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Abstract

We combine the Twin Higgs mechanism with the paradigm of Composite Higgs models. In

this class of models the Higgs is a pseudo-Nambu-Goldstone boson from a strongly coupled

sector near the TeV scale, and it is additionally protected by a discrete symmetry due

to the twin mechanism. We discuss the model building issues associated with this setup

and quantify the tuning needed to achieve the correct electroweak vacuum and the Higgs

mass. In contrast to standard Composite Higgs models, the lightest resonance associated

with the top sector is the uncolored mirror top, while the colored top partners can be

made parameterically heavier without extra tuning. In some cases, the vector resonances

are predicted to lie in the multi-TeV range. We present models where the resonances –

both fermions and vectors – being heavier alleviates the pressure on naturalness coming

from direct searches demonstrating that theories with low tuning may survive constraints

from the Large Hadron Collider.
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1 Introduction

There are several possibilities to naturally stabilize the electroweak scale and the Higgs mass

against large UV corrections. However, after the discovery of a light Standard Model (SM)-like

Higgs boson and increasing limits on new particles from the first run of the LHC, it is hard

to find models less tuned than ∼ 5 − 10%. The challenges faced by fully natural models are

becoming several, one of them in particular is the lack of any sign of new colored particles

around the weak scale. This is particularly true for the case of Natural SUSY [1,2], where light

stops are generally required.

On the other hand, in strongly coupled scenarios such as Composite Higgs (CH), where the

Higgs is a pseudo-Nambu-Goldstone boson (pNGB) of a given cosetG/H [3], new colored vector-

like quarks are expected to lie within a few hundreds of GeV of the Higgs. More specifically they

are expected to be close to f , where f is the Goldstone scale. This is a direct consequence of the

partial compositeness mechanism implemented in these models to solve the flavor problem [4,

5]. In this framework, the SM quarks are an admixture of elementary quarks and composite

fermions, which we will write generically as Ψ, with same SM gauge quantum numbers. In this

case, the Higgs mass is [6–8]

m2
h '

Ncy
2
t v

2

2π2

m2
Ψ

f 2
. (1)

From these estimates, as well as from several other checks [9–12], the prediction of natural CH

models is the presence of light fermionic resonances, i.e. with a mass mΨ ∼ f . This prediction

also applies to electroweak composite vector resonances, but their masses can be larger than

mΨ due to the smallness of the weak gauge coupling, g, compared to yt. While this simple

scenario points to straightforward and testable LHC signals, it is useful to assess the robustness

of such a connection. There are, however, composite Higgs scenarios where one can deviate

from this conclusion, i.e. models where mh = 125 GeV without the need for light top partners,

but those models are severely fine tuned [13].

An interesting possibility to disentangle, without additional tuning, the strong connection

between a light Higgs and light colored top partners, while keeping the scale f as small as

possible,1 can be offered by the Twin Higgs (TH) mechanism [16], see also [17]. As far as the

SM alone is considered, the TH mechanism consists of simply mirroring the SM lagrangian, via a

Z2-symmetry, resulting in the SM and its copy, SM′ [18]. The scalar potential has an accidental

U(4)/U(3) symmetry, and radiative corrections do not break it at the level of the quadratic

action thanks to the Z2 symmetry [16]. The embedding of this mechanism in calculable models,

like CH models (see [19–21] for the supersymmetric case), serves as a test as to how well the

twin mechanism works to realize the weak scale with low tuning.2

As we will show in this paper, CH models augmented with the TH mechanism provide

a correct Higgs mass with minimal tuning and without any light colored top partner (see

1An orthogonal possibility is offered by Little Higgs mechanism, where the model building allows for a larger

separation between f and v without large tuning [14] (see references therein), but we will not discuss them here.

See also [15] for a comparison between Little Higgs and Composite Higgs.
2See also orbifold models [22,23].
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also [24]).3 In this scenario the lightest top partner is an uncolored mirror top from the mirror

sector, with mass ∼ ytf , which replaces Ψ in the prediction of eq. (1). At a practical level, the

simplest example of a Composite Twin Higgs (CTH) – just a larger class of CH models – relies

on the global symmetry breaking SO(8)/SO(7). The global symmetry is explicitly broken by

couplings to SM×SM′ . As in standard CH, the explicit breaking induces radiative electroweak

symmetry breaking (EWSB). The novelty here is that, roughly speaking, the overall scale of the

potential is suppressed thanks to the protection of the additional Z2 symmetry. This crucially

depends on the coupling to a mirror elementary sector (both to gauge fields and fermions), as

shown in figure 1. However, in the limit of an exact Z2 symmetry, we expect v = f . Due to the

strong constraints on f , having v � f is necessary. Hence, Z2 needs to be broken to provide

realistic realizations of CTH models.

G/H

SM SM′
Z2

Figure 1. Pictorial representation of the dynamics of a Composite Higgs model protected by the Twin

Higgs mechanism. In the model under consideration, G/H = SO(8)/SO(7). This global symmetry is

explicitly broken by the interactions with the two external copies of the SM (exchangeable under a Z2

symmetry).

Depending on the actual breaking of Z2 the Higgs potential can be relatively insensitive

to the mass of the composite fermions, while being set by the scale of the uncolored mirror

top. If this is the case we can achieve the correct Higgs mass without colored top partners

and trigger EWSB with minimal tuning. A key result of this paper is to point out a class

of models with this property. A schematic drawing of the resulting spectrum, as well as a

comparison with usual composite Higgs models, for minimal tuning f 2/v2, is shown in figure 2.

We provide estimates for the Higgs mass and tuning, as well several examples where we will

be able to explicitly compute the Higgs potential. In order to do this we rely on purely four

dimensional models (see [25] for a holographic realization). To emphasize what it is truly related

to the TH mechanism, as opposed to standard CH models, we will consider several fermionic

representations for the elementary quarks in order to show their effect on the Higgs potential.

The rest of the paper is organized as follows. In section 2 we define the framework, discussing

the coset structure, the gauging of SM×SM′ , fermion representations, and the form of the Higgs

potential. A general parameterization of the Higgs potential as well as possible mechanisms of

3Or conversely, TH models embedded inside the CH framework offer a more UV friendly setup.
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Z2-breaking will be shown in section 4, after a brief introduction of the basic points in section

3. Two concrete examples are provided in section 5. We discuss the main phenomenology in

section 6 and we conclude in section 7. We refer to appendix A for technical details.

E

f

v

4πf

Composite Higgs Composite Twin Higgs

mirror top

Ψ

Ψ

h h

Figure 2. Comparison between the spectra of minimally tuned Composite Higgs and Composite

Twin Higgs models.

2 The SO(8)/SO(7) model

The global symmetry breaking pattern of the simplest CTH model is SO(8)/SO(7).4 The

subgroup SO(7) allows for an unbroken SO(4) custodial group. The 7 pNGBs are encoded

in the field U obtained by the exponentiation of the fluctuations associated with the broken

generators,

U = exp i
Π

f
. (2)

Given the basis of generators chosen in appendix A, the pNGB matrix Π containing the 7

goldstones can be written as

Π =
√

2πâT â, â = 1, . . . , 7, (3)

where T â are the broken generators, defined in appendix A, and πâ are the goldstone fields in

the 7 of SO(7). The transformation under SO(8)

U → g · U · h(g,Π)T ,

4The minimal coset used in linear realizations is U(4)/U(3), which delivers the same number of pNGBs,

but does not contain a residual custodial symmetry. Moreover, with U(4)/U(3) in the non-linear case the twin

mechanism is not realized in the gauge sector (as first observed in [26]). Groups larger than SO(8) could be

fine as well, but there one expects the presence of extra physical pNGBs in addition to the Higgs. An earlier

work [27] recognized the usefulness of SO(8)/SO(7) to prevent a large custodial breaking in composite models

implementing the twin mechanism. This model differs from ours in that it is based on left-right symmetry where

the top partners are still colored under SM color.
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lets us write the two indices of U as U j̄
i (we follow the notation of [28]). The index i is linear

under G, while j̄ = {J, 8} is non-linear under G but split into a 7 of SO(7) (index J) and a

singlet. Later we will make use of U J
i and Σi ≡ U 8

i ,

ΣT =
sin π

f

π
(π1̂, π2̂, π3̂, π4̂, π5̂, π6̂, π7̂, π cot π

f
), π ≡

√
πâπâ. (4)

However, in CTH these are not the only global symmetries of the composite sector. Indeed, to

realize the TH mechanism we have to include at the level of the composite sector a mirror copy

of QCD, which amounts to having an unbroken SU(3)c × SU(3)′c × Z2
5. Formally this means

that the global symmetry is actually6

G

H
=

SU(3)c × SU(3)′c × Z2 × SO(8)

SU(3)c × SU(3)′c × Z2 × SO(7)
. (5)

This guarantees that we can partially gauge the global symmetry G by two identical copies of

the SM, SM×SM′ (including QCD and its mirror copy). The gauging of SM×SM′ proceeds in

the following way (see appendix A for details): we identify the two SO(4)’s inside SO(8) and

within each SO(4) ∼ SU(2)L × SU(2)R we gauge SU(2)L × U(1)Y . Hereafter primed objects

refer to quantities and fields of the mirror sector. Given this gauging, the Σ field, in terms of

the only physical fluctuation π4̂ = h, reduces to

ΣT = (0, 0, 0, sh, 0, 0, 0, ch), (6)

where sh ≡ sin(h/f) and ch ≡ cos(h/f). While the Z2 is evident in the exchange of the two

SO(4)’s inside SO(8), it acts non-linearly on the pNGBs. Indeed it can act on Σ as

Z2 : Σ→ R · Σ, R =

(
04 14

14 04

)
. (7)

The physical mode h shifts by discrete values under this symmetry

Z2 : h→ −h+ f
π

2
↔ sh → ch. (8)

2.1 Representations of fields

Given the global symmetries in the model, we can expect the presence of resonances charged

under all of them. In this work, however, we will only be interested in those that couple

directly to SM fields. The couplings comes from the partial compositeness mechanism which

5Note that this is contrast to orbifold-based models in which QCD and mirror QCD descend from an SU(6)

group or larger [23,25].
6There must be an unbroken U(1)X to obtain the correct hypercharge for each SM fermion. It is defined by

Y = T 3
R +X separately for both the sectors, where T 3

R comes from each SU(2)R of each SO(4). The charges are

2/3 and −1/3 for up-type and down-type quarks, respectively. We similarly omit any discussion of the leptons

as their effect on the Higgs potential is typically negligible.
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couples “elementary” quarks to “composite” resonances via a linear mixing term.7 This fixes

the quantum numbers of the composite operators

Lmix ∼ yLf q̄L ·Ψ + yRf ūR ·Ψ + (mirror).

The elementary fields are in the usual representations of the (elementary) SM and likewise for

the mirror fields. Table 1 summarizes the possible irreducible representations of SO(8) for SM

fields, mirror fields, and the composite resonances, as well as their decompositions under the

relevant subgroups. From Table 1, it is clear that qL (and q′L) can only be embedded in the

8, while the right-handed quarks and their mirror partners have several options, namely the 1,

the 28, or the 35. The gauge fields are in the adjoint representation and couple to composite

vectors in the 28.

The SM gauge fields acquire the typical masses proportional to the scale of electroweak

symmetry breaking, v. The mirror gauge fields, on the other hand, are not inside of SO(7) and

acquire masses proportional to the goldstone scale, f , instead. We expect a spectrum of the

form
mW ∼ gv, mW ′ ∼ gf, mρ ∼ O(1− 4π)f,

mt ∼ ytv, mt′ ∼ ytf, mΨ ∼ O(1− 4π)f.
(9)

2.2 The non-linear σ-model

The 7 of SO(7) of pNGBs contains a 4 under the visible SO(4), while the other 3 pNGB’s

form a broken multiplet of the SM′ and are eaten by the mirror W ′±, Z ′.8 Using the basis of

appendix A, the low energy non-linear σ-model is given by

L =
f 2

2
(DµΣ)TDµΣ, (10)

where Dµ = ∂µ − ig(AaµT
a
L + A

′a
µ T

′a
L ) with TL and T ′L as the generators of SU(2)L and SU(2)′L.

As previously noted, there is a relation between the masses of gauge bosons and their mirror

partners,

m2
W (h) =

g2f 2

4
s2
h, m2

W ′(h) =
g2f 2

4
c2
h. (11)

This expression for mW fixes the value of 〈h〉,

v = f sin

(〈h〉
f

)
. (12)

We move onto the fermion sector which, given the size of the top Yukawa, gives the leading

contribution to the Higgs potential. The lagrangian of the top sector is

L = q̄Li /DqL + ūRi /DuR + ytf(q̄8L)iΣiu
1
R + h.c.+ (mirror). (13)

7Hereafter, the word “elementary” will refer to qL and uR fields that appear in Lmix. In this basis they are

neither mass eigenstates nor eigenstates of the SM gauge groups, but rather the “elementary” SM gauge group.

In the mass basis both gauge fields and fermions are partially composite, in general.
8Note that under Z2 the mirror photon remains massless. One possibility to remove the mirror photon is to

break the Z2 in hypercharge by not gauging the mirror hyperchange [26,29].
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SM SO(8) SO(7) SO(4) × SO(4)′ SU(3)c × SU(3)′c × Z2

qL - - (4,1) (3,1)

uR - - (1,1) (3,1)

W - - (6,1) (1,1)

Mirror SO(8) SO(7) SO(4) × SO(4)′ SU(3)c × SU(3)′c × Z2

q′L - - (1,4) (1,3)

u′R - - (1,1) (1,3)

W ′ - - (1,6) (1,1)

Resonances SO(8) SO(7) SO(4) × SO(4)′ SU(3)c × SU(3)′c × Z2

ΨL 8 7 ⊕ 1 (4,1) ⊕ (1,4) (3,1) ⊕ (1,3)

ΨR 1 1 (1,1) (3,1) ⊕ (1,3)

ΨR 35 27⊕ 7⊕ 1 (9,1)⊕ (1,9)⊕ (4,4)⊕ (1,1) (3,1) ⊕ (1,3)

ΨR 28 21⊕ 7 (6,1)⊕ (1,6)⊕ (4,4) (3,1) ⊕ (1,3)

ρ 28 21⊕ 7 (6,1)⊕ (1,6)⊕ (4,4) (1,1)

Table 1. Possible representations of the resonances. Note that the composite fermions are charged

under SU(3)×SU(3)′ in a Z2-invariant way. Also note that the SM and mirror fields are embedded in

incomplete representations. The visible sector resonances are singlets of SO(4)′, e.g. the (9,1), and

likewise the mirror resonances are singlets of SO(4).

In order to write down the Yukawa-like term in the above lagrangian we have assigned the

SM×SM′ quarks to representations of SO(8). The notation in eq. (13) means that qL ∈ 8 and

uR ∈ 1. The field uR is shown in the 1 but as shown in Table 1 other representations can be

used. The embeddings are

(q8L)i =
1√
2

(ibL, bL, itL,−tL, 0, 0, 0, 0)i , u1R = uR. (14)

From eq. (13), the top and its mirror partner have masses

mt(h) =
ytfsh√

2
, mt′(h) =

ytfch√
2
. (15)

The ratio of these, mt′/mt = ch/sh, is typical of the mirror sector.

From eqs. (11) and (15), it is possible extract the Higgs couplings to SM vectors V , SM

fermions f , mirror vectors V ′, and mirror fermions f ′. Normalizing the couplings to the values

they have in the ordinary (unmirrored) SM, they read

chV V =
√

1− v2/f 2, chff =
√

1− v2/f 2,

chV ′V ′ = −
√

1− v2/f 2(g′2/g2), chf ′f ′ = −(v/f)(y′/y),
(16)

where g′ and y′ denote the mirror gauge couplings and mirror Yukawa couplings, respectively,

and show the effect of Z2-breaking in the couplings. The Higgs couplings to SM particles are
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of the usual form as in standard CH models and they are induced by the non-linearities of the

σ-model. Notice that there is a universal rescaling for the couplings of both the SM vectors

and the SM fermions to the Higgs [24].

3 Ingredients for minimal tuning

When radiatively generating the Higgs potential there are two sources of tuning, obtaining the

correct vacuum v and obtaining the correct Higgs mass. In realistic composite models, getting

the correct vacuum requires a separation of scales, v � f ; this tuning is always present. Tuning

in the Higgs mass is model dependent and is often worse and/or requires light top partners [13].

A natural model should then aim to tune the Higgs mass no more than the VEV. This scenario

is called minimal tuning

∆|minimal =
f 2

v2
. (17)

The Higgs potential of CTH can satisfy minimal tuning, without the need for light colored top

partners, provided some important ingredients are included. Section 4 presents a systematic

discussion, but here we highlight the two most important aspects. For illustration we use the

simple, though incomplete, non-linear σ-model of the previous section.

From eq. (13), the Coleman-Weinberg potential is [30]

V (h)nlσm =
Ncy

4
t f

4

64π2

[
c4
h log

(
2Λ2

y2
t f

2c2
h

)
+ s4

h log

(
2Λ2

y2
t f

2s2
h

)]
. (18)

Due to the Z2 invariance, the minimum is at 〈h〉/f = π/4, which is unviable for phenomenology.

On the other hand, the Z2 symmetry ensures that the terms quadratically divergent in the cut-

off Λ are absent because they are proportional to y2
tΛ

2(s2
h + c2

h) which is accidentally SO(8)

invariant.

Additionally, the overall scale of the potential is suppressed because it is generated at O(y4
t )

the order at which the Z2 no longer results in accidental SO(8) invariance. In order to attain

〈sh〉 � 1 the Z2 symmetry needs to be broken. Assuming that the Z2 breaking terms have the

same parametric dependence on yt and f , the potential becomes

V (h) = V (h)nlσm +
Ncy

4
t f

4

32π2
b s2

h. (19)

If b is a model-dependentO(1) coefficient, electroweak symmetry is broken with minimal tuning.

The Higgs mass is

m2
h '

Nc

2π2

m2
tm

2
t′

f 2

[
log

(
Λ2

m2
t

)
+ log

(
Λ2

m2
t′

)
+O(1)

]
, (20)

where mt and mt′ are the top and mirror top masses, and Λ is the scale where resonances will

appear. In this case, minimal tuning is achieved, independent of Λ. This example shows that

the basic ingredients for a minimally tuned CTH model, without light colored top partners, are

7



• an overall scale of the potential proportional to y4
t f

4.

• Z2-breaking terms of the same numerical size of the Z2-preserving ones.

In the next section we systematically study CTH for several representations of the composite

fermions and different patterns for the breaking of Z2.

4 The breaking of Z2 and electroweak symmetry

As we will soon see, generating the correct Higgs potential relies on breaking Z2 at the right

order in partial compositeness couplings yL and yR. We start by considering these couplings,

especially those of the top sector, which usually give the largest contribution to the Higgs

potential,

L = yLf q̄LUΨ + yRfūRUΨ + h.c.+ Lcomp(Ψ, U,mΨ) + mirror. (21)

The are several important consequences that already follow from partial compositeness. First,

the parameters yL and yR break the global symmetries. This implies that in the limit yL,R → 0

the Higgs potential vanishes and that the contributions start at order y2 (hereafter we power

count in y ∼ yL ∼ yR). With the addition of the mirror sector, contributions that are Z2

symmetric will start at order y4.

There are several possible functional forms for the Higgs potential, which are determined

by the elementary quark embeddings; a discussion of the different expressions is presented in

appendix A. In this section we closely follow [13, 31]. In the cases of interest, the 1-loop Higgs

potential generated by the top sector is

V (h)TH '
Nc

16π2
(yf)2nm

2(2−n)
Ψ

[
aFZ2(h/f) + b F/Z2

(h/f)

]
, n = 1, 2 (22)

where for a given function, F , subleading terms in y have been dropped. The functions FZ2

and F/Z2
specify the Z2-preserving and Z2-breaking parts of the potential, respectively. For

illustration one can consider FZ2 ∼ s2
hc

2
h and F/Z2

∼ s2
h.

As eq. (21) suggests, the Yukawa couplings for the quarks are

ySM ' yk
fk−1

mk−1
Ψ

k = 1, 2. (23)

Different quark representations provide different values of n and k which are summarized in

Table 2. The case of k = 1 versus k = 2 simply reflects whether uR is fully composite or not,

which can be realized for uR in the total singlet, given that this embedding does not break the

global symmetries and hence the natural size of the elementary-composite mixing is yRf ∼ mΨ.

That n = 1 for the 35 is a peculiarity of the 35 (see Table 1 and the discussion in [32]).

The most favorable case is when n = 2 and k = 1 and the values of a and b both ∼ O(1).

With this choice and with a and b of the same size, the Higgs mass is not sensitive to mΨ upon

substituting yt into eq. 22. We elect to focus on this case in which qL ∈ 8 and uR ∈ 1 for which

section 5 presents concrete models.
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n k V (h)TH ySM

q8L u1R 2 1 ∼ y4f 4 y

q8L u28R 2 2 ∼ y4f 4 y2(f/mΨ)

q8L u35R 1 2 ∼ y2f 2m2
Ψ y2(f/mΨ)

Table 2. Values of n and k for several representations of right-handed quarks as described in eqs. (22)

and (23).

Then the Higgs potential is

V (h)TH '
Nc

16π2
y4
t f

4
(
− as2

hc
2
h + λbs2

h

)
, (24)

where a ∼ O(1) and describes the Z2-symmetric contribution, while λb describes the size of the

Z2-breaking contribution where b ∼ O(1) and λ is introduced to parameterize scaling deviations

from O(1). The electroweak VEV and the Higgs mass demand

v2

f 2
= s2

h =
a− λb

2a
, m2

h ∼ a
Nc

2π2
y4
t v

2. (25)

The amount of cancellation needed to realize the Higgs VEV can be larger than prescribed by

minimal tuning. Rearranging eq. (25), one sees that it is required that

a− λb ∼ 2a
v2

f 2
. (26)

In the case of large λ� O(1), since a is determined by the Z2-symmetric potential, one needs

to first tune b to compensate for λ and then tune a and λb to get the right VEV. This results

in a double tuning and generically predicts

∆ ∼ f 2

v2
λ. (27)

Notice that in the opposite case λ� O(1), it is a that must be tuned. Enforcing cancellations

to tune a, however, will spoil the agreement with the Higgs mass (25), as it will turn out to be

too light.

The reader may observe that the logarithmic dependence on h in the terms in eq. (18)

has been neglected in favor of the simple functional form as2
hc

2
h. The difference from the h

dependence is subleading (see appendix A which obtains the leading behavior from a spurion

analysis) and is small enough that we can still obtain parametric estimates for the Higgs mass

and tuning. In the concrete models of section 5 we keep track of the logarithmic effects (which

basically arise from the running from the threshold to the weak scale).

4.1 Z2-breaking in the top sector

Breaking Z2 only within the top sector tends to spoil the TH mechanism almost completely,

effectively reducing the CTH framework to the standard class of CH models. In the top sector
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there are two possibilities to break Z2: (i) an O(1) breaking in the composite sector via mΨ 6=
mΨ′ (especially among the SO(7)-invariant parameters) or (ii) breaking in the elementary sector

via y 6= y′. There is additionally an exception which occurs when uR ∈ 35.

For both these cases the Higgs potential takes the form

V (h)TH '
Nc

16π2

[
− ay4f 4s2

hc
2
h + b y2f 2m2

Ψs
2
h

]
. (28)

We see that a suppression of b of the size ∼ y2f 2/m2
Ψ is required. Assuming b is of O(1), this

leads to a Higgs mass and tuning of

m2
h '

aNcy
4
t v

2

2π2
, ∆ ' f 2

v2

m2
Ψ

y2f 2
. (29)

While the Higgs mass does not depend on the scale of colored fermion partners, mΨ, the VEV in

fact does. The departure from minimal tuning as a result of the Z2-breaking grows as the ratio

of the mirror top to the colored top partner. In absolute terms, the tuning grows proportionally

to the mass of the top partner

∆ ∼ f 2

v2

m2
Ψ

m2
t′
∼ m2

Ψ

m2
t

. (30)

Therefore, the naturalness of the model implies a light colored particle Ψ and truly nothing is

gained relative to the usual tuning of CH models. Even the phenomenology of CTH in this

case is almost identical to standard CH models.9

The difference between breaking in the composite sector as opposed to the elementary

sector comes down to the expected size of symmetry violating parameters. When broken in the

elementary-composite mixings, the Z2-breaking parameter goes like b ∼ (y2−y′2)/y2×(f 2/m2
Ψ)

which can naturally reduce to b ∼ y2f 2/m2
Ψ by tuning y and y′ against each other. Breaking

in the composite sector entails a mass splitting between composite parameters, which without

extra assumptions would be of the order δm ≡ |mΨ −mΨ′| ∼ mΨ, making it difficult to realize

the needed cancellation.

Almost Z2-symmetric composite sector

Although it may look unappealing, breaking the symmetry in the strong sector could be recon-

ciled with minimal tuning in the case when the composite sector is almost Z2-symmetric. As

the potential is

V (h)TH '
Nc

16π2

[
− ay4f 4s2

hc
2
h + b y2f 2(m2

Ψ −m2
Ψ′)s2

h

]
, (31)

one can see that taking m2
Ψ − m2

Ψ′ to zero restores a symmetry so that the model can be

considered technically natural. This was also the case when breaking with y2−y′2. Schematically

the tuning can be

∆ ∼ f 2

v2

m2
Ψ −m2

Ψ′

y2
t f

2

almost Z2∼ f 2

v2
. (32)

9Readers may note a difference between eqs. (1) and (30). That the Higgs mass is independent of mΨ can

occur in standard CH models, at the price of tuning, when tR is a total singlet (see section 5.3 of [11]).

10



If the breaking is stable, the model has minimal tuning and the Higgs mass not sensitive to

colored top partners. The only condition is maintaining a small difference in masses. Despite

the fact that we do not know any mechanism for generating such a mass difference in the

composite sector, we do not disregard this as a possibility.

Z2-breaking in right-handed sector with uR ∈ 35

For the 35, unlike for the other representations, the leading contributions to the Higgs potential

go like y2c2
2h and y4s2

h (see appendix A for a more complete list). From this one can see that

the contribution of the SM particles and the mirror particles to the Higgs potential is not

accidentally SO(8) invariant at leading order, O(y2), even with the Z2 symmetry. This means

the Z2-symmetric contribution is O(y2) rather than O(y4).

On the other hand, the y2 term is already Z2-invariant without the addition of the mirror

particles such that one must go to O(y4) to break Z2. Thus the relative contributions from the

Z2-breaking and Z2-preserving terms are reversed relative to the other representations. The

potential, however, is formally equivalent to eq. (28) (renaming the terms s2
hc

2
h ↔ s2

h) so the

same predictions regarding tuning apply.

4.2 Z2-breaking in the lighter quarks

Another possibility is to preserve Z2 in the top sector, but break it among the bottom quark

or the quarks of the first two generations. Numerically the only couplings that can be relevant

for generating a sufficiently large breaking of Z2 are the bottom and charm Yukawa, yb and

yc (hereafter we refer to the bottom or charm as the “lighter quarks”).10 The breaking will

produce a potential of the form

V (h)TH '
Nc

16π2

[
− ay4

t f
4s2
hc

2
h + b y2

qf
2m2

Ψs
2
h

]
, (33)

where y ∼ yL ∼ yR is the elementary-composite coupling of the lighter quark. For simplicity,

we do not consider the mirror contributions which are proportional to −y′2s2
h. If the qR is

embedded in the 1, then the Z2-breaking term is too small; the parameter a requires tuning to

realize the EWSB and as a result the Higgs mass will be extremely light. With the qR ∈ 28,

however, the elementary-composite parameter y is proportional to

y2 ∼ ySM
mΨ

f
.

i.e. k = 2 from Table 2. The potential in terms of the known Yukawa coupling is

V (h)TH '
Nc

16π2

[
− ay4

t f
4s2
hc

2
h + b ySM

q fm3
Ψs

2
h

]
, q = b, c. (34)

10For a discussion of the impact of the lepton sector and how it can help to raise the top partner mass in

non-twin CH models see [33].
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If mΨ ∼ (y4
t /yb,c)

1/3f then the terms are comparable, with a and b of size O(1). As a result

the tuning is minimal provided the fermionic resonances are at a scale ∼ 4f and ∼ 7f for the

bottom and charm partners, respectively

m2
h '

aNcy
4
t v

2

2π2
, ∆

∣∣
/Z2−bottom

∼ f 2

v2

(
mΨ

4f

)3

, ∆
∣∣
/Z2−charm

∼ f 2

v2

(
mΨ

7f

)3

. (35)

We see the Higgs mass itself that is not sensitive to mΨ.

4.3 Z2-breaking in the gauge sector

Another possible scenario involves the SU(2) gauge coupling g, which is only marginally smaller

that yt. In particular we work in the exact Z2 limit in the quark sector, allowing for the breaking

of Z2 by the gauge fields. In this case the potential is

V (h)TH '
1

16π2

[
− aNcy

4
t f

4s2
hc

2
h + b

9

4

g2m4
ρ

g2
ρ

s2
h

]
, (36)

where mρ is the mass of a vector composite resonance, likely a 21 of SO(7), with a coupling gρ
to the composite sector. Despite the fact that this potential contribution from the gauge fields

is known in composite Higgs models, we review relevant details for convenience. The SU(2)

contribution is given by [6]

V (h)SU(2) =
9

2

∫
d4p

(2π)4
log

[
1 +

g2

g2
ρ

s2
h

2
F (p2)

]
, (37)

where F (p2) is a form factor with poles at resonance masses, ∼ mρ, while the mirror contribution

is given by g → g′ and sh → ch, where g′ is the mirror SU(2) coupling. In the simplest case

F (p2) ∼ m4
ρ/(p

2(p2 −m2
ρ)). In an expansion in g/gρ the leading contributions from SU(2) read

V (h)SU(2) =
9

64π2
m4
ρ

[
b
g2

g2
ρ

s2
h + b′

g4

g4
ρ

s4
h

]
, (38)

where the term O(g4/g4
ρ) is a subleading contribution to the Z2-symmetric potential and is

neglected as it is small compared to the top sector contribution in eq. (36). The coefficient b is

expected to be of O(1), b < log(16π2/g2
ρ).

Here we use mρ ∼ gρf (we consider mρ and mΨ to be different parameters). The gauge

contribution can then be added to the Z2-symmetric potential to find

V (h)TH '
f 4

16π2

[
− aNcy

4
t s

2
hc

2
h + b

9

4
g2
ρg

2s2
h

]
. (39)

The above expression is valid in the case of a maximal Z2 breaking, g′ = 0. In the case of finite

g′, eq.(39) should be modified by making the replacement g2 → g2−g′2. Minimal tuning occurs

for mρ ∼ 4f . Following the same arguments as the previous sections, the tuning and the Higgs

mass are predicted to be

m2
h ' a

Ncy
4
t

2π2
v2, ∆ ' f 2

v2

( gρ
3.5

)2

. (40)
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In this scenario the Higgs mass and tuning are not sensitive to the mass of the colored top

partners.

An additional, potentially relevant, consequence of breaking Z2 in the gauge sector is that

two-loop effects will cause the visible and mirror top Yukawas to run differently, reintroducing

a term proportional to f 2m2
Ψ in the Higgs potential. Indeed, over a decade of running, one can

estimate the visible and mirror top Yukawa to be split by (see e.g. [29])

|y2
t − y2

t′ | ' y2
t

9g2

64π2
. (41)

Above we assume the gauge couplings maximally break Z2. This induces the second term of

eq. (28) which is

∆V (h)TH '
Nc

16π2

[
b2−loop

9g2

64π2
y2
t f

2m2
Ψs

2
h

]
, (42)

where b2−loop is an O(1) coefficient. To maintain the tuning estimates we make, the above

contribution should not dominate the Z2-breaking terms in the potential, the second term of

eq. (39), which requires (
mΨ

4πf

)2
Ncy

2
t

g2
ρ

b2−loop

b
. 1. (43)

While this condition yields an upper bound on mΨ, because gρ can be as large as ∼ 3.5 we find

mΨ . 4πf to be an appropriate estimate. Of course it may be the case that yt and yt′ are not

exactly equal at the scale Λ, but we neglect this case as it deviates from the spirit of the twin

mechanism. We will neglect the effect of this two-loop contribution in the rest of the paper.

5 Concrete models

Motivated by the above discussion we elect to focus on two models. In the first Z2-breaking is

introduced in the gauge sector and in the second it is induced in the lighter quarks. In both

cases, the Higgs potential can be parameterized as

V (h) ' −αs2
hc

2
h + βs2

h. (44)

The Higgs VEV and mass are given by

v =

√
α− β

2α
f m2

h =
8α

f 4
v2

(
1− v2

f 2

)
. (45)

As explained in section 4 the Higgs mass is set by the Z2-symmetric piece α. Because α is

already of the right order to give mh = 125 GeV, the Higgs mass computation is the same for

both models, as we will show below. The computation of the Z2-breaking term, β, determines

the tuning for each model.

In the models under consideration, the scaling of the two terms are,

13



• Model A: Z2-breaking in gauge sector

α ∼ y4
t f

4, β ∼ g2g2
ρf

4.

• Model B: Z2-breaking in lighter quarks

α ∼ y4
t f

4, β ∼ yqm
3
Ψf.

We do not consider the case of Z2-breaking in the top sector, because this is typically equivalent

to a standard CH model.

5.1 Computing the Higgs mass

We start with the computation of α, which sets the Higgs mass via eq. (45). We consider a

2-site model with two composite fermion resonances [34], Ψ7 and Ψ1, which are in the 7 and

the 1 of SO(7), respectively. The elementary qL is embedded in the 8 and the tR is a total

singlet (a chiral composite state). We will show explicitly that α is fully calculable. The model

is defined by

L = q̄Li /DqL + ūRi /DuR + yLf(q̄8L)i(UiJΨJ
7 + Ui8Ψ1) + h.c.

+ Ψ̄i /DΨ−m1Ψ̄1Ψ1 −m7Ψ̄7Ψ7 −mR(Ψ̄1)Lu
1
R

+ (mirror).

(46)

In order to compute the Higgs potential, we can integrate out the composite sector and match

to the following effective lagrangian, constructed just with the low energy fields and the Σ in

the SO(7) vacuum [6]

Leff = (q̄8L)i/p(δ
ijΠq

0(p) + ΣiΣjΠq
1(p))(q8L)j + ūR/pΠ

u
0(p)uR + (M(p)(q̄8L)iΣ

iuR + h.c.) + (SM→ SM′)

= ūL/p

(
Πq

0(p) + Πq
1(p)

s2
h

2

)
uL + ūR/pΠ

u
0(p)uR +

(
M(p)√

2
ūLshuR + h.c.

)
+ (SM→ SM′).

(47)

From an explicit calculation, the form factors are

Πq
0(p) = 1− y2

Lf
2

p2 −m2
7

, Πq
1(p) =

y2
Lf

2(m2
7 −m2

1)

(p2 −m2
7)(p2 −m2

1)
,

Πu
0(p) = 1− m2

R

p2 −m2
1

, M(p) = −yLm1mR

p2 −m2
1

.

(48)

We can compute the top mass, which is

mt '
yLfmRsh√

2(m2
1 +m2

R)
(

1 +
y2Lf

2

m2
7

(
1 +

m2
7−m2

1

m2
1

s2h
2

)) , (49)
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and the same for mt′ , under sh → ch. The 1-loop potential generated by the above lagrangian

is

V (h) = −2Nc

∫
d4p

(2π)4
log

[
p2

(
Πq

0(p) + Πq
1(p)

s2
h

2

)
Πu

0(p)−M(p)2 s
2
h

2

]
+ (sh → ch)

= −Ncy
4
Lf

4s2
hc

2
h

∫
d4p

(2π)4

(m2
1p

2 +m2
7(m2

R − p2))
2

2p4(m2
7 − p2)4 (m2

1 +m2
R − p2)

2 ,

(50)

where in the second line we have performed an expansion to O(y4
L), the first non-zero order in

yL. The integration is performed using a lower limit of mt′ ∼ yLf in order to account for the

IR effects associated with the massive top and its mirror partners (see eq. (20)).

In the limit where yLf � mΨ the mass spectrum of the resonances (and mirror resonances)

is approximately SO(7)-invariant with mass eigenstates for the 7 and 1 resonances

m̄7 ' m7, m̄1 '
√
m2

1 +m2
R. (51)

When one takes the interesting limit of heavy fermonic composite parameters m̄7, m̄1 � yLf ,

(and for simplicity m1/mR ' 1 + O(y2
L)), eq. (50) simplifies and the expression for α, upon

imposing the top mass in eq. 49, is

α ' Ncy
4
t f

4

32π2

[
log

(
m̄2

1

m2
t′

)
− 5

(
1− 4

5

m̄2
7

m̄2
7 − m̄2

1

log

(
m̄2

7

m̄2
1

))
+O

(
yLf

mΨ

)]
. (52)

Note that another possible limit is where all the fermionic composite parameters originate from

a common scale mΨ , m7/m1 ' m1/mR ' 1 + O(y2
L). In this case we have m̄7 ' m̄1/

√
2 and

eq. (52) simplifies even more. The final result for the Higgs mass is

m2
h '

Ncy
4
t v

2

4π2

(
1− v2

f 2

)[
log

(
m̄2

1

m2
t′

)
− 5

(
1− 4

5

m̄2
7

m̄2
7 − m̄2

1

log

(
m̄2

7

m̄2
1

))]
. (53)

Hence, no light colored partners are required to achieve 125 GeV. Using mt′ ' mtf/v (where

mt(TeV) ' 150 GeV), we find to get mh = 125 GeV we have an overall fermionic scale which

is almost unconstrained, mΨ & 4f .

5.2 Model A: Z2-breaking in the gauge sector

Next, we compute β when Z2 is broken in the SU(2) gauge fields, allowing for different g 6= g′

between SU(2) and its mirror. The gauge sector of the model in eq. (46) is

L = −1

4
(F 2

µν + mirror)− 1

4
ρ2
µν +

f 2

4
Tr[(DµU)TDµU ], (54)

where the covariant derivative is DµU = ∂µU − igAaµT aLU − ig′A′aµ T aLU + igρUρ
A
µT

A and g′ is

the mirror SU(2) coupling. The discussion of the hyper-charge formally follows the same steps.

In the 2-site model, where we have only a vector ρµ in the 21 of SO(7), β is logarithmically

divergent, β ∼ log(Λ2/m2
ρ).
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Figure 3. Model A: Z2-breaking in the gauge sector, with f = 800 GeV and κ = 1. Left: tuning

versus gρ. The growth in the tuning with respect to the minimal value f2/v2 around gρ ∼ 5 is due to

the fact that one has to invoke a cancellation between the g2 − g′2, which is taken into account in the

numerical analysis. The red line is the scaling with g2
ρ as predicted by eq. (57). Right: Tuning versus

mΨ/f . We scan over a range [0.5, 10] TeV for composite masses and [2, 10] for gρ, where the top mass

is fixed at mt(∼ TeV) = 150 GeV. We defined mΨ as the geometric average of the composite masses.

The gray points correspond to values of gρ that LHC14 will probe (left panel).

From the above lagrangian we have that the mass of ρ, to zeroth order in the mixings, is

m2
ρ = g2

ρf
2/2, which leads, in the case g′ = 0, to β = 9/(256π2)g2 g2

ρ f
4 log(Λ2/m2

ρ) + O(g4).

To render this contribution finite it is crucial to have the first coset resonance (a 7 of SO(7),

dubbed a1) in the low energy theory. We then find

β =
9

64π2
m4
ρ

g2 − g′2
g2
ρ

log
m2
a1

m2
ρ

+O(g4), (55)

in which the contribution from the mirror SU(2) is included. Depending on the model we can

have different predictions for mρ and ma1 . If we take the model of [35] they are related by an

extra parameter, κ and the masses are

m2
ρ = g2

ρf
2 1 + κ2

2κ
, m2

a1
= g2

ρf
2 (1 + κ2)2

2κ
, (56)

where 1 + κ2 < 16π2/g2
ρ.

Interestingly, the gauge contribution needed to obtain the right VEV is found for gρ ∼ 4.

Depending on the value of κ and the size of the mirror SU(2) coupling g′, which cannot be taken

to zero to avoid massless bosons; gρ can be even larger, gρ . 6. It seems difficult, however, to

push it as high as 4π without going into a region where g′ ≈ g. In any case, the tuning does

not scale with mΨ as long as gρ . 6,

∆ ' f 2

v2

(
gρ
5

)2

. (57)
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With this concrete result in hand, we can now make statements about the tuning of the model,

the vector resonances, and the fermion resonances.

As shown, minimal tuning is achieved for gρ ∼ 4 − 5 which also gives the correct Higgs

mass. With a small price in tuning, gρ can be made larger, but it cannot be made much smaller

because the Higgs mass would be too small. A full numerical computation of the tuning ∆,

computed with the Barbieri-Giudice measure [36] with respect to the model parameters,11 is

shown in figure 3. These plots use f ' 800 GeV, a value that will be probed by precision

measurements at LHC14 with 300 fb−1 [37, 38]. The left panel shows that our estimate in

eq. (57) is respected. The right panel shows tuning versus mΨ/f (here mΨ is defined as a

geometric average of the composite parameters). We see that one can have both low tuning,

∼ 5− 10%, and heavy colored top partners.

Using a simple rescaling of [39] (shown in figure 3) we see that the LHC will probe some of

the low tuning region via direct searches for the ρ, but that model points with minimal tuning

will survive constraints from LHC14.

If the breaking in the gauge sector is entirely due to hypercharge, while SU(2)′ is exactly

Z2-invariant, the estimate on the natural size of gρ can be lifted by a factor
√

3g/gY ∼ 2− 3.12

5.3 Model B: Z2-breaking in the lighter quarks

In our second model the Z2-breaking terms come entirely from the lighter quarks, while the

top and gauge sectors are fully Z2-symmetric. The contribution to the potential, as discussed

in eq. 33, is proportional to y2f 2m2
Ψ. Recall that y is the elementary-composite mixing and its

relation to yq =
√

2mq/v, q = b, c, depends on the representations of qL and qR. Referring to

Table 2, only k = 2 can satisfy minimal tuning for the light quarks.

At a practical level, this leads us to embed the right-handed bottom (and charm) in the 28,

L = q̄Li /DqL + q̄Ri /DqR + yRf(q̄28R )ij(UjJUiLΨJL
21 + Ui8UjJΨJ

7 ) + yLf(q̄8L)i(UiJΨJ
7 + Ui8Ψ1) + h.c.

+ Ψ̄i /DΨ− m̃1Ψ̄1Ψ1 − m̃21Ψ̄21Ψ21 − m̃7Ψ̄7Ψ7,

(59)

where we neglected the mirror contribution. This lagrangian for the bottom (or charm) sector

is similar to that of the top sector in eq. (46), but also has a resonance in the 21 of SO(7).

11The tuning is defined using the Barbieri-Giudice measure [36],

∆ = max
i

∣∣∣∣∂ log v2

∂ log xi

∣∣∣∣ , (58)

where xi are the input parameters to the theory. We take the xi’s to be xi = {m1,m7,mR, gρ, g
′}. The

parameter space scans are performed sampling each mass parameter uniformly between 0.5 TeV and 10 TeV.

For each parameter space point, the tuning, the VEV, and the Higgs mass, are computed. The parameter yL
is selected to get mt(TeV) = 150 GeV, while scanning over g′ we required the mass of the mirror vectors to

be sufficiently large (mW ′ > 125 GeV). Points drawn are required to fall within 240 GeV < v < 250 GeV,

123 GeV < mh < 127 GeV, otherwise they are rejected.
12We became aware of this possibility after a discussion with the authors of [26]. In the limit where the mirror

hypercharge is not gauged, gY 6= g′Y ≡ 0, the massless mirror photon is absent from the spectrum.
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To remove any potential confusion, composite mass parameters of this sector are labelled with

tildes. The computation for α follows the same steps for computing β. Computing the Coleman-

Weinberg potential we find, to leading order in mq/v

β ' Nc

8π2

mqf

xqv
m̃7

(
m̃2

1 log
M̃2

m̃2
1

+ x2
qm̃

2
21 log

M̃2

m̃2
21

− (1 + x2
q)m̃

2
7 log

M̃2

m̃2
7

)
, (60)

where xq = yR/yL is the ratio of elementary-composite couplings

yL '
√

2m̃7mq

xqfv
, yR '

√
2xqm̃7mq

fv
, (61)

and M̃ is the cut-off scale. The introduction of this scale is necessary because like the 2-site

contribution to β in Model A, β is logarithmically divergent in the effective description. For the

estimates we present we replace the cut-off with M̃ which represents the next layer of resonances

that would be present in a 3-site or 5D model. Eq. (60) shows that the scaling estimated in

eq. (34) is respected.

Assuming a common mass scale m̃ ∼ {m̃1, m̃7, m̃27} for the parameters in eq. (60), in this

model we can again get the correct Higgs mass which is not sensitive to colored top partners

and satisfy minimal tuning for masses

m̃ ∼ (4− 6)f bottom,

m̃ ∼ (7− 9)f charm,
(62)

using the values of yb and yc at the TeV scale. Above these reference values the tuning grows as

f 2/v2(mΨ/m̃)3 as in eq. (35). These values are estimated such that minimal tuning is satisfied.

The simplest interpretation is that the overall scale m̃ is the same for both the lighter quarks

and the top, however we could make the further assumption that m̃ be unrelated to the mass

scale of the top partners. This means that only the light quark partners need to satisfy eq. 62,

and the mass scale of the top partners is “unconstrained”. This seems particularly motivated

in the case of the charm, as one can then realize a U(2)3 flavor symmetry [40,41]. Contrary to

Model A, here the overall mass scale of the vector resonances is unconstrained by naturalness,

since it contributes to the potential only logarithmically and at subleading order O(g4f 4).

6 Phenomenology

In this section we briefly discuss the phenomenology associated with this class of models. De-

spite different numerics in the specific realizations we have presented, the generic prediction is

a scale for the composite resonances which is parameterically larger than the Goldstone scale

f . This suggests that these models can remain hidden after the second run of the LHC while

still being minimally tuned. In this way, they provide an example of a natural theory that has

clear signals at a future collider, while being difficult to discover at the LHC. There several

ways to look for these models.
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Indirect searches: In absence of constraints from direct searches of resonances, important

complementary information will come from precision measurements. As the scale f is lower

than the resonance masses, f can be probed in several ways.

• Higgs decay to visible particles.

In this model there is a universal rescaling of all the Higgs couplings eq. (16) [24] of√
1− v2/f 2. Projections available for LHC14 with 300 fb−1 [37,38] suggest that f will be

probed up to 700− 800 GeV. We have used the target value of f = 800 GeV throughout

this work.

• Higgs decay to mirror particles.

The interplay between the Higgs boson and the mirror sector is also interesting, and it

can be studied through the Higgs to mirror couplings in eq. (16), which, differently from

the couplings to SM fields, are more model dependent. Upon EWSB the Higgs couples to

mirror particles, and depending on their masses this could result in a contribution to the

invisible/undetected Higgs width. Recall that the expected size of the masses of mirror

particles

mW ′ ∼ g′f, mf ′ ∼ y′ff,

where g′ and y′f are mirror gauge and Yukawa couplings, given that we allow for a generic

Z2-breaking. The presence of this decay channel, assuming no new physics in the loop,

induces a universal rescaling factor to all Higgs signal strengths,

µ = (1− v2/f 2)(1− BRinv). (63)

All mirror particles below ∼ mh/2 can contribute to BRinv. It is important to avoid

contribution from light mirror vectors, as they contribute with a width,

Γ(h→ V ′V ′) ∼ v4

f 4
×
(

1− v2

f 2

)
× mh

8π

(mh

v

)2

,

which, despite the suppression v4/f 4, can be numerically relevant. That is the reason

why in the analysis of figure 3 we restricted to values of mW ′ safely large. In the limit

of a small Z2-breaking in the gauge sector, the next important channel to look at is the

Higgs decay to pairs of mirror bottom quarks. Barring kinematical factors, the following

relation approximatively holds

Γ(h→ b′b̄′) ' y2
b

y′2b

v2

f 2
Γ(h→ bb̄) =

y2
b

y′2b

v2

f 2

(
1− v2

f 2

)
Γ(h→ bb̄)SM, (64)

where the first approximation depends on the different masses of the bottom and the

mirror bottom which differ by yb/y
′
b × v/f . For reasonable values of f and in the almost

exact Z2 limit, the width can be sizeable. In this limit the BRinv is reasonably dominated

by the decay to a pair of mirror bottoms, and it is of the order 5− 10% for f = 800 GeV

(see also [29]).
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• Electroweak precision tests.

Another indirect constraint – which is rather model independent – comes from the IR-

logarithms in the S and T parameters of the electroweak precision tests [42]. While

these contributions can be sizable, it has been shown [43, 44] that lower values of f can

reconciled with data by invoking UV contributions from the composite sector. However,

a value of f & 800 GeV can be considered as the target precision for CTH models.

Direct searches: In order to evaluate the robustness of our setup, it is important to recall

the projections for direct searches of composite resonances at the LHC

• Colored top partners.

Currently top partners searches look for top partners produced via pair production and

at LHC14 with 300 fb−1 the mass reach is mΨ & 2 TeV (and ∼ 2.8 TeV at 3 ab−1) [45],

which is easily satisfied in the models we have presented. More promising are searches

for singly produced top partners, despite the fact that these kind of searches have not

yet been performed, individual studies [45, 46] show that they can be relevant at higher

masses (see also [47,48]). They are more model dependent, but even in the most favorable

parameter space may put a bound of mΨ & 3 TeV at the end of the LHC program.

Note that the light fermion resonances are allowed in models, because when Z2 is broken

in the gauge sector the fermion resonances are largely uncorrelated with tuning. In this

case, however, the twin mechanism becomes largely superfluous.

• Vector resonances.

The searches for vector resonances (see [49] for a discussion) will probe portions of the

natural parameter space of the model with Z2-breaking only in the gauge sector, as shown

for example in figure 3 (for f = 800 GeV), but they will leave all other models uneffected.

However, a lower bound mρ & 2.5 TeV is generically required by the EWPT, see e.g. [8].

• The mirror top.

The mirror top plays a key role in the generation of the Higgs potential and is expected

to lie in the TeV range, with a mass mt′ ∼ yt′f . They can be pair produced through an

off-shell Higgs, but their signature is very dependent on the dynamics of the mirror sector.

Their decay chains could occur entirely in the mirror sector, resulting in missing energy,

or partially back into SM particles via an off-shell Higgs, resulting either soft SM particles

particles or displaced vertices. An overview of some of the wide-range of possibilities is

given in [29]. Ref. [50] presents a search for SM singlets pair produced through an off-shell

Higgs and finds the reach to be ∼ 200 GeV at the LHC and ∼ 300 GeV at a 100 TeV

collider.
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7 Conclusions

In this paper, we have discussed the tuning of the electroweak vacuum and the Higgs in the com-

posite Higgs framework augmented with the twin Higgs mechanism. In the simplest realization

the Higgs is a pNGB of SO(8)/SO(7) with a potential generated by its couplings to elementary

quarks and gauge fields. The twin Higgs mechanism makes the generated potential symmetric

under a Z2 symmetry which forbids terms quadratic in mΨ, the scale of fermionic resonances.

We emphasized that removing the sensitivity of the potential to mΨ crucially depends both on

the Z2 symmetry and the tR being a total singlet of the unbroken global symmetry. With these

pieces in place, the scaling y4f 4 of the Higgs potential is really y4f 4 ' y2
tm

2
t′f

2, indicating that

the top contribution to the Higgs potential does not require light colored particles.

As a realistic theory requires Z2 to be broken, we have explored several options. If the terms

that arise due to the Z2-breaking come in at the same order, y4
t f

4, as the symmetric ones, then

the potential really is not sensitive to the colored top partners and minimal tuning, f 2/v2, is

satisfied. We have shown, however, that getting the right Z2-breaking term is not generic in this

framework. For instance, Z2-breaking from the top sector introduces an explicit dependence

on mΨ and likely spoils the gains from the twin mechanism. In section 4 we introduced several

mechanisms to break this symmetry and for the more plausible mechanisms of breaking in

the gauge sector or in the lighter quarks we made numerical estimates of where the resonances

would lie, under minimal tuning. Figure 2 provides a cartoon of the predicted spectrum relative

to standard composite Higgs and figure 4 summarizes the rough spectrum depending on the

Z2-breaking mechanism.

In this work we have identified multiple Z2-breaking methods and explored their individual

spectra. There is no reason, however, why more than one mechanism cannot be at work

simultaneously. We expect that this possibility opens up even more parameter space that may

not be populated by the examples in figure 4. This would be an interesting scenario which we

leave for future work.

We discussed also the phenomenology of these models. If the spectrum as in figure 4 is

taken at face value, the phenomenology is mainly controlled by the goldstone scale f , the only

scale nearby. Direct searches, especially for the light composite vector resonances, may foray

into regions of the parameter space, but in all models presented minimally tuned regions will

survive. On the other hand, precision tests of the Higgs couplings will constrain the models,

especially in the final stages of second run of the LHC. Here the discussion closely resembles

the one for a standard composite Higgs, where the improvements on the couplings will probe

f up to 800 GeV at LHC14 with 300 fb−1. However, differently from the standard case, here

a complementary opportunity is offered by the phenomenology of the mirror particles in their

contribution to the invisible decay width of the Higgs.

To conclude, given that we have outlined several possible scenarios for realistic Composite

Twin Higgs models, it would be nice to fully explore their experimental signatures.
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Figure 4. Summary of the mass of composite resonances for Composite Twin Higgs for various

Z2-breaking mechanisms and minimal tuning. The first case reflects figure 3 and the second [26] is

obtained by a simple rescaling. They both have an unconstrained fermionic scale with a ‘predicted’

range for the masses of composite vector resonances. The last two models have an unconstrained mass

for the vector resonances and a ‘predicted’ range for the fermionic scale (see eq. (62)).
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Note added

While the completion of this work a related paper appeared that discussed the Twin Higgs [29].

Although there are similarities, our approach differs in the global symmetries and in the fact

that we use the twin Higgs mechanism within a calculable composite Higgs model.

A Technicalities of SO(8)/SO(7)

Generators

Defining tabij = δai δ
b
j − δaj δbi , the vector representation of the SO(8) generators is given by

T abij = − i√
2
tabij

a = 1, . . . , 8,

b = a+ 1, . . . , 8,
(65)
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such that there are 28 generators. The normalization Tr(T aT b) = δab is used throughout. We

define the embedding of the two SO(4) subgroups in the following way

(T aij)L,R = − i
2

(1

2
εabctbcij ± ta4

ij

)
a = 1, 2, 3,

(T ′aij )L,R = − i
2

(1

2
εabctbcij ± ta8

ij

)
a = 5, 6, 7,

(66)

where the unprimed generators denote the SO(4) containing the standard model and the primed

generators denote the mirror SO(4). The breaking of SO(8) to SO(7) results in 7 broken

generators:

T âij = − i√
2
tâ8
ij , â = 1, . . . , 7. (67)

The pion field is obtained via exponentiation U(Π) = exp iΠ(x)/f , where Π(x) =
√

2hâ(x)T â.

Fermion representations

Once the embedding of the gauge groups has been fixed we can describe the embedding of

quarks into incomplete representations of SO(8). Below we show the embedding of the visible

sector, the mirror quarks will be the same given the mirror exchange. The qL must be embedded

in the 8, while the uR can be in the 1, 28, or 35

• qL in the 8:

(q8L)i =
1√
2

(ibL, bL, itL,−tL, 0, 0, 0, 0)i . (68)

• uR in the 1 is a total singlet of SO(8).

• uR in the 28:

(u28R )ij =



0 uR
2

0 0 0 0 0 0

−uR
2

0 0 0 0 0 0 0

0 0 0 uR
2

0 0 0 0

0 0 −uR
2

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



ij

. (69)

• uR can be embedded in the 35:

(u35R )ij =
uR√

8
diag(1, 1, 1, 1,−1,−1,−1,−1)ij. (70)

From this expression one can see that it is a singlet separately for each SO(4) subgroup.
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Functional form of the potential

In order to understand the origin of Table 2, one should construct all possible invariants com-

posed of goldstones Σ, and spurions yL,R [32]. In the effective lagrangian, after the composite

sector has been integrated out, one find a number of terms which can be classified according

to whether they originate from a correction to a kinetic term or a mass term. We restrict the

discussion to the visible sector, the mirror terms can be found using the usual substitution of

sh → ch. The results are shown in Table 3.

Origin Fields Order Forms

kinetic term q8L O(y2
L, y

4
L) y2

Ls
2
h, y

4
Ls

4
h

kinetic term u1R O(y2
R, y

4
R) –

kinetic term u28R O(y2
R, y

4
R) y2

Rs
2
h, y

4
Rs

4
h

kinetic term u35R O(y2
R, y

4
R) y2

Rc
2
2h, y

4
Rc

4
2h

mass term q8L, u1R O(y2
L) y2

Ls
2
h

mass term q8L, u28R O(y2
Ly

2
R) y2

Ly
2
Rs

2
h

mass term q8L, u35R O(y2
Ly

2
R) y2

Ly
2
Rs

2
h, y

2
Ly

2
Rc

2
2h

Table 3. Structures that can appear in the Higgs potential (from the visible sector).

From Table 3 one can see that the Z2-symmetric potential for the above cases has the

following scaling with the elementary-composite mixings yL and yR,

Vq8L+u1R
∼ O(y4

L)s2
hc

2
h,

Vq8L+u28R
∼ O(y4

L, y
4
R)s2

hc
2
h,

Vq8L+u35R
∼ O(y2

R, y
4
L, y

2
Ly

2
R)s2

hc
2
h.

(71)
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