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Abstract

We point out that if neutron–antineutron oscillation is observed in a free neutron oscillation

experiment, it will put an upper limit on the strengths of Lorentz invariance violating (LIV) mass

operators for neutrons at the level of 10−23 GeV or so, which would be the most stringent limit

for neutrons. We also study constraints on ∆B = 2 LIV operators and find that for one particular

operator degaussing is not necessary to obtain a visible signal. We also note that observation of

n − n̄ oscillation signal in the nucleon decay search experiment involving nuclei does not lead to

any limit on LIV operators since the nuclear potential difference between neutron and antineutrons

will mask any Lorentz violating effect.
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I. INTRODUCTION

Possible violation of Lorentz invariance has been a topic of much theoretical interest for

the past two decades [1, 2] and has been followed up by many experimental searches in the

laboratory as well as in the domain of astrophysics. This violation can occur for photons,

neutrinos, atoms as well as hadrons such as kaons [3], protons and neutrons [4]. The current

limits from various processes are summarized in [5]. In this paper, we discuss constraints

that can be derived, if neutron to antineutron oscillation is observed, since presence of certain

kinds of baryon number conserving and Lorentz invariance violating (LIV) operators in the

Lagrangian lead to suppression of the oscillation (see below for details).

Neutron–antineutron (n − n̄) oscillation [6] is a phenomenon where in vacuum and in

the limit of small magnetic fields, a neutron spontaneously converts to an antineutron. It

provides an alternative mode of baryon number violation compared to the well known and

well studied proton decay. The main interest in investigation of the n−n̄ transition has been

due to two factors: (i) it has a different selection rule for baryon number non-conservation

compared to canonical proton decay mode p → e+π0 and (ii) it probes physics at a much

lower scale than proton decay. Furthermore, in contrast to conventional B − L conserving

proton decay modes, n−n̄ oscillation is more intimately connected to the discussion of origin

of matter in the universe [7]. An experimental search for n− n̄ oscillation with free neutrons

was conducted at ILL [8] and an upper limit has been established on the strength for the

strength of this transition. Searches for this process in nucleon decay searches have also been

carried out [9]. Currently, there are plans to search for this process at a higher sensitivity

level [10] using the spallation neutrons at ESS laboratory in Lund, Sweden. It is therefore

of interest to investigate whether one can learn anything else about the physics of neutrons

from this experiment. In this brief note, we point out that the search for this process can

also yield useful information on possible Lorentz invariance violation for neutrons both in

the ∆B = 0 and ∆B 6= 0 channels.

This paper is organized as follows. In Sec. II, we take examples of two simple ∆B = 0

LIV operators involving neutrons and discuss how one can obtain a limit on the strength

of this operator once n − n̄ oscillation is observed. In Sec. III, we introduce examples

of baryon number violating neutron operators and study their effect on n − n̄ oscillation

and show that for certain kind of operators, the n − n̄ transition between different spins is
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actually independent of external magnetic fields. Sec. IV deals with a generalized class of

∆B = 0 LIV operators and Sec. V with ∆B = 2 LIV operators. We make some comments

in sec. VI and then conclude in sec. VII.

II. ∆B = 0 LIV OPERATORS FOR NEUTRONS AND n− n̄ OSCILLATION

We will use an effective operator formalism in terms of the neutrons rather than the

elementary quarks since this is a low energy process. In principle, such LIV operators

involving neutrons should originate from LIV operators added to the conventional QCD

Lagrangian. At the moment we do not know how to translate precisely the constraints on

the strengths of the effective neutron operators to those in the QCD Lagrangian.

We start with the conventional effective Lagrangian for free neutron oscillation to an-

tineutrons:

L = in̄γµ∂µn−mn̄n +
1

2
δB=2n

TCn+ h.c. (1)

The ILL n − n̄ oscillations search with free neutrons has established a lower limit on the

transition time, τn−n̄ ≥ 0.8 × 107 sec [8]. This translates into a limit δB=2 ≤ 10−28 GeV.

Similar limits on δB=2 are also obtained from nucleon decay searches [9].

In order to study the effect of Lorentz invariance violation on n − n̄ oscillation, we

proceed in steps. First we include two simple baryon number conserving LIV terms and in a

subsequent section, add ∆B = 2 terms in the Lagrangian. The lowest dimensional operators

have either positive mass dimensions or are dimensionless. We focus only on such operators.

Consider the simple set of B-conserving LIV operators first.

LLIV = aµn̄γ
µn− icµν n̄γ

µ∂νn + h.c. (2)

where aµ and cµν are spurion fields. Once we give vacuum expectation values to these fields

such that they maintain rotational invariance i.e. 〈a0〉 = δ
(1)
LV and 〈c00〉 = δ

(2)
LV , we get

LLIV = δ
(1)
LV n

†n− iδ
(2)
LV n

†∂0n + h.c. (3)

First thing to note is that the first term violates both Lorentz invariance as well as CPT

whereas the second term δ
(2)
LV violates only Lorentz invariance but conserves CPT [11]. To

see the effect of these terms, let us initially focus on the first term. We expand the free field
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in terms of the creation and annihilation operators for neutron and antineutron as follows,

using the formalism to treat spin effects in this case developed in a recent paper [12]:

ψ(x) =
∑

p,s

√

m

EV

[

bp,su(p, s)e
−ip.x + d†p,sv(p, s)e

ip.x
]

(4)

where u(p, s) = N







χ(s)

~σ·~p
E+m

χ(s)





 ; v(p, s) = N







~σ·~p
E+m

χ′(s)

χ′(s)





 ; (5)

with s = + or − along with χ+ =







1

0





 and χ− =







0

1





; χ′(s) = χ(−s). The normalization

factor is given by N =
√

E+m
2m

. Choosing C = iγ2γ0 and the usual definition of γµ with

γ0 = diag(1,−1), where 1 is a 2 × 2 unit matrix matrix, it is easy to see that, the usual

Lorentz invariant mass term mn̄n gives same mass for all states: |n,+〉, |n̄,+〉; |n,−〉, |n̄,−〉.

The B-violating n−n̄ oscillation term δB=2n
TCn connects |n,+〉 with |n̄,+〉 and |n,−〉 with

|n̄,−〉 in the 4× 4 mass matrix written in the basis {|n,+〉, |n̄,+〉; |n,−〉, |n̄,−〉}.

Now let us choose the B-conserving but Lorentz violating mass term LLV = δ
(1)
LV n

†n −

iδ
(2)
LV n

†∂0n. Pauli matrix algebra then leads to the 4 × 4 mass matrix of the form1 (in the

basis {|n,+〉, |n̄,+〉; |n,− >, |n̄,−〉)}

M4×4 =





















m+ δ
(1)
LV +mδ

(2)
LV δB=2 0 0

δB=2 m− δ
(1)
LV +mδ

(2)
LV 0 0

0 0 m+ δ
(1)
LV +mδ

(2)
LV −δB=2

0 0 −δB=2 m− δ
(1)
LV +mδ

(2)
LV





















. (6)

Note first that the CPT violating LIV term changes sign between the neutron and anti-

neutron whereas the CPT conserving LIV term δ
(2)
LV has the same sign between the neutron

and anti-neutron. The first term will therefore split the states and we will get for the

Probability of transition from one state to another as:

Pn→n̄ =

[

δ2B=2

δ
(1)2

LV + δ2B=2

]

sin2





√

(δ
(1)2

LV + δ2B=2) t

h̄



 e−λt (7)

1 Some details of the algebra are as follows: first note that the interactions involve normal ordered product

of fermionic operators; keeping only b†b and d†d terms in n†n, we get (apart from multiplying factors):

b†bu†u− d†dv†v ∼ 2E
E+m

b†b − 2E
E+m

d†d, which on taking non-relativistic limit leads to the δ
(1)
LV

term with

opposite signs for n and n̄. In the calculation for the δ
(2)
LV

term, the ∂0 term puts in an extra negative

sign so that it contributes with same sign to both n and n̄.
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where λ−1 = τn = 0.88× 103 sec.

If δ
(1)
LV ≪ δB=2, then by assumption the current n − n̄ oscillation limit would imply

δ
(1)
LV ≤ 10−28 GeV. If h̄/t ≫ δ

(1)
LV ≥ δB=2, a condition necessary to observe n− n̄ oscillations

with free neutrons, then the first inequality would imply δ
(1)
LV ≤ 10−23GeV , for t ∼ 1 sec,

which is typical for the experimental setup. Note that for the current set-ups, the probability

Pn−n̄ ≤ 10−8. Therefore if δ
(1)
LV ≫ δB=2, then the oscillating part averages out to 1/2 and

we get Pn−n̄ ∼ 1
2

[

δ2
B=2

δ
(1)2

LV
+δ2

B=2

]

. The current limit then implies that 1
2

δ2
B=2

δ
(1)2

LV

≤ 10−8 leading to a

limit δ
(1)
LV ≤ 10−24 GeV.

Several comments are now in order:

(i) Note that this is less than m2/MP l, where m is the mass of the neutron. One could

imagine such effects arising from quantum gravity effects. It is interesting that the potential

limit which can be derived from n− n̄ oscillation discovery.

(ii) We point out that the second LIV but CPT conserving term δ
(2)
LV cannot be restricted

by observation of n−n̄ oscillation since it can be absorbed by redefinition of the mass term of

the neutron and the antineutron. It is interesting that terms with this structure are induced

by ambient gravitational fields like that of the Earth or the Sun.

(iii) An important point to emphasize is that if n− n̄ oscillation (or a ∆B = 2 effect) is

observed in experiments searching for nucleon decay in nuclei, no limit on the Lorentz vio-

lating terms can be derived since the nuclear potential difference between and antineutrons

far exceeds any Lorentz violating effect. Inside nuclei, the potential seen by the neutron

and antineutron are quite different, leading to vastly different entries in the (1,1) and (2,2)

matrix elements of Eq. (6), which masks the effect of LIV. This can be seen by noting that

the modified n− n̄ transition probability in the presence of a potential difference felt by n

and n̄ is obtained from Eq. (7) by replacing δ
(1)
LV by δ

(1)
LV +∆V/2, where ∆V is the potential

difference. The nuclear potential difference between n and n̄ is ∆V ∼ 100 MeV, which would

overpower the effects of LIV operator δ
(1)
LV .

(iv) Finally, it is important to emphasize that since we are considering Lorentz violating

effects, the specific choices we have made are frame dependent [13]. However, since the

neutrons are slow moving in actual experiments (β ∼ 10−3), our conclusions are not affected.

Also we have ignored operators that are suppressed in the non-relativistic limits.

(v) The limit δ
(1)
LV ≤ 10−23 GeV that can be derived if n−n̄ oscillation is observed, is indeed
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probing Lorentz violation occurring around the Planck scale, even when LIV operators are

written down at the quark level. The LIV effects can modify the wave functions of the

quarks, and in the six quark operator (relevant for n− n̄ transition), there will be a term of

the type qqqqqδq with a single suppression by an inverse Planck mass. Here δq stands for

the modified quark field which contains in it Lorentz violating effects.

III. ∆B = 2 LIV OPERATORS

In this section we focus on LIV as well as B-violating mass terms and their effect on n− n̄

oscillation. We illustrate the effect of one operator here and take up the more generalized

set of operators in a subsequent section.

OB=2 = iC5
µn

TCγ5γµn+ h.c. (8)

It turns out that if we consider the neutron as an elementary fermion (i.e. in the sense of an

effective field theory below the QCD scale), then the only term that makes a contribution

in the vanishing momentum limit is the C5
µ term. All other terms vanish. If we set 〈C5

2〉 =

1/2δ′LIV 6= 0, we get the following operator:

LB=2,LIV =
1

2
δ′LIV n

Tγ0γ5n + h.c. (9)

To see its effect on the 4× 4 n− n̄ matrix, let us rewrite the matrix in Eq. (2) when this is

the only LIV term present, we get in the basis {|n,+〉, |n̄,+〉; |n,−〉, |n̄,−〉},

M4×4 =





















m δB=2 0 δ′LIV

δB=2 m δ′LIV 0

0 δ′LIV m δB=2

δ′LIV 0 δB=2 m





















. (10)

In the presence of a magnetic field, this matrix becomes,

M4×4 =





















m+ µB δB=2 0 δ′LIV

δB=2 m− µB δ′LIV 0

0 δ′LIV m− µB δB=2

δ′LIV 0 δB=2 m+ µB





















. (11)

Looking at the (1, 1), (1, 4), (4, 1), (4, 4) entries of this matrix, we conclude that, the effect

of δ′LIV on n − n̄ is independent of the magnetic field unlike the δB=2 term, which gets
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suppressed as the magnetic field is increased. Thus if we set δB=2 term to zero, even before

degaussing, one can extract useful information about strength of the Lorentz violating B = 2

term for the neutrons. By the same token, since the effect of this operator is independent of

the magnetic field, the current limit on τn−n̄ as well as limits from n − n̄ search in nucleon

decay, already puts an upper limit on δ′LIV ≤ 10−28 GeV. A similar effect was noted recently

in [12], which discusses the more detailed implications for magnetic field. We do not discuss

those aspects since our goal here is to study only the constraints on the LIV operators.

IV. GENERALIZATION TO MORE LIV OPERATORS

In this section, we consider a more general set of LIV operators involving neutrons.

Following [14], we can write the ∆B = 0 LIV operators as

LLIV = in̄Γµ∂µn− n̄Mn (12)

Γµ = eµ + γµ + cνµγν + dµνγ5γν + f νγ5 +
1

2
gλνµσλν (13)

M = m+ aµγ
µ + bµγ

5γµ +
1

2
Hµνσµν .

Of these terms the terms with coefficients a, c were already analyzed before. The contribution

of the rest of the operators to the diagonal elements of the 4× 4 n− n̄ mass matrix is given

in the table I. In this table, we have ignored terms which are of order p
mn

. It is clear from the

Table that a0, e0, d03, H12 terms are strongly bounded once the n− n̄ oscillation is observed.

The remaining terms however are not constrained.

V. GENERALIZATION TO OTHER ∆B = 2 LIV OPERATORS

In this section, we consider a more generalized set of ∆B = 2 LIV operators and their

effect on n− n̄ oscillation2.

OB=2 = inTCΓ′
µ∂

µn+ nTCM ′n+ h.c. (14)

2 similar lepton number violating and Lorentz invariance violating operators for the case of neutrinos were

considered in [15].
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n,+ n̄,+ n̄,− n,−

aµ a0 −a0 a0 −a0

bµ b3 b3 −b3 −b3

eµ me0 −me0 +me0 −me0

fµ 0 0 0 0

dµν md03 −md03 +md03 −md03

gµνλ mg012 mg012 −md012 −md012

Hµν H12 −H12 +H12 −H12

TABLE I: Dominant contributions of the various Lorentz violating terms given in Eq. (13) to the

diagonal elements of the n− n̄ mass matrix

n+ n̄+ n+ n̄− n− barn− n− n̄+

e′µ, d
′,5
µν , d

′
µν 0 0 0 0

c′µ, H
′
µν

c′00 mc′00 -mc′00 mc′00 −mc′00

TABLE II: Dominant contributions of the various Lorentz violating terms given in Eq. (14) to the

diagonal elements of the n− n̄ mass matrix

where

Γ′
µ = e′µ + c′µνγν + id′,5µνγ5γν + d′µνΣµν (15)

and

M ′ = c′µγ
µ +H ′

µνσ
µν (16)

We have not included the term already discussed in sec. IV above. Their contributions to

the off diagonal terms in the M4×4 n− n̄ mass matrix is given in Table II below:

VI. COMMENTS

Before concluding, we make a few observations.
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(a) Even though we have written the LIV operators in terms of the effective point like

neutron approximation, we could imagine these as arising from LIV operators involving

quarks. For example, written in terms of quarks fields, the operator n†n could come from

LIV operators of the form u†u. If we assume the latter as coming from quantum gravity

effects, we would parameterize the expected strength for the quark bilinear as
m2

q

MPℓ
. The

effective coefficient in front of the neutron operator then would most likely be ∼ m2
n

MPℓ
.

(b) As far as the origin of such Lorentz violating terms, one could speculate that they arise

from Lorentz violation from a hidden sector physics. For example in a mirror world type

scenario, there can exist neutron-mirror neutron mixing [16] and if there is Lorentz violating

effects on mirror neutron, it could be transmitted to the familiar neutron sector via the

n− n′ mixing.

(c) In the previous sections, we have only displayed the dominant contributions in the non-

relativistic limit since the experiment is done only using very slow neutrons (i.e. with v
c
∼

10−6). However one could include in the analysis also these terms and wherever appropriate,

the limits on them will be less stringent by this factor.

VII. SUMMARY

To summarize, we have pointed out that a positive signal in the search for neutron-

antineutron observation would imply stringent constraints on the strengths of several kinds

of baryon number conserving Lorentz violating terms for neutrons. We also find that one

class of ∆B = 2 Lorentz invariance violating terms has the effect that it can be bounded

by the non-observation of n − n̄ oscillation and this term behaves in such a way that it is

independent of the magnetic field. Thus even in the absence of degaussing, one can get

useful information on the nature of baryon number violating LIV terms.
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