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Abstract

We revisit the phenomenology of n-n̄ oscillations in the presence of external magnetic fields,

highlighting the role of spin. We show, contrary to long-held belief, that the n-n̄ transition rate

need not be suppressed, opening new opportunities for its empirical study.
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1. Introduction. Searches for processes that violate standard model (SM) symmetries

are of particular interest because their discovery would serve as unequivocal evidence for

dynamics beyond the SM. The gauge symmetry and known particle content of the SM

implies that its Lagrangian conserves baryon number B and lepton number L, though it is

the combination B−L that survives at the quantum level. Thus the observation of neutron-

antineutron (n-n̄) oscillations, a |∆B| = 2 process, would show that B − L symmetry is

broken and ergo that dynamics beyond the SM exists. The current constraints on |B| = 1

operators from the non-observation of nucleon decay are severe, with the strongest limits

coming from searches for proton decay to final states that respect B −L symmetry, such as

p→ e+π0, for which the partial half-life exceeds 8.2× 1033 years at 90% C.L. [1]. Although

particular |∆B| = 1 operators, such as those that mediate n→ e−π+, e.g., can also give rise

to n-n̄ oscillations, Mohapatra and others have emphasized that the origin of nucleon decay

and n-n̄ oscillations can be completely different [2–8]. Recently, moreover, simple models

that give rise to n-n̄ oscillations but not nucleon decay have been enumerated [7].

The seminal papers on free n-n̄ oscillations have employed a 2× 2 effective Hamiltonian

matrix [9, 10], familiar from the analysis of meson mixing [11], though this choice explicitly

suppresses the role of spin — unlike neutral mesons and neutrinos, the neutron and antineu-

tron each have a significant magnetic moment. We note the neutron and antineutron are

themselves distinguished by the sign of the lepton charge in semileptonic decay, and their

respective interactions with atomic nuclei are strikingly different as well [12, 13]. The n-n̄

system thus has four physical degrees of freedom because the spin projection of a neutron

or an antineutron can either be parallel or antiparallel to a quantization axis. In this paper

we develop a suitable 4 × 4 effective Hamiltonian framework for its study. Since previous

studies of n-n̄ oscillations have been realized in the context of a 2× 2 effective Hamiltonian

matrix, we discuss this framework before turning to our generalization. The neutron mag-

netic moment is empirically well-known, yielding an interaction with an external magnetic

field B of form −µnSn ·B/Sn, where µn is the magnitude of the magnetic moment and Sn

is the neutron spin. Supposing the neutron spin to be in the direction of the applied B-field

and employing CPT invariance, the mass matrix M takes the form [9]

M =





Mn − µnB δ

δ Mn + µnB



 , (1)

where CPT invariance guarantees not only that the neutron and antineutron masses are
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equal but also that the projections of the neutron and antineutron magnetic moments on

B are equal in magnitude and of opposite sign. We work in units ~ = c = 1 and ignore

the finite neutron and antineutron lifetimes throughout. Diagonalizing M yields the mass

eigenstates |ui〉, namely,

|u1〉 = cos θ|n〉+ sin θ|n〉 ,

|u2〉 = − sin θ|n〉+ cos θ|n〉 . (2)

Since the energy scale µnB naturally dwarfs that of δ, we note that the eigenvalue difference

is ∆E ≃ 2µnB and that θ is small: θ ≃ δ/∆E. The n-n̄ transition probability becomes [14]

Pn(t) ≃ 2θ2 [1− cos (∆Et)] . (3)

This result can be considered in two different limits: either (a) ∆Et ≫ 1 or (b) ∆Et ≪ 1.

In case (a) the second term oscillates to zero, yielding Pn(t) ≃ 2(δ/∆E)2 whereas in case

(b),

Pn(t) ≃
(

δ

∆E

)2

(∆Et)2 = (δt)2 . (4)

Evidently unless t ≪ 1/∆E, the energy splitting of the neutron and antineutron in a mag-

netic field “quenches” the appearance of n-n̄ oscillations. Thus the strategy in past and

proposed searches for n-n̄ oscillations has been to minimize the magnetic field [14–16], so

that t ≪ 1/∆E, as well as to maintain a vacuum in the neutron flight volume [10], so that

the neutrons are quasifree over the neutron observation time t.

Motivated by the realization that a neutron and an antineutron of opposite spin projection

have the same energy in a magnetic field, we consider the spin dependence of n-n̄ oscillations

explicitly and thus develop a 4 × 4 effective Hamiltonian framework for its analysis. Spin

dependence can arise from effects either within or beyond the SM. As long known from the

theory of magnetic resonance, applied magnetic fields can mitigate, or even remove, the

energy splitting of spin states in a static magnetic field, note, e.g., Ref. [17, 18]. In this

paper we show that such SM effects can remove the magnetic field “quenching” noted in the

usual 2 × 2 Hamiltonian framework and yield new experimental possibilities for the study

of n-n̄ mixing. It is also possible to have new, spin-dependent B − L violating operators,

yielding a “new physics” mechanism to evade the magnetic field quenching we have noted.

Although we consider both of these distinct possibilities in this paper, our primary focus is

the role of spin-dependent SM effects in mediating n-n̄ oscillations.
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2. Effective Hamiltonian for n-n̄ transitions with spin. To realize the most general form of

a low-energy, phenomenological Hamiltonian for n-n̄ oscillations with spin, we develop a mass

matrix M to this purpose. Its entries Mij with i, j = 1, . . . 4 correspond to bras and kets

containing n(p,+), n̄(p,+), n(p,−), and n̄(p,−), respectively, with + (−) denoting a spin-

up (down) state, relative to a quantization axis z. We impose the constraint of Hermiticity,

as well as those of charge-conjugation–parity (CP) and time-reversal (T) invariance, on the

resulting mass matrix, to determine its model-independent form under these assumptions.

We can implement the discrete symmetry transformations in relativistic quantum field

theory and translate them to quantum mechanics by noting [11]

b†(p, s)|0〉 = |n(p, s)〉 ; d†(p, s)|0〉 = |n̄(p, s)〉 , (5)

where b[b†](p, s) and d[d†](p, s) denote annihilation [creation] operators for neutrons [an-

tineutrons] of momentum p and spin projection s, for which s = ±1 ≡ ± with respect to the

quantization axis z. We determine the transformation properties of these operators under

CP and T as follows. We work in the Dirac-Pauli representation for the γµ matrices and

note that the Dirac field operator ψ(x) has a plane-wave expansion of form

ψ(x) =

∫

d3p

(2π)3/2
√
2E

∑

s=±

{

b(p, s)u(p, s)e−ip·x + d†(p, s)v(p, s)eip·x
}

, (6)

with spinors defined as

u(p, s) = N





χ(s)

σ·p
E+M

χ(s)



 ; v(p, s) = N





σ·p
E+M

χ′ (s)

χ′(s)



 , (7)

noting χ′ (s) = −iσ2χ(s), χ+ =
(

1
0

)

, χ− =
(

0
1

)

, and N =
√
E +M . This yields

CPb(p, s) (CP)† = d(−p, s) ; CPd(p, s) (CP)† = −b(−p, s) (8)

and

Tb(p, s) (T)−1 = sb(−p,−s) ; Td(p, s) (T)−1 = sd(−p,−s) (9)

for the transformation properties under CP and T, respectively1. In what follows we assume

that the ground (vacuum) state remains invariant under CP and T: CP|0〉 = |0〉 and

T|0〉 = |0〉 .

1 These results differ from those in Ref. [11] because that work uses a different choice of antiparticle spinor.
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Under an assumption of CP and T invariance relationships between the matrix elements

of M follow. For example, under CPT invariance we have

〈n(p, s1)|H|n(p, s2)〉 = s1s2〈n̄(p,−s2)|H|n̄(p,−s1)〉 , (10)

noting H is the Hamiltonian and T is an anti-unitary operator. Thus under CPT and

Hermiticity we find M has ten parameters, and it is of form















A1 δ M1 ε1

δ∗ A2 ε2 −M1

M∗
1 ε∗2 A2 −δ

ε∗1 −M∗
1 −δ∗ A1















, (11)

where A1 andA2 are real constants. UnderCP invariance we have, e.g.: 〈n(p, s1)|H|n(p, s2)〉 =
〈n̄(−p, s1)|H|n̄(−p, s2)〉, yielding relationships between Mij in the low-energy limit, i.e., as

|p| → 0. Thus under Hermiticity and CP and CPT invariance we have in this case















A1 iδ 0 ε1

−iδ A1 −ε1 0

0 −ε∗1 A1 −iδ
ε∗1 0 iδ A1















, (12)

where both A1 and δ are real — and only four parameters suffice to characterize the mass

matrix. In Eq. (12), two distinct n-n̄ transition operators appear: δ that describes the

transition between states of the same spin, n(s) ↔ n̄(s) and ε1 that describes the tran-

sition between states of opposite spin, n(s) ↔ n̄(−s). Note that since the neutron and

antineutron are of opposite intrinsic parity, we have under CP, 〈n(p, s1)|H|n̄(p, s2)〉 =

−〈n̄(−p, s1)|H|n(−p, s2)〉, yielding, e.g., terms in ±iδ. If, rather, the relevant piece of H

is odd under CP, the δ terms become real, as chosen in Eq. (1). Previous analyses [14]

have only considered the possibility of n(s) ↔ n̄(s). We will show that the second pro-

cess can occur through the application of magnetic fields, both within and beyond the SM.

The parameters δ and ε1, however, characterize n-n̄ mixing en vacuo. Since we have cho-

sen the antiparticle spinors in a manner consistent with Dirac hole theory, the underlying

two-component spinor of a particle with spin s has the same orientation as that of an an-

tiparticle with spin −s; in the presence of baryon-number violation it would seem that both

pathways could occur. Indeed there are two Lorentz-invariant, leading-mass-dimension n-n̄
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operators: inTCn and nTγ5Cn, where C = iγ2γ0 and T denotes transpose. The latter oper-

ator, nTγ5Cn, can potentially yield a spin flip. The leading-mass-dimension operators that

yield n-n̄ transitions have been analyzed in QCD [19, 20], and they entrain both possibilities

at the quark level. Our detailed analysis of their n-n̄ matrix elements reveals, however,

that n(s) ↔ n̄(−s) does not occur (at zero momentum transfer) [21], as one might expect

from angular momentum conservation. Indeed only the n(s) → n̄(s) transition occurs for a

free neutron in vacuum. The associated n-n̄ matrix elements have been computed in mod-

els [19, 22] and in lattice QCD [23]. Thus we set ε1 = 0 henceforth, though such could be

nonzero in the presence of a hidden U(1) sector with a “dark photon” and an associated

magnetic field Bhidden. Returning to the operators inTCn and nTγ5Cn, the first is CP odd,

whereas the second is CP even — and both are CPT invariant. We assumed the second

case in determining Eq. (12), and this will prove useful in what follows. However, since n-n̄

transitions in the absence of a magnetic field are, in effect, mediated by inTCn, we use














A1 δ 0 0

δ A1 0 0

0 0 A1 −δ
0 0 −δ A1















, (13)

with δ real for our Hamiltonian matrix in this case.

These parametrizations also allow us to generalize our effective Hamiltonian framework

to include external magnetic fields. For example, the interaction of an electrically neutral

particle with an electromagnetic field is characterized at low energies by −µ·B if T andP are

not broken; this comes from the nonrelativistic limit of ψ̄σµνψFµν , where Fµν ≡ ∂µAν−∂νAµ

is the usual electromagnetic field strength tensor. UnderCP orT the fermion bilinear ψ̄σµνψ

transforms to −ψ̄σµνψ, and Fµν transforms to −F µν . Thus their scalar product is itself both

CP and T invariant. However, the explicit CPT and CP constraints we have investigated

operate on the fermion and antifermion degrees of freedom only; the terms in H resulting

from the overall minus sign associated with Fµν under CP are revealed by comparing the

parametrizations under Hermiticity and CPT with and without a CP constraint, Eqs. (11)

and (12). We can also combine magnetic-field interactions with n-n̄ oscillations through the

operator ψTσµνCψFµν and its Hermitian conjugate; this operator is even under CP and T.

Thus through these comparisons we see how Fµν terms, i.e., those with external magnetic

fields, can enter both within and beyond the SM. We now turn to concrete expressions for
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these terms.

3. Effective Hamiltonian for n-n̄ transitions in external magnetic fields. The operator

ψTσµνCψFµν and its Hermitian conjugate yield n→ n̄ and n̄→ n transitions, respectively.

Computing these matrix elements using the free Dirac field operator of Eq. (6) yields

〈n̄(0, s′)|ψTσµνCψFµν |n(0, s)〉 = −χ′ (s′) †2σ ·Bχ′ (s) − χ(s) †2σ ·Bχ(s) , (14)

where we recall χ′ (s) = −iσ2χ(s), and

〈n(0, s′)| − ψ∗TC(σµν)†ψ∗Fµν |n̄(0, s)〉 = −χ′ (s′) †2σ ·Bχ′ (s) − χ(s) †2σ ·Bχ(s) . (15)

Although these expressions vanish for elementary fermions, we note that since both n and

n̄ possess anomalous magnetic moments compositeness could make these matrix elements

nonzero if operators of form ψTCψ exist. We leave a detailed study to a subsequent publica-

tion [21]. Nevertheless, these expressions correspond to nonrelativistic operators containing

n-n̄ transition magnetic moments. Thus we suppose the n and n̄ interactions in the presence

of external magnetic fields, under CPT invariance, to be of form

HB = −µn
Sn

Sn
·B+ µn

Sn̄

Sn̄
·B− µ∗

nn̄

Sn̄n

Sn̄n
·B− µnn̄

Snn̄

Snn̄
·B , (16)

where µn is the neutron magnetic moment, the first two terms being the usual neutron

and antineutron interactions in a magnetic field, and µnn̄ is the n-n̄ transition magnetic

moment. The last two terms correspond to Eqs. (14) and (15), respectively. The spin

operators each act in a 2 × 2 subspace. With (Sn)i,j such that (i, j) ∈ (n(+), n(−)), we

choose (Sn̄)i,j with (i, j) ∈ (n̄(+), n̄(−)), as well as (Snn̄)ij and (Sn̄n)ji with i ∈ n(+), n(−)

and j ∈ n̄(+), n̄(−). Within a given subspace, we compute S ·B/S = σ ·B. We also suppose

that magnetic fields both longitudinal and transverse to the quantization axis exist, and

we introduce B0 = B0ẑ and B1 = B1x̂, respectively. Defining ω0 ≡ −µnB0, ω1 ≡ −µnB1,

δ0 ≡ −µnn̄B0, δ1 ≡ −µnn̄B1, and employing the usual Pauli matrices, we find that the

matrix HB corresponding to Eq. (16) is

HB =















ω0 δ0 ω1 δ1

δ∗0 −ω0 δ∗1 −ω1

ω1 δ1 −ω0 −δ0
δ∗1 −ω1 −δ∗0 ω0















, (17)
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a form consistent with the comparison of Eq. (11) and Eq. (12). Moreover, we see that

CPT invariance guarantees that a neutron and an antineutron of opposite spin in vacuum

are always degenerate irrespective of the size of the magnetic field: the presence of external

magnetic fields cannot quench transitions between these states.

Additional constraints on the form factors follow because in the presence of n-n̄ oscilla-

tions the weak interaction eigenstates can be expressed in terms of Majorana states. A Ma-

jorana state |ΨM〉 transforms into itself under C, up to a global phase. Since Cb(p, s)C† =

d(p, s),

|Ψ±
M(p, s)〉 = 1√

2
(|n̄(p, s)〉 ± |n(p, s)〉) . (18)

As we have noted, the neutron and antineutron are distinguished by the sign of the lepton

charge upon semileptonic decay, so that the Majorana basis has four degrees of freedom.

There are no γµ, σµν , or σµνγ5 form factors associated with a Majorana state [24–29];

thus the constraint 〈Ψ±
M(p, s′)〉|HB|Ψ±

M(p, s)〉 = 0 or, equivalently, ηTHBη = 0, where

η = {a, a, b, b} and a and b are arbitrary constants, yields Re(δ0) = 0 and Re(δ1) = 0. With

these supplemental constraints, Eq. (17) becomes

HB =















ω0 iδ0 ω1 iδ1

−iδ0 −ω0 −iδ1 −ω1

ω1 iδ1 −ω0 −iδ0
−iδ1 −ω1 iδ0 ω0















, (19)

where δ0 and δ1 are real constants. This bears comparison to studies of resonant spin-

flavor neutrino precession in matter, such as in the Sun [30–32], though the neutrino transi-

tion magnetic moment in that work is associated with the transverse magnetic field and is

flavor-changing. The final Hamiltonian matrix M for low-energy, n-n̄ oscillations in applied

magnetic fields thus takes the form

H =















M + ω0 (δ + iδ0) ω1 iδ1

(δ − iδ0) M − ω0 −iδ1 −ω1

ω1 iδ1 M − ω0 −(δ + iδ0)

−iδ1 −ω1 −(δ − iδ0) M + ω0















. (20)

The transition magnetic moment terms δ0 and δ1 are of higher mass dimension and ought

be much smaller in effect than δ, despite the appearance of an external magnetic field.

This follows because the energy scales associated with magnetic fields are naturally so
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small — note that |µn| ≈ 60 neV/T. We employ naive dimensional analysis to flesh out

our assessment. That is, we estimate the n-n̄ matrix element associated with the leading

operator, of mass dimension nine, as κΛ6
QCD/M

5
nn̄ [14], where κ is a dimensionless con-

stant presumably of O(1), Mnn̄ is the scale of n-n̄ mixing, and ΛQCD ∼ 200 MeV. Writing

µnn̄B = (µnn̄/|µn|)|µn|B, noting µnn̄/|µn| ∼ κ′(ΛQCD/Mnn̄)
7 with κ′ a dimensionless con-

stant, we estimate µnn̄B/δ ∼ (κ′/κ)ΛQCD|µn|B/M2
nn̄. Even in the environment of a pulsar,

for which B ∼ 108 T is possible, we see that |µn|B is many orders of magnitude smaller

than ΛQCD — so that µnn̄B is negligible relative to δ if we assume κ′/κ ∼ O(1).

Before closing this section we note that it is also possible to have a n-n̄ transition elec-

tric dipole moment as well, though this would certainly require an additional new physics

mechanism to generate an appreciable effect. The n-n̄ matrix elements of ψTγ5σ
µνCψFµν

and its Hermitian conjugate yields terms of the form given in Eqs. (14) and (15), but with

−B replaced with iE. These operators are CP and T even but P odd.

4. Examples. In what follows we consider concrete examples of how applied magnetic

fields can be used to evade the quenching of n-n̄ oscillations found in earlier work [9, 10]. We

consider the leading n-n̄ transition operator matrix element exclusively, so that we rely on SM

effects to realize this. To compute the transition probabilities, we must first find the normal-

ized eigenvectors of the Hamiltonian matrix in terms of our chosen {|n+〉, |n−〉, |n̄+〉, |n̄−〉}
basis; we denote a state of the latter by |ni〉 and a normalized eigenvector by |ui〉 with as-

sociated eigenvalue λi, noting i ∈ 1, . . . , 4. The time evolution of a state of the Hamiltonian

is thus given by

|ψ(t)〉 =
4

∑

i=1

e−iλt〈ui|ψ(0)〉 |ui〉 . (21)

Letting |ψ(0)〉 = |nk〉 and defining aij ≡ 〈nj|ui〉, we find

Pnk→nj
=

∣

∣

∣

∣

∣

4
∑

i=1

e−iλitaija
∗
ik

∣

∣

∣

∣

∣

2

. (22)

For reference, we find in the absence of magnetic fields that Pn→n̄ = sin2(δt), identical to

that found using Eq. (1) [9].

As a first example, we consider a system with a static magnetic field B0, serving as the

quantization axis, to which a static transverse field B1 is suddenly applied at t = 0. For t > 0

the mass matrix has the form of Eq. (20) with δ0 = δ1 = 0. Noting that |δ| ≪ |ω0| , |ω1|, we
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find that the probability of a neutron in a s = + state transforming to n̄ of fixed spin is

Pn+→n̄+(t) = δ2

[

ω4
1t

2

(ω2
0 + ω2

1)
2
cos2

(

t
√

ω2
0 + ω2

1

)

+
ω4
0

(ω2
0 + ω2

1)
3
sin2

(

t
√

ω2
0 + ω2

1

)

+
ω2
0ω

2
1t

(ω2
0 + ω2

1)
5/2

]

+O(δ3); (23)

Pn+→n̄−(t) = δ2

[

ω2
1t

2

ω2
0 + ω2

1

− ω4
1t

2

(ω2
0 + ω2

1)
2
cos2

(

t
√

ω2
0 + ω2

1

)

+
ω2
0ω

2
1

(ω2
0 + ω2

1)
3
sin2

(

t
√

ω2
0 + ω2

1

)

− ω2
0ω

2
1t

(ω2
0 + ω2

1)
5/2

sin

(

2t
√

ω2
0 + ω2

1

)

]

+O(δ3) . (24)

If |ω0| ∼ |ω1|, we see that the last two terms of Eqs. (23) and (24) are of O(δ2/ω2
0) and

O(tδ2/ω0), respectively, so that they are indeed quenched in a magnetic field. The other

terms, however, are of O(1). We note that Pn+→n̄−(t) is larger, since ω2
1/(ω

2
0 + ω2

1) >

(ω2
1/(ω

2
0 + ω2

1))
2 in this limit — we had anticipated this because the two states are of the

same energy. We note that Pn+→n̄−(t) = Pn−→n̄+(t) and Pn+→n̄+(t) = Pn−→n̄−(t), so that

the unpolarized transition probability is

Pn→n̄(t) = δ2

[

ω2
1t

2

ω2
0 + ω2

1

+
ω2
0

(ω2
0 + ω2

1)
2
sin2(t

√

ω2
0 + ω2

1)

+
ω2
0ω

2
1t

(ω2
0 + ω2

1)
5/2

(

1− sin

(

2t
√

ω2
0 + ω2

1

))

]

+O(δ3) , (25)

— and the first term is ofO(1). For reference, Pn+→n−(t) = (ω2
1/(ω

2
0+ω

2
1)) sin(t

√

ω2
0 + ω2

1)+

O(δ2). The exact eigenvalues and eigenstates for t > 0 are

E1 =M1 −
√

ω2
0 + (δ − ω1)2 ,

E2 =M1 +
√

ω2
0 + (δ − ω1)2 ,

E3 =M1 −
√

ω2
0 + (δ + ω1)2 ,

E4 =M1 +
√

ω2
0 + (δ + ω1)2 (26)
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and

u1 =
1√
N1

{

1,
(δ − ω1)

ω0 −
√

ω2
0 + (δ − ω1)2

,
−(δ − ω1)

ω0 −
√

ω2
0 + (δ − ω1)2

, 1

}

,

u2 =
1√
N2

{

1,
(δ − ω1)

ω0 +
√

ω2
0 + (δ − ω1)2

,
−(δ − ω1)

ω0 +
√

ω2
0 + (δ − ω1)2

, 1

}

,

u3 =
1√
N3

{

−1,
−(δ + ω1)

ω0 −
√

ω2
0 + (δ + ω1)2

,
−(δ + ω1)

ω0 −
√

ω2
0 + (δ + ω1)2

, 1

}

,

u4 =
1√
N4

{

−1,
−(δ + ω1)

ω0 +
√

ω2
0 + (δ + ω1)2

,
−(δ + ω1)

ω0 +
√

ω2
0 + (δ + ω1)2

, 1

}

, (27)

with

N1
2
= 2

[

1 +
(δ − ω1)

2

ω0 ∓
√

ω2
0 + (δ − ω1)2

]

,

N3
4
= 2

[

1 +
(δ + ω1)

2

ω0 ∓
√

ω2
0 + (δ + ω1)2

]

. (28)

If δ = 0 or ω0 = ω1 = 0, we see that E1 = E3 and E2 = E4. In the former case, u1 + u3 and

u2 + u4 yield linear combinations of n̄(+) and n̄(−), and u1 − u3 and u2 − u4 yield linear

combinations of n(+) and n(−). In contrast, in the latter case, we find Majorana states;

that is, u1 ± u3 ∝ Ψ±
M(∓) and u2 ± u4 ∝ Ψ∓

M(∓).

As long known, the spin of a macroscopic sample of fermions can be made to flip through

the use of magnetic resonance techniques. Indeed, supposing the spins are aligned (or anti-

aligned) with a static magnetic field, and an oscillatory magnetic field is applied transverse

to it, we can tune the frequency of the transverse field in such a way that the probability of

flipping the neutron spin is of O(1) irrespective of the size of the applied magnetic fields —

this is the famous Rabi formula [17, 18]. Thus as a second example we study n-n̄ oscillations

in such a magnetic field arrangement [18], replacing B1 with a time-dependent magnetic

field B1(t), so that the SM Hamiltonian for a neutron becomes H(t) = ω0 σz+ω1(cosωt σx+

sinωt σy). The resulting n-n̄ Hamiltonian matrix is of form

H(t) =















M + ω0 δ ω1e
−iωt 0

δ M − ω0 0 −ω1e
−iωt

ω1e
iωt 0 M − ω0 −δ
0 −ω1e

iωt −δ M + ω0















. (29)
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To compute the transition probabilities in this case, we solve the time-dependent Schrödinger

equation i∂tψ = Hψ with ψ = {a+(t), ā+(t), a−(t), ā−(t)} through the change of variable
(−)

a±=
(−)

b± exp(∓iωt/2). This yields i∂tψ̃ = H̃ψ̃ with ψ̃ = {b+(t), b̄+(t), b−(t), b̄−(t)} and

H̃ =















M −∆ω− δ ω1 0

δ M −∆ω+ 0 −ω1

ω1 0 M +∆ω− −δ
0 −ω1 −δ M +∆ω+















(30)

with ∆ω± ≡ ω/2±ω0, noting that the transition probabilities of interest follow immediately

from its solution because | (−)

a± |2 = |
(−)

b± |2. The oscillatory transverse field needed for

magnetic resonance experiments is typically realized, however, through the application of a

radio frequency (rf) field with linear polarization, so that if ∆ω+ = 0, then ∆ω− = 0 also.

Thus under usual experimental conditions the largest contributions have ∆ω+ = −∆ω−,

and the n-n̄ transition probabilities can be estimated from Eqs. (23) and (24) upon the

replacement ω0 → ∆ω+. On resonance, for which ∆ω± = 0, we have

Pn+→n̄+(t) ≈ δ2t2 cos2
(

t
√

ω2
0 + ω2

1

)

+O(δ3); (31)

Pn+→n̄−(t) ≈ δ2t2 sin2

(

t
√

ω2
0 + ω2

1

)

+O(δ3) , (32)

where we have neglected contributions controlled by |ω|/2+ω0 as per standard practice [33].

Finally, we find, similarly, that the unpolarized transition probability is Pn→n̄(t) ≈ δ2t2 +

O(δ3).

6. New Experimental Prospects. We have shown through explicit example that the re-

moval of magnetic fields is not necessary for the observation of n-n̄ oscillations; this opens

new possibilities for their experimental discovery. For example, it becomes possible to study

n-n̄ oscillations by confining neutrons in magnetic traps, or bottles; such are under develop-

ment for improved measurements of the neutron lifetime [34–36]. In a gravitomagnetic trap

a single spin state is confined; we suppose, in addition, that a transverse rf field at resonance

is applied. If the spin-flip time is short compared to the time for a confined neutron to be

lost from the trap, we suppose that the storage time determined under these conditions can

be used to set a limit on n-n̄ oscillations. That is, an experimental limit on n-n̄ oscillations

can be defined by writing the transition probability as Pn→n̄ ≃ (t/τnn̄)
2 and bounding τnn̄.

A crude estimate of the oscillation lifetime is given by (τnn̄)bottle ∼
(

NfillNtrial〈t2〉/N̄
)1/2

,
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where Nfill is the number of neutrons (i.e., nV with n the neutron number density and V the

volume of the trap) added to the bottle at one time, Ntrial is the number of times the trap is

filled, N̄ is the limit on the number of antineutrons detected, and 〈t2〉1/2 is the storage time

in the trap. Estimating Nfill ∼ 107, Ntrial ∼ 105, and 〈t2〉1/2 ∼ 400 s and using N̄ ≤ 2.3 at

90% C.L. [15] yields τnn̄ ∼ 2 × 108 s, so that the gain seems modest over the existing limit

of τnn̄ ≥ 0.86 × 108 s at 90% C.L. [15], though one can expect further improvements with

bettered ultracold neutron sources.

7. Summary. As long recognized, the discovery of B − L violation would speak to the

existence of Majorana dynamics in Nature. This would not imply, however, that the neutron

is its own antiparticle, but, rather, that the weak interaction eigenstates of the n-n̄ system

in vacuum transform into themselves under the charge conjugation operator C. Although

many authors [37–41] have studied the impact of external magnetic fields on n-n̄ oscillations

within the context of the 2 × 2 phenomenological framework [9], our work is the first to

incorporate spin in a fundamental way. The results that emerge are remarkably different

from earlier studies — in particular, magnetic field mitigation is not required to observe n-n̄

mixing, as had been previously thought [14, 16].
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