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Compact stars satisfy certain no-hair relations through which their multipole moments are given
by their mass, spin and quadrupole moment. These relations are approximately independent of their
equation of state, relating pressure to density. Such relations are similar to the black hole no-hair
theorems, but these possess event horizons inside which information that led to their formation can
hide. Compact stars do not possess horizons, so whether their no-hair relations are related to the
black hole ones is unclear. We investigate how the two relations are related by studying relations
among multipole moments for compact stars with anisotropic pressure as a toy model, which allows
such stars to be more compact than those with isotropic pressure. We here show numerically that
the compact star no-hair relations approach the black hole ones as the compactness approaches that
of a black hole. We also prove analytically that the current dipole moment exactly reaches the black
hole limit quadratically in compactness as strongly-anisotropic stars approach the black hole limit.
We moreover show that compact stars become progressively oblate in this limit, even if prolate at

low compactness due to strong anisotropies.

PACS numbers: 04.30.Db,04.50Kd,04.25.Nx,97.60.Jd

I. INTRODUCTION

The Hair of Black Holes. Astrophysical black holes are
said to have no hair because their exterior gravitational
field can be completely described by only two observable
quantities: their mass and spin angular momentum. All
other information or hair that may have led to the forma-
tion of the black hole is hidden inside its event horizon.
Electric charge is a third piece of information, but this
is typically neglected since astrophysically realistic black
holes are expected to be approximately neutral.

The baldness of black holes and General Relativity’s
equivalence principle [1] imply that the motion of test
bodies around a black hole depends only on its mass and
spin. This is of critical importance in astrophysics be-
cause it allows for the modeling of complicated systems
irrespective of the details of the central object. For ex-
ample, the motion of stars around the black hole at the
center of the Milky Way [2, 3] can be modeled with only
knowledge of the central object’s mass and spin.

One way to mathematically formalize the black hole
no-hair relations is by inter-relating the multipole mo-
ments of their exterior gravitational field. Multipole ex-
pansions are commonly employed in electrodynamics and
in gravitational physics to represent fields outside and far
from a localized source. For example, we can approxi-
mate the gravitational potential of a bounded source dis-
tribution as a series expansion in inverse powers of the
distance, 7, from the field point to the source. The coeffi-
cient M, that multiplies (1/7)'*¢ and spherical harmon-
ics Yy (0, ¢) is called the mass Lth-pole moment, e.g. My
is the mass monopole, M is the mass quadrupole, etc.
In addition to mass moments, General Relativity requires
current multipole moments Sy to fully describe the grav-
itational field, as in electrodynamics when performing
a multipolar decomposition of the vector potential. In

gravity, this stems from the need to decompose the field
generated by gravitational currents, induced either by the
motion of bodies or their spin [4].

The no-hair theorems for black holes then imply that,
in the multipole expansion of their exterior gravitational
field, only 2 multipole moments are independent and all
others can be expressed in terms of these two. The in-
dependent ones for black holes are the mass monopole,
My(= M), and the current dipole, Si(= |§\ =5). Al
other multipoles (of order ¢ > 2) are given by [5, 0]

MP* 4 iSP" = M (ia)" | (1)

with @ = S/M. Thus, for example, we have that
(Mg™, 5g™) = (M,O), (MFH7SIBH) = (0,5), (M3,
S31) = (_SQ/M’ 0), (Mg", S5") = (0, _Sg/MQ)' No-
tice that the ratio a/M can be close to unity in Nature,
and hence, higher multipole moments need not be small.

These astonishing results were proven analytically in
the late ’60s and *70s by Robinson [7], Israel [8, 9], Hawk-
ing [10, 11], and Carter [5]. Their work relied on a few
assumptions, such as that black holes are vacuum solu-
tions to the Einstein equations. Non-vacuum solutions,
such as those that represent stars, evade the no-hair the-
orems. Therefore, the multipole expansion of the exterior
gravitational field of stars should depend on an infinite
number of independent multipole moments.

The above implies that multipole moments of higher
order than £ = 2 must be independently measured before
the trajectory of test bodies around stars can be pre-
dicted to high accuracy. For example, the NASA mission
GRACE has measured the first 18 multipole moments of
Earth [12], which allows the modeling of satellite trajec-
tories with errors of O(Rg/r)'?, with r the distance from
the satellite to Earth and Ry Earth’s radius.

The Hairs of Compact Stars. The non-applicability of
the no-hair theorem extends, in principle, to all stars, in-



cluding compact ones, such as neutron stars and strange
quark stars. There is therefore no reason to expect stars
to be bald, i.e. for their exterior gravitational field to be
independent of their internal structure or of their equa-
tions of state, relating internal pressure and density.

Recently, however, axisymmetric compact stars with
isotropic pressure were shown to satisfy certain approx-
imate no-hair relations [13-17]. That is, all multipole
moments in the multipole expansion of the exterior grav-
itational field of compact stars can be approximately
expressed in terms of only three observable quantities.
The first two are the mass monopole and current dipole
of the compact star, while the third is the star’s mass
quadrupole moment. The independent measurement of
these three observables allows us to determine all others
through [16, 17]

.q _\b
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for £ > 2 and where |z] stands for the largest integer not
exceeding x, § = —i(Mo/M)'/?, and By is a pure number
that in principle depends on the compact stars’s equation
of state. For example, Eq. (2) implies that S3 = B;S¢2,
M, = BiMg*, etc. Unlike in the black hole case, 7 is
independent of a.

These inter-relations between multipole moments cor-
respond to compact star no-hair relations if and only if
they are independent of the compact star’s internal struc-
ture. Equation (2) depends on the equation of state only
through the coefficients By. These coefficients have been
shown to take on approxzimately the same numerical value
(up to ten percent differences) [16, 17] within a very large
class of compact star equations of state [18-24]. Such
equation-of-state independence has been verified in a va-
riety of scenarios [15, 25-29]. Thus, we say that compact
stars are approzimately bald or follicly challenged.

But what is the origin of these approximate no-hair re-
lations? Recently, Ref. [30] proposed a phenomenological
picture to explain the approximate no-hair relations: as
some set of parameters (such as the compactness or tem-
perature of the star) are tuned beyond a given threshold,
an approximate symmetry emerges that is not present in
general. In particular, they found that as compactness is
increased, the eccentricity of isodensity contours inside
the star, which is a measure of the degree of elliptic-
ity of such contours, becomes nearly constant through-
out the star, leading to the emergence of isodensity self-
similarity.

Are the black hole and compact star no-hair rela-
tions related? If one pushes the phenomenological picture
of [30] to the extreme and “flows” toward the black hole
region of phase space by increasing compactness to 1/2
(the compactness of a non-spinning, Schwarzschild black
hole), one encounters a problem. Black holes have all
of their mass concentrated at their singularity, and thus,
there is no matter density elsewhere in their interior with
which to construct self-similar isodensity contours. It is
thus not obvious or clear that the approximate no-hair

relations will approach the black hole ones continuously
as an unstable compact star collapses into a black hole.

This topic was recently tackled in [31] by considering
neutron stars with anisotropic pressure, since the lat-
ter allows for stars with compactnesses close to those of
black holes. Reference [31] calculated the axisymmetric
deformations of such an anisotropic star due to stellar
rotation to leading-order in an expansion in powers of
compactness. Their results indicated that incompress-
ible strongly-anisotropic stars become prolate (i.e. ellip-
soids with the semi-major axis aligned with the axis of
rotation). If this remained true in the high-compactness
regime, it would be in contrast to perturbed black holes,
which have been long shown to be oblate when de-
formed [32]. The shape of a star is controlled, among
other things, by its quadrupole moment; thus, if a neu-
tron star with compactnesses close to that of a black hole
is prolate instead of oblate, its quadrupole moments may
not approach that of a black hole as the neutron star col-
lapses. The work of [31] then suggests that the approx-
imate no-hair relations for compact stars may not ap-
proach the black hole ones as the compactness increases.

We here extend [31] by numerically constructing
slowly-rotating anisotropic compact star solutions in full
General Relativity. We first investigate how the stel-
lar shape of anisotropic stars changes as one increases
the stellar compactness. We then look at the relations
among multipole moments for such stars and study how
they approach the black hole limit as one increases the
compactness. We carry out analytic calculations and ex-
plicitly show that the current dipole moment reaches the
black hole limit quadratically in compactness. We con-
clude by pointing out the possibility of linking the results
presented here to phase transitions in condensed matter
physics.

II. ANISOTROPIC COMPACT STARS

Let us revisit anisotropic stars with high compactness
but this time in full General Relativity, instead of in a
leading-order expansion in compactness. We concentrate
on slowly-rotating stars, following the Hartle-Thorne ap-
proach [33, 34]. Slowly-rotating, anisotropic neutron star
solutions have been constructed in [35, 36] to linear order
in spin, i.e. in the ratio of the spin angular momentum
to its mass squared, and we here extend such a calcu-
lation to third order for the first time. We also assume
the stars are neutral, so that electromagnetic fields can
be neglected. These are suitable approximations for old
compact stars. We model matter anisotropy through the
stress-energy tensor [36, 37]

Tl“’ = p Uy +p kp,kl/ + q H,UJ/ 9 (3)

where p is the matter density, p is the radial pressure
(assumed to be barotropic p = p(p)), ¢ is the tan-
gential pressure (responsible for anisotropy), u* is the
fluid’s four-velocity, k* is a radial vector, and II,, =



9uv +uuuy, — Kk, is a projection operator onto a two-
dimensional surface orthogonal to u* and k*. The unit
radial vector is spacelike (¢"*k,k, = 1), while the four-
velocity is timelike (¢"”u,u, = —1) and parameterized
through u* = u°(1,0,0,), where u° is a normalization
constant and €2 is the spin angular velocity.

Matter anisotropy is encoded in the tangential pres-
sure, i.e. that in the polar and azimuthal directions.
Let us introduce the anisotropy parameter ¢ = p — q,
which we expand in the slow-rotation approximation.
We parameterize this function in the Bowers and Liang
(BL) [38] framework

_ e (p+3p)(p+P) 2, 2
OpL = 3 mr + f(huu)+o(g4)v (4)

where Mg, is a constant that quantifies the amount
of anisotropy, M(r) is the mass interior to radius r
and f(h,,) is a function of the metric perturbation at
quadratic order in spin. One recovers isotropic stars
when Mg, =0, i.e. f(h,,) vanishes when Ay, = 0, which
forces o = 0 and thus ¢ = p, so that 7}, is the stress-
energy of a perfect fluid with isotropic pressure.

We here consider anisotropic compact stars because
anisotropy allows us to explore the properties of stars
with compactnesses close to those of black holes. In the
BL model, incompressible stars reach the black hole limit
when A, = —2m. Reference [31] used this model in a
leading-order expansion in compactness and found that
the quadrupole moment changes sign at Az, = —0.87.
Astrophysically, however, old compact stars are expected
to be close to isotropic, with small anisotropy perhaps
induced by stellar solid cores [39], magnetic fields [40],
phase transitions [11, 42], or two-fluid models (normal
and superfluid components) [43].

With these models for matter anisotropy, we can now
construct anisotropic compact star solutions in General
Relativity. We first expand the Einstein field equations
in the slow-rotation approximation following Hartle and
Thorne [33, 34]. We then specify a particular equation of
state for the radial pressure, such as a tabulated one [18—

] or a polytropic one of the form p = Kp'T/" where
K and n are the polytropic constant and index respec-
tively. With this, we can now solve the expanded equa-
tions numerically and order by order in €2, adapting our
numerical code developed in [13, 14, 17]. The numerical
solution can then be used to extract the multipole mo-
ments of the compact star’s exterior gravitational field
far from the star [14—46]. The details of the formalism
can be found in [17].

III. CHANGE IN THE STELLAR SHAPE

Figure 1 shows the quadrupole moment normalized to
its black hole value, My = M, J/ME" | as a function of stel-
lar compactness, C = M, /R., where M, and R, are the
mass and radius of the compact star in the non-spinning
configuration. Every point in this figure corresponds to
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FIG. 1. (Color online) Compactness dependence of M, for
incompressible strongly anisotropic compact stars. The black
hole value of Ms is shown with a cross on the top right cor-
ner. Although the compactness of anisotropic stars with Agy,
chosen here does not actually reach the black hole limit, as
one would find by zooming to the C' ~ 0.5 region, it does get
very close to it.

the numerical construction of a compact star, with differ-
ent compactness obtained by increasing the central den-
sity. Observe that M < 0 in the low compactness region
when A5, < —0.87, and thus the star is prolate as pre-
dicted by [31]. As compactness is increased, however, My
becomes positive and the star becomes oblate. These re-
sults imply that relativistic corrections (proportional to
high powers of compactness) change the results of [31],
forcing stars to become oblate and approach the black
hole expectation.

Figure 1 also shows that as the stellar compactness ap-
proaches Cgy, the mass quadrupole approaches the black
hole result, irrespective of the value of A\g,. We define
the scaling exponent

In[Ay(7) — 1]

70 In(7)

C—Cou
OBH

9 T 9 (5)
in analogy with the critical exponents of second order
phase transitions, where A, is any of the mass multipoles
My or current multipoles Sy, normalized to their black
hole values and Cpy = 1/2 is the compactness of a non-
rotating black hole. For example, S; = S1/SP", where
SPH = [PHQO) = 4M3Q [14] and IP" is the moment of in-
ertia of a non-rotating black hole, while S3 = S3/S8",
where SP¥ = —$3/M? by Eq. (1). Doing so, we find
that (A; — 1) oc 774 near 7 = 0, with kz, presented in
Table I. Observe that all multipole moments of isotropic
compact stars approach the critical point at the same
rate — as a fourth-order polynomial'. This behavior is ap-

1 Although the compactness of isotropic stars cannot reach the
black hole limit, S1 and My for such stars do approach the limit,
as can be seen from e.g. the bottom left panel of Fig. 9 in [14].
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FIG. 2. (Color online) Si-Ms (top left) and S3-M> (bottom left) relations for incompressible anisotropic stars. The right panel
zooms in to the black hole limit, shown with crosses. The arrows indicate the direction of increasing compactness, with the
solid ones corresponding to stars with Ag;, > —0.87 and the dashed one for stars with Ag;, < —0.87. The solid line in the

bottom left panel represents the analytic Newtonian relation, which is independent of Agp..

proximately equation-of-state universal, with variations
in k4, of only ~ 10% due to the equation of state. Table I
also shows that the mass and current multipole moments

tion of the stellar compactness as [48]

of strongly-anisotropic compact stars approach the black Isotropic | Anisotropic (poly. n=0)
hole limit linearly and quadratically as one decreases the ABL 0 —1.27 =147 —1.57 —1.9x7
anisotropy parameter (corresponding to increasing the ks, |3.90(£0.49) 2.20 2.08 2.03 1.87
maximum compactness). kyr,|4.22(+£0.45) 1.32 1.12 1.08 1.15
ks, 4.19(£0.49)| 1.30 1.10 1.06 1.93

In order to confirm whether the scaling exponent is
an integer in the black hole limit, we analytically solved
the Einstein equations to linear order in spin when Ag;, =
—2m, where the maximum compactness reaches the black
hole compactness. The solution to such equations can
be obtained in terms of hypergeometric functions. The
reduced dipole moment S; can then be written as a func-

J

TABLE 1. Scaling exponents of the multipole moments for
compact stars. For isotropic stars, we present the averaged
scaling exponent over various equations of state, with the
maximum deviations from the mean denoted in parenthesis.
For incompressible anisotropic stars, we present each scaling
exponent as a function of the anisotropy parameter Agr..

5.(C) = 18 CoF1(3,42: 2:20) - 99F1(5, 42 5;20) +52F1(3,%: 5:20) (©)
! 8C2 [18 C2,F (3,23, 1;2C) —9CoF (5,42, L, 2C) + 15 CoF1(2, 9 3;20) —5.F1(3,9; 2, 20)]

From this equation, one can calculate the scaling expo-
nent and exactly find kg, = 2. This confirms that the
scaling exponent for S; reaches an integer. We could
not solve the Einstein equations at higher order in spin
analytically to derive similar expressions for My nor S3
since such higher order contributions are sourced by the
complicated first order in spin solution presented above.
These analytic results will be presented in more detail
in [48].

(

IV. APPROACHING THE BLACK HOLE LIMIT

Let us now investigate how the approximate no-hair
relations for compact stars approach the black hole no-
hair relations. To see this, let us explore a sequence of
compact stars of increasing compactness and plot the first
few low-¢ multipole moments, normalized to the black
hole values.

Figure 2 shows this sequence for incompressible
anisotropic stars. As in Fig. 1, every point represents



a different compact star constructed numerically. The
arrows indicate the direction of increasing compactness,
and the right panel is a zoom into the black hole limit
region. Observe that in the lower-compactness region
(top right region of the bottom left panel) the multi-
pole moments approach the approximate no-hair rela-
tions (shown as a black solid line labeled) expanded to
lowest order in compactness, i.e. the so-called Newto-
nian approximate no-hair relations of [16] extended to
anisotropic Newtonian stars. Observe also that isotropic
stars tend to the black hole result, but do not reach it,
since these stars do not reach sufficiently high compact-
nesses, e.g. the maximum compactness of a uniform den-
sity, isotropic star is 0.444 [14].

Finally, observe that anisotropic stars, which can sam-
ple compactnesses much closer to Cgy, continuously ap-
proach the black hole limit. Interestingly, anisotropic
stars with Az, > —0.87 approach the black hole limit
directly (solid arrows), while those with Ag, < —0.87
(dashed arrows) over shoot it, but then turn around
and approach it. Recall that Az, = —0.87 was ex-
actly the value of the anisotropic parameter at which
deformed neutron stars switched from prolate to oblate
in the low compactness region [31]. This means that low-
compactness stars that are initially oblate (Ag, > —0.87)
approach the limit directly, but those that are initially
prolate (A, < —0.87) overshoot it and then approach
it, while simultaneously becoming oblate. One can show
analytically from Eq. (6) that S;(1/2) = 1, namely the
current dipole moment reaches the black hole limit ex-
actly as C — Cgy.

V. DISCUSSIONS AND FUTURE DIRECTIONS

The universal behavior in the scaling exponent that we
found is analogous to the universal behavior observed in
second-order phase transitions when considering critical
phenomena, such as ferromagnetism. One may thus be
able to understand the transition from compact stars to
black holes as a phase transition, with C' and Cgy play-
ing the role of temperature and critical temperature re-
spectively. For example, Refs. [19, 50] studied a possible
link between stellar transitions and second-order quan-
tum phase transitions from a high density baryonic state
into a thermal quark-gluon plasma state within the con-
text of the AdS/CFT correspondence. We plan to inves-
tigate this further in future.

Other future work could focus on constructing
anisotropic compact star solutions to higher order in spin
and see if higher multipole moments also approach the
black hole limit as one increases the compactness. An-
other interesting avenue is to show how the approximate
no-hair relations for unstable compact stars change as
they undergo gravitational collapse and become black
holes dynamically. Other future work includes whether
this limiting behavior observed for anisotropic compact
stars in General Relativity persists in other modified
gravity theories.
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