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We consider the cross-correlation search for periodic gravitational waves and its potential appli-
cation to the low-mass X-ray binary Sco X-1. This method coherently combines data not only from
different detectors at the same time, but also data taken at different times from the same or different
detectors. By adjusting the maximum allowed time offset between a pair of data segments to be
coherently combined, one can tune the method to trade off sensitivity and computing costs. In
particular, the detectable signal amplitude scales as the inverse fourth root of this coherence time.
The improvement in amplitude sensitivity for a search with a maximum time offset of one hour,
compared with a directed stochastic background search with 0.25 Hz wide bins is about a factor
of 5.4. We show that a search of one year of data from the Advanced LIGO and Advanced Virgo
with a coherence time of one hour would be able to detect gravitational waves from Sco X-1 at
the level predicted by torque balance over a range of signal frequencies from 30 to 300 Hz; if the
coherence time could be increased to ten hours, the range would be 20 to 500 Hz. In addition, we
consider several technical aspects of the cross-correlation method: We quantify the effects of spec-
tral leakage and show that nearly rectangular windows still lead to the most sensitive search. We
produce an explicit parameter-space metric for the cross-correlation search in general and as applied
to a neutron star in a circular binary system. We consider the effects of using a signal template
averaged over unknown amplitude parameters: the quantity to which the search is sensitive is a
given function of the intrinsic signal amplitude and the inclination of the neutron star rotation axis
to the line of sight, and the peak of the expected detection statistic is systematically offset from
the true signal parameters. And finally, we describe the potential loss of signal-to-noise ratio due
to unmodelled effects such as signal phase acceleration within the Fourier transform timescale and
gradual evolution of the spin frequency.

I. INTRODUCTION

The low-mass X-ray binary (LMXB) Scorpius X-1
(Sco X-1)[1] is one of the most promising potential
sources of gravitational waves (GWs) which may be ob-
served by the generation of GW detectors–such as Ad-
vanced LIGO[2], Advanced Virgo[3] and KAGRA[4]–
which will begin operation in 2015 with the first Ad-
vanced LIGO observing run, and Advanced Virgo and
KAGRA observations expected to follow in the coming
years. Sco X-1 is presumed to be a binary consisting
of a neutron star which is accreting matter from a low-
mass companion; its parameters are summarized in ta-
ble I. Non-axisymmetric deformations in the neutron star
can give rise to gravitational radiation, most of which
is emitted at twice the rotation frequency of the neu-
tron star[10].1 Such deformations can be maintained by
the accretion of matter onto the neutron star. It has

∗ john.whelan@ligo.org
† yuanhao.zhang@ligo.org
1 Additionally, unstable rotational modes of the neutron star, or r-

modes [11] can lead to GW at 4/3 of the neutron star’s rotational
frequenct.

been conjectured [12] that the neutron star’s rotation
may be in an approximate equilibrium state, where the
spinup torque due to accretion is balanced by the spin-
down due to gravitational waves. Scorpius X-1’s high
X-ray flux implies a high accretion rate, which makes it
the most promising potential source of observable GWs
among known LMXBs.[13]

Since Sco X-1 is not seen as a pulsar, its rotation fre-
quency is unknown. There is also residual uncertainty
in the orbital parameters which determine the Doppler
modulation of the signal, monochromatic in the neutron
star’s rest frame, which reaches the solar system barycen-
ter (SSB). This parameter uncertainty limits the effec-
tiveness of the usual coherent search for periodic gravita-
tional waves[10]. The first search for GW from Sco X-1
with the first generation of interferometric GW detectors,
using data from the second LIGO science run[5] was lim-
ited to six hours of data for this reason. A subsequent
search using data from the fourth LIGO science run [14]
used a variant of the cross-correlation method developed
to search for stochastic GW backgrounds, treating Sco X-
1 as a random unpolarized monochromatic source with a
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Parameter Value Reference(s)

right ascension 16h19m55.0850s [5] from [6]

declination −15◦38′24.9′′ [5] from [6]

distance (kpc) 2.8± 0.3 [6]

ap (sec) 1.44± 0.18 [5] from [1]

tasc (GPS sec) 897788005± 100 [7]

Porb (sec) 68023.70± 0.04 [7]

TABLE I. Parameters of the low-mass X-ray binary Scor-
pius X-1. Since the sky position is determined to microarc-
second or better accuracy, the relevant astrophysical param-
eters with residual uncertainty are those describing the orbit.
Those are the projected semimajor axis ap = a sin i of the neu-
tron star’s orbit, the orbital period Porb, and the time tasc at
which the neutron star crosses the ascending node (moving to-
wards the observer), measured in the solar-system barycenter.
The orbital eccentricity of Sco X-1 is believed to be small[1],
and the present work presumes the orbit to be circular for sim-
plicity; considering eccentric orbits add two search parameters
which are determined by the eccentricity and the argument
of periapse.[8, 9] Note that the observational constraint in
[1] is not on ap itself, but on the radial velocity amplitude

K1 =
2πap
Porb

of the primary. We could have formulated the

parameter space in terms of K1 and Porb rather than ap and
Porb, but this has no significant impact on the accuracy of
the method, since the uncertainty in ap is dominated by that
associated with K1. Finally, note that the orbital reference
time tasc (which we quote as the time of ascension, 1/4 cycle
later than the time of inferior conjunction quoted in [7]) can
be propagated to a later epoch by adding an integer number
of periods, at the cost of increasing the uncertainty due to the
uncertainty in the period itself.

known sky location.[15]2

The stochastic analysis formed the inspiration for a
new method to search for periodic gravitational waves
with a model-based cross-correlation statistic which takes
into account the signal model for continuous GW emis-
sion from a rotating neutron star.[21] (This method has
also been adapted [22] to search for young neutron stars
in supernova remnants.) The present work further devel-
ops some of the details of this method and the specifics of
applying it to search for gravitational waves from Sco X-1
and by extension other LMXBs.

The paper is organized as follows: Section II reviews
the basics of the method and the construction of the com-
bined cross-correlation statistic using a new, streamlined
formalism. Section III works out the statistical proper-
ties of the cross-correlation statistic, including the first
careful determination of the effects of signal leakage and

2 Other methods have been developed, specialized to search for
LMXBs. These include summing over contributions from side-
bands created by Doppler modulation[16, 17], searching for such
modulation patterns in doubly-Fourier-transformed data[18, 19],
and fitting a polynomial expansion in the Doppler-modulated
GW phase.[20].

the unknown value of the inclination angle of the neutron
star’s axis to the line of sight. It also considers in detail
how the sensitivity of the model-based cross-correlation
search should compare to the directed unmodelled cross-
correlation search for a monochromatic stochastic back-
ground. Section IV considers two effects related to the
dependence of the statistic on phase-evolution param-
eters such as frequency and binary orbital parameters:
a systematic offset of the maximum in parameter space
from the true signal parameters (which depends on the
unknown inclination angle), and the quadratic falloff of
the signal away from its maximum. The latter is en-
coded in a parameter space metric, which we construct
in general as well as for the LMXB search both in its
exact form and in limiting form relevant if the obser-
vation time is long compared to the orbital period. In
section V we consider limitations to the method from in-
accuracies in the signal model, either due to slight vari-
ations in frequency (“spin wandering”) arising from an
inexact torque-balance equilibrium, or due to phase ac-
celeration during a stretch of data to be Fourier trans-
formed. Finally, in section VI we summarize our results
and consider the expected sensitivity of this search to
Sco X-1.

II. THE CROSS-CORRELATION METHOD

The cross-correlation method is derived and described
in detail in [21]. In this section, we review the fundamen-
tals, using a more streamlined formalism and including a
more careful treatment of signal-leakage issues and nui-
sance parameters.

A. Short-Time Fourier Transforms

Because the signal of interest is nearly monochromatic,
with slowly-varying signal parameters, it is convenient to
describe the analysis in the frequency domain by dividing
the available data into segments of length Tsft and calcu-
lating a short-time Fourier transform (SFT) from each.
Since the sampling time δt is typically much less than
the SFT duration Tsft, we can approximate the discrete
Fourier transform of the data by a finite-time continuous
Fourier transform. If we use the indexK to label both the
choice of detector and the selected time interval, which
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has midpoint tK , the SFT will be3

x̃Kk =

N−1∑
j=0

xK(tK − Tsft/2 + j δt) e−i2πj δt k/Tsft δt

≈ e−iπfkTsft

∫ tK+Tsft/2

tK−Tsft/2

xK(t) e−i2πfk(t−tK) dt

= (−1)k
∫ tK+Tsft/2

tK−Tsft/2

xK(t) e−i2πfk(t−tK) dt ,

(2.1)

where the frequency corresponding to the kth bin of the
SFT is

fk = k δf =
k

Tsft
. (2.2)

In practice, the data are often multiplied by a window

function wj = w
(
j δt−tK
Tsft

)
before being Fourier trans-

formed, so that (2.1) becomes

x̃wKk =

N−1∑
j=0

wj xKj e
−i2πjk/N δt

≈ (−1)k
∫ tK+Tsft/2

tK−Tsft/2

w

(
t− tK
Tsft

)
xK(t) e−i2πfk(t−tK) dt .

(2.3)

In this work we will assume that the windowing function
is nearly rectangular with some small transition at the
beginning and end, so that leakage of undesirable spec-
tral features is suppressed, but the effects of windowing
on the signal and noise can otherwise be ignored. The
implications of other window choices are considered in
appendix A, along with a quantitative treatment of small
windowing.

B. Mean and variance of Fourier components

Let the data

xK(t) = hK(t) + nK(t) (2.4)

in SFT K consist of the signal hK(t) plus random instru-
mental noise nK(t) with one-sided power spectral density
(PSD) SK(|f |) so that its expectation value is

E [nK(t)] = 0 (2.5)

3 Note that the factor e−iπfkTsft appears in equation (2.25) of [21]
with the wrong sign in the exponent. However, given (2.2) for
integer k, this phase correction is simply the sign (−1)k so the
complex conjugate doesn’t change it.

and4

E [nK(t)nL(t′)] = δKL

∫ ∞
−∞

SK(|f |)
2

e−i2πf(t−t′) df .

(2.6)
If we write the noise contribution to the SFT labelled by
K as

ñKk =

N−1∑
j=0

nKj e
−i2πjk/N δt

≈
∫ tK+Tsft/2

tK−Tsft/2

nK(t) e−i2π(t−[tK−Tsft/2])fk dt

(2.7)

then (2.5) implies E [ñKk] = 0 and we can use (2.6) to
show that

E [ñKkñ
∗
L`] ≈ δKL δk` Tsft

SK(fk)

2
. (2.8)

(As detailed in appendix A, this is not the case for non-
trivial windowing, where noise contributions from differ-
ent frequency bins are correlated.) If we can estimate
the noise PSD SK(fk), we can “normalize” the data to
define (as in [23])

zKk = x̃Kk

√
2

TsftSK
(2.9)

which has mean

E [zKk] = µKk = h̃Kk

√
2

TsftSK
(2.10)

unit covariance

E [(zKk − µKk)(zL` − µL`)∗] = δKL δk` (2.11)

and zero “pseudo-covariance”

E [(zKk − µKk)(zL` − µL`)] = 0 (2.12)

(This is because the real and imaginary parts of each zKk
are independent and identically distributed.)

C. Signal contribution to SFT

The signal from a rotating deformed neutron star is
determined by various parameters of the system, which
can be divided into[10]:

4 Strictly speaking, we should allow for data from adjacent
SFT intervals in the same detector to be correlated, but
we assume that the autocorrelation function Kn(t − t′) =∫∞
−∞

Sn(|f |)
2

e−i2πf(t−t′) df falls off quickly compared to Tsft, so
that we can neglect the correlation between noise in different
time intervals.
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• amplitude parameters: intrinsic signal ampli-
tude h0, the angles ι and ψ which define the orien-
tation of the neutron star’s rotation axis (ι is the
inclination to the line of sight and ψ is a polariza-
tion angle from celestial west to the projection of
the rotation axis onto the plane of the sky), and
the signal phase Φ0 at some reference time, and

• phase-evolution parameters: intrinsic phase
evolution (frequency and frequency derivatives) of
the signal, as well as parameters such as sky lo-
cation and binary orbital parameters which govern
the Doppler modulation of the signal.

Those parameters determine the signal received by a
gravitational-wave detector at time t as

h(t) = h0 (F+A+ cos Φ(t) + F×A× sin Φ(t)) (2.13)

where F+ and F× are the antenna pattern functions[10,
24] which change slowly with time as the Earth rotates.
The signal contribution to an SFT can be estimated by

hK(t) ≈ h0

{
FK+ A+ cos(ΦK + 2πfK [t− tK ])

+ FK× A× sin(ΦK + 2πfK [t− tK ])
} (2.14)

where we have Taylor expanded the phase about the time
tK :

Φ(t(t)) ≈ ΦK + 2πfK(t− tK) . (2.15)

The validity of this approximation will be one of the lim-
iting factors which determines the choice of SFT duration
Tsft, as detailed in section V B.

The form of (2.14) includes the following parameters
and definitions:

• A+ = 1+cos2 ι
2 and A× = cos ι depend on the incli-

nation ι of the rotation axis to the line of sight.

• The antenna patterns FK+ and FK× depend on the
detector in question, the sidereal time at tK , the
sky position α, δ, and the polarization angle ψ.

• The relationship t(t) between the SSB time and
the time at the detector depends on the sky posi-
tion and time.5 Thus the phase Φ(t(t)) depends on
time, detector, Φ0, f0, f1, . . ., sky position and–in
the case of a binary–the binary orbital parameters.

The signal contribution to bin k of SFT K is

h̃Kk ≈ h0(−1)keiΦK
FK+ A+ − iFK× A×

2
δTsft

(fk − fK)

(2.16)

5 Specifically, if ~rdet is the position of the detector and k̂ is the unit
vector pointing from the source to the SSB, t(t) ≈ t− ~rdet · k̂/c.
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FIG. 1. Plot of δTsft(f−f
′) defined in (2.17) which determines

the signal contribution to a given frequency bin of a short
Fourier transform (SFT) of duration Tsft according to (2.16).
Since the spacing between frequency bins is δf = 1/Tsft, there
will be, for a given signal frequency fK , one bin whose value
of κKk = (fk − fK)/δf lies between each pair of vertical solid
lines.

where we have defined

δTsft
(fk − fK) =

∫ tK+Tsft/2

tK−Tsft/2

e−i2π(fk−fK)(t−tK) dt

= Tsft sinc([fk − fK ]Tsft)

(2.17)

in terms of the normalized sinc function sincα = sinπα
πα .

This is plotted in figure 1.6 The signal contribution will
be largest in the k̃Kth Fourier bin, defined by

k̃K :=

⌊
fK
δf

⌉
= bfKTsfte (2.18)

whose frequency fk̃K is closest to fK . (We have intro-

duced the notation that bαe is the closest integer to α.)
It will prove useful to define, similarly to [23],7

κKk = k − fKTsft =
fk − fK
δf

≡ κ̃K + (k − k̃K) (2.19)

where

κ̃K =
fk̃K − fK

δf
= k̃K − fKTsft , (2.20)

so that − 1
2 ≤ κ̃K ≤ 1

2 . A simple search would consider,
from each SFT K, only the Fourier component x̃Kk̃K

6 Previous sensitivity estimates [21, 22] noted that δTsft
(0) = Tsft

and therefore replaced each the finite-time delta function with
the SFT length Tsft, but a more careful treatment requires that
we keep track of spectral leakage caused by the signal frequency
not being centered in an SFT bin.

7 Note that our definition of κKk differs by a sign from the one
used in [23].
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closest in frequency to the signal frequency fK at the
search parameters. However, as we will see, the sensi-
tivity of the search can be improved by including contri-
butions from additional adjacent bins, so we indicate by
KK the set of bins to be considered from SFT K, and
we will construct a detection statistic using x̃Kk for all
k ∈ KK .

We can then write

h̃Kk ≈ h0(−1)k sinc(κKk)eiΦK
FK+ A+ − iFK× A×

2
Tsft

(2.21)
which means that, from (2.10)

E [zKk] = µKk

≈ h0(−1)k sinc(κKk)eiΦK
FK+ A+ − iFK× A×

2

√
2Tsft

SK
(2.22)

D. Construction of the Cross-Correlation Statistic

For a given choice of signal parameters, which deter-
mine κ̃K for each SFT, and therefore κKk for each Fourier
component, it is useful to define8

zK =

∑
k∈KK (−1)k sinc(κKk)zKk√∑

k′∈KK sinc2(κKk′)

≡ 1

ΞK

∑
k∈KK

(−1)k sinc(κKk)zKk

(2.23)

This is still normalized so that

E [(zK − µK)(zL − µL)∗] = δKL (2.24a)

E [(zK − µK)(zL − µL)] = 0 (2.24b)

where now

µK ≈ h0e
iΦK

FK+ A+ − iFK× A×
2

ΞK

√
2Tsft

SK
(2.25)

If we define vectors indexed by SFT number, we can write
(2.24) and (2.25) in matrix form as

E [z] = µ (2.26a)

E
[
(z− µ)(z− µ)

†
]

= 1 (2.26b)

E
[
(z− µ)(z− µ)

tr
]

= 0 (2.26c)

8 Note that computations can be made more efficient by use of the

identity sinc(κKk) = (−1)k̃K−k sin(πκ̃K)
πκKk

so (−1)k sinc(κKk) =

(−1)k̃K sin(πκ̃K) 1
κKk

where only the final factor depends on the

bin index k ∈ KK .

where 1 is the identity matrix, 0 is a matrix of zeros,

(·)tr
indicates the matrix transpose and (·)† the matrix

adjoint (complex conjugate of the transpose).
A real cross-correlation statistic ρ can be constructed

by defining a Hermitian matrix W and constructing ρ =
z†Wz = Tr(Wzz†). (Our chosen form of W will be
defined in (2.35).) Equation (2.26) tells us that

E
[
zz†
]

= 1 + µµ† (2.27)

where the second term is a matrix with elements

µKµ
∗
L = h2

0ΞKΞLe
i∆ΦKLΓKL

2Tsft√
SKSL

(2.28)

where ∆ΦKL = ΦK − ΦL is the difference between the
modelled signal phases in the two SFTs and ΓKL is a
geometrical factor which depends on ι and ψ as follows
(compare equation (3.10) of [21]):

ΓKL =
1

4

(
FK+ FL+A2

+ + FK× F
L
×A2
×

+ i[FK+ FL× − FK× FL+ ]A+A×
)

=
1

4

(A2
+ +A2

×
2

(aKaL + bKbL)

+ iA+A× (aKbL − bKaL)

+
A2

+ −A2
×

2

[
(aKaL − bKbL) cos 4ψ

+ (aKbL + bKaL) sin 4ψ
])

(2.29)

where we have used the fact that the ψ dependence of
the antenna patterns FK+,× can be written in terms of

the amplitude modulation coefficients aK and bK as

FK+ = aK cos 2ψ+ bK sin 2ψ (2.30)

FK× = − aK sin 2ψ + bK cos 2ψ . (2.31)

The AM coefficients[10] are determined by the relevant
sky position, detector and sidereal time. They can be
defined[25] as aK = εab+ d

K
ab and bK = εab× d

K
ab where εab+

and εab× are a polarization basis defined using one basis
vector pointing west along a line of constant declination
and one pointing north along a line of constant right as-
cension. Note that ι and ψ are properties of the source
which do not change for different SFT pairs, while aK

and bK depend only on the SFT (detector and sidereal
time) and sky position. It is also useful to note that the
combinations

FK+ FL+ + FK× F
L
× = aKaL + bKbL ≡ 10Γave

KL (2.32a)

FK+ FL× − FK× FL+ = aKbL − bKaL ≡ 10Γcirc
KL (2.32b)

are independent of ψ.
Since terms in ΓKL change signs if we vary cos ι and ψ,

which are unknown, it is convenient, as proposed in [21],
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to work with the average over those quantities, which
picks out the “robust” part:

Γave
KL = 〈ΓKL〉cos ι,ψ =

1

10
(aKaL + bKbL) (2.33)

Note that Γave
KL is real and non-negative, while ΓKL is

complex. On the other hand, ΓKL can be factored into
γKγ

∗
L, while Γave

KL cannot. If we define (again as in
[23], but with a different overall normalization) “noise-

weighted AM coefficients” âK and b̂K by dividing by√
SK

2Tsft
and construct Γ̂KL from those, we can write

µKµ
∗
L = h2

0ΞKΞLe
i∆ΦKL Γ̂KL = h2

0ĜKL (2.34)

or, as a matrix equation, µµ† = h2
0Ĝ. Note that [21]

did not consider issues of spectral leakage responsible for
ΞK , and used a different convention for the placement of
complex conjugates in atomic cross-correlation term, so

their G̃KL would be equal to
G∗KL

ΞKΞL
in the present nota-

tion. Similarly, our
Ĝ∗KL

ΞKΞL
corresponds to the combination

G̃KL√
σ2
KL

from [21].9

As noted in [21], an “optimal” combination of cross-
correlation terms would use a weight W proportional

to Ĝ. However, as described above, we work with

Ĝave
KL = ΞKΞLe

i∆ΦKL Γ̂ave
KL in order to avoid specifying

the parameters cos ι and ψ. For reasons of computa-
tional cost to be detailed later, we limit the possible
set of SFT pairs KL included in the cross-correlation
to some set P, in particular by requiring that K < L
and |tK − tL| < Tmax. Then we define the Hermitian
weighting matrix W by

WKL =


NĜave

KL KL ∈ P
N(Ĝave

KL)∗ LK ∈ P
0 otherwise

(2.35)

so that the cross-correlation statistic is

ρ = z†Wz = Tr(Wzz†)

= N
∑
KL∈P

(
Ĝave
KLz

∗
KzL + Ĝave ∗

KL zKz
∗
L

)
= N

∑
KL∈P

Γ̂ave
KL

∑
k∈KK

∑
`∈KL

(−1)k−` sinc(κKk) sinc(κL`)

×
(
ei∆ΦKLz∗KkzL` + e−i∆ΦKLzKkz

∗
L`

)
(2.36)

9 Note that eq (3.10) of [21] is also missing a factor of (−1)k̃K−k̃L

which should appear in h̃∗
Kk̃K

h̃Lk̃L
. This omission was pointed

out in [22], but eq (5) of [22] included the wrong sign in the phase
correction and failed to stress that the relevant frequency is fk̃K
rather than fK .

Since we assume that the list of pairs P includes no
auto-correlations, the matrix W contains no diagonal el-
ements,10 which implies Tr(W) = 0. We will later in-
troduce, and use when convenient, the notation that α
labels a (non-ordered) pair of SFTs KL ∈ P.

III. STATISTICS AND SENSITIVITY

In this section we consider in detail the statistical
properties of the cross-correlation statistic ρ which were
sketched in a basic form in [21]. In particular, we con-
sider the impact on the expected sensitivity of spectral
leakage and unknown amplitude parameters, and com-
pare the sensitivity of a cross-correlation search to the
directed stochastic search by analogy to which it was de-
fined.

A. Mean and Variance of Cross-Correlation
Statistic

The expectation value of the cross-correlation statistic
is

E [ρ] = E
[
Tr(Wzz†)

]
= Tr(W) + h2

0 Tr(WĜ)

= h2
0 Tr(WĜ) = µ†Wµ

(3.1)

where we have used the fact that W is traceless. The
variance is

Var(ρ) = E
[
ρ2
]
− E [ρ]

2
= E

[
z†Wzz†Wz

]
− (µ†Wµ)2

(3.2)
The first term can be evaluated by writing z = (z−µ)+µ;
after some simplification we have

Var(ρ) =E
[
(z− µ)

†
W(z− µ)(z− µ)

†
W(z− µ)

]
+ 2µ†W2µ

(3.3)

Ordinarily we’d need to know something about the fourth
moment of the noise distribution to evaluate the expec-
tation value, but since W contains no diagonal elements,
and the different elements of z − µ are independent of
each other, the expectation value can be evaluated using
only the variance-covariance matrix of z to give

Var(ρ) = TrW2 + 2µ†W2µ = TrW2 + 2h2
0 TrW2Ĝ

(3.4)

10 Note that if we analogously constructed the matrix to include
only diagonal terms, i.e., constructed a statistic only out of auto-
correlations, the statistic would be equivalent to that used in the
PowerFlux method.[26]
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We choose the normalization constant N so that ρ has
unit variance in the limit h2

0 → 0, i.e.,

1 = Tr(W2) =
∑
K

∑
L

WKLWLK = 2N2
∑
KL∈P

∣∣∣Ĝave
KL

∣∣∣2
(3.5)

i.e.,

N−2 = 2
∑
KL∈P

∣∣∣Ĝave
KL

∣∣∣2 = 2
∑
KL∈P

Ξ2
KΞ2

L

(
Γ̂ave
KL

)2

(3.6)

Written in terms of SFT pairs, the expectation value
of the statistic is

E [ρ] = h2
0 Tr(WĜ)

= Nh2
0

∑
KL∈P

(
Ĝave
KLĜ

∗
KL + Ĝave ∗

KL ĜKL

)
= Nh2

0 2
∑
KL∈P

Ξ2
KΞ2

LΓ̂ave
KL Re Γ̂KL

(3.7)

Looking at (2.29) we see that the real part of ΓKL has a
piece proportional to Γave

KL and a piece that depends on
ψ:

Re ΓKL =
5

2

A2
+ +A2

×
2

Γave
KL+

A2
+ −A2

×
2

(FK+ FL+−FK× FL×)

(3.8)
The sum over SFT pairsKL can be broken down as a sum
over detector pairs, over time offsets tK−tL, and over the
timestamp 1

2 (tK+tL) halfway between the timestamps of
the SFTs in the pair. In an idealized long observing run,
if the detector noise is uncorrelated with sidereal time,
the sum over 1

2 (tK + tL) means we are averaging the two

expressions (aKaL+bKbL)2 and (aKaL+bKbL)(FK+ FL+−
FK× F

L
×) (which depends on the polarization angle ψ) over

sidereal time. Because the former is positive definite and
the latter is not, this average tends to suppress the ψ-
dependent term. This is in addition to the fact that
A2

++A2
×

2 ≥ A
2
+−A

2
×

2 , possibly substantially, depending on
the value of ι, as illustrated in figure 2. If we neglect the
second term in (3.8), (3.7) becomes

E [ρ] ≈ Nh2
0

5

2

A2
+ +A2

×
2

2
∑
KL∈P

Ξ2
KΞ2

L

(
Γ̂ave
KL

)2

= (heff
0 )2

√
2
∑
KL∈P

Ξ2
KΞ2

L

(
Γ̂ave
KL

)2
(3.9)

where

heff
0 = h0

√
5

2

A2
+ +A2

×
2

(3.10)

is the combination of h0 and cos ι that we can estimate
by filtering with the averaged template.

Since we have normalized the statistic so that Var(ρ) =
1 for weak signals, the expectation value (3.9) is an ex-
pected signal-to-noise ratio for a signal with a given heff

0 .

FIG. 2. Plot of
A2

++A2
×

2
and

A2
+−A

2
×

2
, the coefficients of the

two contributions to Re ΓKL in (3.8). The factor
A2

++A2
×

2

is also equal to 2
5

(heff
0 )2

h2
0

where (heff
0 )2 is the combination of

h0 and cos ι approximately measured by the cross-correlation
statistic, as shown in e.g., (3.9)

This means that if we define an SNR threshold ρth such
that ρ > ρth corresponds to a detection, the signal will
be detectable if

heff
0
>∼
√
ρth

(
2
∑
KL∈P

Ξ2
KΞ2

L

(
Γ̂ave
KL

)2
)−1/4

(3.11)

B. Impact of Spectral Leakage on Estimated
Sensitivity

Finally, we consider the impact of the leakage factors
of the form Ξ2

K =
∑
k∈KK sinc2(κKk) on the expectation

value. Expanding out these expressions, we have

E [ρ] ≈ (heff
0 )2

(
2
∑
KL∈P

(
Γ̂ave
KL

)2

×
∑
k∈KK

sinc2(κKk)
∑
`∈KL

sinc2(κL`)

)1/2

(3.12)

If we choose only the “best bin” kK = k̃K from each
SFT, defined by (2.18), we have

Ξ2
K = sinc2(κ̃K) (3.13)

If, instead of the “best bin” whose frequency fk̃K is clos-
est to fK , we take the m closest bins to define KK , the
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sum becomes

Ξ2
K =

∑
k∈KK

sinc2(κKk) =

k̃K+b(m−1)/2c∑
k=k̃K−d(m−1)/2e

sinc2(κKk)

=

b(m−1)/2c∑
s=−d(m−1)/2e

sinc2(κ̃K + s)

(3.14)

where bαc ≤ α and dαe ≥ α are the integers below and
above α, respectively. Note that, because of the iden-
tity11

∑∞
s=−∞ sinc2(κ+ s) = 1, valid for any κ, the best

we can do by including more bins is Ξ2
K ≤ 1 and there-

fore12

E [ρ] ≤ (heff
0 )2

√
2
∑
KL∈P

(
Γ̂ave
KL

)2

(3.15)

The sensitivity associated with the inclusion of a finite
number of bins from each SFT will depend on the value of
− 1

2 ≤ κ̃K ≤ 1
2 corresponding to the signal frequency fK

in each SFT. We can get an estimate of this by assuming
that, over the course of the analysis, the Doppler shift
evenly samples the range of κ̃ values, and writing

E [ρ] ≈ (heff
0 )2

√
2〈Ξ2〉2

∑
KL∈P

(
Γ̂ave
KL

)2

= (heff
0 )2〈Ξ2〉

√
2
∑
KL∈P

(
Γ̂ave
KL

)2
(3.16)

with

〈Ξ2〉 =

〈∑
s

sinc2(κ+ s)

〉
κ

(3.17)

where 〈·〉κ indicates an average over the possible offsets
within the bin. We can numerically evaluate

〈Ξ2〉 =
∑
s

〈
sinc2(κ+ s)

〉
κ

=

b(m−1)/2c∑
s=−d(m−1)/2e

2

∫ 1/2

0

sinc2(κ+ s) dκ

= 2

∫ m/2

0

sinc2κ dκ

(3.18)

as shown in table II.

11 This is most easily proved by writing sinc(κ + s) =∫ 1/2
−1/2

ei2π(κ+s)t dt and using
∑∞
s=−∞ ei2πs(t−t

′) =∑∞
s=−∞ δ(t− t′ + s).

12 Previous sensitivity estimates [21, 22] were missing the factor of
Ξ2
KΞ2

L and therefore slightly overestimated the sensitivity.

m 1 2 3 4 5 6

contribution 0.774 0.129 0.028 0.019 0.009 0.007

cumulative 0.774 0.903 0.931 0.950 0.959 0.966

TABLE II. Contributions to 〈Ξ2〉, defined in (3.18), from in-
clusion of multiple SFT bins. We see that using a single bin
from each SFT leads to only around 77.4% of the maximum
sensitivity given by (3.15), but that we can recover over 90%
of this sensitivity by using two bins and over 95% by using
four bins from each SFT. This table applies for rectangularly
windowed data; using other window options further reduces
the expected SNR, as described in appendix A. The table
also assumes that the various Doppler modulations move the
signal frequency around to accomplish an average over the
fractional offset of the signal frequency from the center of the
bin. The validity of this approximation is explored in [27].

Since most cross-correlation searches will be compu-
tationally limited, the question of how many bins to in-
clude from each SFT is one of optimization of resources.
The value of E [ρ] for a given heff

0 , and therefore the
sensitivity of the search, can be increased by including
more frequency bins from each SFT, but this will involve
more computations and therefore more computational re-
sources. If instead those resources were put into a search

with a larger Tmax, the value of
∑
KL∈P

(
Γ̂ave
KL

)2

would

be higher. Näıvely, one might expect the computing cost
to scale with the number of terms to be combined, and
therefore with the square of the number of bins taken
from each SFT. So increasing from m = 1 to m = 2
could take up to four times the computing cost. On the
other hand, for a fixed number of bins, we suppose that
the cost will scale with the number of SFT pairs to be
included times the number of parameter space points to
be searched. Typical behavior will be for the density of
points in parameter space to scale with T dmax for some
integer value of d; as described in section IV B, for a
search over frequency and two orbital parameters of an
LMXB, as long as Tmax is small compared to the binary
orbital period, d = 3. Since the number of SFT pairs at
fixed observation time will also scale like Tmax, the over-
all computing cost will scale like T d+1

max , and quadrupling
the computing time would mean multiplying the possible
Tmax, and thus the number of terms in the sum (3.16) by

4
1
d+1 . This would increase E [ρ] for a given heff

0 by a factor

of 4
1

2(d+1) = 2
1
d+1 . For d = 3, this is 21/4 ≈ 1.19, which

is very slightly more than the benefit 0.903
0.774 ≈ 1.17 from

including a second bin from each SFT. However, the as-
sumption that computing cost scales like m2 is likely an
overestimate (since most of the operations can be done
once per SFT rather than once per pair), so it is generally
advisable to use at least two bins from each SFT.
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C. Sensitivity estimate for unknown amplitude
parameters

The cross-correlation statistic is normalized so that
Var(ρ) ≈ 1 and, according to (3.16), and now adopt-
ing the notation that α refers to an unordered allowed
pair of SFTs,

E [ρ] = (heff
0 )2〈Ξ2〉

√
2
∑
α

(
Γ̂ave
α

)2

= (heff
0 )2%ave (3.19)

where heff
0 is the combination of h0 and cos ι given in

(3.10), and %ave is a property of the search which can
be determined from noise spectra, AM coefficients, and
choices of SFT pairs, without knowledge of signal param-
eters other than the approximate frequency and orbital
parameters. Even if the noise in each data stream is
Gaussian distributed, the statistic, which combines the
data quadratically, will not be. It was observed in [21]
that each individual cross-correlation between SFTs is
Bessel distributed; the of the optimal sum is consid-
ered in appendix B both in its exact form and a nu-
merical approximation. For simplicity, in what follows
we assume that the central limit theorem allows us to
treat the statistic as approximately Gaussian, with mean
(heff

0 )2%ave and unit variance.13

We consider the sensitivity estimates in [21], which
implicitly assume the values of ι and ψ are known and
used to construct the expected cross-correlation used in
weighting the terms in the statistic. (In our notation

this would mean using ĜKL rather than Ĝave
KL in the def-

inition (2.35) of W.) Here we perform the analogous

calculation, assuming we’re using Ĝave
α in the construc-

tion of the statistic. Thus the probability of exceeding a
threshold ρth will be

P (ρ > ρth|h0, ι, ψ) =

∫ ∞
ρth

f(ρ|h0, ι, ψ) dρ

≈ 1√
2π

∫ ∞
ρth

exp

(
−1

2

[
ρ− (heff

0 )2%ave
]2)

dρ

=
1

2
erfc

(
ρth − (heff

0 )2%ave

√
2

)
=

1

2
erfc

(
ρth − h2

0%(ι)√
2

)
(3.20)

where

%(ι) ≈ 5

2

A2
+ +A2

×
2

%ave =
5

16
(1 + 6 cos2 ι+ cos4 ι)%ave

(3.21)

13 Note that this approximation is less accurate in the tails of the
distribution. Unfortunately, for a search over many independent
templates, the most interesting statistic will necessarily be in the
tails. For example, with 108 templates, even a 1% false alarm
probability for the loudest statistic value would correspond to
a single-template false-alarm probability of 10−10. See[28] for
specific examples of this.

The threshold associated with a false alarm rate α is

ρth =
√

2 erfc−1(2α) (3.22)

but the sensitivity hsens
0 associated with a false dismissal

rate β will now be defined, following a procedure anal-
ogous to the one in [29], by marginalizing over the un-
known inclination ι (since we have neglected the ψ de-
pendence in E [ρ])14:

1− β = P (ρ > ρth|h0 = hsens
0 )

=
〈
P (ρ > ρth|h0 = hsens

0 , ι, ψ)
〉

cos ι,ψ

=
1

2

〈
erfc

(
ρth − (hsens

0 )2 %(ι)√
2

)〉
cos ι

(3.23)

So to get a sensitivity estimate, we need to find the hsens
0

which solves (3.23), i.e.,

2(1− β)

≈
〈

erfc

(
ρth

√
2
− (hsens

0 )2 %ave

√
2

5

16
(1 + 6 cos2 ι+ cos4 ι)

)〉
cos ι

=

∫ 1

0

erfc

(
erfc−1(2α)− Seff 5

16

[
1 + 6χ2 + χ4

])
dχ

(3.24)

So that the approximate sensitivity is

hsens
0 =

√
Seff
√

2

%ave
=

(
(Seff)−2〈Ξ2〉2

∑
α

(
Γ̂ave
α

)2
)−1/4

(3.25)
The equation (3.24) defines Seff as a specific function of
α and β, so the approximate sensitivity correction due to
marginalizing over cos ι can be worked out independent
of the details of the search. We show some sample values
shown in table III for α and β values between 1% and
10%, and also for single-template α values corresponding
to overall false-alarm rates in the same range, assuming
a trials factor of 108. We see that the h0 sensitivity is
modified by between 39% and 67% in these cases.

D. Scaling and comparison to directed stochastic
search

We consider here the behavior of (3.25) (or equiva-
lently (3.19)) with parameters such as the observing time
Tobs and allowed lag time Tmax, which is effectively a co-
herence time. As noted in [21], the detectable (3.25)

14 Note that if we had kept the ψ-dependent term in (3.8), the
resulting E [ρ] /h2

0 would depend not only on both ι and ψ, but
also on the detector geometry and pairs of SFTs and a numerical
solution to the equivalent of (3.23) would have to be performed
anew for basically each sensitivity estimate.
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S Seff
√
Seff/S

β β β

α ρth 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

0.10 1.3 1.81 2.07 2.55 3.49 4.45 6.27 1.39 1.47 1.57

0.05 1.6 2.07 2.33 2.81 4.15 5.16 7.03 1.42 1.49 1.58

0.01 2.3 2.55 2.81 3.29 5.42 6.52 8.47 1.46 1.52 1.60

10−9 6.0 5.15 5.40 5.89 12.73 14.16 16.40 1.57 1.62 1.67

5× 10−10 6.1 5.23 5.48 5.96 12.96 14.40 16.64 1.57 1.62 1.67

10−10 6.4 5.40 5.66 6.14 13.48 14.93 17.20 1.58 1.62 1.67

TABLE III. Approximate modification of search sensitivity, as
a function of desired false alarm probability α (corresponding
to a statistic threshold of ρth) and false dismissal probability
β, resulting from filtering with a template averaged over the
signal parameters cos ι and ψ. (The second set of α values
is chosen to correspond to interesting single-template false-
alarm probabilities with a trials factor of 108.) The detectable

signal amplitude hsens
0 (3.25) is proportional to

√
Seff. The

table shows, for a variety of choices of α and β, how the cor-
rected factor

√
Seff calculated according to (3.24) compares to

the standard expression S = erfc−1(2α) + erfc−1(2β) which
would apply from filtering with known values of the parame-
ters cos ι and ψ. Note that using the worst-case value cos ι = 0
shows that 1 < Seff/S < 3.2.

scales like one over the fourth root of the number of SFT
pairs included in the sum

∑
α:15

hsens
0 =

(
(Seff)−2〈Ξ2〉2Npairs〈(Γ̂ave

α )2〉
)−1/4

=

(
NpairsT

2
sft(Seff)−2〈Ξ2〉2

〈
4(Γave

KL)2

SKSL

〉)−1/4

(3.26)

The approximate number of pairs for a search of data
from Ndet detectors, each with observing time Tobs (so
that the total observation time is NdetTobs), with maxi-
mum lag time Tmax > Tsft is

Npairs ≈ N2
det

Tobs

Tsft

Tmax

Tsft
(3.27)

so the sensitivity scaling is

hsens
0 ∼

(
N2

detTobsTmax(Seff)−2〈Ξ2〉2
〈

4(Γave
KL)2

SKSL

〉)−1/4

(3.28)
We wish to compare this sensitivity to that of the di-

rected stochastic search (also known as the “radiometer”
method) defined in [15] and used to set limits on grav-
itational radiation from Sco X-1[14, 30]. The directed

15 Note that the averages here are not the weighted averages intro-
duced in section IV.

stochastic search is also an optimally-weighted cross-
correlation search, but only includes contributions from
data taken by different detectors at the same time. We
first consider the sensitivity of a cross-correlation search
using our method with this restriction, and then relate
this to the sensitivity of the actual directed stochastic
search. If we only allow simultaneous pairs of SFTs, the
number of pairs included in the sum (3.25) becomes

N simul
pairs ≈ Ndet(Ndet − 1)

Tobs

Tsft
(3.29)

which makes the signal strength to which the search is
sensitive

(hsens
0 )simul

∼
(
Ndet(Ndet − 1)TobsTsft(Seff)−2〈Ξ2〉2

〈
4(Γave

KL)2

SKSL

〉)−1/4

∼ hsens
0

([
1− 1

Ndet

]
Tsft

Tmax

)−1/4

(3.30)

The directed stochastic search is not quite the same as
this hypothetical cross-correlation search with simulta-
neous SFTs, however. Most of these differences are ir-
relevant or produce effectively identical calculations. For
instance, since the ∆tα appearing in (4.17) is zero for si-
multaneous SFTs, the phase difference ∆Φα = 2πf0∆dα
just encodes the difference in arrival times at the two de-
tectors. Likewise, while the stochastic search assumes
a random unpolarized signal rather than the periodic
signal from a neutron star with unknown parameters,
this has the same effect as our choice to use Γave

KL as the
geometrical weighting factor. In fact (as noted in [21])

ei∆ΦKL Γ̂ave
KL is, up to a normalization, the overlap reduc-

tion function for the directed stochastic search. The one
significant difference is that, since the stochastic search
doesn’t model the orbital Doppler modulation, it doesn’t
have access to the signal frequency fK corresponding to
SFT K, and therefore cannot localize the expected signal
frequency to a bin of width δf = 1

Tsft
. Thus, instead of

the optimal combination described by (2.23) or (2.36), it
must sum with equal weights the contributions zKkz

∗
Lk

across a coarse frequency bin of width ∆f >∼
2πap
Porb

f0 (see

(IV B 2) for the definitions of the binary orbital param-
eters relevant to Doppler modulation).16 The effect is
to increase the variance of the cross-correlation due to

16 This was not the original motivation for the coarse frequency
bins in the stochastic cross-correlation pipeline; see for exam-
ple [31], but it has this effect when using the method to search
for monochromatic signals from neutron stars in binary sys-
tems. Note also that it is sufficient to perform a single sum∑
k zKkz

∗
Lk across the coarse bin rather than a double sum such

as
∑
k

∑
` zKkz

∗
L` because, while the frequency bin containing

the signal is not known, it will be the same bin for both detec-
tors because the unknown phase shift due to the orbit is the same
for simultaneous SFTs.
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noise by ∆f
δf = ∆f Tsft (since there are ∆f Tsft bins being

combined, only one of which contains a significant signal
contribution) so that

(hsens
0 )stoch

∼
(
Ndet(Ndet − 1)

Tobs

∆f
(Seff)−2

〈
4(Γave

KL)2

SKSL

〉)−1/4

∼ hsens
0

(
〈Ξ2〉−2

[
1− 1

Ndet

]
1

∆fTmax

)−1/4

(3.31)

The appearance of the factor containing 〈Ξ2〉 in the com-
parison is because the directed stochastic search, by com-
bining a larger range of frequency bins, as well as tech-
niques such as overlapping windowed segments, avoids
some of the usual leakage issues. On the other hand, if
∆f is chosen to maximize the sensitivity for a given fre-
quency, there will be similar issues with part of the signal
falling outside the coarse bin at the extremes of Doppler
modulation.

To insert concrete numbers, (3.31) tells us that for a
search with data of equivalent sensitivity from three de-
tectors, a cross-correlation search with Tmax = 3600 s and
〈Ξ2〉 = 0.9 would provide an improvement in h0 sensitiv-
ity over a directed stochastic search with ∆f = 0.25 Hz
of a factor of about 5.4.17 This is consistent with the per-
formance of the two searches in the Sco X-1 Mock Data
Challenge[32], in which the cross-correlation method was
able to detect signals with h0 almost an order of magni-
tude lower than those detected by the directed stochastic
method.

Note that, unlike the model-based cross-correlation
search, the stochastic search is not computationally lim-
ited, with year-long wide-band analyses being achievable
on a single CPU[32]. Additionally, since it doesn’t as-
sume a signal model (beyond sky localization and ap-
proximate monochromaticity), it is robust against un-
expected features such as orbital parameters outside the
nominally expected range. However, its sensitivity is fun-
damentally limited by its ignorance of orbital Doppler
modulation, with a maximum effective coherence time of

1
∆f

<∼ Porb

2πapf0
≈
(

100 Hz
f0

)
75 sec.

17 This does not include the fact that the directed stochastic
method includes a relatively coarse search over frequency, while
the model-based cross-correlation method must search over many
more points in frequency and orbital parameter space, as de-
scribed in section IV B. This seemingly significant increase in
trials factor turns out to be swamped by the gain in sensitivity.
In the comparison above, the same signal will generate a factor
of almost 30 larger rho value in the cross-correlation search. On
the other hand, the ρ threshold to achieve a 5σ false alarm prob-
ability would need to be increased only from 5 to 7.8 to overcome
a trials factor of 108. Additionally, the search over signal param-
eters in the cross-correlation method allows estimates of those
parameters.

IV. PARAMETER SPACE BEHAVIOR

So far we’ve implicitly assumed the parameters used to
construct the signal model (2.16), other than the ampli-
tude parameters h0, cos ι, and ψ, were known when con-
structing the weighted statistic. In order to determine
the phase evolution of the signal, and therefore ΦK and
fK , we need various phase-evolution parameters {λi}.
(For example, for a neutron star at a known sky loca-
tion with a constant intrinsic signal frequency f0 in a
binary orbit, these are f0 and any unknown binary or-
bital parameters.) A slight error in these would lead to
the ΦK appearing in µ and that used to construct W be-
ing slightly different. In this case we need to go back to
(3.7) and distinguish between the true ∆ΦKL and the one
assumed in the construction of the filter.18 If we write
these parameters as {λi}, let the parameters assumed in
constructing ρ be λi and the true parameters of the sig-
nal be λsi . Let ∆ΦsKL and ∆ΦKL be the phase difference
ΦK−ΦL constructed with the true signal parameters and
the parameters assumed in W, respectively. The effect
will be to reduce the expected SNR E [ρ] from the value
given in (3.19) which it would attain with λi = λsi . The
modified value is

E[ρ] ≈ h2
0N〈Ξ2〉

×
∑
α

(
Γ̂αe

i(∆Φsα−∆Φα) + Γ̂∗αe
−i(∆Φsα−∆Φα)

)
Γ̂ave
α (4.1)

Now, for λi close to λsi

Γ̂αe
i(∆Φsα−∆Φα) + Γ̂∗αe

−i(∆Φsα−∆Φα)

= 2 Re Γ̂α cos(∆Φsα −∆Φα)− 2 Im Γ̂α sin(∆Φsα −∆Φα)

≈ 2 Re Γ̂α

(
1− 1

2
(∆Φα −∆Φsα)2

)
+2 Im Γ̂α(∆Φα−∆Φsα)

(4.2)

if we write the phase difference as

∆Φα −∆Φsα ≈
∑
i

∆Φα,i(λi − λsi )

+
1

2

∑
i,j

∆Φα,ij(λi − λsi )(λj − λsj)

(4.3)

18 It is also possible for Γ̂KL and/or ΞKΞL to differ from their
assumed values, e.g., if the search parameters include sky po-
sition which can change the amplitude modulation coefficients,
or a change in Doppler modulation affects the location of the
signal frequency within the bin. We follow the usual procedure
of focusing on the dominant effect, which is the change in the
expected signal phase, and thereby obtain a “phase metric” for
the cross-correlation search.
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where ∆Φα,i = ∂Φα
∂λi

, we obtain, to second order in the
parameter difference,

E [ρ] ≈ (h0)2N〈Ξ2〉
(

2
∑
α

Γ̂ave
α Re Γ̂α

)

×

1−
∑
i

εsi (λi − λsi )−
∑
i,j

gij(λi − λsi )(λj − λsj)


(4.4)

where

εsi = −2
∑
α Γ̂ave

α Im Γ̂α∆Φα,i

2
∑
α Γ̂ave

α Re Γ̂α
(4.5)

and the parameter space metric is

gij =
1

2

2
∑
α Γ̂ave

α

(
Re Γ̂α∆Φα,i∆Φα,j + Im Γ̂α∆Φα,ij

)
2
∑
α Γ̂ave

α Re Γ̂α
(4.6)

If we once again neglect the ψ-dependent piece of Re Γ̂α
as well as the second derivative term in the metric, we
have

gij ≈
1

2

∑
KL∈P(âK âL + b̂K b̂L)2∆Φα,i∆Φα,j∑

KL∈P(âK âL + b̂K b̂L)2

=
1

2

∑
α Γ̂ave

α ∆Φα,i∆Φα,j∑
KL∈P Γ̂ave

α

=
1

2
〈∆Φα,i∆Φα,j〉α

(4.7)

where 〈·〉α indicates a weighted average with weighting

factor
(

Γ̂ave
α

)2

(recall Γ̂ave
KL ∝

(
aKaL+bKbL

SKSL

)2

) and

εsi ≈
2A+A×
A2

+ +A2
×

×
∑
KL∈P(âK âL + b̂K b̂L)(âK b̂L − b̂K âL)∆ΦKL,i∑

KL∈P(âK âL + b̂K b̂L)2

=
2A+A×
A2

+ +A2
×

∑
α Γ̂ave

α Γ̂circ
α ∆Φα,i∑

α

(
Γ̂ave
α

)2 (4.8)

A. Systematic parameter offset

The result (4.4) not only tells us how the expected SNR
falls off when the parameters {λi} used in constructing
the statistic differ from the true signal parameters {λsi},
it also shows that the maximum of E [ρ] is not actual
at the signal point λi = λsi , but at the point λi = λmi
defined by

0 = εsi +
∑
j

2gij(λ
m
j − λsj) (4.9)

i.e., at

λmi = λsi −
∑
j

1

2
g−1
ij ε

s
j (4.10)

where {g−1
ij } is the matrix inverse of the metric {gij}.

If the metric is approximately diagonal, so that g−1
ii ≈

1
gii

, then the offset of the true signal parameters from the

maximum value of E [ρ] is

λsi − λmi =
1

2

εsi
gii
≈ 2A+A×
A2

+ +A2
×

∑
α Γ̂ave

α Γ̂circ
α ∆Φα,i∑

α

(
Γ̂ave
α

)2

∆Φα,i∆Φα,i

(4.11)
This offset depends on the (generally unknown) value of

the inclination angle ι via A+ = 1+cos2 ι
2 and A× = cos ι.

In particular it has the opposite sign for ι ∈ (0, π/2) and
ι ∈ (π/2, π). For a signal detection with unknown ι, this
will have the effect of a systematic error in the measure-
ment of the phase-evolution parameters {λi}. (Of course,
one could perform a subsequent analysis which would
produce an estimate of ι, such as a coherent followup of
the signal candidate, or a cross-correlation search using
iΓcirc
KL in place of Γave

KL in the construction of W.)

B. Parameter Space Metric

We return now to consideration of the metric defined
by (4.7)

gij = − 1

2

E [ρ],ij
E [ρ]

∣∣∣∣
λ=λs

≈ 1

2
〈∆Φα,i∆Φα,j〉α (4.12)

1. Comparison to Standard Expression for Metric

We can relate this to the usual notation for the phase
metric. (See, e.g., eq (5.13) of [33], which was also used
in[22].)

gij = 〈Φ,iΦ,j〉 − 〈Φ,i〉〈Φ,j〉 (4.13)

Note, first of all, that while the standard definition
of the parameter space metric defines the mismatch as
the fractional loss in signal-to-noise squared, our cross-
correlation statistic ρ is actually the equivalent of what
is usually called ρ2. This is because it is quadratic in the
signal (as is the F-statistic, and its expectation value is
proportional to h2

0).
The connection between (4.12) and (4.13) is made by

noting that the averages in (4.13) are over data segments,
while the expression in (4.12) is a weighted average over

SFT pairs, where the weighting factor is (Γ̂ave
α )2. We can

relate the two in the special case where the set of pairs
P contains every combination of SFTs (e.g., by choosing
Tmax to be the observing time), and by neglecting the
influence of the weighting factor in the cross-correlation
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metric. In that case, the average can be written as a
double average over SFTs K and L:

gij =
1

2

〈
(ΦK,i − ΦL,i)(ΦK,j − ΦL,j)

〉
KL∈P

=
1

2

〈
ΦK,iΦK,j + ΦL,iΦL,j − ΦK,iΦL,j − ΦL,iΦK,j

〉
KL∈P

=
1

2

(
〈ΦK,iΦK,j〉K + 〈ΦL,iΦL,j〉L

− 〈ΦK,i〉K〈ΦL,j〉L − 〈ΦL,i〉L〈ΦK,j〉K
)

= 〈ΦK,iΦK,j〉K − 〈ΦK,i〉K〈ΦL,j〉L
(4.14)

which is just (4.13). Note that this identification can only
be made in the case where the cross-correlation includes
all pairs of SFTs (or all pairs within some time stretch).
With a restriction such as |tK − tL| ≤ Tmax, one must
consider the weighted average over pairs, not separate
averages over SFTs.

2. Metric for the LMXB Search

We now consider the explicit form of the parameter
space metric for a neutron star in a circular binary sys-
tem, assuming a constant intrinsic frequency f0. Al-
though the actual values of phase ΦK = Φ(t(tK)) and

frequency 1
2πfK = dΦ(t(t))

dt

∣∣∣
t=tK

used via (2.15) to con-

struct the expected cross-correlation ĜKL include rela-
tivistic corrections, it is sufficient for the purposes of con-
structing the parameter space metric to limit attention
to the Roemer delay, which gives us

ΦK = Φ0 + 2πf0

(
tK −

~rdet · k̂
c

+
~rorb · k̂
c

)

= Φ0 + 2πf0

{
tK − dK + ap sin

[
2π

Porb
(tK − tasc)

]}
(4.15)

where we have defined the following:

• dK = ~rdet·k̂
c , the projected distance, in seconds,

from the solar-system barycenter to the detector,
along the propagation direction from the source.
(Note that this depends on the detector, but also
on the time tK .)

• ap = a sin i
c is the projected semimajor axis of the

binary orbit, in units of time.

• Porb is the orbital period of the binary.

• tasc is a reference time for the orbit, defined as
the time, measured at the solar-system barycenter,
when the neutron star is crossing the line of nodes
moving towards the solar system.

If we use the identity

sinA− sinB = 2 cos

(
A+B

2

)
sin

(
A−B

2

)
(4.16)

we have

∆Φα = 2πf0

{
∆tα −∆dα

+ 2 ap sin
π∆tα
Porb

cos

[
2π

Porb
(tα − tasc)

]}
(4.17)

where we’ve defined ∆dKL = dK − dL, ∆tKL = tK − tL,
and tKL = tK+tL

2 .
Note that ∆dKL will be much less than ∆tKL unless

the SFTs K and L are simultaneous. (This is because
the duration of an SFT will be long compared to the
light travel time between detectors on the Earth, and
the Earth’s motion is non-relativistic.)

We can now calculate the derivatives appearing in
(4.12):

∂∆Φα
∂f0

= 2π

{
∆tα −∆dα

+ 2 ap sin
π∆tα
Porb

cos

[
2π

Porb
(tα − tasc)

]}

(4.18a)

∂∆Φα
∂ap

= 4πf0 sin
π∆tα
Porb

cos

[
2π

Porb
(tα − tasc)

]
(4.18b)

∂∆Φα
∂tasc

=
8π2f0ap
Porb

sin
π∆tα
Porb

sin

[
2π

Porb
(tα − tasc)

]
(4.18c)

∂∆Φα
∂Porb

=
4πf0ap
Porb

{
2π

Porb
(tα − tasc)

× sin
π∆tα
Porb

sin

[
2π

Porb
(tα − tasc)

]
− π∆tα

Porb
cos

π∆tα
Porb

cos

[
2π

Porb
(tα − tasc)

]}
(4.18d)

3. Approximation for long observation times

It is relatively simple and straightforward to construct
the phase metric for a given observation; calculate the
derivatives (4.18) for each SFT pair and then insert them
into the weighted average (4.12). However, we can gain
insight into the behavior of the metric if we consider an
approximate form which should be valid if the observ-
ing time (e.g., one year) is long compared to the orbital
period of the LMXB (e.g., 6.8× 105 s ≈ 19 hr for Sco X-
1[1, 7]). Since the orbital period is not commensurate
with any of the relevant periods of variation such as the
sidereal or solar day (the former being relevant for (Γave

α )2
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and the latter for the noise spectra), it is reasonable to
assume that 2π

Porb
(tα − tasc) samples all phases roughly

equally, and therefore〈
Fα cos

[
2π

Porb
(tα − tasc)

]〉
α

=

〈
Fα sin

[
2π

Porb
(tα − tasc)

]〉
α

= 0

(4.19a)

〈
Fα cos

[
2π

Porb
(tα − tasc)

]
sin

[
2π

Porb
(tα − tasc)

]〉
α

= 0

(4.19b)〈
Fα cos2

[
2π

Porb
(tα − tasc)

]〉
α

=

〈
Fα sin2

[
2π

Porb
(tα − tasc)

]〉
α

=
1

2
〈Fα〉α

(4.19c)

where Fα is any expression not involving tα.
We then have metric components, from (4.12), of

gf0f0 = 2π2
〈
(∆tα −∆dα)2

〉
α

+ 4π2a2
p

〈
sin2 π∆tα

Porb

〉
α

(4.20a)

gf0ap = 4π2f0ap

〈
sin2 π∆tα

Porb

〉
α

(4.20b)

gf0Porb
= −4

π3f0a
2
p

P 2
orb

〈
∆tα sin

π∆tα
Porb

cos
π∆tα
Porb

〉
α

(4.20c)

gapap = 4π2f2
0

〈
sin2 π∆tα

Porb

〉
α

(4.20d)

gf0tasc = gaptasc = 0 (4.20e)

gapPorb
= −4π3f2

0ap
P 2

orb

〈
∆tα sin

π∆tα
Porb

cos
π∆tα
Porb

〉
α

(4.20f)

gtasctasc =
16π4f2

0a
2
p

P 2
orb

〈
sin2 π∆tα

Porb

〉
α

(4.20g)

gtascPorb
= −16π4f2

0a
2
p

P 2
orb

(〈
tα
〉
α
− tasc

Porb

)〈
sin2 π∆tα

Porb

〉
α

(4.20h)

gPorbPorb
=

16π4f2
0a

2
p

P 4
orb

〈
(tα − tasc)2

〉
α

〈
sin2 π∆tα

Porb

〉
α

+
4π4f2

0a
2
p

P 4
orb

〈
∆t2α cos2 π∆tα

Porb

〉
α

(4.20i)

The metric is not diagonal, but we can neglect the off-
diagonal elements if

(gij)
2 � gii gjj . (4.21)

One can show that (gf0ap)2 � gf0f0 gapap and

(gf0Porb
)2 � gf0f0 gPorbPorb

as long as〈
(∆tα −∆dα)2

〉
α
� a2

p (4.22)

which should be the case; for Sco X-1, ap = 0.811 s.[7]
Note also that, as long as we include cross-correlations
between non-simultaneous SFTs,

〈
(∆tα −∆dα)2

〉
α
≈〈

(∆tα)2
〉
α

because the detectors are moving much slower
than the speed of light.

We will also have (gapPorb
)2 � gapap gPorbPorb

as long as
the square of the typical time lag ∆tα is much less than〈
(tα − tasc)2

〉
α

, which will be the case if the maximum
allowed time lag is much less than the length of the run.
We can see this by considering the

〈
(tα − tasc)2

〉
α

; if we
define

µT = 〈tα〉α (4.23)

then

σ2
T = 〈(tα − µT )2〉α (4.24)

should be on the order of the square of the duration of the
run. In particular, for a run of duration Tobs during which
the sensitivity of the search remains roughly constant,

σ2
T ≈

1

Tobs

∫ Tobs/2

−Tobs/2

t2dt =
T 2

obs

12
. (4.25)

But 〈
(tα − tasc)2

〉
α

= σ2
T + (µT − tasc)2 ≥ σ2

T (4.26)

This leaves only the ratio

(gtascPorb
)2

gtasctascgPorbPorb

≈
(〈
tα
〉
α
− tasc

)2〈
(tα − tasc)2

〉
α

=
(µT − tasc)2

σ2
T + (µT − tasc)2

(4.27)
Whether or not this can be neglected seems to come
down, then, to whether the reference time tasc falls dur-
ing the run. If it falls outside the run, (µT − tasc)2 >∼ σ2

T
and the off-diagonal metric element gtascPorb

cannot be
ignored. However, it is always possible to replace one
reference time tasc with another t′asc = tasc + nPorb sep-
arated by an integer number n of cycles, and thus it is
always possible to arrange for (µT − t′asc)2 ≤ P 2

orb � σ2
T

and thus obtain an approximately diagonal metric. This
comes at a cost, though, since there will be a contribu-
tion to the uncertainty in the new reference time due to
the uncertainty in the orbital period. If the uncertainties
in the orbital period and the original reference time are
independent, the uncertainty in the new reference time
will be given by

(∆t′asc)2 = (∆tasc)2 + n2(∆Porb)2

= (∆tasc)2 +
(t′asc − tasc)2

P 2
orb

(∆Porb)2
(4.28)

This will become the dominant error if

|t′asc − tasc| >
∆tasc

∆Porb
Porb (4.29)
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for Sco X-1, using the parameter uncertainties from [7]
(see section VI), this is about

100

0.04
× 68023.70 s ≈ 5 yr (4.30)

Since the tasc quoted in [7] (chosen to minimize their
∆tasc) corresponds to June 2008, this will be the case for
any GW observations using advanced LIGO and/or ad-
vanced Virgo data, unless additional Sco X-1 ephemeris
updates are made.

Subject to the aforementioned approximations, the
metric can be treated as diagonal with non-negligible el-
ements

gf0f0 ≈ 2π2
〈
∆t2α

〉
α

(4.31a)

gapap = 4π2f2
0

〈
sin2 π∆tα

Porb

〉
α

(4.31b)

gtasctasc =
16π4f2

0a
2
p

P 2
orb

〈
sin2 π∆tα

Porb

〉
α

(4.31c)

gPorbPorb
≈ 16π4f2

0a
2
p

P 4
orb

σ2
T

〈
sin2 π∆tα

Porb

〉
α

(4.31d)

The quantities
〈
∆t2α

〉
α

and
〈

sin2 π∆tα
Porb

〉
α

which appear in

the parameter space metric are constructed by a weighted
average over SFT pairs. If we consider a search which
includes all pairs up to a maximum time lag of Tmax, the
parameter space resolution, and therefore the required
number of templates, will depend on Tmax. We can get a
rough estimate on this dependence by assuming that we
can write

〈f(∆tα)〉α ∼
1

2Tmax

∫ Tmax

−Tmax

f(t) dt (4.32)

which assumes Tobs � Tmax � Tsft so that we can replace
the sum over specific lags with an integral, and neglects

the variation of (Γ̂ave
α )2 from pair to pair. Subject to this

approximation, we have〈
∆t2α

〉
α
∼ 1

2Tmax

∫ Tmax

−Tmax

t2 dt =
T 2

max

3
(4.33)

and19〈
sin2 π∆tα

Porb

〉
α

∼ 1

2Tmax

∫ Tmax

−Tmax

sin2 πt

Porb
dt

=
1

2

(
1− sinc

2Tmax

Porb

) (4.34)

19 Note that for Tmax � Porb, coherent integration times small

compared to the binary orbital period, the factor
〈

sin2 π∆tα
Porb

〉
α

tends to
π2T2

max

3P2
orb

(so the number of templates in each direction

grows like the coherent integration time), while for Tmax � Porb,
coherent integration times long compared to the binary orbital
period, it tends to a constant 1

2
, so the growth in number of tem-

plates in the ap and tasc directions saturates. This is analogous
to an effect described in [34].

where once again sincx = sinπx
πx . Note that this is only

a rough approximation, since increasing the time offset
∆tα between a pair of SFTs from the same instrument
(or from well-aligned instruments like the LIGO detec-
tors in Hanford and Livingston) will tend to decrease
the expected cross-correlation as the detectors are ro-
tated out of alignment with each other. We confirm this
by comparing the approximate expressions to more ac-
curate values calculated using the geometry of the LIGO
and Virgo detectors and the sky position of Scorpius X-1,
in figure 3.

Note that some care needs to be taken when compar-
ing our metric expressions to those in [9]. For example,

combining (4.31a) with (4.33) gives us gf0f0 ≈ 2π2 T
2
max

3 ,
which seems at odds with the analogous expression in
e.g., eq (61) of [9], where the corresponding metric ele-

ment is π2 (∆T )2

3 . The difference is that the semicoherent
search in [9] is defined by combining distinct coherent
segments of length ∆T , which makes the mean squared
difference

1

(∆T )2

∫ ∆T

0

∫ ∆T

0

(t− t′)2 dt dt′

=
1

(∆T )2

∫ ∆T

−∆T

∫ ∆T−|∆t|/2

|∆t|/2
(∆t)2 dt d∆t

=
1

(∆T )2

∫ ∆T

−∆T

(∆t)2(∆T − |∆t|) d∆t

=

(
2

3
− 2

4

)
(∆T )2 =

1

6
(∆T )2 (4.35)

whereas our maximum lag rule |t− t′| < Tmax gives a
mean square time difference

∫ Tobs

0

∫min(t′+Tmax,Tobs)

max(t′−Tmax,0)
(t− t′)2 dt dt′∫ Tobs

0

∫min(t′+Tmax,Tobs)

max(t′−Tmax,0)
dt dt′

=

∫∆T

−∆T

∫ Tobs−|∆t|/2
|∆t|/2 (∆t)2 dt d∆t∫∆T

−∆T

∫ Tobs−|∆t|/2
|∆t|/2 dt d∆t

=
(2/3)TobsT

3
max − (2/4)T 4

max

2TobsTmax − T 2
max

≈ 1

3
T 2

max (4.36)

where the assumption Tmax � Tobs gives us the result
(4.33).

V. IMPLICATIONS OF DEVIATION FROM
SIGNAL MODEL

So far, we have assumed that the underlying signal
model contained in (2.21), along with the phase evolution
(4.15) is correct, although some of the parameters may
be unknown. We consider two effects which violate this
assumption, and their potential impacts on the expected
SNR (3.19). These are 1) spin wandering, in which the
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FIG. 3. Plot of weighted averages
〈
∆t2α

〉
α

and
〈

sin2 π∆tα
Porb

〉
α

appearing in the metric components (4.31) as a function of

maximum allowed lag time Tmax. The dotted lines show the approximate values (4.33) and (4.34) neglecting the variation of
the weighting factor. The solid line (labelled HLV) shows the value for a search using detectors at the LIGO Hanford, LIGO
Livingston, and Virgo sites, assuming a source at the sky position of Sco X-1, and that all detectors have the same sensitivity at
the relevant frequency, and all sidereal times are evenly sampled. The dashed line (HL) shows the same thing for a search using
only the LIGO detectors at Hanford and Livingston. The actual weighted averages (and therefore the number of templates
needed to cover the parameter space) are less than the approximate ones, because the geometrical factor (Γave

α )2 weights smaller
lag times more.

frequency is not a constant f0 but varies slowly and un-
predictably with time and 2) the impact of higher terms
in the Taylor expansion of Φ(t(t)) about t = tK , which
are neglected in the linear phase model (2.15). The for-
mer effect will place a potential limit on the coherence
time Tmax by providing an intrinsic limit to the frequency
resolution, whereas the latter will constrain our choice of
SFT length Tsft in order that neglected phase accelera-
tion effects not cause too much loss of SNR.

A. Spin Wandering

We have assumed so far that the LMXB is in approx-
imate equilibrium, where the spinup torque due to ac-
cretion is balanced by the spindown due to gravitational
waves. Even if this is true on average, the balance will
not be perfect, and the spin frequency will “wander”.
This means that rather than a constant frequency f0 ap-
pearing in (4.15), there will be a time-varying frequency

f(t), where t = t − ~rdet·k̂
c + ~rorb·k̂

c is the time measured
in the neutron star’s rest frame. Thus the phase differ-
ence between SFTs K and L will be, rather than just
∆ΦKL = 2πf0[tK − tL],

∆Φtrue
KL = ΦK − ΦL = 2π

∫ tL

tK

f(t) dt (5.1)

We can consider the loss of SNR due to the existence
of spin wandering, compared to what we’d expect if the
frequency truly were constant. Qualitatively, there are
two reasons for loss of SNR: first, on short timescales, the
change in frequency could disrupt the coherence between

the two SFTs in a pair being cross-correlated; second, on
longer timescales, the spin could wander enough that the
SNR is distributed over different frequency templates.

To quantify the loss of SNR we follow a calculation
analogous to that in section IV, e.g., in (4.1) and (4.2),
to obtain

E [ρ]
ideal − E [ρ]

E [ρ]
ideal

≈ 1

2

〈(
∆Φtrue

α −∆Φα)
)2〉

α
(5.2)

where 〈·〉α is a weighted average over SFT pairs

with weighting factor
(

Γ̂ave
α

)2

as before. To estimate〈
(∆Φtrue

α −∆Φα))
2
〉
α

we assume that the wandering is

slow enough that we can expand f(t) in a Taylor series
about tKL = (tK + tL)/2:

f(t) ≈ f(tKL) + ḟ(tKL)(t− tKL)

min(tK , tL) ≤ t ≤ max(tK , tL) (5.3)

Then

∆Φtrue
KL −∆ΦKL = 2π

∫ tL

tK

[f(t)− f0] dt

≈ 2π

(
[f(tKL)− f0]∆tKL + ḟ(tKL)

(∆tKL)2

2

)
, (5.4)

where ∆tKL = tK−tL Subject to reasonable assumptions
about the randomness of the spin wandering, (5.2) can
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be written in the form

E [ρ]
ideal − E [ρ]

E [ρ]
ideal

≈ 2π2
〈
[f(tα)− f0]2

〉
α

〈
(∆tα)2

〉
α

+
π2

2

〈
[ḟ(tα)]2

〉
α

〈
(∆tα)4

〉
α

≈ 2π2
〈
[f(tα)− f0]2

〉
α

〈
(∆tα)2

〉
α

+
π2

2

〈
[ḟ(tα)]2

〉
α

〈
(∆tα)4

〉
α

(5.5)

where in the last line we’ve used the fact that since ap
and ∆dα are small, |tK − tK | � Tmax. The two terms in
(5.5) quantify the effects we predicted at the beginning
of the section. The second term describes a loss of SNR
due to the neutron star spin not being constant during
the time spanned by an SFT pair, while the first term in-
dicates a loss due to the mismatch between contributing
frequencies and the frequency of a single template. (In
fact, the first term is just gf0f0

〈
[f(tα)− f0]2

〉
α

.) Note
that we’re free to choose the f0 which maximizes the SNR
for a given instantiation of spin wandering, which will be
f0 =

〈
f(tα)

〉
α

, so〈
[f(tα)− f0]2

〉
α

=
〈
[f(tα)− 〈f(tα)〉α]2

〉
α

(5.6)

is the weighted variance of f(t) over the observing time.
To get a quantitative estimate of the effects of spin

wandering, consider a model where the neutron star spins
up or down linearly with typical amplitude |ḟ |drift, chang-
ing on a timescale Tdrift where Tmax � Tdrift � Tobs. For
simplicity, also neglect the impact of the weighting factor(

Γ̂ave
α

)2

, so that 〈∆t2α〉 ≈ T 2
max

3 and 〈∆t4α〉 ≈ T 4
max

5 . Then〈
[ḟ(tα)]2

〉
α

<∼ |ḟ |2drift (5.7)

and〈
[f(tα)− 〈f(tα)〉α]2

〉
α
<∼
〈∣∣∣∣ tα − Tmid

Tdrift

∣∣∣∣ (Tdrift|ḟ |drift

)2
〉
α

≈ TobsTdrift

4
|ḟ |2drift

(5.8)

Combining these results, we have

E [ρ]
ideal − E [ρ]

E [ρ]
ideal

<∼
π2

6
TobsTdrift|ḟ |2driftT

2
max+

π2

10
|ḟ |2driftT

4
max

(5.9)
So, in order to avoid a fractional loss in SNR of more
than µ, one would need to limit the lag time to

Tmax ≤ min

(√
6µ

π

(
|ḟ |drift

√
TobsTdrift

)−1

,

√√
10µ

π
|ḟ |−1/2

drift

)
(5.10)

For example, if |ḟ |drift = 10−12 Hz/s, Tdrift = 106 s,
Tobs = 1 Yr, and µ = 0.1, the first limit is about 44,000 s
and the second is 320,000 s. So in that case spin wander-
ing would become an issue if Tmax

>∼ 12 hr.

Note that this is somewhat less than the estimate
∆T <∼ 3 day given in [9]. The source of this apparent
discrepancy is a combination of the distinction between
the coherent segment length ∆T and the maximum lag
time Tmax, described in section IV B 3, and the rough na-
ture of some estimates used in [9]. That work compares

the change in frequency |ḟ |drift

√
TobsTdrift/2 to the fre-

quency resolution, which they give as ∼ 1/∆T . This is
effectively an order of magnitude estimate, since it effec-
tively assumes µ = 1, and also leaves out the numerical
factor in 1/

√
gf0f0 =

√
3/(π∆T ). On the other hand,

their frequency drift is the expected drift from the mid-
dle of the run to the end; averaging the drift over the
run gives an effective change of (|ḟ |drift

√
TobsTdrift)/2 In-

cluding these three effects to do a calculation analogous
to the one here would give a factor of π

√
5/3 ≈ 4 reduc-

tion on the estimated tolerable segment length to ∆T <∼
2
√

3µ/π
(
|ḟ |drift

√
TobsTdrift

)−1

≈ 62,000 s ≈ 17 hr. Of

course, the assumptions of |ḟ |drift and Tdrift given above
are uncertain and somewhat arbitrary, so our 12-hour
number should also not be viewed as an exact constraint
on the method.

B. SFT length

Most searches for continuous gravitational waves have
used short Fourier transforms with a duration Tsft of
30 min = 1800 s. The limiting factor which sets a maxi-
mum on the reasonable Tsft is the accuracy of the linear
phase approximation (2.15).

If we consider higher order terms in the phase expan-
sion, we have

Φ(t(t)) ≈ ΦK + 2πfK(t− tK) +
1

2
Φ̈(tK)(t− tK)2

+
1

3!

...
Φ(tK)(t− tK)3 +

1

4!

....
Φ (tK)(t− tK)4 + . . . .

(5.11)

The effect of these corrections is to modify (2.21) to
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h̃Kk ≈ h0(−1)keiΦK
FK+ A+ − iFK× A×

2

×
∫ tK+Tsft/2

tK−Tsft/2

e−i2π(fk−fK)(t−tK) exp

(
i

[
Φ̈(tK)

2
(t− tK)2 +

...
Φ(tK)

3!
(t− tK)3 +

....
Φ (tK)

4!
(t− tK)4

])
dt

≈ h0(−1)keiΦK
FK+ A+ − iFK× A×

2
Tsft

[
I0(κKk) + i

Φ̈(tK)

2
I2(κKk)T 2

sft + i

...
Φ(tK)

3!
I3(κKk)T 3

sft

+

(
i

....
Φ (tK)

4!
− [Φ̈(tK)]2

8

)
I4(κKk)T 4

sft

]
(5.12)

where

In(κ) ≡
∫ 1/2

−1/2

xne−i2πκx dx =

(
i

2π

)n
dn

dκn
sinc(κ)

(5.13)
Note that for even n, In(κ) is real and even, while for
odd n, it is imaginary and odd.

We can then construct, as a replacement for (2.25),

µK =
1

ΞK

∑
k∈KK

(−1)kI0(κKk)h̃Kk

≈ h0e
iΦK

FK+ A+ − iFK× A×
2

QK
ΞK

√
2Tsft

SK

(5.14)

where

QK = Ξ2
K + i

Φ̈(tK)

2
ΣK02 T

2
sft + i

...
Φ(tK)

3!
ΣK03 T

3
sft

+

(
i

....
Φ (tK)

4!
− [Φ̈(tK)]2

8

)
ΣK04 T

4
sft

(5.15)

and

ΣK0n =
∑
k∈KK

I0(κKk)In(κKk) (5.16)

The expectation value (3.7) of the statistic thus becomes,
including the correction for higher phase derivatives and
finite SFT length,

E [ρ] ≈ Nh2
0 2

∑
KL∈P

Γ̂ave
KL Re

(
QKQ

∗
LΓ̂KL

)
(5.17)

As in (III B) we assume that the sum over pairs evenly
and independently samples the fractional frequency offset
κ̃K from each SFT, which means we can replace QK and
QL with

〈QK〉κ = 〈Ξ2〉+ i
Φ̈(tK)

2
〈Σ02〉T 2

sft

+

(
i

....
Φ (tK)

4!
− [Φ̈(tK)]2

8

)
〈Σ04〉T 4

sft

(5.18)

where the fact that I3(κ) is odd in κ means that the
average 〈Σ03〉 vanishes.

Now,

Re
(
QKQ

∗
LΓ̂KL

)
= Re (QKQ

∗
L) Re Γ̂KL−Im (QKQ

∗
L) Im Γ̂KL

≈ Re (QKQ
∗
L)

5

2

A2
+ +A2

×
2

Γ̂ave
KL−Im (QKQ

∗
L)

5A+A×
2

Γcirc
KL

(5.19)

We assume that the impact of the second piece is small20

and focus only on Re (QKQ
∗
L), which leads to a fractional

loss of SNR of

1− E [ρ]

E [ρ]ideal

=
〈Ξ2〉2 − 〈Re (QKQ

∗
L)〉

〈Ξ2〉2

=

(
〈Φ̈2

K〉+ 〈Φ̈2
L〉

8

〈Σ04〉
〈Ξ2〉 −

〈Φ̈KΦ̈L〉
4

〈Σ02〉2
〈Ξ2〉2

)
T 4

sft

(5.20)

Differentiating (4.15) gives

Φ̈K = 2πf0d̈K −
(2π)3

P 2
orb

f0ap sin

[
2π

Porb
(tK − tasc)

]
(5.21)

We can neglect the first term, since the acceleration due
to the Earth’s orbit is O(10−11 s−1) and that due to
the Earth’s rotation is O(10−10 s−1). In comparison, for
Sco X-1,

ap

(
2π

Porb

)2

= 1.23× 10−8 s−1 (5.22)

If we assume, as in the metric calculation, that the aver-
age over pairs evenly samples the orbital phase, then

〈Φ̈2
K〉+ 〈Φ̈2

L〉 =
(2π)6f2

0a
2
p

P 4
orb

(5.23)

20 In particular, it’s suppressed by averaging of non-positive definite
antenna patterns, although the same combination is the source
of systematic errors in parameter estimation.



19

m 1 2 3 4 5 6

〈Σ04〉/〈Ξ2〉 0.0107 0.0086 0.0099 0.0100 0.0106 0.0108

〈Σ02〉2/〈Ξ2〉2 0.0056 0.0042 0.0052 0.0055 0.0059 0.0060

TABLE IV. The coefficients 〈Σ04〉/〈Ξ2〉 and 〈Σ02〉2/〈Ξ2〉2
appearing in (5.26), for various choices of the number m
of included frequency bins, where 〈Σ0n〉 is the mean value

of Σ0n(κ) =
∑b(m−1)/2c
s=−d(m−1)/2e I0(κ + s)In(κ + s), averaged

over − 1
2
≤ κ ≤ 1

2
, and In(κ) is defined in (5.13) with

I0(κ) = sincκ = sinπκ
πκ

, and I2(κ) and I4(κ) are given by

(5.27) and (5.28). Note that the value of 〈Ξ2〉 ≡ 〈I00〉 is
tabulated in table II.

Using the identity

sinA sinB =
1

2
[cos(A−B)− cos(A+B)] (5.24)

we can calculate〈
sin

[
2π

Porb
(tK − tasc)

]
sin

[
2π

Porb
(tL − tasc)

]〉
=

1

2

(〈
cos

2π∆tα
Porb

〉
α

−
〈

cos
4π(tα − tasc)

Porb

〉
α

)
(5.25)

so the fractional loss in SNR is

1− E [ρ]

E [ρ]ideal

≈ 8π6f2
0a

2
p

P 4
orb

( 〈Σ04〉
〈Ξ2〉 −

〈Σ02〉2
〈Ξ2〉2

〈
cos

2π∆tα
Porb

〉
α

)
T 4

sft

(5.26)

The factors 〈Σ04〉 and 〈Σ02〉 can be calculated by using
(5.16) along with

I2(κ) =
sinπκ

4πκ
+

cosπκ

2(πκ)2
− sinπκ

2(πκ)3
(5.27)

and

I4(κ) =
sinπκ

16πκ
+

cosπκ

4(πκ)2
− 3 sinπκ

4(πκ)3
− 3 cosπκ

2(πκ)4
+

3 sinπκ

2(πκ)5

(5.28)
and averaging numerically over κ given the number of
frequency bins included. In table IV, we show the two
coefficients appearing in (5.26), for various choices of the
number m of included frequency bins (see also table II).

Note that for the cross-correlation search, choosing
shorter SFTs does not directly impact the sensitivity. For
the same allowed lag time, searches with different SFT
lengths should have approximately the same sensitivity.
We can see this by considering the SNR for a given signal
amplitude h0, for example from (3.16). Since

Γ̂ave
KL = ΓKL

2Tsft√
SKSL

(5.29)

the quantity (Γ̂ave
KL)2 inside the sum is proportional to

(Tsft)
2. However, for a fixed maximum time lag Tmax,

the number of terms in the sum will be proportional to
(Tsft)

−2 and the resulting expected SNR will be approxi-
mately independent of Tsft. (E.g., halving the SFT length
will mean each SFT pair contributed one-fourth as much
to the sensitivity, but will double the number of SFTs
and thus quadruple the number of SFT pairs.)

On the other hand, by increasing the number of SFT
pairs, using a shorter SFT length will mean increasing
computing cost at the same Tmax. If the computing
budget is fixed, the sensitivity gained by reducing the
mismatch (5.26) will be offset by the loss of sensitiv-
ity, in the form of a lower E [ρ]ideal, resulting from a
smaller Tmax. Following the reasoning in section III B, if
the computing cost scales like the number of templates
(which scales like T dmax) times the number of SFT pairs
(which scales like TmaxTobsT

−2
sft ), then the overall sensi-

tivity for a fixed observing time Tobs scales like T d+1
maxT

−2
sft ,

and therefore the restriction at constant computing cost

will be Tmax ∝ T
2
d+1

sft . Since the sensitivity scales with
the square root of the number of SFT pairs, we have

E [ρ]
ideal ∝ T

1
d+1

sft and

E [ρ] ∝ T
1
d+1

sft

(
1−Af2

0T
4
sft

)
(5.30)

where

A ≈ 8π6a2
p

P 4
orb

( 〈Σ04〉
〈Ξ2〉 −

〈Σ02〉2
〈Ξ2〉2

〈
cos

2π∆tα
Porb

〉
α

)
(5.31)

is the mismatch scaling appearing in (5.26).21 The sen-
sitivity at fixed computing cost is thus maximized when

1− (4d+ 5)Af2
0T

4
sft = 0 (5.32)

i.e., when the mismatch due to SFT length is

µ = Af2
0T

4
sft = µopt =

1

4d+ 5
(5.33)

The corresponding optimal SFT length is

Tsft = ([4d+ 5]A)−1/4f
−1/2
0 (5.34)

For example, if d = 3, µopt = 1
17 ≈ 0.059. In figure 4, we

show this optimal SFT length for d = 3, using ap = 1.44 s
and Porb = 68023.70 s (the most likely values for Sco X-
1). The solid line shows the most optimistic scenario,

in which
〈

cos 2π∆tα
Porb

〉
α
≈ 1 (which will be the case for

Tmax � Porb) and the dashed line shows the most pes-
simistic scenario, in which the average goes to zero.

21 Of course A still depends on Tmax through
〈

cos 2π∆tα
Porb

〉
, but

if Tmax is small compared to Porb, which we are assuming in
the scaling of number of templates with Tmax, this average is
approximately unity.
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FIG. 4. The optimal SFT length Tsft, defined in (5.34) and
(5.31), as a function of frequency, for a signal with the most
likely orbital parameters for Sco X-1, as given in table I, as-
suming that d = 3, i.e., the density of points in parameter
space grows as the third power of the coherence time Tmax.
This is appropriate for a search over e.g., frequency f0, pro-
jected semimajor axis ap, and time of ascension tasc, (when
the uncertainty in the period Porb is small enough that a single
value may be assumed), in the case where Tmax is small com-
pared with Porb. The solid line represents a more optimistic
scenario where the average cosine appearing in the second
term of (5.31) is approximately unity, which should also be
the case if Tmax � Porb. The dashed line represents a worst-
case scenario where the average is approximately zero. The
optimal SFT length maximizes the expected SNR in (5.30),
and represents a balance between two competing effects: if
Tsft is too large, phase acceleration will lead to a loss in SNR
compared to the ideal formula (3.19); if Tsft is too small, the
large number of SFT pairs in the computation will lead to a
restriction on the possible Tmax achievable at fixed computing
cost, and reduce the ideal SNR itself.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have explored details of the model-
based cross-correlation search for periodic gravitational
waves, focussing on its application to signals from neu-
tron stars in binary systems (LMXBs) and Scorpius X-1
in particular. We have carefully considered the impact
of spectral leakage (in section III B) and the implications
of unknown amplitude parameters (in section III C) on
the sensitivity of the method. We have also produced
expressions for the parameter space metric of the search
(in section IV B), at varying levels of approximation, and
a systematic offset in the parameters of a detected sig-
nal related to the unmeasured inclination angle of the
neutron star to the line of sight (in section IV A). In
section V A we estimate the effects of “spin wandering”
caused by deviations from equilibrium in the torque bal-
ance configuration, and in (V B) we consider the appro-
priate SFT duration needed to avoid significant loss of
SNR due to unmodelled phase acceleration.

We have shown (in section III D) that the method pro-
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FIG. 5. Expected sensitivity (3.25) for a search of one year of
coincident data from either the two LIGO detectors (labelled
HL) or the three LIGO+Virgo detectors (labelled HLV), at
design sensitivity. The value plotted is the observable h0

at 5% false-dismissal probability, assuming an overall false-
alarm probability of 5% and a trials factor of 108 for a single-
template false-alarm probability of 5 × 10−10 (i.e., see sec-
tion III C and table III). The three curves in each set, are,
from top to bottom, for Tmax = 6 min, 60 min and 10 hr. They
are compared to the signal strength (6.2) predicted by the
torque balance argument[12].

duces an improvement in strain sensitivity over the di-
rected stochastic search method which inspired it; this is
roughly proportional to the fourth root of the product of
the coherence time of the model-based search and the fre-
quency bin size for the stochastic search. A mock data
challenge [32] has been carried out comparing the per-
formance of the available search methods, including the
model-based cross-correlation search, on simulated sig-
nals injected into Gaussian noise. As reported elsewhere
[28, 32], the cross-correlation search is the most sensitive
currently implemented.

To give an estimate of expected sensitivity for data
from detectors such as Advanced LIGO and Advanced
Virgo, it is necessary to make some suppositions about
the parameters of the search, especially the time Tmax

over which SFTs are coherently cross-correlated. Since
this drives both the sensitivity and computing cost, the
choice of Tmax will depend on available computing re-
sources, and will likely vary with frequency in order to
optimize the distribution of computing resources where
they can be most effective. In [28], we performed searches
with 9 min ≤ Tmax ≤ 90 min for a range of frequency
bands covering a total of 500 Hz distributed in f0 ∈
[50, 1455] Hz, using moderate computational resources.
On the other hand, in (V A), we consider spin wandering
effects which might lead to a significant loss of SNR for
a search with Tmax

>∼ 12 hr for a one-year observation.
In figure 5, we show the projected sensitivity (3.25) of

a search using one year of data, either from the two ad-
vanced LIGO detectors in Hanford, WA and Livingston,
LA, or from the two advanced LIGO detectors plus the
Virgo detector in Cascina, Italy, all operating at their
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projected design sensitivity. We show the sensitivity of
three hypothetical searches, with Tmax = 6 min, 60 min or
600 min = 10 hr, and compare the observable h0 (at a 5%
false-dismissal probability, assuming a single-template
false alarm probability of 5 × 10−10, corresponding to
an overall 5% false-alarm probability and a trails fac-
tor of 108, as described in section III C and table III).
For comparison, we show a representative signal strength
predicted by the torque balance argument[12, 13]. By
assuming that the spindown torque due to gravitational
waves is balanced by the spinup torque due to accretion,
estimated using the observed X-ray flux, it is possible to
estimate the strength of the gravitational-wave signal as
a function of the neutron star spin frequency νs:[13]

h0 ≈ 3× 10−27

(
FX

10−8 erg cm−2 s−1

)1/2 ( νs
300 Hz

)−1/2

×
(

R

10 km

)3/4(
M

1.4M�

)−1/4

(6.1)

The spin frequency of Sco X-1 is unknown, but νs values
inferred for other LMXBs from pulsations or burst oscil-
lations range from 50 Hz to 600 Hz, so we consider the
sensitivity over a wide range of GW frequencies. For
Sco X-1, using the observed X-ray flux FX = 3.9 ×
10−7 erg cm−2 s−1 from [13], and assuming that the GW
frequency f0 is twice the spin frequency νs (as would be
the case for GWs generated by) anisotropies in the neu-
tron star), the torque balance value is

h0 ≈ 3.4× 10−26
( νs

300 Hz

)−1/2

, (6.2)

which the reference curve plotted in figure 5. We see
that for a three-detector, one-year analysis, a signal at
the torque balance limit should be detectable for 30 Hz <∼
f0
<∼ 300 Hz with Tmax = 60 min (which is already com-

putationally manageable at most frequencies), and if one
could increase to Tmax = 600 min through algorithmic
improvements, programming optimization, and/or appli-
cation of additional resources, that range could be broad-
ened to 20 Hz <∼ f0

<∼ 500 Hz. The best-case h0 sensitiv-
ity of 5 × 10−26 for the 60-min search is consistent with
the results of the Sco X-1 MDC [28, 32], where a cross-
correlation search with 9 min ≤ Tmax ≤ 90 min was able
to detect signals with h0

>∼ 5× 10−26.
The choice of Tmax will in part be constrained by com-

puting cost; in figure 6 we show the approximate rela-
tive computing cost scaling for the six searches consid-
ered (one year of data from either the two LIGO detec-
tors or the two LIGO detectors and Virgo, at a with a
maximum allowed lag time of Tmax = 6 min, 60 min or
600 min = 10 hr. The computing cost is assumed to be
proportional to the number of SFT pairs times the num-
ber of parameter space points to be searched, and we
plot the relative cost per logarithmic frequency interval.
We also assume that at each frequency the SFT length is
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FIG. 6. Relative scaling of expected computing cost per log-
arithmic frequency interval for a search of one year of coinci-
dent data from either the two LIGO detectors (labelled HL)
or the three LIGO+Virgo detectors (labelled HLV). The three
curves in each set, are, from top to bottom, for Tmax = 10 hr,
60 min and 6 min. The calculation assumes that the comput-
ing cost scales with the number of SFT pairs times the number
of points in parameter space. It also assumes that the optimal
SFT length Tsft given by (5.34) and (5.31) has been chosen
at each frequency, and that we are searching over frequency
and two orbital parameters. The approximate scaling is as
f4

0T
4
max, so for instance a Tmax = 60 min search from 100 to

200 Hz would consume the same resources as a Tmax = 6 min
search from 1000 to 2000 Hz. For reference, the mock data
analysis in [28], which was accomplished in approximately
20,000 CPU-days, covered a set of roughly logarithmically-
spaced frequency bands totaling 250 Hz spread from 50 Hz to
1375 Hz at a range of Tmax values from 9 to 90 min.

chosen to be the optimal SFT length given by (5.34) and
(5.31). Roughly speaking, the number of SFT pairs will
scale as f0Tmax (since the optimal SFT length scales as

T
−1/2
max ), and the density of templates in parameter space

will scale as f2
0T

3
max. The density of points per logarith-

mic frequency interval introduces another factor of f0,
so the quantity plotted, cost per unit frequency interval,
scales approximately as f4

0T
4
max. This means that, for ex-

ample, a Tmax = 60 min search from 100 to 200 Hz would
consume the same resources as a Tmax = 6 min search
from 1000 to 2000 Hz or a Tmax = 600 min search from
10 to 20 Hz.

Finally, we consider one possible avenue for enhance-
ment of the cross-correlation method. As explained in
section III A, the fact that we filter with Gave

KL means that
the method provides an estimate of heff

0 , a function of h0

and cos ι defined in (3.10), rather than h0. If we had a
method of independently estimating cos ι, or in fact any
other combination of h0 and cos ι besides heff

0 , we could
obtain a better measurement of h0. In [21], a method
was proposed to obtain estimates of h0A+ and h0A×,
but a more effective procedure would seem to be adding
a second statistic which uses iΓcirc

KL [see (2.32b)] in place
of Γave

KL and therefore observes the quantity h2
0A+A×; be-
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tween this and the original heff
0 estimate, we would be able

to disentangle h0 and cos ι. This prospect bears further
investigation.
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Appendix A: Effects of Non-Trivial Windowing

1. General Formulation

As noted in section II A, the construction of Fourier
transformed data is often done with a window function
w(θ), as in (2.3), as opposed to the unwindowed (or
nearly-rectangularly-windowed) data considered in the
main body of the text. This appendix considers the im-
pact on the search method and its sensitivity of using
a non-trivial window function, which is investigated in
greater detail in [27].

The use of windowing for Fourier transforms affects
the expected signal and noise contributions to the data.
For the signal contribution, (2.16) becomes

h̃Kk ≈ h0(−1)keiΦK
FK+ A+ − iFK× A×

2
δwTsft

(fk − fK)

(A1)
where δwTsft

(fk − fK) is the generalization of the finite
time delta function defined in (2.17):

δwTsft
(fk − fK)

=

∫ tK+Tsft/2

tK−Tsft/2

w

(
t− tK
Tsft

)
e−i2π(fk−fK)(t−tK) dt

= Tsft

∫ 1/2

1/2

w(θ) e−i2πκKkθ dθ ≡ Tsft ξ
w(κKk) (A2)

with κKk = (fk − fK)Tsft as before. The noise contribu-
tion is modified by replacing (2.8) with

E [ñwKkñ
w∗
L` ] ≈ δKL γwk` Tsft

SK
2

(A3)

where

γwk` =
(−1)k−`

Tsft

∫ ∞
−∞

δwTsft
(fk − f) δw∗Tsft

(f` − f) df

= (−1)k−`
∫ 1/2

−1/2

ei2π(k−`)θ[w(θ)]2 dθ

(A4)

Note that the diagonal elements of this matrix are equal
to the mean-square of the window function:

γwkk =

∫ 1/2

−1/2

[w(θ)]2 dθ ≡ w2 (A5)

If we define

zwKk = x̃wKk

√
2

TsftSK
(A6)

as in (2.9), we will have

E [zwKk] = µwKk

≈ h0(−1)kξw(κKk)eiΦK
FK+ A+ − iFK× A×

2

√
2Tsft

SK
(A7)

and

E [(zwKk − µwKk)(zwL` − µwL`)∗] = δKL γ
w
k` . (A8)

We then modify (2.23) to

zwK ≡
1

ΞwK

∑
k∈KK

∑
k′∈KK

(−1)kξw∗(κKk)(γw)−1
kk′ z

w
Kk′ (A9)

where {(γw)−1
k` } are the elements of the matrix inverse of

{γwk`}, and

ΞwK =

√ ∑
k∈KK

∑
k′∈KK

(−1)k−k′ξw∗(κKk) (γw)−1
kk′ ξ

w(κKk′)

(A10)
ensures that the normalization (2.24) holds as before.
Then the derivation proceeds as before, with ΞwK replac-
ing ΞK , and in particular, the expected SNR (3.16) be-
comes

E [ρ] ≈ (heff
0 )2〈(Ξw)2〉

√
2
∑
KL∈P

(
Γ̂ave
KL

)2

(A11)

2. Results for Specific Windows

We now consider the consequences of the modifi-
cation (A11) by investigating the form of ξw(κ) =
T−1

sft δ
w
Tsft

(κ/Tsft) defined in (A2) and γwk` defined in (A4)
for specific non-rectangular window choices. We consider
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FIG. 7. The general Tukey window wβ(θ) as defined in (A12)
for a generic value of the parameter β ∈ [0, 1], where β is
the fraction of the window length taken up by the transitions
from 0 to 1 and back.

the general family of Tukey windows, defined using an
adjustable parameter 0 ≤ β ≤ 1 by

wβ(θ) =


1
2

(
1− cos πβ (2θ + 1)

)
− 1

2 ≤ θ ≤ −
(

1−β
2

)
1 −

(
1−β

2

)
≤ θ ≤

(
1−β

2

)
1
2

(
1− cos πβ (2θ − 1)

) (
1−β

2

)
≤ θ ≤ 1

2

.

(A12)
The general form of the Tukey window is illustrated in
figure 7. This family includes at its extremes the rectan-
gular window (β = 0) and the Hann window (β = 1). In
practical applications it is also common to use a Tukey
window with a small finite parameter β � 1 rather than
a pure rectangular window. These two specific cases are
shown in figure 8, along with a Tukey window with β = 1

2 .

We can insert the general form of wβ(θ) from (A12)
into (A2) to obtain

ξwβ (κ) =
1

2
sincκ+

1

2
(1− β) sinc(κ[1− β])

+
β

4
sin

(
πκ

[
1− β

2

])[
sinc

(
1− βκ

2

)
− sinc

(
1 + βκ

2

)]
;

(A13)

the “interesting” values of β also have somewhat sim-
pler explicit forms. For the rectangular window (β = 0),
which was considered in the main body of the paper, we
have

ξw0 (κ) = ξrect(κ) = sincκ ; (A14)

for the Hann window (β = 1), we have

ξw1 (κ) = ξHann(κ) =
1

2
sincκ+

1

4
sinc(1−κ)+

1

4
sinc(1+κ) ;

(A15)
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FIG. 8. Specific versions of the general Tukey window wβ(θ)
as defined in (A12): the rectangular window wrect(θ) = w0(θ),
a canonical (β = 1

2
) Tukey window w1/2(θ), and the Hann

window wHann(θ) = w1(θ).
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FIG. 9. The window leakage function ξw(κ) =
T−1

sft δ
w
Tsft

(κ/Tsft) defined in (A2) for the windows shown in
figure 8. The explicit formulas are given in (A14) for the
rectangular window, (A16) for the canonical (β = 1

2
) Tukey

window, and (A15) for the Hann window. Note that the
version for rectangular-windowed data is just ξrect(κ) =
T−1

sft δTsft(κ/Tsft) = sinc(κ) = sinπκ
πκ

, which is the finite-time
delta function plotted in figure 1.

and for the canonical (β = 1
2 ) Tukey window, we have

ξw1/2(κ) = ξTukey(κ)

=
1

2
sincκ− 1

4
sinc(2 + κ)− 1

4
sinc(2− κ)

+
1

4
sinc

κ

2
+

1

8
sinc

(
1 +

κ

2

)
+

1

8
sinc

(
1− κ

2

)
(A16)

We plot these three functions in figure 9.

To evaluate the factor of 〈(Ξw)2〉 appearing in (A11),
we need to construct the matrix {γwk`} via (A4). Substi-



24

tuting (A12) into (A4), we can find

(γwβ )k` = (−1)k−`(1− β) sinc [(k − `)(1− β)]

+
3

8
β sinc [(k − `)β]

− 1

4
β sinc [(k − `)β − 1]− 1

4
β sinc [(k − `)β + 1]

+
1

16
β sinc [(k − `)β − 2] +

1

16
β sinc [(k − `)β + 2] .

(A17)

We can see that, for the rectangular case β = 0, we get
(γw0 )k` = δk` as before, while for the Hann case β = we
have

γHann
k` =

3

8
δk,`−

1

4
δk,`−1−

1

4
δk,`+1 +

1

16
δk,`−2 +

1

16
δk,`+2 .

(A18)
The diagonal elements for general β are

(γwβ )kk = 1− 5

8
β = w2

β (A19)

as in (A5). This means that, in the special case where the

set of bins KK from each SFT is just the “best bin” k̃K
defined in (2.18), and the matrix {γwk`} just has a single
element γw

k̃K k̃K
= 1− 5

8β, and

(ΞwK)2 =

∣∣∣ξwβ (κ̃K)
∣∣∣2

1− 5
8β

(A20)

where ξwβ (κ) is defined in (A13). In general, though, we

need to invert the matrix (A17) and then average (ΞwK)2

defined in (A10) over possible values of κ̃K . We plot the
results in figure 10 as a function of β, for cases where we
take the “best” m bins from each SFT. We see that, for
any number of bins, 〈(Ξw)2〉 is a maximum for β = 0, i.e.,
rectangular windowing. The β = 0 values are just the
“cumulative” entries from table II for the corresponding
number of bins. Specifically, for the single-bin case, when
β = 0, we have 〈Ξ2〉 = 0.774 (as seen in the m = 1 entry
of table II), when β = 1

2 , we have 〈(ΞTukey)2〉 = 0.699,

and when β = 1, we have 〈(ΞHann)2〉 = 0.601. These
values also appear in [27], which explains in more detail
the relevant phenomenon. While the dropoff from the
maximum value of (ΞwK)2 to its average value is great-
est for rectangular windowing, the maximum value and
the average value are also greatest for the rectangular
window.

A common approach to handle the loss of signal as-
sociated with Hann-windowed data is to divide the data
into overlapping Hann-windowed data segments, as in
[18]. For the present search, however, it is easier just
to include more bins from the rectangularly-windowed
Fourier transform if desired to increase the sensitivity of
the search. The only drawback to that is a slight increase
in computational time, but this increase is much smaller
than what would arise from almost doubling the number
of SFTs by the use of overlapping windows.
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FIG. 10. The leakage factor 〈(Ξw)2〉 appearing in (A11) for
a search using between one and six bins from each SFT, as-
suming a general Tukey window from the family (A12). We
see that, for any number of bins, the most sensitive search is
when β = 0, i.e., for rectangular windows. In particular, when
a single bin is used from each SFT, we have 〈Ξ2〉 = 0.774 for
rectangular windowing (β = 0), 〈(Ξwβ )2〉 = 0.699 for a canon-

ical (β = 1
2
) Tukey window, and 〈(ΞHann)2〉 = 0.601 for Hann

windowing (β = 1). Note that the β = 0 value on each curve
is just the corresponding “cumulative” number from table II.

Appendix B: Probability distribution for
cross-correlation statistic in Gaussian noise

In this appendix, we consider the detailed statistical
properties of the cross-correlation statistic (2.36) in the
presence of Gaussian noise. If the noise contribution to
x̃Kk is Gaussian, the definitions (2.9) and (2.23) imply
that z−µ is a circularly symmetric Gaussian random vec-
tor [35] with zero mean, unit covariance and zero pseudo-
covariance, as described in (2.26). If {ωK} and {vK} are
the eigenvalues and eigenvectors, respectively, of the Her-
mitian weighting matrix W defined in (2.35) , so that

W =
∑
K

vKωKv†K (B1)

then the statistic is

ρ =
∑
K

z†vKωKv†Kz =
∑
K

ωK

∣∣∣v†Kz
∣∣∣2 . (B2)

The conditions Tr(W) = 0 and Tr(W2) = 1 imply that∑
K ωK = 0 and

∑
K ω

2
K = 1. To give an example of the

typical form of the eigenvalues, we present in figure 11
two typical sets of eigenvalues, one assuming a day-long
observation with three detectors, assuming Tsft = 900 s
and Tmax = 3600 s, the other combining 365 such obser-
vations with randomly staggered starting times to simu-
late a year-long observation, assuming LIGO Livingston,
Hanford and Virgo detectors with identical and station-
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FIG. 11. Eigenvalues {ωK} of the weights matrix W defined in(2.35) for two scenarios. At left, one day of observation with
the LLO, LHO and Virgo detectors, assuming equal sensitivity, with Tsft = 900 s and Tmax = 3600 s. At right, one year of
observation under the same conditions, constructed as the union of 365 such days, spread throughout the year. In both cases,
the start and end of each day include data gaps of 900–1800 s, randomly and independently generated for each detector.

ary noise spectra.22

Each v†Kz is an independent circularly symmetric
Gaussian random variable with zero mean and unit vari-
ance, which means its real and imaginary parts are inde-
pendent Gaussian random variables with mean zero and

variance 1
2 . Thus

∣∣∣v†Kz
∣∣∣2 is 1

2 times a χ2(2) random vari-

able, i.e., it is an exponential random variable with unit
rate parameter. The characteristic function is thus

ϕK(t) = E
[
eit|v†Kz|2] =

1

1− it
(B3)

which means that the characteristic function of the cross-
correlation statistic is

ϕ(t) = E

[
exp

(
it
∑
K

ωK

∣∣∣v†Kz
∣∣∣2)]

=
∏
K

ϕK(ωKt) =
1∏

K(1− iωKt)

(B4)

This allows a straightforward computation of the exact
probability density function for the statistic ρ as

f(ρ|h0 = 0) =


∑
K,ωK>0

ω−1
K e−ρ/ωK∏

L6=K(1−ωL/ωK) ρ > 0∑
K,ωK<0

−ω−1
K eρ/ωK∏

L6=K(1−ωL/ωK) ρ < 0

(B5)
which is a a mixture of exponential distributions. To get

22 Note that since Ĝave
KL = eiΦK Γ̂ave

KLe
−iΦL , a matrix made of the

{Γ̂ave
KL} has the same eigenvalues as one made of the {Ĝave

KL}. If
the noise PSDs are (approximately) the same for all SFTs, it is
also equivalent to use the eigenvalues of a metric made of the
{Γave
KL}.

the false alarm probability for large ρ, we calculate

p(ρ∗) ≡ P (ρ > ρ∗|h0 = 0) =

∫ ∞
ρ∗

f(ρ|h0 = 0) dρ

=
∑

K,ωK>0

e−ρ
∗/ωK∏

L 6=K(1− ωL/ωK)

(B6)

The problem with this expression is that the denominator
can get very small, and the signs of the terms alternate.
To see this, assume that we’ve ordered the eigenvalues,
so that

ωN > ωN−1 > · · · > ωK0
> 0 > ωK0−1 > · · · > ω1 (B7)

Then

∏
L6=K

(
1− ωL

ωK

)
=

[
K−1∏
L=1

(
1− ωL

ωK

)][ N∏
L=K+1

(
1− ωL

ωK

)]

= (−1)N−K

[
K−1∏
L=1

(
1− ωL

ωK

)][ N∏
L=K+1

(
ωL
ωK
− 1

)]
(B8)

and the false alarm probability is

p(ρ∗) =

N∑
K=K0

(−1)N−Ke−ρ
∗/ωK

×
[
K−1∏
L=1

(
1− ωL

ωK

)]−1 [ N∏
L=K+1

(
ωL
ωK
− 1

)]−1

(B9)

The last two factors can be very large, and are larger
when the eigenvalues are closer together. (Recall that N
is the number of SFTs, which is approximately Tobs/Tsft,
so there are many factors appearing in the product.)

Given the numerical problems with the exact false
alarm probability (B9) when the number of SFTs is large,
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FIG. 12. False alarm probabilities for the cross-correlation
statistic in the day-long and year-long scenarios considered in
figure 11, using the explicit formula (B9) as well as numerical
integration of (B10), along with the probabilities we’d get if
we assumed the statistic to be Gaussian. For a day-long obser-
vation (with three detectors, Tsft = 900 s and Tmax = 3600 s),
both methods give comparable results, but the Gaussian ap-
proximation is invalid for single-template false alarm rates
below about 10−2. Note that for large signal values, a sin-
gle exponential term dominates. For a year-long observation,
practical calculation with (B9) is impossible due to underflow
issues. The numerical integration of (B10) becomes unstable
for false alarm rates below 10−12, but not before quantify-
ing deviations from the Gaussian approximation even for a
year-long observation.

it is sometimes necessary to use an alternate approach.
We can perform a calculation analogous to that in [18],
based on the method of [36, 37]. This uses the Gil-Pelaez
expression[38] to construct a cumulative distribution di-
rectly from the characteristic function (B4) according to

p(ρ∗) =
1

2
+

1

π

∫ ∞
0

Im
(
ϕ(t) e−itρ

∗
) dt
t

(B10)

We can then find the false alarm probability by numerical
integration of (B10). Results of both of these methods
are shown in figure 12, for the two scenarios considered in
figure 11. Both methods produce consistent results for
a day-long observation, and illustrate deviation of the
false alarm rate from the Gaussian value for ρ >∼ 2. For
the year-long observation, explicit evaluation of (B9) is
impossible because of underflow in the cancellations, but
numerical integration of (B10) works until the false alarm
rate goes below 10−12 or so. False alarm rates are con-
sidered in detail for a wider range of observing scenarios
in [28].

[1] D. Steeghs and J. Casares, “The Mass Donor of Scor-
pius X-1 Revealed,” Astrophys. J. 568, 273–278 (2002),
arXiv:astro-ph/0107343.

[2] J. Aasi et al. (LIGO Scientific Collaboration), “Ad-
vanced LIGO,” Class. Quant. Grav. 32, 074001 (2015),
arXiv:1411.4547.

[3] F. Acernese et al. (Virgo Collaboration), “Advanced
Virgo: a second-generation interferometric gravitational
wave detector,” Class. Quant. Grav. 32, 024001 (2015),
arXiv:1408.3978.

[4] Kentaro Somiya (for the KAGRA Collaboration), “De-
tector configuration of KAGRA: The Japanese cryogenic
gravitational-wave detector,” Class. Quant. Grav. 29,
124007 (2012), arXiv:1111.7185.

[5] B. Abbott et al. (LIGO Scientific Collaboration), “Co-
herent searches for periodic gravitational waves from un-
known isolated sources and Scorpius X-1: Results from
the second LIGO science run,” Phys. Rev. D. 76, 082001
(2007), arXiv:gr-qc/0605028.

[6] C. F. Bradshaw, E. B. Fomalont, and B. J. Geldzahler,
“High-resolution parallax measurements of scorpius x-1,”
Astrophys. J. Lett. 512, L121 (1999).

[7] D. K. Galloway, S. Premachandra, D. Steeghs, T. Marsh,
J. Casares, and R. Cornelisse, “Precision Ephemerides
for Gravitational-wave Searches. I. Sco X-1,” Astrophys.
J. 781, 14 (2014), arXiv:1311.6246.

[8] Chris Messenger, “A semi-coherent search strategy for
known continuous wave sources in binary systems,” Phys.

Rev. D. 84, 083003 (2011), arXiv:1109.0501.
[9] Paola Leaci and Reinhard Prix, “Directed searches for

continuous gravitational waves from binary systems:
parameter-space metrics and optimal Scorpius X-1 sen-
sitivity,” (2015), arXiv:1502.00914.

[10] Piotr Jaranowski, Andrzej Krolak, and Bernard F.
Schutz, “Data analysis of gravitational-wave signals from
spinning neutron stars. I: The signal and its detection,”
Phys. Rev. D. 58, 063001 (1998), arXiv:gr-qc/9804014.

[11] Nils Andersson, Kostas D. Kokkotas, and Nikolaos Ster-
gioulas, “On the relevance of the r mode instability for
accreting neutron stars and white dwarfs,” Astrophys. J.
516, 307 (1999), arXiv:astro-ph/9806089.

[12] Lars Bildsten, “Gravitational radiation and rotation of
accreting neutron stars,” Astrophys. J. Lett. 501, L89
(1998), arXiv:astro-ph/9804325.

[13] Anna Watts, Badri Krishnan, Lars Bildsten, and
Bernard F. Schutz, “Detecting gravitational wave emis-
sion from the known accreting neutron stars,” Mon. Not.
R. Astron. Soc. 389, 839–868 (2008), arXiv:0803.4097.

[14] B. Abbott et al. (LIGO Scientific Collaboration), “Upper
limit map of a background of gravitational waves,” Phys.
Rev. D. 76, 082003 (2007), arXiv:astro-ph/0703234.

[15] Stefan W. Ballmer, “A radiometer for stochastic gravita-
tional waves,” Class. Quant. Grav. 23, S179–S186 (2006),
gr-qc/0510096.

[16] C. Messenger and G. Woan, “A Fast search strategy
for gravitational waves from low-mass X-ray binaries,”



27

Class. Quant. Grav. 24, S469–S480 (2007), arXiv:gr-
qc/0703155.

[17] J. Aasi et al. (LIGO Scientific Collaboration and Virgo
Collaboration), “A directed search for gravitational
waves from Scorpius X-1 with initial LIGO,” (2014),
arXiv:1412.0605.

[18] E. Goetz and K. Riles, “An all-sky search algorithm
for continuous gravitational waves from spinning neutron
stars in binary systems,” Class. Quant. Grav. 28, 215006
(2011), arXiv:1103.1301.

[19] J. Aasi et al. (LIGO Scientific Collaboration and Virgo
Collaboration), “First all-sky search for continuous gravi-
tational waves from unknown sources in binary systems,”
Phys. Rev. D. 90, 062010 (2014), arXiv:1405.7904.

[20] S. van der Putten, H.J. Bulten, J.F.J. van den Brand,
and M. Holtrop, “Searching for gravitational waves
from pulsars in binary systems: An all-sky search,”
J.Phys.Conf.Ser. 228, 012005 (2010).

[21] Sanjeev Dhurandhar, Badri Krishnan, Himan
Mukhopadhyay, and John T. Whelan, “The cross-
correlation search for periodic gravitational waves,”
Phys. Rev. D. 77, 082001 (2008), arXiv:0712.1578.

[22] Christine Chung, Andrew Melatos, Badri Krishnan,
and John T. Whelan, “Designing a cross-correlation
search for continuous-wave gravitational radiation from
a neutron star in the supernova remnant SNR 1987A,”
Mon. Not. R. Astron. Soc. 414, 2650–2663 (2011),
arXiv:1102.4654.

[23] Reinhard Prix, “The F-statistic and its implementation
in ComputeFstatistic v2,” LIGO Technical Document
LIGO-T0900149-v5 (2011).

[24] John T. Whelan, Reinhard Prix, and Deepak Khurana,
“Searching for Galactic White Dwarf Binaries in Mock
LISA Data using an F-Statistic Template Bank,” Class.
Quant. Grav. 27, 055010 (2010), arXiv:0908.3766.

[25] Reinhard Prix and John T. Whelan, “F-statistic search
for white-dwarf binaries in the first Mock LISA Data
Challenge,” Class. Quant. Grav. 24, S565–S574 (2007),
arXiv:0707.0128.

[26] B. Abbott et al. (LIGO Scientific Collaboration), “All-
sky search for periodic gravitational waves in LIGO S4
data,” Phys. Rev. D. 77, 022001 (2008), arXiv:0708.3818.

[27] Santosh Sundaresan and John T. Whelan, “Windowing
and leakage in the cross-correlation search for periodic
gravitational waves,” LIGO Technical Document LIGO-
T1200431-v1 (2012).

[28] Yuanhao Zhang, John T. Whelan, and Badri Krishnan,
“Results of a Model-Based Cross-Correlation Search for
Signals from Scorpius X-1 in Mock Gravitational-Wave
Data,” LIGO DCC P1400216 (2015).

[29] Karl Wette, “Estimating the sensitivity of wide-
parameter-space searches for gravitational-wave pulsars,”
Phys. Rev. D. 85, 042003 (2012), arXiv:1111.5650.

[30] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), “Directional limits on persistent
gravitational waves using ligo s5 science data,” Phys.
Rev. Lett. 107, 271102 (2011), arXiv:1109.1809.

[31] B. Abbott et al. (LIGO Scientific Collaboration), “Anal-
ysis of first LIGO science data for stochastic gravita-
tional waves,” Phys. Rev. D. 69, 122004 (2004), arXiv:gr-
qc/0312088.

[32] C. Messenger et al., “Gravitational waves from Sco X-1:
A comparison of search methods and prospects for detec-
tion with advanced detectors,” LIGO DCC P1400216
(2015).

[33] Patrick R. Brady, Teviet Creighton, Curt Cutler, and
Bernard F. Schutz, “Searching for periodic sources with
LIGO,” Phys. Rev. D. 57, 2101–2116 (1998), arXiv:gr-
qc/9702050.

[34] Reinhard Prix, “Search for continuous gravitational
waves: Metric of the multi-detector F-statistic,” Phys.
Rev. D. 75, 023004 (2007), arXiv:gr-qc/0606088.

[35] Robert G. Gallager, Stochastic Processes: Theory for Ap-
plications (Cambridge University Press, 2014).

[36] R. B. Davies, “Numerical inversion of a characteristic
function,” Biometrika 60, 415–417 (1973).

[37] Robert B. Davies, “Algorithm as 155: The distribution
of a linear combination of χ2 random variables,” Jour-
nal of the Royal Statistical Society: Series C (Applied
Statistics) 29, 323–333 (1980).

[38] J. Gil-Pelaez, “Note on the inversion theorem,”
Biometrika 38, 481–482 (1951).


