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Dark matter detectors will soon be sensitive to Solar neutrinos via two distinct channels: co-
herent neutrino-nucleus and neutrino-electron elastic scatterings. We establish an analysis method
for extracting Solar model properties and neutrino properties from these measurements, including
the possible effects of sterile neutrinos which have been hinted at by some reactor experiments
and cosmological measurements. Even including sterile neutrinos, through the coherent scattering
channel, a 1 ton-year exposure with a low-threshold background free Germanium detector could
improve on the current measurement of the normalization of the 8B Solar neutrino flux down to
3% or less. Combining with the neutrino-electron elastic scattering data will provide constraints
on both the high and low energy survival probability, and will improve on the uncertainty on the
active-to-sterile mixing angle by a factor of two. This sensitivity to active-to-sterile transitions is
competitive and complementary to forthcoming dedicated short baseline sterile neutrino searches
with nuclear decays. Finally, we show that such solar neutrino physics potentials can be reached as
long as the signal-to-noise ratio is better than 0.1.

PACS numbers: 95.35.+d; 95.85.Pw

I. INTRODUCTION

Dark matter detectors are rapidly improving sensitiv-
ity [1], and as they continue to increase in size and re-
duce thresholds, they will encounter the neutrino back-
ground, at which point Solar, atmospheric, and diffuse
supernova neutrinos will interfere with a potential dark
matter signal [2]. Neutrino interactions in these detectors
will occur through both coherent neutrino-nucleus scat-
tering (CNS) [3] and neutrino-electron elastic scattering
(ES). Understanding the expected neutrino signals will
be crucial not only for the purposes of extracting a dark
matter signal, but also for extracting properties of neu-
trinos [4, 39] and their astrophysical sources.

Focusing in particular on Solar neutrinos, experimental
measurements have provided a wealth of information on
fundamental properties of neutrinos and on properties
of the Sun (for recent reviews see Refs. [6]). Through
these measurements, it is now well-established that the
transformation of high energy neutrinos from the Sun is
due to the matter-induced MSW effect, which provides
the explanation for the detected electron neutrino event
rate on Earth relative to the predicted rate. Neutrino
mass differences and mixing angles are then determined
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by combining Solar data with data from atmospheric,
accelerator, and reactor neutrino experiments [7].

Solar neutrino data also can provide an important test
of Standard Solar Models (SSMs). Recent 3D rotational
hydrodynamical simulations [8] suggest a lower abun-
dance of metals in the Solar core relative to previous
models [9], which implies a reduced temperature in the
Solar core and a corresponding reduction in some of the
neutrino fluxes. Though helioseismology data are incon-
sistent with a lower metallicity, future measurements of
neutrino fluxes may be able to distinguish between a high
or low metallicity Solar model.

In addition to providing a test of SSMs, Solar neutri-
nos may also provide a probe of exotic new physics. In
particular, some reported measurements appear incon-
sistent with the standard picture of neutrino mass dif-
ferences and mixing angles. First, there is a deficit of
electron neutrinos measured [10, 11] in the radioactive
source experiments of the GALLEX [12] and SAGE [13]
Solar neutrino detectors. Second, very short baseline
(VSBL) neutrino experiments with distances of < 100 m
indicate a deficit of electron anti-neutrinos (the reactor
neutrino anomaly) [14]. Both of these results can be ex-
plained by an additional neutrino with a mass splitting
∆m2 ∼ 1 eV2. Additional possible evidence for sterile
neutrinos comes from short-baseline experiments (LSND
and MiniBooNE) [16–18]. Cosmological measurements
may also be interpreted as favoring the existence of light
sterile neutrinos [15]. Light sterile neutrinos can also be
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searched for using both long baseline reactors and Solar
neutrino experiments [19–21] (For a recent general review
on sterile neutrinos see Ref. [22]).

There are additional possible hints for sterile neutri-
nos that come directly from Solar neutrinos. For ex-
ample, measurements of the Solar 8B electron neutrino
flux by the Sudbury Neutrino Observatory (SNO) [23],
Super-Kamiokande (SK) [24], and Borexino [25], com-
bined with the SNO neutral current (NC) measurement,
indicate a constant electron neutrino survival probability
over the 8B energy range. In contrast, the LMA-MSW
solution predicts that at the lowest energies that SNO
and SK are sensitive to, there is an upturn in the sur-
vival probability coming from the fact that at such en-
ergies the flavor transformations are dominated by vac-
uum effects. New physics in the neutrino sector, such
as non-standard neutrino interactions [26] or transitions
into a non-active sterile component [28], can predict an
energy-independent survival probability in this interme-
diate regime.

Motivated by the prospects for improving understand-
ing the SSM and neutrino properties, in this paper we
perform a general study of the sensitivity of dark matter
detectors to Solar neutrinos. We include the possibil-
ity of sterile neutrinos in our analysis within a specific
theoretical framework involving a single new sterile neu-
trino with mass splitting of ∆m2 ∼ eV2. We discuss
the utility of both CNS and ES data from a dark matter
detector. Our primary results show that CNS data sub-
stantially improve the measurement of the normalization
of the 8B Solar neutrino flux, and the ES data substan-
tially improve the measurement of the neutrino mixing
parameters. Interestingly, combining these two indepen-
dent channels together can lead to much improved con-
straints on the active-to-sterile mixing angle. Effect of
including residual backgrounds to the simulated data is
also studied.

This paper is organized as follows. In Section II we
briefly review the physics of both coherent neutrino scat-
tering and neutrino-electron scattering, and discuss de-
tection prospects for Solar neutrinos through CNS and
ES. In Section III we briefly discuss a 3+1 model with a
single new sterile neutrino. In Section IV we introduce
our methodology for constraining the parameters of the
3+1 sterile neutrino model with CNS and ES data from
a dark matter detector. In Section V we present the re-
sults of our analysis, and then close in Section VI with
our discussion and conclusions.

II. EXTRACTING COHERENT NEUTRINO
SCATTERING AND ELASTIC SCATTERING

SIGNALS

In this section we briefly review the coherent neutrino-
nucleus and neutrino-electron elastic scattering pro-
cesses. We then discuss the properties of future dark mat-
ter detectors that will be sensitive to both CNS through

nuclear recoils and neutrino-electron scattering through
electron recoils.

It has been shown by Freedman [29] that the neutrino-
nucleon elastic interaction leads to a coherence effect
implying a neutrino-nucleus cross section that approxi-
mately scales as the atomic number (A) squared when
the momentum transfer is below a few keV. At tree level,
the neutrino-nucleon elastic scattering proceeds through
the exchange of a Z boson within a neutral current inter-
action. The resulting differential neutrino-nucleus cross
section as a function of the recoil energy TR and the neu-
trino energy Eν is [30]

dσCNS(Eν , TR)

dTR
=
G2
f

4π
Q2
wmN

(
1− mNTR

2E2
ν

)
F 2(TR),

(1)
where mN is the target nucleus mass, Gf is the Fermi

coupling constant, Qw = N−(1−4 sin2 θw)Z is the weak
nuclear hypercharge with N the number of neutrons, Z
the number of protons, and θw the weak mixing angle.
F (TR) is the nuclear form factor that describes the loss
of coherence for recoil energies above ∼10 keV. In the
following, we will consider the standard Helm form fac-
tor [31].

Future dark matter detectors will also soon be sensitive
to the neutrino-electron electroweak interaction. This
proceeds through the exchange of a Z boson (neutral cur-
rent) and the exchange of a W boson (charged current).
The latter is only possible in the case of an incoming νe.
The resulting cross section is [32, 33]

dσES(Eν , Tr)

dTr
=
G2
fme

2π

[
(gv + ga)2

+(gv − ga)2
(

1− Tr
Eν

)2

+ (g2a − g2v)
meTr
E2
ν

]
,

(2)

where me is the electron mass, gv and ga are the vectorial
and axial coupling respectively and are defined such that

gv = 2 sin2 θw −
1

2
ga = −1

2
. (3)

In the particular case νe+e→ νe+e, the interference due
to the additional charged current contribution implies a
shift in the vectorial and axial coupling constants such
that gv,a → gv,a+1. Due to the rather large difference in
the νe + e and νµ,τ + e cross sections of almost an order
of magnitude, by measuring the neutrino-electron scat-
tering rate, one can derive the neutrino electron survival
probability. The standard MSW-LMA solution leads to
a rather flat neutrino-electron survival probability below
1 MeV of about 0.545 [26].

Figure 1 shows the event rate spectra expected in a
Ge detector from 8B induced CNS nuclear recoils (blue
solid line) and pp induced ES electronic recoils (red
dashed line) as a function of true kinetic energy of the
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FIG. 1: Neutrino induced backgrounds in a low-threshold Ge
dark matter detector as a function of true kinetic energy of the
recoil (keV) and ionization energy (keVee). The 8B induced
nuclear recoils (CNS) and the pp induced electronic recoils
(ES) are shown as the blue solid and red dashed lines respec-
tively. These event rates have been computed using the high
metallicity standard solar model, Pee = 0.55 for pp neutrinos
and Pes = 0 at all neutrino energies. Also shown in green is a
residual gamma background of 5 and 50 evt/ton/year/keVee
with a 10% uncertainty.

recoil (keV) and ionisation energy (keVee)1, computed
using the standard Lindhard’s ionization quenching fac-
tor model for CNS events [27]. The former neutrinos are
produced from the reaction 8B → 8Be+ e+ + νe and the
latter are produced from p + p → 2H + +e+ + νe. We
plot the rate above a recoil energy threshold of 0.1 keV
for a Ge detector. With a 0.1 keV energy threshold,
we are sensitive to most pp neutrinos in the ES channel
and to neutrino energies above approximately 1.9 MeV in
the CNS channel. In such configurations, both channels
are almost perfectly pure samples of pp and 8B neutri-
nos which then offers the unique possibility to accurately
probe the solar neutrino physics in both the vaccum (low
energy neutrinos pp) and the matter (high energy neutri-
nos 8B) dominated regimes with a single experiment. As
a matter of fact, with a one ton-year exposure Ge detec-
tor, one expects about ∼ 500 neutrino events in both the
CNS and ES channels above 0.1 keV recoil energy. Ad-
ditionaly, we also show in green our hypothetical back-
ground model corresponding to a residual gamma back-
ground from natural radioactivity of surrounding mate-
rials of 5 and 50 evt/ton/year/keVee with a 10% uncer-
tainty discussed below and considered in Sec.V B.

Several dark matter detection techniques for lowering

1 keVee (keVnr) corresponds to the unit used to quantify the en-
ergy of the event assuming the electron (nuclear) recoil energy
scale, while keV refers to the true kinetic energy of the recoiling
particle.

the experimental threshold are under development. For
cryogenic crystal experiments, the use of high electric
field across the crystals results in a significant amplifi-
cation of the total phonon signal [34, 35], with the po-
tential to significantly lower the threshold. The Super-
CDMS collaboration has shown the possibility to lower
the threshold down to 170 eVee (electron equivalent)
which is equivalent to a threshold on the nuclear recoil en-
ergy of about 800 eVnr, with lower thresholds projected
in the future [36]. As a matter of fact, with a voltage
across the crystal of 100 V, one would have an amplifica-
tion gain of 34 in the total phonon energy for electronic
recoils. Taking into account the ionization quenching fac-
tor for nuclear recoils, one could then get a nuclear recoil
energy threshold of 0.1 keVnr with a total phonon en-
ergy threshold around 500 eV, as expected for the next
generation of SuperCDMS detectors. It is worth noticing
that such detectors will have phonon baseline energy res-
olutions better than 100 eV, leading to ∼3 eVee energy
resolution in electron-equivalent unit at 100 V bias, which
we have checked to have negligible effect on the spectral
shape of the CNS and ES neutrino signals. Using CaWO4

cryogenic crystals, the CRESST collaboration recently
demonstrated a nuclear recoil threshold of 600 eVnr [37].
Another possibility is the use of the secondary scintilla-
tion signal (S2) in Xe experiments as demonstrated by
the XENON10 collaboration [38], where they performed
an S2-only analysis with a threshold of 5 electrons, cor-
responding to 1.4 keV nuclear recoil energy.

Since in this paper we are trying to evaluate the physics
that may be achieved with future low-threshold dark
matter detectors, we will assume an experimental thresh-
old of 0.1 keV and, unless otherwise stated, will not
consider additional sources of background and no detec-
tion of dark matter particles. Due to the very different
spectral shapes of the CNS and ES signals (see Fig. 1),
the discrimination power between these two populations
of events is large enough that it does not induce addi-
tional systematics in the neutrino parameter estimations.
Therefore, event identification between ES and CNS is
not assumed, although substantial discrimination power
between electron and nuclear recoils can be achieved by
dark matter experiments using ionization or light yield
quantities (typically at the expense of a higher analysis
threshold).

Note that for all the calculations in Figure 1 and for
the following results we utilize a Ge target, although our
quantitative results will not change substantially for dif-
ferent targets. As a matter of fact, the lighter is the
target nucleus, the easier it is to detect CNS events from
8B neutrinos as the required energy threshold increases:
4 keV (Xe), 7.9 keV (Ge), 20 keV (Si), and 35 keV
(CaWO4 thanks to the light O target). However, CNS
is a coherent process that scales as A2 implying larger
event rates for heavier targets at a fixed exposure. For
example, with a 0.1 keV threshold, the CNS rate for a Xe
target is about a factor of two larger than for a Ge target
for a similar exposure. From a practical perspective, it is
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likely that a Ge target will be able to more easily achieve
the low thresholds that we discuss relative to a Xe target.
However, for larger thresholds Xe targets are more likely
to achieve the exposures that we consider below. In the
case of the neutrino-electron scattering, we checked that
the event rate is fairly insensitive to the particular choice
of target nucleus.

The only noticeable difference in dark matter technolo-
gies when applied to Solar neutrino physics is their ex-
pected backgrounds. Baudis et al. [39] have discussed in
detail the expected backgrounds for massive xenon based
dual-phase Time Projection Chamber dark matter detec-
tors. They have shown that thanks to the self-shielding
properties of such experiment, the most dominant back-
grounds are coming from the intrinsic 85Kr, 222Rn and
136Xe (2νββ) decays which should have an integrated
rate over 2-30 keV of the same magnitude as the ex-
pected pp induced electronic recoils, leading to a (pp-
neutrino) signal-to-noise ratio of 1. Hence, even though
such experiments cannot reach thresholds much below 1
keVnr, they are still very interesting in terms of back-
ground levels and are therefore complimentary to cryo-
genic detectors. Indeed, the latters suffer from lack of
self-shielding but surface events from surrounding mate-
rials (mostly from 210Pb decays) can still be efficiently re-
jected thanks to phonon fiducialization as demonstrated
by the SuperCDMS collaboration [40] and to be improved
with new sensor designs [41]. The ultimate background
to such cryogenic detectors are therefore events happen-
ing in the bulk such as the cosmogenic activation lines
from the electron-capture of 68Ge, 68Ga, 65Zn and 49V
(dominating ones) producing mono-chromatic electron
recoils around 160 eVee, 1.3 keVee and 10.4 keVee, and
the gamma from surrounding radioactivity. As a matter
of fact, only the gamma background will end up being
the ultimate background to pp neutrino measurements
as both spectra are mostly flat, implying that no spec-
tral discrimination is to be expected. As the detector
performances at this very low energy regime are not yet
well established, unless otherwise stated, in the following
we will consider an idealized background free experiment
and will dicuss the effect of a residual gamma background
on the solar neutrino physics potential of a 10 ton-year
Ge detector in Sec. V B.

III. 3 + 1 NEUTRINO MODEL

In this section, we move on to discuss the theoreti-
cal model that we use for neutrino oscillations. Within
this model-dependent framework, our goal is to then de-
termine in section IV what CNS and ES measurements
from a dark matter detector could add to the existing
measurements from reactors and other Solar neutrino ex-
periments. For simplicity, we focus on the theoretical
model with one new mass splitting that is due to a single
sterile neutrino that is much larger than the measured
mass splittings |∆m2

21| and |∆m2
32|. This model can be

extended to also include more than one additional sterile
neutrino, see e.g. Ref. [19]. Here we simply review the
formulae that are required to calculate transition proba-
bilities for this model with one additional sterile neutrino;
for a more complete discussion of this model see Ref. [42].

With one additional sterile neutrino, there are a to-
tal of 6 angles that are required to describe the neutrino
mixing matrix, θ12, θ13, θ23, θ14, θ24, and θ34. For the
analysis in this paper we will take θ24 = θ34 = 0, so that
the only possible new non-zero angle is θ14. Small values
of θ24 and θ34 are deduced from the results of reactor
experiments [22], so setting these “non-solar” angles to
zero will not affect the results that we present hereafter.
If we were to consider nonzero values of θ24 and θ34, we
would have to also account for the possibility of addi-
tional small CP violating phases on top of the one in the
standard three-neutrino model.

For our assumption of θ24 and θ34, the relevant el-
ements of the mixing matrix that determine mixing
between the electron flavor and the mass eigenstates
are [19, 42]

Ue1 = c14c13c12 (4)

Ue2 = c14c13s12 (5)

Ue3 = c14s13 (6)

Ue4 = s14 (7)

where sı = sin θı and cı = cos θı. The mixing between
the sterile component and the mass eigenstates are con-
trolled by

Us1 = −s14c13c12 (8)

Us2 = −s14c13s12 (9)

Us3 = −s14s13 (10)

Us4 = c14 (11)

In addition to the mixing elements in vacuum, we will
also need the effective mixing matrix elements in mat-
ter at the electron neutrino production point. These are
given by

Ume1 = c14c13c
m
12 (12)

Ume2 = c14c13s
m
12 (13)

Ume3 = Ue3 = c14s13 (14)

Ume4 = Ue4 = s14. (15)

In these equations the matter mixing angles are defined
through

km
k

sin 2θm12 = sin 2θ12 (16)

km
k

cos 2θm12 = cos 2θ12 − vxγ2 − vxrxα2 (17)

where k, km are the neutrino wavenumbers in vacuum
and in matter. The ratio of the neutral current to the
charged current potential is rx = 0.25, γ = c13c14,
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α = −s14s13, and vx = Vcc/k, and we take the mat-
ter potential to be Vcc = 10−11 eV. Note that here we
have not accounted for the small variation in the matter
potential with radius in the Sun.

With the above assumptions for the mixing matrix el-
ements, the probability to detect an electron neutrino of
flavor α = e, µ, τ, s, where here s stands for sterile, that
is produced in the Sun is [19, 42]

Peα =

4∑
ı=1

U2
αı(U

m
eı )2. (18)

This probability does not account for phase information
that gets lost by a spatial averaging over the neutrino
production region and by smearing of energy. Note that
we do not account for small Earth-induced matter oscil-
lations for Solar neutrinos [43]. For the Solar neutrino
analysis, there is no dependence on the mass splitting
∆m2

41, as oscillations due to this mass difference are av-
eraged out over the Earth-Sun baseline.

For a fixed Eν we have a unitarity constraint

Pee + Pea + Pes = 1, (19)

where Pea is the probability that an electron neutrino
transitions into a mu/tau neutrino component.

IV. DATA ANALYSIS

With the above theoretical model in place, in this sec-
tion we discuss our analysis of the data sets. We begin
by discussing the analysis of the very long baseline Kam-
LAND data, and then move on to discuss our analysis of
the Solar neutrino data. For the latter analysis we high-
light the new information that both CNS and ES data
from a dark matter detector can provide on parameters
of the 3+1 model. Although we do not use recent mea-
surements from Daya Bay, Reno, and Double Chooz of
non-zero sin2 θ13 in our analysis, in the discussion section
we estimate the implications that these short baseline re-
actor data have on our results.

A. Reactor data

In order to implement our analysis methods in this
section, we need an expression for the neutrino survival
probability in vacuum. With the assumptions in Sec-
tion III, for propagation in vacuum the electron neutrino
survival probability is

Pee = 1−
∑
ı<

4|Ueı|2|Ue|2 sin2

(
∆m2

ıL

4Eν

)
. (20)

For the case of oscillations driven by the mass-squared
difference ∆m2

21, as will be appropriate for the analy-
sis of KamLAND data, the survival probability can be

approximated as

Pee = c414c
4
13P

2ν
ee + c414s

3
13 + s414, (21)

where the two flavor survival probability in vacuum is

P 2ν
ee = 1− 4s212c

2
12 sin2

[
∆m2

21L

4E

]
. (22)

For KamLAND, we use the data and the prescription
outlined in Ref. [44], which is appropriate for determin-
ing how small angles θ13 and θ14 affect the values of θ12
and ∆m2

21 that are determined within a two-flavor neu-
trino framework. In particular, KamLAND provides a
measurement of the survival probability as a function of
the following quantity,

x(Eν , L) ≡ 1

sin2 θ̂12

〈
sin2 2θ12M sin2

(
∆m2

12ML

4Eν

)〉
,

(23)
where the matter-modified angle and mass splitting is

sin2 2θ12M =
sin2 2θ12

(cos 2θ12 −A/∆m2
21)2 + sin2 2θ12

(24)

and

∆m2
21M = ∆m2

21

√
(cos 2θ12 −A/∆m2

21)2 + sin2 2θ12.

(25)

Here the A = −2
√

2GF ÑeEν , where Ñe = Ne cos2 θ13
and Ne ' 2NA g cm−3 is the electron number den-
sity. In Equation 23 the hat over the angles denotes the
best fitting solution from a two flavor analysis, and the
subscript M accounts for matter oscillations. We take
∆m2

21 as its measured value from a two-flavor analysis,
∆m2

21 = 7.5 ± 0.2 × 10−5 eV2 [44]. With this choice we
then calculate the vacuum survival probability in Equa-
tion 21 as a function of the three mixing angles.

B. Solar data

For our Solar analysis, we use data from SNO, SK,
Borexino, Homestake, and Gallium experiments. SNO
and SK are mostly sensitive to 8B neutrinos, with a small
contribution from hep neutrinos. For SK we use the ES
energy spectrum over the electron recoil kinetic energy
range [5.0-20] MeV [24]. For SNO we use the total NC
rate as determined from the three-phase analysis [23].
For Borexino we use measurements of the 7Be [45] and
pep [46] neutrino fluxes. We also include the Borexino
ES energy spectrum over electron recoil kinetic energy
range [3.0-13.0] MeV [25]; though at high energies this
data is much less sensitive than that of SK, we include
it for completeness because it extends to lower energies
than SK. For Homestake we use the final results from
Ref. [47], and for Gallium we use the combined analysis
of Ref. [13].
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TABLE I: Experiments, observables, and parameters that are best constrained by each of the experiments that are utilized in
our analysis.

Experiment Observable Best constrained parameters Reference
SNO Neutral Current rate f8B , sin2 θ12, sin2 θ14 [23]
SK Elastic Scattering rate f8B , sin2 θ12, sin2 θ14 [24]
Borexino Elastic Scattering rate f7Be, fpep, f8B , sin2 θ12, sin2 θ14 [25, 45, 46]
Homestake Integrated Capture rate f8B , f7Be [47]
Gallium Integrated Capture rate f8B , f7Be, fpp [13]
KamLAND ν̄e disappearance ∆m2

21, sin2 θ12, sin2 θ13, sin2 θ14 [44]
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FIG. 2: Marginalized posterior probability density functions for selected model parameters from our MCMC analysis considering
only existing the data from the experiments listed in Table I and the high metallicity SSM [9] listed in Table III. Along the off
diagonal are the correlations between the different parameters, where the thick contours reflect the 68% and 95% C.L. of the
joint distributions. The other parameters {f7Be, fpep, fpp, fhep, fCNO}, not shown here, have been marginalized over.

TABLE II: Constraints on parameters that we deduce from our MCMC analysis presented in Fig. 2, compared to previous
constraints on the parameters in Column 3 as determined from the reference indicated. The errors on the “previous results”
for sin2 θ13 are given in terms of the statistical plus systematic uncertainty.

Parameter our result (68% C.L.) previous result Reference
f8B 0.998± 0.034 0.941± 0.036 [23]

sin2 θ12 0.300±0.016 0.307+0.017
−0.015 [44]

sin2 θ13 <0.030 (90% C.L.) 0.0235± 0.0042± 0.0013 ,0.0291± 0.0035± 0.0051 [59], [60]
sin2 θ14 <0.034 (90% C.L.) < 0.04 [21]

∆m2
21 (×10−5 eV2) 7.5±0.14 7.5±0.2 [44]
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All of the solar experiments do not directly measure
the electron neutrino survival probability, but rather the
neutrino survival probability convolved with a cross sec-
tion and the appropriate neutrino spectrum. For ES mea-

surements, taking Pea in Equation 18 as the appearance
probability for mu and tau neutrinos, the prediction for
the ES energy spectrum relative to the scenario in which
there is no neutrino flavor transformations is

RES(Teff ) =

∑
fı
∫
f iν(Eν)

[
Pee(Eν)

dσES,e
dTe

+ Pea(Eν)
dσES,a
dTe

]
G(Te, Teff )dEν + fγ

dRγ
dTe

dTe∑∫
f iν(Eν)

dσES,e
dTe

G(Te, Teff )dEν +
dRγ
dTe

dTe
. (26)

TABLE III: Flux normalizations for the high metallicity
GS98-SGII [9] that are utilized in our analysis.

Neutrino flux SSM prior units
pp : p+ p→ 2H + e+ + νe 5.98(1± 0.006) 1010 cm−2 s−1

pep : p+ e− → 2H + νe 1.44(1± 0.012) 108 cm−2 s−1

7Be : 7Be+ e− → 7Li+ νe 5.00(1± 0.07) 109 cm−2 s−1

8B : 8B → 8Be+ e+ + νe 5.58(1± 0.14) 106 cm−2 s−1

hep : 3He+ p→ 4He+ e+ + νe 8.04(1± 0.30) 103 cm−2 s−1

13C : 13N → 13C + e+ + νe 2.96(1± 0.14) 108 cm−2 s−1

15N : 15O → 15N + e+ + νe 2.23(1± 0.15) 108 cm−2 s−1

17O : 17F → 17O + e+ + νe 5.52(1± 0.17) 106 cm−2 s−1

In this equation, fν(Eν) is the unit-normalized neu-
trino energy spectrum, and fı is the ratio of the
full neutrino flux of the ıth component relative to a
Standard Solar Model (SSM) prediction, with ı =
8B, 7Be,CNO, pep, pp, hep. The electron neutrino elas-
tic scattering cross section is dσES,e/dTe and dσES,a/dTe
is the mu and tau neutrino elastic scattering cross sec-
tion. These cross sections are functions of the true recoil
electron kinetic energy Te. The functionG(Te, Teff ) is the
gaussian energy response, which is a function of Te and
measured electron kinetic energy Teff . Finally, fγ and
dRγ/dTe are the residual gamma background normaliza-
tion factor and event rate as a function of the recoil-
ing electron energy. The SK and Borexino ES data sets
that we utilize are in the form of an integrated number
of events relative to the SSM prediction in each energy
bin, so to compare to our predictions we simply integrate
Equation 26 over the appropriate Teff corresponding to
the energy range covered by each bin, using the measured
G(Te, Teff ) for each experiment.

To these spectral measurements we add the SNO NC
flux measurement of 5.25 ± 0.20 × 106 cm−2 s−1, which
is derived from the measured event rate above the deu-
terium breakup threshold of 2.2 MeV [23]. For SNO, the
rate relative to the SSM is then

RNC = f8B

∫
[1− Pes(Eν)]f(Eν)dσν−ddEν

(Eν)dEν∫
f(Eν)dσν−ddEν

(Eν)dEν
, (27)

where dσν−d/dEν is the differential neutrino-deuterium
cross section [48] and integrals are computed from

2.2 MeV up to the end point of the 8B spectrum.

To the above Solar data sets, we add mock data from
a Ge dark matter detection experiment. For the general
case of a CNS detection at a dark matter detector, the
energy spectrum is

dR

dTR
= N

∫
Emin
ν

fν(Eν) [1− Pes(Eν)]
dσCNS
dTR

dEν (28)

where Emin
ν is the minimum neutrino energy required to

produce a nuclear recoil of energy TR, and N is the num-
ber of target nuclei per unit of mass of detector material.
Dividing by the SSM prediction with Pes(Eν) = 0 gives
a prediction in terms of f8B , similar to Equations 26
and 27.

A departure from the theoretical predictions of the 8B
CNS induced nuclear recoil event rate further away from
its uncertainty could be interpreted as an evidence for
active-to-sterile neutrino oscillation, i.e. Pes(Eν) 6= 0. It
is however worth mentioning that such departures could
also be due to non-standard interactions (NSI) [26] or
from mis-estimation of sin2 θw at low transferred mo-
mentum which has yet to be measured. Combining So-
lar with reactor, radiogenic, and/or beam CNS measure-
ments would ultimately be required to further assess the
validity of a possible evidence of active-to-sterile neu-
trino oscillation in the Solar sector from CNS measure-
ments [49, 50]. For the remainder of this paper, we will
therefore consider that there is no NSI and that the weak
charge is perfectly well known. Note that any uncertain-
ties in the weak charge would be quadratically added to
the neutrino flux normalization uncertainty.

In addition to the mock CNS data, we add mock
neutrino-electron elastic scattering for dark matter de-
tectors. For the mock ES data sets we considered pp,
7Be, and CNO neutrinos using Eq. 26, though the domi-
nant contribution comes from pp neutrinos as illustrated
in Fig 1. Motivated by the current measurements of the
neutrino survival probability in the vacuum dominated
regime [46], we take the survival probably at pp neutrino
energy to be a constant of Pee = 0.55 over the energy
range of these three neutrino sources. As for the mock
CNS data we consider a detector with perfect energy res-
olution, G(Te, Teff ) = 1.
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C. Likelihood analysis

Given the above data sets, we are now in position to
determine the theoretical parameters that we marginal-
ize over. We take as our set of theoretical parameters
~a ≡ {fı, sin2 θ12, sin

2 θ13, sin
2 θ14,∆m

2
21}, where again

ı = 8B, 7Be,CNO, pep, pp, hep and γ when a residual
gamma background is considered. As discussed above,
we take a gaussian prior on ∆m2

21 to account for the un-
certainty on its measurement from a two flavor analysis.
For theoretical priors on the flux normalizations, we take
the high metallicity GS98-SFII SSM [9]– we note that the
constraints on the flux normalizations are unaffected if we
were to instead use a low metallicity SSM [8]. Table III
lists the GS98-SFII SSM priors on the flux normaliza-
tions, and Table I lists the parameters that we use, the
respective observables, and the best constrained param-
eters from each experiment. Note that we do not include
∆m2

41 as a parameter, because the reactor and Solar data
are not sensitive to this mass splitting if it is ∼ 1 eV2.

For a given point in our model parameter space, we use
Eq. 23, 26, 27, and 28 to determine the theoretical pre-
dictions for the different event rates and compare these to
the corresponding data sets. To constrain the parameters
~a we perform a Bayesian analysis in a similar fashion as
what has been done in prior solar neutrino analyses [51].

We assume a likelihood function of the form L ∝ e−χ2/2,
with

χ2
tot =

∑
ı

∑


(Rth,ı(~a)−Rı)2

σ2
ı

+ χ2
prior. (29)

Here Rth,ı(~a) is the theoretical prediction for the rate as
a function of the parameters ~a from the ıth experiment
in the th energy bin, and Rı is given by the rate in an
energy bin from one of the aforementioned data sets. In
this notation, for the case of an experiment with one en-
ergy bin such as SNO we simply have  = 1. Finally,
χ2
prior corresponds to the priors on fı and sin2 θ12 taken

as gaussian distributions as described above. When con-
sidered, the gamma background normalization fγ is also
described by a gaussian distribution with a systematic
uncertainty of 10%.

To determine the posterior probability density distri-
butions of the parameters ~a from the experimental data
sets, we utilize a Markov Chain Monte Carlo (MCMC)
approach based on the standard metropolis hastings al-
gorithm with a multivariate gaussian proposal function.
In order to deal only with independent MCMC samples,
we performed a subsampling of the chain to account for
both the burn-in and the correlation lengths [52]. Us-
ing a multivariate gaussian as a proposal function, for
all MCMC analyses presented hereafter, we obtained a
correlation length around 80, leading to a total of in-
dependent samples used for PDF estimations of about
200,000.

V. RESULTS

Now that our theoretical model and analysis method-
ology have been discussed in the previous sections, we
are in position to first apply our analysis technique using
current Solar and KamLAND data. We then move on
to study the impact of CNS and ES measurements from
dark matter detectors on our understanding of Solar neu-
trinos.

A. Solar + Kamland

In order to compare our analysis technique with pre-
vious results [20, 21, 51], we first analyze the Solar and
KamLAND data. Figure 2 shows both the resulting pos-
terior probability densities and the 2D joint distributions
for some of our model parameters considering only the
existing solar and KamLAND data as listed in Table I.
We again reiterate that in this figure, and in the figures
below, we focus on the high metallicity SSM [9]. Cor-
relations are clearly evident between the mixing angles,
in particular between sin2 θ12 and sin2 θ14. Interestingly
one can see that most of the neutrino model parame-
ters exhibit correlations with f8B , suggesting that a bet-
ter measurement of the 8B neutrino flux could improve
our estimation of the neutrino mixing angles. The anti-
correlation between sin2 θ12 and sin2 θ14 is driven by the
KamLAND data, since large values of both of these pa-
rameters imply a depleted measured flux from reactors.
The anti-correlation between sin2 θ12 and f8B is largely
driven by the Solar data, in particular the SK measure-
ment of the Solar electron neutrino flux, and its measure-
ment of the mu/tau neutrino flux with a reduced sensi-
tivity. The positive correlation between sin2 θ14 and f8B
is largely due to the CNS and SNO measurements of the
total NC Solar flux. We find that sin2 θ13 is only strongly
correlated to sin2 θ14 while ∆m2

21 is largely uncorrelated
with any other parameter.

Very generally, we find that the constraints on the pa-
rameters deduced from our MCMC analysis are in ex-
cellent agreement with previous determinations of these
parameters. These results are summarized in Table II.
The upper limit that is deduced from the posterior prob-
ability density of sin2 θ14 < 0.034 (at 90% C.L.) is in good
agreement with the upper bounds quoted in Refs. [20, 21].
Also, the constraints on ∆m2

21 and f8B are consistent
with the input priors, and our measurement of sin2 θ12 is
consistent with previous results, even though we have a
flat prior on this quantity. It is worth emphasizing that
the goal of this paper is not to perform a perfectly com-
plete and detailed 3+1 analysis but rather to show, for
the first time, what a dark matter detector could bring
to the field of neutrino physics within the scope of a sim-
plified 3+1 analysis, as presented in Sec. III.
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FIG. 3: Derived 90% C.L. contours from our MCMC analyses for the normalization of the 8B flux versus the solar mixing angle
sin2 θ12 (left), the active mixing angle sin2 θ13 (middle) and the sterile mixing angle sin2 θ14 (right), when combining current
Solar and KamLAND data with future CNS and ES data from a background free dark matter detector. The top (bottom)
panels assume a 1 (10) ton-yr exposure for a Ge detector with a 0.1 keV threshold. These panels highlight the improvement in
the measurement of the normalization of the 8B flux and on the estimation of the neutrino mixing angles with the addition of
CNS and ES data from a dark matter detector.

B. Including data from a low-threshold dark
matter detector

In this section, we estimate how a low-threshold dark
matter detector with a ton-scale exposure could improve
on the results presented in Figure 4. As discussed above,
such an experiment should give the unique opportunity to
probe the solar neutrino sector at both low and high ener-
gies, i.e. in the vacuum and matter dominated regimes.
To do so, we have added simulated data (CNS + ES)
to the previously described MCMC analysis using ex-
isting data from other experiments as listed in Table I.
We have simulated data from the theoretical CNS and
ES event rate spectra, as shown in Fig. 1, in a model
independent fashion by considering only data from ex-
periments listed in Table I. As discussed above, for the
ES event rate we used the averaged Pee value as derived
from the combined analysis of all solar experiments sen-
sitive to pp neutrino (see pink dot in left panel of Fig. 4)
which were derived with no sterile neutrinos. The CNS
data were generated considering sin2 θ14 = 0, i.e. assum-
ing no active-to-sterile transition. Also, unless otherwise

stated, we will consider a background free low-threshold
Ge dark matter detector.

Figure 3 shows how constraints at 90% C.L. on selected
parameters evolve with the different data sets considered:
Solar + KamLAND (blue), Solar + KamLAND + CNS
(green), and Solar + KamLAND + CNS + ES data from
a background free dark matter detector (red). We consid-
ered exposures of 1 (top panels) and 10 (bottom panels)
ton-year. For the Ge dark matter detector, we binned
the data from 0.1 keV to 100 keV with 10 (20) bins for
the 1 (10) ton-year exposure.

In general we find that the most substantial improve-
ment by including CNS at dark matter detector is in the
determination of f8B , i.e. the 8B neutrino flux normal-
ization. For example with the addition of CNS data from
a Ge dark matter detector with an exposure of 1 (10)
ton-year to existing solar and KamLAND data, we find
that f8B is determined with a precision of 2.9% (1.6%).
When adding the background model shown in Fig. 1
corresponding to a 5 (50) evt/ton/year/keVee residual
gamma background to a 10 ton-year Ge experiment, we
find that the constraints of f8B weakens to 1.7% (2.1%).
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FIG. 4: Left: Contours at 95% C.L. on the electron neutrino survival probability Pee (cyan) and transition probability into
a sterile neutrino Pes (red) as a function of the neutrino energy. The two set of bands correspond to the case Solar +
KamLAND (dashed lines) and to the case Solar + KamLAND + CNS + ES with a background free 10 ton-year exposure
(filled contours). The contours are determined from Bayesian marginalization of the previously discussed MCMC analyses.
Transition in the electron survival probability from the low- to the high-energy neutrinos around a few MeV is clearly visible
and is know as the transition between vacuum- to matter-dominated oscillation regimes. Also shown are the current constraints
on the neutrino-electron survival probability derived assuming no existence of sterile neutrinos [53]. Right: Projected limits
on the active-to-sterile mixing angle sin2 θ14 ≡ sin2 θee using all current Solar and KamLAND data plus a 1 (green) and 10
(blue) ton-year exposure of a Ge dark matter detector sensitive to both CNS and ES neutrino induced events. The blue long
(short) dashed lines correspond to the sensitivity for a 10 ton-year Ge detector with a residual gamma background of 5 (50)
evt/ton/year/keVee with a 10% uncertainty. The highlighted regions are the favored solutions for the reactor anomaly at the
95% and 99% C.L. [55]. The red contour corresponds to the 99% C.L. constraint and best fit point derived from a global
analysis of both neutrino disappearance and appearance data [54]. The dashed grey curves are the projected limit from the
SOX experiment [56, 57].

With this level of uncertainty, the addition of CNS data
alone will be able to clearly distinguish between the high
metallicity GS98-SFII [9] and low metallicity AGSS09-
SFII [8] SSMs, which have respective flux normalizations
and theoretical uncertainties of 5.58×106(1±0.14) cm−2

s−1 and 4.59× 106(1± 0.14) cm−2 s−1.

With f8B constrained by the CNS data, the addition
of ES data from a dark matter detector then improves
the constraints on sin2 θ14. The constraints on sin2 θ14
are most substantially improved when moving from a 1
ton-year to 10 ton-year exposure. It is additionally worth
noting that due to the different correlations between the
neutrino flux normalizations and the neutrino mixing an-
gles, a CNS and ES measurement from a dark matter de-
tector combined with reactor and other solar experiments
can still substantially improve on the neutrino parame-
ters. This is indeed illustrated in Fig. 3 where we show
the derived constraints in the (f8B , sin2 θ12) plane. Such
a result suggests that CNS and ES at dark matter detec-
tors, combined with existing experiments, can improve
our estimates of the different active-to-active oscillations
as a function of the neutrino energy in the context of a
given neutrino model (3+1 in this case). It is also worth
noticing that in the case of the Solar + KamLAND +
CNS + ES analysis with a 10 ton-year exposure, the re-
constructed value of sin2 θ12 is slightly shifted to lower
values compared to the other analyses presented in Fig. 3.

This is because we generated our mock ES data using
Pee = 0.55 for the pp neutrinos as motivated by cur-
rent measurements (see the pink dot in Fig. 4 left panel)
and not from a global analysis that tends to favor lower
values of Pee, as derived from our Solar + KamLAND
combined anaysis. This leads to a lower reconstructed
value of sin2 θ12 compared to other analyses presented in
Fig. 3. We checked that the conclusions of our work are
fairly insensitive to the particular choice of input value of
Pee at pp neutrinos and that the interest here is to quan-
tify how much the uncertainties on the solar neutrino
physics parameters can be reduced with the addition of
a dark matter experiments to the current Solar neutrino
data.

From the posterior probability densities of the consid-
ered parameters in our MCMC analysis we can also de-
termine the shape of the transition and survival probabil-
ities as a function of neutrino energy. Figure 4 shows the
derived 95% C.L. bands on the neutrino-electron survival
probability in cyan and the neutrino-electron to ster-
ile neutrino transition probability in red. The dashed
lines correspond to the Solar + KamLAND case while
the filled contours are after the inclusion of a 10 ton-
year low-threshold Ge detector. Note that the filled con-
tours with the Ge data are shifted relative to the dashed
contours with Solar + KamLAND data only; again and
as discussed above, this is because of our assumption
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of a constant electron neutrino survival probability of
Pee = 0.55 for pp neutrinos, as suggested by current ex-
perimental measurements. We see that regarding the
overall uncertainties, as more Solar neutrino data sets
are added to the KamLAND data, both Pee(Eν) and
Pes(Eν) become more strongly constrained, by about
50%. When adding the residual gamma background of 5
(50) evt/ton/year/keVee to a 10 ton-year Ge experiment,
we see that the constraints on both Pee(Eν) and Pes(Eν)
are only improved by 40% and 5%, meaning that with
a pp-neutrino signal-to-noise ratio weaker than 0.1, the
information gained from combining the ES data to the
CNS is almost completely lost.

Indeed, by measuring both neutrino-electron scatter-
ing at low energies, from pp neutrinos around 0.4 MeV,
and coherent neutrino scattering, from 8B neutrinos
around 10 MeV, a dark matter detector has the unique
opportunity to study neutrino physics within both the
vacuum- and the matter-dominated regime. This is of
particular interest as the exact shape of the transition,
happening around 2 MeV, can be influenced by the
existence of sterile neutrinos and/or non standard
interactions [26] to which a dark matter detector would
then be sensitive to. In all cases, we can clearly see that
the active-to-sterile neutrino oscillation is fairly constant
as a function of the neutrino energy. Interestingly,
measuring CNS with 8B neutrinos will allow future
low-threshold dark matter experiments to also place an
upper bound on the averaged Pes transition probability
in a model independent fashion. However, such approach
would require significant reduction of the theoretical
uncertainty on the 8B neutrino flux which is about
14% [6].

A dark matter detector can also place interesting con-
straints on the active-to-sterile neutrino oscillations re-
lated to sin2 θ14. Indeed, the right panel of Fig. 4 shows
how our projected limits from a 1 (10) ton-year back-
ground free Ge detector in green (blue) solid line com-
pares to other current and projected measurements of
the active to sterile mixing angle. For the sake of com-
pletness, we also show the effect of a residual gamma
background of 5 (50) evt/ton/year/keVee with a 10% un-
certainty, as shown in Fig. 1, corresponding to a signal-
to-noise ratio for pp induced events of ∼1 (∼0.1), for a
10 ton-year Ge detector by the blue long (short) dashed
line. This figure indicates that a background free ton-
year experiment could reach the best fit point of the
global analysis from [54] and that a 10 ton-year Ge de-
tector will effectively probe most of the parameter space
that can explain the reactor anomaly [55]. Also, it shows
that residual background, such as gammas which are the
hardest ones to disriminate from a pp-neutrino signal, can
drastically affect the neutrino physics potential of such
Ge detector once the signal-to-noise ratio is lower than
0.1, as already hinted from the constraints of Pee and Pes
discussed above. Additionaly, It shows that upcoming
dark matter experiments, with reduced and controlled

backgrounds, could be competitive with the expected
sensitivity of the forthcoming SOX experiment [56, 57].
Therefore, the Solar neutrino measurements with a dark
matter detector sensitive to both ES and CNS that we
have discussed in this paper can be complementary to
experiments that are planned to probe active to sterile
oscillations in the Solar sector [57, 58].

VI. DISCUSSION AND CONCLUSIONS

We have discussed the implications of the measurement
of Solar neutrinos in dark matter detectors through both
the coherent neutrino-nucleus scattering channel and the
neutrino-electron elastic scattering channel. Most gener-
ally, our results show that a CNS detection of 8B neu-
trinos will provide a measurement of the 8B flux nor-
malization to a few percent, and most importantly will
provide an independent test of high and low metalicity
Solar models. For a 10 ton-year detector, we found that
a measurement of elastic scattering pp neutrinos will help
reducing the uncertainty on the neutrino mixing parame-
ters which are mostly relevant to the vacuum dominated
regime. Furthermore, we show that combining the ES
and CNS measurements will further improve on both the
estimation of the neutrino electron survival probability
over all energies and the sensitivity to the sterile neu-
trino mixing angle by about a factor of 2 within a 3+1
neutrino model if backgrounds can be neglected. This im-
plies that dark matter detectors are uniquely positioned
to study both the high and low energy survival proba-
bility simultaneously through two distinct channels and
allow for a competitive and alternative way to probe the
possible existence of sterile neutrinos as hinted by the re-
actor anomalies. However, we have shown that such sen-
sitivities to sterile neutrinos would require that the (pp-
neutrino) signal-to-noise ratio has to be greater than 0.1.
Therefore, as the background levels are expected to be
lower in LXe-TPC detectors compared to low-threshold
cryogenic detectors, we would like to stress the point that
such neutrino physics potential could also be achievable
by combining pp-ES and CNS measurements from a LXe-
TPC and a Ge experiment respectively, highlighting their
great complementarity also existing in the field solar neu-
trino physics.

The analysis in this paper has primarily focused on
Solar and KamLAND data. It is also possible to con-
sider data sets that better constrain some of the param-
eters that we have discussed. As an example we have
not included short baseline data from the Daya Bay [59],
RENO [60], and Double Chooz [61] reactor experiments
which have recently measured a non-zero value of sin2 θ13.
Though a detailed inclusion of these data sets is beyond
the scope of our simplified analysis, it is possible to obtain
an estimate of what the non-zero sin2 θ13 measurements
imply for our results. Indeed, considering a simplified
analysis of the ratio of the observed event rates in the
near and far detectors from Daya Bay and RENO we
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found that the overall sensitivity to sin2 θ14 can be im-
proved by a factor of 2.

While our 3+1 analysis focused on a model with a
mass splitting ∆m2 ∼ eV2 relative to the other active
neutrinos, it is important to recognize that our results
are more broadly applicable to models with much differ-
ent mass splittings. In the future it will be interesting to
consider for example the impact of sterile neutrinos with
smaller mass splitting than we have considered here [28]
and also include the possibility of non-standard neutrino
interactions [42, 62]. Combining Solar neutrino data
from a dark matter detector with present neutrino data
sets should lead to more interesting constraints on these

and other theories of extended neutrino sectors.
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