the
parameter bounds comes from including quartic moments
of derivatives (i.e. Ki with i ≥ 1) in the descriptor set.
This might explain why [24] find only relatively weak
contour tightening (∼ 10%) when adding three–point
correlations to quadratic statistics, since the main im-
provement comes from higher moments of κ derivatives.
Ref. [24] consider one–point, third–order moments, com-
bined for multiple smoothing scales. Figure 4 explicitly
shows, however, that smoothing scale combinations are
not as effective as moments of derivatives in constraining
the (Ωm, σ8) doublet. Our results agree with an early
prediction [5] that the kurtosis of the shear field can help
in breaking degeneracies between Ωm and σ8. Here we
found that considering quartic moments of gradients fur-
ther helps in breaking this degeneracy.

As noted above, the bias in the (Ωm, σ8) constraints is
amplified by the cosmological degeneracy of these param-
eters. To mitigate this effect, we consider the combina-
tion of Ωm and σ8 that lies orthogonal to the most degen-
erate direction, namely Σ8 = σ8(Ωm/0.27)0.55. Figure 5
shows the 1σ constraints for the (w,Σ8) doublet, while
Figure 6 shows the marginalized Σ8 likelihood from the
CFHTLenS data. The CFHTLenS survey constrains the
Σ8 combination to a value of Σ8 = 0.75± 0.04(1σ) using
the full descriptor set, in agreement with values previ-
ously published by the CFHTLenS collaboration [1].

These figures also show that the current dataset is in-
sufficient to constrain w to a reasonable precision. This
is consistent with the previous analyses of CFHTLenS [1,
24, 26, 28]. We also note that ref. [28] obtained the best-
fit value of w ≈ −2 (but with large errors that include
w = −1 at 1σ). We found a similar result when using
a Fisher matrix to compute confidence levels. Since the
Fisher matrix formalism is equivalent to a linear approx-
imation of our emulator (in which all cosmological pa-
rameter dependencies are assumed to be linear), we thus
attribute this bias to the oversimplifying assumption of
linear cosmology-parameter dependence of the descrip-
tors. Although the right panel in Figure 9 shows that
the moments confine w to isolated regions in parameter
space, we note that w = −1, the value favored by other
existing experiments, is excluded at the 1σ level. The
2σ contours (not shown in the figure) join, and include
w = −1.

Regarding the parameter biases, our results overall
are in accordance with [49], namely, that unaccounted
systematics result in larger parameter biases when the
constraints are derived from the MFs, and that the LM
statistic is less biased. However, for the CFHTLenS data
the MFs can still effectively constrain the non-degenerate
direction in parameter space, Σ8 (Figure 6).

Finally, we studied whether the combination of dif-
ferent statistical descriptors can help in tightening the
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cosmological constraints. We show the effects of some of
these combinations in Figures 9 and 10. The left panel of
Figure 9 shows that, although combining the power spec-
trum and the moments with the Minkowski functionals
helps tighten the (Ωm, σ8) constraints, it does not help
in reducing the inherent parameter bias of the MFs. The
right panel of Figure 9 shows that even with these statis-
tics combined, w remains essentially unconstrained. [50]
found that even weak lensing tomography alone is un-
able to constrain w sensibly. Figure 10 shows that the
Σ8 combination is already well constrained by any of the
descriptors alone, without the need of combining different
descriptors. This further clarifies that the non–quadratic
descriptors mainly help to break degeneracies, tightening
contours along the degenerate direction.

VI. CONCLUSIONS

In this final section we summarize the main conclusions
of this work:

• We find that the power spectrum, combined with
the moments of the κ field provides the tight-
est constraint on the (Ωm, σ8) doublet from the
CFHTLenS survey data. The tightness of these
constraints comes mainly from the moments. Evi-
dence of the unbiased nature of constraints from the
moments has been found in [49]. We further find
that the largest improvement on parameter bounds
is achieved when we include the quartic moments of
derivatives in the descriptor set. This level of im-

provement cannot be achieved by combining one-
point moments at different smoothing scales.

• Although weak lensing surveys are a promising
technique to constrain the DE equation of state
parameter w, reasonable constraints cannot be ob-
tained with the CFHTLenS survey alone, even
when using additional sets of descriptors that go
beyond the standard quadratic statistics.

• When studying the cosmological information con-
tained in the CFHTLenS data, special attention
must be paid to the effect of residual systematic
biases. While these residual systematics are found
to be unimportant when constraining cosmology
with the power spectrum alone, we find that these
systematics need to be corrected to obtain unbi-
ased constraints on the (Ωm, σ8) doublet using the
Minkowski functionals. We are aware that, when
trying to explain the discrepancy between weak
lensing and CMB constraints using the Minkowski
functionals, there might be other effects to be con-
sidered, namely non–Gaussian error correlations in
the descriptors and inaccuracies of the simulations
on small scales. These inaccuracies could in princi-
ple affect the excursion set reconstruction at high
κ0 thresholds. We will investigate these additional
sources of error in future work.

• For the CFHTLenS data set, Minkowski functionals
can effectively constrain the non-degenerate direc-
tion in parameter space, Σ8, where the amplifying
effects of degeneracy are mitigated.The Minkowski
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FIG. 10. The probability distribution of the best-constrained
parameter Σ8 from the CFHTLenS data, using the power
spectrum (PS) alone (red), the MFs alone (blue), as well
as using different combinations of descriptors: PS×Moments
(green), PS×MFs (black) and PS×MFs×Moments (orange).
The likelihood function has been marginalized over Ωm and
w. The parentheses next to each descriptor label refers to the
number of PCA components.

functionals alone are sufficient to constrain the Σ8

combination to a value of Σ8 = 0.75 ± 0.04 at 1σ
significance level. This agrees with the value pre-
viously published by the CFHTLenS collaboration
within 1σ. Some tensions with Planck [48] still re-
main.

Possible future extensions of this work include simu-
lating higher–dimensional parameter spaces (including,
for example, the Hubble constant H0, and allowing a
tilt in the power spectrum or a time-dependence of the
DE equation of state w), and combining the CFHTLenS
constraints with different cosmological probes from large-
scales structures and the CMB. The latter can help in
breaking the Ωm, σ8 degeneracy, and allow improvements
in the the constraints on w. The techniques developed
here can be applied to larger, soon-forthcoming survey
data sets, such as the Dark Energy Survey (DES) [51],
Subaru [52], WFIRST [53] and LSST [54].
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