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Abstract

Unlike minimal SU(5), SO(10) provides a straightforward path towards gauge
coupling unification by modifying the renormalization group evolution of the gauge
couplings above some intermediate scale which may also be related to the seesaw
mechanism for neutrino masses. Unification can be achieved for several different
choices of the intermediate gauge group below the SO(10) breaking scale. In this
work, we consider in detail the possibility that SO(10) unification may also provide a
natural dark matter candidate, stability being guaranteed by a left over Z2 symme-
try. We systematically examine the possible intermediate gauge groups which allow
a non-degenerate, fermionic, Standard Model singlet dark matter candidate while
at the same time respecting gauge coupling unification. Our analysis is done at the
two-loop level. Surprisingly, despite the richness of SO(10), we find that only two
models survive the analysis of phenomenological constraints, which include suitable
neutrino masses, proton decay, and reheating.



1 Introduction

One of the often quoted motivations for supersymmetry (SUSY) is its ability to improve
the possibility for gauge coupling unification at the grand unified (GUT) scale which
is not possible in minimal SU(5) [1]. However, SO(10) has the built in possibility for
achieving gauge coupling unification through several potential intermediate scale gauge
groups [2–4]. Of course low energy SUSY has many other motivations including the
presence of a dark matter (DM) candidate [5] whose stability is insured if R-parity is
conserved. However under very generic conditions, non-SUSY SO(10) models also possess
a remnant Z2 symmetry when an intermediate scale U(1) symmetry is broken [6–11]. Thus
several modest extensions of minimal SO(10) may also allow for the possibility of DM.

In building a successful SO(10), we must also require that the GUT and intermediate
mass scales be sufficiently large so as to ensure a proton lifetime and neutrino masses
compatible with experiment. Unfortunately, these requirements are not realized for ev-
ery choice of intermediate scale gauge group. The addition of a new SO(10) multiplet
containing a DM candidate will, however, affect the running of the gauge couplings and
can improve the desired unification of the gauge couplings. For this reason, we suppose
that the DM candidate be charged under the intermediate gauge symmetries. The cosmo-
logical production of DM could occur, for example, out of equilibrium from the thermal
bath (nonequilibrium thermal DM or NETDM [4]) in a manner reminiscent of freeze-in
scenarios [12]. This mechanism works with a stable particle which has no interaction with
the SM particles. Thus, we focus on singlet DM candidates. Further, as scalar DM would
most assuredly couple to the Standard Model (SM) Higgs, we limit our attention here to
fermionic DM.

SO(10) grand unification is of course a general moniker for many candidate theories
of unification as there are several possible intermediate gauge groups and several possible
choices for representations, R1 of Higgs fields which break SO(10) to the intermediate
gauge group, Gint, and then again, several possible choices of representations, R2 for the
Higgs fields which break Gint down to the SM. Furthermore, there are several possible
choices for the representation which contains DM. Thus it may seem that DM in SO(10)
models is a rather robust and generic feature. However, if we insist on maintaining gauge
coupling unification at a suitably high scale to guarantee proton stability, the number of
models is dramatically reduced. In fact by limiting the dimension of the representation
containing DM to be no larger than a 210, we find that only two models survive.

In this paper, we will systematically examine the possibility for fermionic NETDM in
SO(10) models, though our conclusions are more general than the specific NETDM model.
We will discuss the various possible intermediate gauge groups and Higgs representations
which allow for gauge coupling unification and we will demonstrate the effect of including
two-loop running of the renormalization group equations (RGEs). The DM representation
needs to be split so that only fermions with the appropriate gauge quantum numbers
survive at low energy. This requires fine-tuning similar to the doublet-triplet separation
problem in GUTs. We also systematically consider viable DM representation and their
effect on the running of the gauge couplings. In all but two distinct models, the presence
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of DM spoils the desired unification of the gauge couplings.
In the following, we begin by discussing the origin of a discrete symmetry in a variety

of models with different intermediate gauge groups and the possible representations for
DM and the splitting of the DM multiplet. In section 3, we first demonstrate gauge
coupling unification in these models (without DM) and show the effect of including the
two-loop functions in the RGE running and one-loop threshold effects. We next consider
the question of gauge coupling unification in the presence of a DM multiplet. In section 4,
we discuss the criteria which select only two possible models in a specific example of the
NETDM scenario [4]. The phenomenological aspects of these models including neutrino
masses, proton decay, the production of DM through reheating after inflation will be
discussed in section 5. We also consider the case where the DM field is a singlet under
the intermediate gauge groups in section 6. Our conclusions will be given in section 7.

2 Candidates

We assume that the SO(10) gauge group is spontaneously broken to an intermediate
subgroup Gint at the GUT scale MGUT, and subsequently broken to the SM gauge group
GSM at an intermediate scale Mint:

SO(10) −→ Gint −→ GSM ⊗ ZN , (1)

with GSM ≡ SU(3)C⊗SU(2)L⊗U(1)Y . The Higgs multiplets which break SO(10) and Gint

are called R1 and R2, respectively. In addition, we require that there is a remnant discrete
symmetry ZN that is capable of rendering a SM singlet field to be stable and hence account
for the DM in the Universe [10,11]. The mechanism for ensuring a remnant ZN is discussed
in detail in Sec. 2.1, and the possible intermediate gauge groups that accommodate the
condition are summarized in Sec. 2.2.

If moreover the DM couplings are such that the candidate is not in thermal equilibrium
at early times, as in the NETDM scenario, we obtain stringent constraints on the model
structure. We will consider this subject in Sec. 2.3.

2.1 Discrete symmetry in SO(10)

SO(10) is a rank-five group and has an extra U(1) symmetry beyond U(1)Y in the SM
gauge group. The U(1) charge assignment for fields in an SO(10) multiplet is determined
uniquely up to an overall factor. We define the normalization factor such that all of the
fields φi in a given model have integer charges Qi with the minimum non-zero value of
|Qi| is equal to +1. Now, let us suppose that a Higgs field φH has a non-zero charge QH .
Then, if QH = 0 (mod. N) with N ≥ 2 an integer, the U(1) symmetry is broken to a
ZN symmetry after the Higgs field obtains a vacuum expectation value (VEV) [7–9]. One
can easily show this by noting that both the Lagrangian and the VEV 〈φH〉 are invariant
under the following transformations:

φi → exp

(
i2πQi

N

)
φi , 〈φH〉 → exp

(
i2πQH

N

)
〈φH〉 = 〈φH〉 . (2)
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Thus, an SO(10) GUT may account for the stability of DM in terms of the remnant ZN
symmetry originating from the extra U(1) gauge symmetry.

The next task is to determine which type of irreducible representations for the Higgs
field φH can be exploited to realize the discrete symmetry. To that end, we follow the
discussion presented in Ref. [13]. The discussion is based on the Dynkin formalism of the
Lie algebra [14].1 Since the rank of SO(10) is five, we have five independent generators
which can be diagonalized simultaneously. We denote them by Hi (i = 1, . . . , 5). They
form the Cartan subalgebra of SO(10). Each component of a multiplet is characterized
by a set of eigenvalues of the generators, µi (i = 1, . . . , 5), called weights. We also define
the weight vector µ ≡ (µ1, . . . , µ5). The weights in the adjoint representation are called
roots αi, with α = (α1, . . . , α5) the root vector. Among the root vectors, a set of five
linearly independent vectors play an important role. They are called simple roots, αi
(i = 1, . . . 5), and expressed by the Dynkin diagrams. In what follows, we consider the
weight and root vectors in the so-called Dynkin basis. In this particularly useful basis, a
weight vector µ is expressed in terms of a set of Dynkin labels given by

µ̃i =
2αi · µ
|αi|2

. (3)

It turns out that the Dynkin labels are always integers. For example, the highest weight
of the 16 in SO(10) is expressed as (0 0 0 0 1), while that of the 10 is given by (1 0 0 0 0).

On the other hand, it is convenient to express the Cartan generators Hi in the dual
basis, where they are expressed in terms of five-dimensional vectors [h̄i1, . . . , h̄i5] such that
their eigenvalues for a state corresponding to the weight µ are given by

Hi(µ) =
5∑
j=1

h̄ijµ̃j . (4)

We choose the five linearly independent Cartan generators as follows:

H1 =
1

2
[1 2 2 1 1] ,

H2 =
1

2
√

3
[1 0 0 − 1 1] ,

H3 =
1

2
[0 0 1 1 1] ,

H4 =
1

6
[−2 0 3 − 1 1] ,

H5 = [2 0 2 1 − 1] . (5)

Here, H1 and H2 correspond to the SU(3)C Cartan generators λ3/2 and λ8/2, respectively,
where λA (A = 1, . . . , 8) are the Gell-Mann matrices; H3 and H4 are the weak isospin
and hypercharge, T3L and Y , respectively.2 H5 is related to the B − L charge as H5 =

1For a review and references, see Refs. [15, 16]. We follow the convention of Ref. [15] in this paper.
2In the case of the flipped SU(5) scenario [17,18], the weak hypercharge is given by Y = − 1

5 (H4 +H5).
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−5(B−L)+4Y . The additional U(1) symmetry required to generate a discrete symmetry
is provided by a linear combination of the Cartan generators containing H5. Following
Ref. [13] (see also Ref. [8]), we define the extra U(1) charge Q1 by

Q1 = −6

5
H4 −

1

5
H5 = [0 0 − 1 0 0] . (6)

This U(1) charge can be also written as Q1 = (B − L) − 2Y . One can readily find that
all of the components in 10 and 16 have the U(1) charges of either 0 or ±1.

Now we consider possible representations, R2, for φH discussed above. First, let us
determine the possible weight vectors corresponding to the component of φH that can
have a VEV without breaking the SM gauge group. Namely, such a component has a zero
eigenvalue for Hi (i = 1, . . . , 4). This condition tells us that the corresponding weight
vectors have the following form:

µN = (−N N −N 0 N) . (7)

The Q1 charges of the vectors are then given by

Q1(µN) = N . (8)

It is found that the smallest irreducible representation that contains the weight vector
µN has the highest weight3

ΛN = (0 0 0 0 N) . (9)

Its dimension is 16, 126, 672, . . . for N = 1, 2, 3, . . . , respectively.4 To obtain a ZN
symmetry, N ≥ 2 is required. Thus, as long as we consider relatively small representations
(such as those with dimensions not exceeding 210), 126 is the only candidate5 for the
representation of φH . In this case, the remnant discrete symmetry is Z2.6

Under the Z2 symmetry, the SM left-handed fermions are even, while the SM right-
handed fermions as well as the Higgs field are odd. One can easily show that this symmetry
is related to the product of matter parity PM = (−1)3(B−L) [19] and the U(1)Y rotation by
6π, e6iπY . Thus, if a SM-singlet fermion (boson) has an even (odd) parity, the remnant Z2

symmetry makes the particle stable. In Table 1, we summarize irreducible representations
that contain µN . We only show those who have dimensions less than or equal to 210.
From the table, we find that a singlet fermion in a 45, 54, 126, or 210 representation, or
a singlet scalar boson in a 16 or 144 representation, can be a DM candidate.

3In fact, we obtain µN by subtracting the root vector (1 − 1 1 0 0) from ΛN N times.
4 The dimension of ΛN for any N is given by

dim(ΛN ) = (1 +N)

(
1 +

N

2

)(
1 +

N

3

)2(
1 +

N

4

)2(
1 +

N

5

)2(
1 +

N

6

)(
1 +

N

7

)
. (10)

5The next-to-smallest representation including µ2 is 1728 with the highest weight (1 0 0 1 1).
6For earlier work on the remnant Z2 symmetry in SO(10), see Ref. [6].
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Table 1: Irreducible representations containing µN .

Representation Highest weight Z2

µ0 45 (0 1 0 0 0) +

54 (2 0 0 0 0) +

210 (0 0 0 1 1) +

µ1 16 (0 0 0 0 1) −
144 (1 0 0 1 0) −

µ2 126 (0 0 0 0 2) +

Note that although we need a 126 Higgs field to break the extra U(1) symmetry
and produce a remnant Z2 symmetry, other Z2-even singlet fields, 45, 54, 210, etc., can
have VEVs simultaneously without breaking the Z2 symmetry. While the latter do not
break the Z2 symmetry, as discussed above, they are not capable of producing it, thus
requiring the 126. We will use such fields to obtain an adequate mass spectrum and a
non-degenerate DM candidate, as discussed in Sec. 2.3 and Sec. 4. R2 will therefore refer
to all representations at the intermediate scale which either are responsible for symmetry
breaking or intermediate scale masses and may be a combination of the 126 and other
representations listed in Table 1 with positive Z2 charge.

2.2 Intermediate gauge group

As shown in Eq. (1), the extra U(1) symmetry is assumed to be broken at the intermediate
scale, i.e., the 126 Higgs field acquires a VEV of the order of Mint. Thus, the intermediate
gauge group Gint should be of rank-five. In Table 2, we summarize the rank-five subgroups
of SO(10) and the Higgs multiplets R1 whose VEVs break SO(10) into the subgroups.
Again we only consider the representations whose dimensions are less than or equal to
210. Here D denotes the so-called D-parity [20], that is, a Z2 symmetry with respect to
the exchange of SU(2)L ↔ SU(2)R. D-parity can be related to an element of SO(10) [20]
under which a fermion field transforms into its charge conjugate. In cases where the
D-parity is not broken by R1, it is subsequently broken by R2 at the scale of Mint. In
the NETDM scenario, the reheating temperature is always below Mint, and therefore any
cosmological relics [6] due to the breaking of D-parity will be harmless. Note that the
VEVs of the R1 Higgs fields are even under the Z2 symmetry considered in Sec. 2.1. Thus,
there is no danger for this Z2 symmetry to be spontaneously broken by the R1 Higgs fields.
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Table 2: Candidates for the intermediate gauge group Gint.

Gint R1

SU(4)C ⊗ SU(2)L ⊗ SU(2)R 210

SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D 54

SU(4)C ⊗ SU(2)L ⊗ U(1)R 45

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L 45

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ⊗D 210

SU(3)C ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L 45, 210

SU(5)⊗ U(1) 45, 210

Flipped SU(5)⊗ U(1) 45, 210

2.3 Fermion dark matter and degeneracy problem

In the NETDM scenario, the DM should not be in thermal equilibrium. This requirement
disfavors scalar DM candidates since a scalar, φ, can always have a quartic coupling with
the SM Higgs field H — λφH |φ|2|H|2. Unless |λφH | is extremely small for some reason,
this coupling keeps scalar DM in thermal equilibrium even when the temperature of the
Universe becomes much lower than the reheating temperature. Therefore, we focus on
fermionic DM in this paper. Following the discussion in Sec. 2.1, the DM candidate should
be contained in either a 45, 54, 126, or 210 representation.

Below the GUT scale, components in an SO(10) multiplet can obtain different masses.
We assume that only a part of an SO(10) multiplet which contains the DM candidate
and forms a representation under Gint has a mass much lighter than the GUT scale. We
denote this representation by RDM. Such a mass splitting can be realized by the Yukawa
coupling of the DM multiplet with the R1 Higgs field. After the R1 Higgs obtains a VEV,
the Yukawa coupling leads to an additional mass term for the SO(10) multiplet, which
gives different masses among the components. By carefully choosing the parameters in
the Lagrangian, we can make only RDM light. This will be discussed in detail in Sec. 4.

As will be seen in Sec. 3.1, without RDM, SO(10) GUTs often predict either a low value
of MGUT or Mint, which could be problematic for proton decay or the explanation of light
neutrino masses, respectively. In order to affect the RGE running of the gauge couplings
and possibly increase the mass scales for both Mint and MGUT, the DM should be charged
under Gint. In Table 3, we summarize possible candidates for RDM for each intermediate
gauge group. Above the intermediate scale, all of the components have an identical
mass. In fact, it turns out that the degeneracy is not resolved at tree level even after
the intermediate gauge symmetry is broken. This is because the SO(10) multiplets which
contain RDM displayed in the table cannot have Yukawa couplings with the 126 Higgs;
such a coupling is forbidden by the SO(10) symmetry. Thus, the effects of symmetry
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Table 3: Candidates for the NETDM.

Gint RDM SO(10)

SU(4)C ⊗ SU(2)L ⊗ SU(2)R (1, 1, 3) 45

(15, 1, 1) 45, 210

(10, 1, 3) 126

(15, 1, 3) 210

SU(4)C ⊗ SU(2)L ⊗ U(1)R (15, 1, 0) 45, 210

(10, 1, 1) 126

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L (1, 1, 3, 0) 45, 210

(1, 1, 3, −2) 126

SU(3)C ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L (1, 1, 1, −2) 126

SU(5)⊗ U(1) (24, 0) 45, 54, 210

(1, −10) 126

(75, 0) 210

Flipped SU(5)⊗ U(1) (24, 0) 45, 54, 210

(50, −2) 126

(75, 0) 210

breaking by the 126 Higgs VEV cannot be transmitted to the mass of the RDM multiplet
at tree level, and a simple realization of DM in RDM makes its components degenerate in
mass.

Such a degenerate mass spectrum is problematic. Since the degenerate multiplet
contains particles charged under the SU(3)C⊗U(1)EM gauge group, they will be in thermal
equilibrium. In general, these components have quite a long lifetime, and thus their
thermal relic density conflicts with various observations. To see this, let us consider the
(1,1,3) Dirac fermion multiplet (ψ0, ψ±) in the SU(4)C ⊗SU(2)L⊗SU(2)R theory, which
originates from the 45 representation of SO(10), as an example. As mentioned above,
they have an identical mass M at tree level, and the mass difference ∆M induced by the
radiative corrections can be estimated as

∆M ' α1

4π
M ln

(
Mint

M

)
∼ 0.01×M , (11)

where α1 is the U(1) gauge fine-structure constant. The charged components ψ± can
decay into the neutral DM ψ0 only through the exchange of the intermediate-scale gauge
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ψ+

ψ0

W+
R

f̄ ′

f

Figure 1: Diagram responsible for the decay of ψ+ into the DM ψ0. f and f ′ denote the
SM particles.

bosons as shown in Fig. 1. We estimate the decay width as

Γ(ψ+ → ψ0ff̄ ′) ∼ α2
R

π

(∆M)5

M4
WR

, (12)

where αR = g2
R/4π and gR and MWR

are the coupling and the mass of the intermediate
gauge boson WR, respectively. Then, for example, when the DM mass is O(1) TeV and
the intermediate scale is O(1013) GeV, the lifetime of ψ+ is much longer than the age of
the Universe, and thus cosmologically stable. The abundance of such a stable charged
particle is stringently constrained by the null results of the searching for heavy hydrogen
in sea water [21]. The DM multiplets in other cases may also be accompanied by stable
colored particles, whose abundance is severely restricted as well. If the intermediate
scale is relatively low, the charged/colored particle can have a shorter lifetime. Even in
this case, their thermal relic abundance should be extremely small in order not to spoil
the success in the Big-Bang Nucleosynthesis (BBN). Quite generally, a degenerate mass
spectrum leads to disastrous consequences. We refer to this problem as the “degeneracy
problem” in what follows.

To avoid the degeneracy problem, we need to make the charged/colored components
heavy enough so that they are not in thermal equilibrium and have very short lifetimes.
To that end, it is natural to explore a way to give them masses of O(Mint) by using the
effects of the intermediate symmetry breaking. There are several solutions. One of the
simplest ways is to introduce an additional Higgs field that has a VEV of the order of
Mint. For this purpose, we can use a 45, 54, or 210 field, as discussed in Sec. 2.1. The
Yukawa coupling between the Higgs and the DM then yields the desired mass splitting. By
fine-tuning the coupling we can force only the DM to have a mass much below Mint while
the other components remain around the intermediate scale7. Though other mechanisms
are possible, we adopt this approach in this work. Concrete realizations of the mechanism
are illustrated in Sec. 4.

7This fine-tuning is similar (though somewhat less severe) to the fine-tuning associated with the
doublet-triplet separation to insure a weak scale Higgs boson.
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Another solution to the degeneracy problem involves the use of higher-dimensional
operators that include at least two 126 fields. One would expect that such operators
suppressed by the Planck scale, MPl, always exist. These Planck-suppressed operators
can give rise to a mass difference of O(M2

int/MPl). Another mechanism to generate higher-
dimensional operators is to introduce a vector-like fermion which has a Yukawa coupling
with the DM and the 126 Higgs. By integrating out the fermion, we obtain dimension-
five operators which give a O(M2

int/Mfer) mass difference, where Mfer is the mass of the
additional fermion. Moreover, the higher-dimensional operators can be induced at the
loop level, which gives rise to a O(αGUTM

2
int/(4πMGUT)) mass difference, where αGUT =

g2
GUT/(4π) is the fine-structure constant of the unified gauge coupling gGUT. Realization

of these scenarios will be discussed elsewhere.

3 Gauge coupling unification

As is well known, gauge coupling unification can be realized in SO(10) GUTs with an
intermediate scale [2].8 Once the intermediate gauge group as well as the low-energy
matter content is given, one can determine both the intermediate and GUT scales by
requiring gauge coupling unification. In what follows, we reevaluate these scales in the
SO(10) GUT scenarios with different intermediate gauge groups and up-to-date values for
the input parameters. Then, in Sec. 3.2, we study the effects of the DM and the interme-
diate Higgs multiplets on gauge coupling unification. We will find that the requirement
of gauge coupling unification severely constrains the NETDM models.

3.1 Gauge coupling unification with the intermediate scale

To begin with, let us briefly review SO(10) GUTs with an intermediate gauge group. In
SO(10) GUTs, the SM fermions as well as three right-handed neutrinos are embedded into
three copies of the 16 spinor representations, while the SM Higgs boson is usually included
in a 10 representation. At the GUT scale, the SO(10) GUT group is spontaneously broken
into an intermediate gauge group. Subsequently, the intermediate Higgs multiplet breaks
it into the SM gauge group at the intermediate scale. In the following analysis, we work
with the so-called extended survival hypothesis [23,24]; that is, we assume that a minimal
set of Higgs multiplets necessary to realize the symmetry breaking exists in low-energy
region. Above the intermediate scale, the presence of the additional Higgs multiplet and
intermediate gauge bosons change the gauge coupling running from that in the SM. This
makes it possible to realize gauge coupling unification in this scenario.

As displayed in Table 2, the intermediate gauge groups relevant to our discussion are
divided into two classes; those which contain the SU(5) group as a subgroup, and those
that do not. The former class is, however, found to be less promising. In the case of
ordinary SU(5) ⊗ U(1), the SM gauge couplings should meet at the intermediate scale,
though they do not as is well known. Failure of gauge coupling unification is also found in

8For a review, see Refs. [3, 22].
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the flipped SU(5) case. This conclusion cannot be changed even if one adds the DM and
Higgs multiplets in the case of ordinary SU(5). In the flipped SU(5) case, the addition of
the DM and Higgs multiplets may yield gauge coupling unification. However, it turns out
that the intermediate mass scale is as high as O(1017) GeV in such cases. Since the masses
of the right-handed neutrinos are expected to be O(Mint), if Mint = O(1017), the simple
seesaw mechanism [25] cannot explain the neutrino masses required from the observation
of the neutrino oscillations. However, the GUT scale tends to be close to the Planck scale
and one may need to rely on a double seesaw to explain neutrino masses [18, 26]. We do
not consider these possibilities in the following discussion.

The other class of the intermediate gauge groups is related to the Pati-Salam gauge
group [27]. Therefore, it is useful to decompose the SO(10) multiplets into multiplets of
the SU(4)C ⊗ SU(2)L ⊗ SU(2)R gauge group. The 16 spinor representation in SO(10) is
decomposed into a (4,2,1) and (4,1,2) of SU(4)C ⊗ SU(2)L ⊗ SU(2)R. We denote them
by ΨL and ΨCR, respectively, in which the SM fermions are embedded as follows:

ΨL =

(
u1
L u2

L u3
L νL

d1
L d2

L d3
L eL

)
, ΨCR =

(
dCR1 dCR2 dCR3 eCR

−uCR1 −uCR2 −uCR3 −νCR

)
, (13)

where the indices represent the SU(3)C color and C indicates charge conjugation. The
SM Higgs field is, on the other hand, embedded in the (1,2,2) component of the ten-
dimensional representation. As discussed in Ref. [28], to obtain the viable Yukawa sector,9

we need to consider a complex scalar 10C for the representation, not a real one. Thus,
(1,2,2) is also a complex scalar multiplet and includes the two Higgs doublets. In the
following calculation, we regard one of these doublets as the SM Higgs boson, and the other
is assumed to have a mass around the intermediate scale. The SU(4)C⊗SU(2)L⊗SU(2)R
gauge group is broken by the VEV of the (10,1,3) component in the 126C . In the
presence of the left-right symmetry, we also have a (10,3,1) above the intermediate scale.
We assume that the (10,3,1) field does not acquire a VEV, with which the constraint
coming from the ρ-parameter is avoided. From these charge assignments, one can readily
obtain the quantum numbers for the corresponding fields in the other intermediate gauge
groups, since they are subgroups of the SU(4)C ⊗ SU(2)L ⊗ SU(2)R.

With this field content, we study whether the gauge coupling unification is actually
achieved or not for the first six intermediate gauge groups listed in Table 2. We perform
the analysis by using the two-loop RGEs, which are given in Appendix B. We will work
in the DR scheme [30], as there is no constant term in the intermediate and GUT scale
matching conditions. The input parameters we use in our analysis are listed in Table 7 in
Appendix A. By solving the RGEs and assuming gauge coupling unification, we determine
the intermediate scale Mint, the GUT scale MGUT, and the unified gauge coupling constant
gGUT. If we fail to find the appropriate values for these quantities, we will conclude that
gauge coupling unification is not realized in this case. To determine their central values

9For a general discussion on the Yukawa sector in SO(10) GUTs, see Refs. [28, 29].
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Table 4: log10(Mint), log10(MGUT), and gGUT. For each Gint, the upper shaded (lower)
row shows the 2-loop (1-loop) result. Mint and MGUT are given in GeV. The blank entries
indicate that gauge coupling unification is not achieved.

Gint log10(Mint) log10(MGUT) gGUT

SU(4)C ⊗ SU(2)L ⊗ SU(2)R 11.17(1) 15.929(4) 0.52738(4)

11.740(8) 16.07(2) 0.5241(1)

SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D 13.664(3) 14.95(1) 0.5559(1)

13.708(7) 15.23(3) 0.5520(1)

SU(4)C ⊗ SU(2)L ⊗ U(1)R 11.35(2) 14.42(1) 0.5359(1)

11.23(1) 14.638(8) 0.53227(7)

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L 9.46(2) 16.20(2) 0.52612(8)

8.993(3) 16.68(4) 0.52124(3)

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ⊗D 10.51(1) 15.38(2) 0.53880(3)

10.090(9) 15.77(1) 0.53478(6)

SU(3)C ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L

as well as the error coming from the input parameters, we form a χ2 statistic as

χ2 =
3∑

a=1

(g2
a − g2

a,exp)2

σ2(g2
a,exp)

, (14)

where ga are the gauge couplings at the electroweak scale obtained by solving the RGEs
on the above assumption, ga,exp are the experimental values of the corresponding gauge
couplings with σ(g2

a,exp) denoting their error. The central values of Mint, MGUT, and gGUT

are corresponding to a point at which χ2 is minimized.10

By using the method discussed above, we carry out the analysis and summarize the
results in Table 4. Here, we show log10(Mint), log10(MGUT), and gGUT. For each inter-
mediate gauge group, the upper shaded (lower) row shows the 2-loop (1-loop) result.
Mint and MGUT are given in GeV. The blank entries indicate that gauge coupling unifi-
cation is not achieved. The uncertainties resulting from the input error are also shown
in the parentheses. To illustrate our procedure more clearly, we show χ2 as functions of
log10(Mint) (top), log(MGUT) (middle), and gGUT (bottom) in Fig. 2 for two examples of
intermediate gauge groups. The left panels are for Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R,
while the right ones are for Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D. The χ2 functions for

10We also use the χ2 statistics to determine the value of the input Yukawa coupling in a similar manner,
though it scarcely affects the error estimation of Mint, MGUT, and gGUT.
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Figure 2: χ2 as functions of log10(Mint) (top), log10(MGUT) (middle), and gGUT (bottom).
Left and right panels are for Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R and Gint = SU(4)C ⊗
SU(2)L ⊗ SU(2)R ⊗D, respectively. Mint and MGUT are given in GeV.
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Figure 3: Contour plots for the allowed region in the gGUT-log10(Mint), gGUT-log10(MGUT),
and log10(MGUT)-log10(Mint) parameter planes in the top, middle, bottom panels, respec-
tively. Left panels are for Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R, while right ones are for
Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗ D. Stars represent the best-fit point. The colored
regions correspond to 68, 95, and 99 % CL limits determined from ∆χ2 ' 2.30, 5.99, 9.21.
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the other choices of intermediate scale gauge groups will be qualitatively similar. Here
again, Mint and MGUT are given in GeV. In each plot, the other two free parameters are
fixed to their best-fit values. We also plot the one-loop results (shown as dotted curves)
to show the significance of the two-loop effects. In Fig. 3, we show the χ2 functions pro-
jected down onto 2D planes corresponding to gGUT-log10(Mint), gGUT-log10(MGUT), and
log10(MGUT)-log10(Mint) in the top, middle, and bottom panels, respectively. Again, the
left panels are for Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R, while the ones on the right are for
Gint = SU(4)C⊗SU(2)L⊗SU(2)R⊗D. The stars represent the best-fit point. The uncer-
tainty ellipses represent 68, 95, and 99 % CL uncertainties corresponding to ∆χ2 = 2.30,
5.99 and 9.21 respectively. Threshold corrections at Mint and MGUT [31] due to the non-
degeneracy of the particles that have masses of the order of these scales contribute to the
uncertainties.11 For a recent discussion of threshold corrections, see Ref. [32]. In addi-
tion, we neglect the contribution of Yukawa couplings above the intermediate scale, which
causes additional error. These are expected to give O(1)% uncertainty to the results.

From Table 4, it is found that gauge coupling unification is not achieved in the case of
Gint = SU(3)C ⊗ SU(2)L ⊗U(1)R ⊗U(1)B−L. Moreover, we find that relatively low GUT
scales are predicted forGint = SU(4)C⊗SU(2)L⊗SU(2)R⊗D and SU(4)C⊗SU(2)L⊗U(1)R,
and thus the proton decay constraints may be severe in these cases, as discussed in Sec. 5.2.
Furthermore, except for Gint = SU(4)C⊗SU(2)L⊗SU(2)R⊗D, we obtain low intermediate
scales, with which it may be difficult to account for the neutrino masses, as explained in
Sec. 5.1. As we will see below, this situation can be improved in the NETDM models.

3.2 NETDM and gauge coupling unification

Next, we look for the NETDM models in which gauge coupling unification is realized with
an appropriate intermediate unification scale. Here, we require 1015 .MGUT . 1018 GeV;
if MGUT < 1015 GeV, then proton decays are too rapid to be consistent with proton decay
experiments, while if MGUT > 1018 GeV, then gravitational effects cannot be neglected
anymore and a calculation based on quantum field theories may be invalid around the
GUT scale. To search for promising candidates, we assume the following conditions.
Firstly, a model should contain a NETDM candidate shown in Table 3, where only a
singlet component has a mass much below the intermediate scale. This component does
not affect the running of the gauge couplings. Secondly, the rest of the components in RDM

are assumed to be around Mint due to the mass splitting mechanism with an additional
Higgs multiplet, discussed in Sec. 2.3. At this point, we only assume that there exists an
extra Higgs multiplet from either the 45, 54 or 210 whose mass is around the intermediate
scale. Whether the VEV of the extra Higgs actually gives rise to the mass splitting or
not will be discussed in the subsequent section. Thirdly, we require that only the SM
fields, the intermediate gauge bosons, RDM, and R2 are present below the GUT scale. For
example, if we consider the (1, 1, 3) DM of the 45 given in the first column in Table 3,
then we suppose that all of the components of the 45 except RDM = (1,1,3) should have

11 Note that the intermediate scale in the left-right symmetric theories does not depend on physics
beyond Mint, as discussed in Appendix C.
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Table 5: Models that realize the gauge coupling unification. Mint and MGUT are given in
GeV. All of the values listed here are evaluated at one-loop level.

SU(4)C⊗SU(2)L⊗SU(2)R

RDM R2 log10(Mint) log10(MGUT) gGUT

(1,1,3)W
(10,1,3)C
(1,1,3)R 10.8 15.9 0.53

(1,1,3)D
(10,1,3)C
(1,1,3)R 9.8 15.7 0.53

SU(4)C⊗SU(2)L⊗SU(2)R ⊗D
RDM R2 log10(Mint) log10(MGUT) gGUT

(15,1,1)W

(10,1,3)C
(10,3,1)C
(15,1,1)R

13.7 16.2 0.56

(15,1,1)W

(10,1,3)C
(10,3,1)C
(15,1,3)R
(15,3,1)R

14.2 15.5 0.56

(15,1,1)D

(10,1,3)C
(10,3,1)C
(15,1,3)R
(15,3,1)R

14.4 16.3 0.58

SU(3)C⊗SU(2)L⊗SU(2)R⊗U(1)B−L

RDM R2 log10(Mint) log10(MGUT) gGUT

(1,1,3, 0)W
(1,1,3,−2)C
(1,1,3, 0)R 6.1 16.6 0.52

masses around the GUT scale. This condition is corresponding to the requirement of the
minimal fine-tunings in the scalar potential to realize an adequate mass spectrum.

With the conditions, we then search for possible candidates by using the one-loop
analytic formula given in Appendix C. In Table 5, we summarize the field contents that
satisfy the above requirements, as well as the values of log10(Mint), log10(MGUT), and
gGUT, with Mint and MGUT in GeV. All of the values are evaluated at one-loop level.
Here the subscript R, C, W , or D of each multiplet indicates that it is a real scalar, a
complex scalar, a Weyl fermion, or a Dirac fermion, respectively. As for the intermediate
Higgs fields, R2, listed in Table 5, (10,1,3)C and (1,1,3,−2)C are from the 126 Higgs
field, while all other representations included in R2 are extra Higgs fields introduced to
resolve the degeneracy problem. For the additional Higgs fields, we only show the real
scalar cases for brevity. Indeed, we can also consider complex scalars for the Higgs fields
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and find that gauge coupling unification is also realized in these cases, where both the
intermediate and GUT scales are only slightly modified.

4 Models

In the previous section, we have reduced the possible candidates to those presented in
Table 5. In this section, we study if any of those models are viable, i.e., we check if
they actually offer appropriate mass spectrum to realize the NETDM scenario, with the
charged/colored components in RDM acquiring masses of O(Mint).

First, let us consider the (1,1,3)W/D DM representation in the SU(4)C ⊗ SU(2)L ⊗
SU(2)R gauge theory. To split the masses in the (1,1,3) multiplet ψr, we need to couple
the DM with the (1,1,3)R Higgs φr, with r denoting the SU(2)R index. Since the fields
transform as triplets under the SU(2)R transformations, to construct an invariant term
from the fields, the indices should be contracted anti-symmetrically, i.e., the coupling
should have a form like

εpqr(ψ)pψqφr . (15)

Then, if ψr is a Majorana fermion, the above term always vanishes. Thus, ψr should be
a Dirac fermion, that is, (1,1,3)D is the unique candidate for NETDM in this case.

Next, we study the terms in the SO(10) Lagrangian relevant to the masses of the fields
much lighter than the GUT scale. In SO(10), (1,1,3)D, (1,1,3)R, and (10,1,3)C are in-
cluded in the 45D, 45R, and 126C , respectively. The SO(10) gauge group is spontaneously
broken by the 210R Higgs field (R1) into the SU(4)C ⊗ SU(2)L ⊗ SU(2)R intermediate
gauge group. As is usually done in the intermediate scale scenario, we fine-tune the Higgs
potential so that the (1,1,3)R and (10,1,3)C Higgs fields have masses around the in-
termediate scale. This can be always performed by using the couplings of the 45R and
126C fields with the 210R Higgs field, which acquires a VEV of the order of the GUT
scale. Similarly, we give desirable masses to the fields in (1,1,3)D by carefully choosing
the couplings of the 45D fermion with the 45R and 126C Higgs fields. Here, the relevant
interactions are

Lint = −M45D45D45D − iy4545D45D45R − y21045D45D210R . (16)

Notice that 45D does not couple to the 126C field, as already mentioned in Sec. 2.3. After
the R1 = 210R Higgs field gets a VEV 〈210R〉 = v210, the interactions in Eq. (16) lead to
the following terms:12

Lint → −MDM(ψ)rψr − iy45εrst(ψ)rψsφt , (17)

with MDM = M45D + y210v210/
√

6. Here, ψr and φr denote the (1,1,3)D and (1,1,3)R
components in 45D and 45R, respectively. We find that although M45D and v210 are
expected to beO(MGUT), we can let MDM be much lighter than the GUT scale by carefully
choosing the above parameters so that they cancel each other. In addition, it turns out

12For the computation of the Clebsch-Gordan coefficients, we have used the results given in Ref. [33].
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that the mass term of the (1,3,1)D component in 45D is given by M45D − y210v210/
√

6.
Thus, even if we fine-tune M45D and y210 to realize MDM �MGUT, the mass of (1,3,1)D
is still around the GUT scale. This observation reflects the violation of the D-parity
in this model. At this point, all of the components in ψr have identical masses (the
“degeneracy problem”). Once the neutral component of φr acquires a VEV 〈φ3〉 = v45,
which is assumed to be O(Mint), the second term in Eq. (17) gives rise to additional mass
terms for ψr. These are

Lint → −MDMψ0ψ0 −M+ψ+ψ+ −M−ψ−ψ− , (18)

where M± = MDM ∓ y45v45, and ψ0 and ψ± are the neutral and charged components,
respectively.13 The above expression shows that the VEV of the 45R Higgs field indeed
solves the degeneracy problem; if MDM � Mint and y45v45 = O(Mint), then the charged
components acquire masses of O(Mint), while the neutral component has a mass much
lighter than Mint. Thus, we obtain the mass spectrum we have assumed in the previous
section.

In the next example, we consider the DM representation RDM = (15,1,1)W with R2 =
(10,1,3)C⊕(10,3,1)C⊕(15,1,1)R in the left-right symmetric SU(4)C⊗SU(2)L⊗SU(2)R
gauge theory. In this case, R1 = 54R. We assume that the (15,1,1)W is a part of the
45W , while both (10,1,3)C and (10,3,1)C are part of the 126C . The couplings of the
DM with the Higgs fields, as well as its mass term, are then given by

Lint = −M45W

2
45W45W −

y54

2
45W45W54R −

y210

2
45W45W210R + h.c. , (19)

Here, (15,1,1)R is included in the 210R field; we cannot use a 45R in this case since
the Weyl fermion 45W has no coupling to the 45R.14 As before, below the GUT scale,
the VEV of 54R, v54, gives a common mass M to the (15,1,1)W multiplet with M =
M45W − y54v54/

√
15. We can take M = O(Mint) by fine-tuning M45W and y54v54. The

above Lagrangian then reduces to

Lint → −
M

2
ψAψA +

2y210√
3

Tr(ψφψ) + h.c. , (20)

where ψA and φA denote the (15,1,1)W and (15,1,1)R fields, respectively, with ψ ≡
ψATA and φ ≡ φATA; A,B,C = 1, . . . 15 are the SU(4) adjoint indices and TA are the
SU(4) generators. The mass degeneracy in this case is resolved by the VEV of the 210R
field,

〈φ〉 =
v210

2
√

6
diag(1, 1, 1,−3), (21)

with which Eq. (20) leads to

Lint → −
MDM

2
ψ0ψ0 − Mg̃

2
g̃Ag̃A −Mξξaξ

a + h.c. , (22)

13Note that since ψr are Dirac fermions, (ψ0)C 6= ψ0 and (ψ±)C 6= ψ∓
14It is also possible to embed (15,1,1)W into 210W and (15,1,1)R into 45R. The phenomenology in

this case is the same as that discussed in text.
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where ψ0, g̃A, ξa, and ξa are the color singlet, octet, triplet, and anti-triplet components
in (15,1,1)W , respectively, with a denoting the color index, and

MDM = M +

√
2

3
y210v210 , (23)

Mg̃ = M − 1

3
√

2
y210v210 , (24)

Mξ = M +
1

3
√

2
y210v210 . (25)

Therefore, by carefully adjusting y210v210, we can make the DM ψ0 much lighter than Mint

while keeping the other components around the intermediate scale.
There are two more possible representations for RDM for the left-right symmetric

SU(4)C⊗SU(2)L⊗SU(2)R intermediate gauge group given in Table 5, namely (15,1,1)W/D.
In this case, however, one can readily conclude that the degeneracy problem cannot be
solved by the (15,1,3)R and (15,3,1)R Higgs fields. This is because the Yukawa cou-
plings between the DM and these Higgs fields are forbidden by the intermediate gauge
symmetry. As a consequence, we can safely neglect these possibilities.

Finally, we discuss the model presented in the last column in Table 5. We again find
that the (1,1,3, 0)R Higgs field does not yield a mass difference among the components
in the (1,1,3, 0)W DM multiplet, since the operator in Eq. (15) vanishes when the DM
is a Weyl fermion. Thus, we do not consider this model in the following discussion.

As a result, we obtain two distinct models for NETDM within SO(10). We summarize
these two models in Table 6. We call them Model I and II in what follows. Here, Mint and
MGUT are given in GeV, and all of the values are evaluated with two-loop RGEs and differ
somewhat from the 1-loop values given in Table 5. The errors shown in the parentheses
arise from uncertainties in the input parameters. In addition, we again expect threshold
corrections at Mint and MGUT. Furthermore, we neglect the contribution of Yukawa
couplings to the RGEs above the intermediate scale, and this also will contribute to the
theoretical error. We estimate that these two sources cause O(1)% uncertainties in the
values displayed in Table 6. From these results, we find that the presence of the DM
component as well as the extra Higgs bosons can significantly alter the intermediate and
GUT scales,15 because of their effects on the gauge coupling running. To illustrate this
more clearly, in Fig. 4 we show running of gauge couplings in each theory. The left and
right panels of Fig. 4 correspond to Model I and II, respectively. In each figure, solid
(dashed) lines show the case with (without) DM and additional Higgs bosons. The blue,
green, and red lines represent the running of the U(1), SU(2) and SU(3) gauge couplings,
respectively, where the U(1) fine structure constant α1 is defined by

1

α1

≡ 3

5

1

α2R

+
2

5

1

α4

, (26)

15However, their existence hardly changes the intermediate scale in Model II, which is clarified in
Appendix C.
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while the SU(3)C coupling α3 is defined by α3 ≡ α4 above the intermediate scale. These
figures clearly show the effects of the extra particles on the gauge coupling running. In
particular, the GUT scale in Model II is now well above 1015 GeV, which allows this
model to evade the proton decay constraints, as will be seen in the subsequent section.

Table 6: NETDM models. Mint and MGUT are given in GeV. All of the values are
evaluated with the two-loop RGEs.

Model I Model II

Gint SU(4)C ⊗ SU(2)L ⊗ SU(2)R SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D
RDM (1,1,3)D in 45D (15,1,1)W in 45W

R1 210R 54R

R2 (10,1,3)C ⊕ (1,1,3)R (10,1,3)C ⊕ (10,3,1)C ⊕ (15,1,1)R

log10(Mint) 8.08(1) 13.664(5)

log10(MGUT) 15.645(7) 15.87(2)

gGUT 0.53055(3) 0.5675(2)
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(b) Model II

Figure 4: Running of gauge couplings. Solid (dashed) lines show the case with (without)
DM and additional Higgs bosons. Blue, green, and red lines represent the running of the
U(1), SU(2) and SU(3) gauge couplings, respectively.
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5 Phenomenological aspects

Now that we have obtained the NETDM models, we can study their phenomenological
aspects and possible implications in future experiments. In Sec. 5.1, we first consider
whether these models can give appropriate masses for light neutrinos. Next, in Sec. 5.2,
we evaluate proton lifetimes in each model and discuss the testability in future proton
decay experiments. Finally, we compute the abundance of DM produced by the NETDM
mechanism in Sec. 5.3, and predict the reheating temperature after inflation.

5.1 Neutrino mass

In SO(10) GUTs, the Majorana mass terms of the right-handed neutrinos are induced
after the B − L symmetry is broken. These mass terms are generated from the Yukawa
couplings of the 16 spinors with the 126C Higgs field. If the Yukawa couplings are O(1),
then the Majorana mass terms are O(Mint). On the other hand, in these models, the
Dirac masses of neutrinos are equal to the up-type quark masses, mu, at the unification
scale. Therefore, via the seesaw mechanism [25], light neutrino masses are given by

mν '
m2
u

Mint

. (27)

In Model II, Mint = O(1013) GeV indeed gives proper values for neutrino masses.16 How-
ever, in Model I, a low intermediate scale of O(108) GeV yields neutrino masses which
are too heavy using the standard seesaw expression (27). Thus, Model I is disfavored on
the basis of small neutrino masses.

The defect in Model I may be evaded if the (15,2,2) component in 126C has a
sizable mixing with the (1,2,2) Higgs boson and acquires a VEV of the order of the
electroweak scale. In this case, the neutrino Yukawa couplings can differ from those of the
up-quark, and thus the relation (27) does not hold any more. For sizable mixing to occur,
the (15,2,2) field should lie around the intermediate scale. One might think that the
presence of additional fields below the GUT scale would modify the running of the gauge
couplings and spoil the above discussion based on gauge coupling unification. However, it
turns out that both the intermediate and GUT scales are hardly affected by the existence
of this field, though the unified gauge coupling constant becomes slightly larger. This
is because its contribution to the one-loop beta function coefficients is ∆b4 = 16/3 and
∆b2L = ∆b2R = 5, and thus their difference is very tiny (see the discussion given in
Appendix C). Therefore, we can take the (15,2,2) to be at the intermediate scale with
little change in the values of Mint and MGUT. The presence of the (15,2,2) is also desirable

16Note that in a left-right symmetric model such as Model II there is in general also a type-II seesaw
contribution to mν from the VEV of the SU(2)L triplet in the 126C . However, we know from constraints
on the ρ-parameter that the VEV must be quite small and definitely much smaller than the VEV of
the SU(2)R triplet. For example, if the mixing between the SU(2)L and SU(2)R triplets with the Higgs
doublets is small, it is safe to assume that the SU(2)L triplet VEV is small and thus the type-II seesaw
contribution is subdominant [34].

20



to account for the down-type quark and charged lepton Yukawa couplings [28,35–37]. In
addition, the higher-dimensional operators induced above the GUT scale may also affect
the Yukawa couplings. Constructing a realistic Yukawa sector in these models is saved
for future work.

5.2 Proton decay

Proton decay is a smoking gun signature of GUTs, and thus a powerful tool for testing
them. In non-SUSY GUTs, p → e+π0 is the dominant decay mode, which is caused by
the exchange of GUT-scale gauge bosons. This could be compared with the case of the
SUSY GUTs; in SUSY GUTs, the color-triplet Higgs exchange usually yields the dominant
contribution to proton decay, which gives rise to the p→ K+ν̄ decay mode [38].17

Since the p→ e+π0 decay mode is induced by gauge interactions, we can make a robust
prediction for the partial decay lifetime of this mode. Details of the calculation are given
in Appendix D. By using the results given there, we evaluate the partial decay lifetime of
the p→ e+π0 mode in each theory, and plot it as a function of MX/MGUT (MX denotes the
mass of the GUT-scale gauge boson) in Fig. 5. Here, the blue and red solid lines represent
Models I and II, while the blue and red dashed lines represent the models without the DM
and extra Higgs multiplets as given in Table 4, namely Gint = SU(4)C ⊗SU(2)L⊗SU(2)R
and Gint = SU(4)C⊗SU(2)L⊗SU(2)R⊗D, respectively. The shaded area shows the region
which is excluded by the current experimental bound, τ(p → e+π0) > 1.4 × 1034 years
[40, 41]. We have varied the heavy gauge boson mass between MGUT/2 ≤MX ≤ 2MGUT,
which reflects our ignorance of the GUT scale mass spectrum. From this figure, we see
that the existence of DM and Higgs multiplets produces a large effect on the proton decay
lifetime. In particular, in the case of SU(4)C⊗SU(2)L⊗SU(2)R⊗D, the predicted lifetime
is so small that the present bound has already excluded the possibility. This conclusion
can be evaded, however, once the DM and R2 Higgs multiplets are included in the theory
as they raise the value of MGUT. Moreover, Model I is now being constrained by the proton
decay experiments. In this case, the inclusion of the DM and Higgs multiplets decreases
MGUT. Future proton decay experiments, such as the Hyper-Kamiokande experiment [42],
may offer much improved sensitivities (by about an order of magnitude), with which we
can probe a wide range of parameter space in both models.

5.3 Non-equilibrium thermal dark matter

Finally, we evaluate the relic abundance of DM produced by the NETDM mechanism [4]
in Models I and II. In both of these models, the DM ψ0 is produced in the early Universe
via the exchange of the intermediate-scale particles. Therefore, the production rate is
extremely small and their self-annihilation can be neglected. In addition, the produced
DM cannot be in the thermal bath since they have no renormalizable interactions with
the SM particles. These two features characterize the NETDM mechanism; the DM is
produced by SM particles in the thermal bath via the intermediate boson exchange, while

17For recent analyses on proton decay in SUSY GUTs, see Refs. [39].
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Figure 5: Proton lifetimes as functions of MX/MGUT. Blue solid and red solid lines
represent Model I and Model II, respectively. Blue dashed and red dashed lines represent
the cases for Gint = SU(4)C⊗SU(2)L⊗SU(2)R and Gint = SU(4)C⊗SU(2)L⊗SU(2)R⊗D
when the DM and extra Higgs multiplets are not included. The shaded area shows the
region which is excluded by the current experimental bound, τ(p→ e+π0) > 1.4×1034 years
[40, 41].

they do not annihilate with each other nor attain thermal equilibrium. In what follows, we
estimate the density of the DM produced via this mechanism and determine the reheating
temperature which realizes the observed DM density.

The Boltzmann equation for the DM ψ0 is given by

dYDM

dx
=

√
π

45

g∗s√
g∗ρ

MDMMPl
〈σv〉
x2

Y 2
eq , (28)

with YDM ≡ nDM/s and Yeq ≡ neq/s where nDM is the DM number density, neq is the
equilibrium number density of each individual initial state SM particle, and s is the
entropy of the Universe; x ≡ MDM/T with T being the temperature of the Universe; g∗s
and g∗ρ are the effective degrees of freedom for the entropy and energy density in the
thermal bath, respectively; MPl ≡ 1/

√
GN = 1.22× 1019 GeV is the Planck mass; 〈σv〉 is

the thermally averaged total annihilation cross section of the initial SM particles, f , into
the DM pair. When we derive Eq. (28), we neglect the DM self-annihilation contribution
as discussed above. From now on, we assume g∗s = g∗ρ ≡ g∗ for brevity.

We evaluate the thermal averaged cross section 〈σv〉 multiplied by the equilibrium
number density squared n2

eq as

〈σv〉n2
eq '

T

512π5

∫ ∞
4M2

DM

dŝ
√
ŝ− 4M2

DMK1(
√
ŝ/T )

∑
|M|2 , (29)
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h

h

φ0

〈φ〉

ψ0

ψ0

Figure 6: Diagram responsible for the DM production in Model II.

where
√
ŝ denotes the center-of-mass energy, and Kn(x) is the modified Bessel function of

the second kind. Here, we have used the approximation mf �
√
ŝ with mf the masses of

the SM particles since the particle production predominantly occurs at high temperature,
and neglected the angular dependence ofM for simplicity. In addition, we have assumed
the initial particles follow a Maxwell-Boltzmann distribution, and ignored statistical me-
chanical factors which may result from the Fermi-Dirac or Bose-Einstein distribution.∑ |M|2 indicates the sum of the squared-amplitude over all possible incoming SM parti-
cles, as well as the spin of the final state.

Next, we evaluate the amplitude M in each model. First, we consider the case of
Model II. In this case, the dominant contribution comes from the tree-level Higgs-boson
annihilation process displayed in Fig. 6. Here, ψ0, h, and φ0 denote the DM, the SM
Higgs boson, and the singlet component of the (15,1,1)R, respectively, and the VEV 〈φ〉
is given in Eq. (21). From the dimensional analysis, we estimate the contribution as∑

|M|2 ' c
ŝ− 4M2

DM

M2
int

, (30)

where c is a numerical factor which includes the unknown couplings appearing in the
diagram. By substituting Eqs. (29) and (30) into Eq. (28), we have

dYDM

dx
' c

1024π7

(
45

πg∗

) 3
2 MPlMDM

M2
int

1

x2

∫ ∞
2x

t(t2 − 4x2)
3
2K1(t)dt . (31)

When MDM � TRH with TRH being the reheating temperature, the above equation is
easily integrated to give

Y
(0)

DM '
c

64π7

(
45

πg∗

) 3
2 MPlTRH

M2
int

, (32)

where the superscript “(0)” implies the present-day value. On the other hand, the current

value of Y
(0)

DM is given by

Y
(0)

DM =
ΩDMρ

(0)
crit

MDMs(0)
, (33)
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ψ0

ψ0

ψ+
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R

f

f̄

γ, Z

Figure 7: Examples of diagrams responsible for the DM production in Model I.

where ΩDM is the DM density parameter and ρ
(0)
crit is the critical density of the Universe.

In the following calculation, we use ΩDMh
2 = 0.12, ρ

(0)
crit = 1.05× 10−5h2 GeV · cm−3, and

s(0) = 2.89× 103 cm−3, with h the Hubble parameter. As a result, we obtain

TRH ' 2.7× 104 GeV×
(

ΩDMh
2

0.12

)(
g

3
2
∗ c−1

104

)(
MDM

100 GeV

)−1

, (34)

where we have set the value of Mint = 1013.66 GeV from the result in Table 6. This

approximate formula is valid when MDM � TRH. Here, g
3
2
∗ c−1 is an unknown factor and

thus causes an uncertainty in the computation. For instance, if g∗ = O(100) and the

quartic coupling of h and φ is ∼ 0.3, then g
3
2
∗ c−1 = O(104). Note that the perturbativity

of the quartic coupling ensures that this factor cannot become too small. On the other
hand, it also has an upper bound; if c is extremely small, then the one-loop gauge-
boson exchange contribution dominates over the tree-level. Taking this consideration into

account, we vary the value of g
3
2
∗ c−1 by a factor of ten to estimate the uncertainty in the

analysis given below.
Next, we evaluate the relic abundance of the DM in Model I. In this case, there is

no tree-level process for the DM production, since the DM does not couple to the singlet
component φ0 in the (1,1,3)R. Therefore, the DM is produced at the loop level. In Fig. 7,
we show examples of one-loop diagrams which give the dominant contribution to the DM
production. The amplitude is then estimated as∑

|M|2 ' c′

(16π2)2

ŝ− 4M2
DM

M2
int

, (35)

where we have included the one-loop factor. After a similar computation, we obtain

Y
(0)

DM '
c′

64π7(16π2)2

(
45

πg∗

) 3
2 MPlTRH

M2
int

, (36)

and

TRH ' 4.6 GeV×
(

ΩDMh
2

0.12

)(
g

3
2
∗ c′−1

105

)(
MDM

GeV

)−1

, (37)
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(b) Model II

Figure 8: Reheating temperature as a function of DM mass. Pink band shows the theoret-
ical uncertainty.

on the assumption of MDM � TRH. Here, we have set Mint = 108.08 GeV.
In Fig. 8, we plot the predicted reheating temperature as a function of the DM mass

after numerically integrating Eq. (31). The left and right panels show the cases of Model
I and II, respectively. The pink band shows the uncertainty of the calculation, which
we estimate by varying the unknown factor by a factor of ten. It turns out that when
MDM � TRH, in the case of Model I, only a small DM mass is allowed and the reheating
temperature must be quite low. In Model II, on the other hand, DM with a mass of
around the electroweak scale accounts for the observed DM density with an acceptably
high reheating temperature. For a larger MDM, in both models, the DM relic abundance
can only be explained in the narrow strip region where MDM ' TRH.

6 Lonely Singlet Fermion Dark Matter

In the above discussion, we have assumed that there exists a DM multiplet (as well as
extra Higgs multiplets) above the intermediate scale, and studied how the presence of the
additional fields affect the gauge coupling running in such models. As seen in Sec. 3.2,
these fields can indeed improve the solutions for both the intermediate and GUT scales,
which allow the models to evade the limit from the proton decay experiment and to explain
light neutrino masses via the seesaw mechanism. Before concluding our discussion, we
briefly consider another possibility in this section; that is, we have only a singlet DM
fermion on top of the standard SO(10) setup discussed in Sec. 3.1. In this case, the
DM, of course, cannot affect the gauge coupling running, and thus it does not solve
the problems regarding the low intermediate/GUT scales in the ordinary SO(10) GUT
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models. Since there may be another solution to these problems, it is worthwhile studying
this possibility as well.

In fact, we can easily construct such a model by exploiting an appropriate Higgs
field at the GUT scale and fine-tuning its VEV so that only the singlet fermion DM
has a mass much lighter than the GUT scale. For example, let us consider the case of
SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗ D. In this case, the singlet field under the intermediate
gauge interactions, (1,1,1), is contained in a 54 or 210 of SO(10). Since only the 210
can have a Yukawa coupling to the R1 = 54R Higgs field, we focus on the case where the
singlet DM fermion is a component of the 210 field. In this case, both Majorana and
Dirac fermions can couple to the R1 Higgs. Then, by fine-tuning the Yukawa coupling, we
can make only the singlet component have a light mass, as done in Sec. 4. Similarly, we
can obtain other models with different intermediate gauge groups by using appropriate
multiplets for the fields which contain the singlet DM.

The NETDM mechanism again works for this singlet DM through the R1 Higgs ex-
change process at tree level, with a diagram similar to that illustrated in Fig. 6. Following
the discussion given in Sec. 5.3, we can readily evaluate the reheating temperature required
to produce the right amount of DM. When MDM � TRH, we have

TRH ' 1.3× 109 GeV×
(

ΩDMh
2

0.12

)(
g

3
2
∗ c−1

104

)(
MDM

100 GeV

)−1(
MGUT

1016 GeV

)2

. (38)

Compared with Model I and II, the present scenario in general predicts a high reheating
temperature, as the production occurs via the GUT-scale particle exchange. Such a high
reheating temperature may be consistent with thermal leptogenesis [43].

As for proton decay and neutrino masses, the consequence of the singlet DM models
is the same as that without DM. Thus, for Gint = SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗ D and
SU(4)C ⊗ SU(2)L⊗U(1)R, the proton decay constraints are still problematic, and thus it
may be required that we assume a relatively heavy GUT-scale gauge boson when compared
to the GUT scale. Other intermediate groups are not suitable for the explanation of
neutrino masses. The solution discussed in Sec. 5.1 can again be exploited in these cases.

7 Conclusion and discussion

For over 40 years now, we have wondered whether grand unification is actually realized
in nature. Its simplicity, its capacity for an explanation of charge quantization and the
apparent focusing of the gauge couplings as they run to high energy has kept grand
unification (supersymmetric or not) at the center of most ultra-violet completions of the
SM though experimental verification is still lacking.

On the other hand, we know from the existence of neutrino masses, the baryon asym-
metry of the Universe and the existence of DM that there must be new physics beyond
the SM. The presence of a natural DM candidate in SUSY extensions of the SM (with
conserved R-parity) is often taken to be one of the motivations for low energy SUSY.
The ingredients for the baryon asymmetry are contained in most grand unified theories
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(supersymmetric or not) including SU(5) and SO(10), and while a neutrino seesaw can
be accomplished in SU(5) (by including the right-handed neutrino as a SU(5) singlet), it
is more natural in SO(10).

We have, here, examined several breaking schemes of SO(10) which lead to gauge
coupling unification (by altering the SM running of the gauge couplings at an intermediate
scale), and contain a remnant ZN symmetry which can account for the stability of DM.
Having established the possible intermediate scale gauge groups capable of both gauge
coupling unification and of supporting a stable DM candidate, we considered specific
possible representations (of dimension no larger than 210 for simplicity) which contain a
suitable non-degenerate SM singlet DM candidate. If the DM candidate couples to the
SM only through intermediate scale fields, it may never equilibrate in the early universe
after reheating, and its production from the thermal bath is an example of the NETDM
scenario. Despite the fact that there are several possible intermediate scale gauge groups
to consider and many possible representations for the DM candidate and intermediate
scale Higgs fields needed to break the degeneracy in the DM multiplet, we found only two
surviving models: one each based on SU(4)C ⊗ SU(2)L⊗ SU(2)R and SU(4)C ⊗ SU(2)L⊗
SU(2)R⊗D with DM contained in a (1,1,3)D ∈ 45D and (15,1,1)W ∈ 45W respectively.

Both of the surviving models are capable of producing light neutrino masses (though
it is more difficult in Model I due to its relatively low intermediate scale). We also showed
that while the proton decay lifetime (to e+π0) is at least a factor of two longer than
the current experimental bound for MX/MGUT > 1/2 in Model I, the current bound
excluded masses MX/MGUT . 0.7 and higher masses may be probed in future proton
decay experiments. Finally, within the NETDM production scenario, we have related our
two models to a specific reheat temperature after inflation needed to obtain the current
relic density. While Model II predicts a reheat temperature which easily allows for (non
thermal) leptogenesis [43,44], the reheat temperature in Model I is rather low and presents
a challenge for baryogenesis.
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Appendix

A Input parameters

The values for the input parameters we have used in this paper are summarized in Table 7.
They are taken from Ref. [45] except for the top-quark pole mass and the Higgs mass, for
which we use the values given in Refs. [46] and [47], respectively. In this table, the gauge
coupling constants are defined in the MS scheme, and thus we convert them to the DR
scheme at the electroweak scale using the one-loop relation [48]:

ga(mZ)DR = ga(mZ)MS

(
1 +

C(Ga)αa(mZ)MS

24π

)
, (39)

where C(Ga) the quadratic Casimir invariant. For the mass of top quark, we convert the
pole mass to its MS mass by using [45]

mMS
t (mMS

t ) = mt

(
1− 4αs(m

MS
t )

3π

)
, (40)

from which we obtain the MS top Yukawa coupling. The DR Yukawa coupling is then
given by

yDR
t = yMS

t

[
1 +

α1

480π
+

3α2

32π
− α3

3π

]
. (41)

Table 7: Input parameters [45–47].

Strong coupling constant αs(mZ) 0.1185(6)

QED coupling constant α(mZ) 1/127.944(14)

Fermi coupling constant GF 1.1663787(6)× 10−5 GeV−2

Weak-mixing angle sin2 θW (mZ) 0.23126(5)

Z-boson mass mZ 91.1876(21) GeV

top pole mass mt 173.34(82) GeV

Higgs mass mh 125.15(24) GeV

B Renormalization group equations

In this section, we summarize the RGEs and the matching conditions used in text. The
two-loop RGEs [49] of the gauge coupling constants ga are written as

µ
dga
dµ

=
b

(1)
a

16π2
g3
a +

g3
a

(16π2)2

[ 3∑
b=1

b
(2)
ab g

2
b − cay2

t

]
. (42)
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Below, we will give the coefficients in each theory discussed in this paper. For the con-
tribution of Yukawa couplings, we include them only in the SM running, as unknown
Yukawa couplings appear above the intermediate scale. Their effects should be taken into
account as theoretical uncertainties. All of the 1-loop RGEs have been checked with the
code PyR@TE [50] and more importantly the 2-loop RGEs have been computed with this
code.

B.1 Standard Model

In the SM, we have

b(1)
a =


41/10

−19/6

−7

 , b
(2)
ab =


199/50 27/10 44/5

9/10 35/6 12

11/10 9/2 −26

 , ca =


17/10

3/2

2

 . (43)

Here, a = 1, 2, 3 correspond to U(1), SU(2)L, and SU(3)C , respectively, with the U(1)
gauge coupling constant normalized as g1 ≡

√
5/3g′. Since the top Yukawa coupling

contributes to the running of the gauge couplings at two-loop level, it is sufficient to
consider the one-loop RGE for the top Yukawa coupling. Furthermore, we can safely
neglect the contribution of the other Yukawa couplings. Thus, the relevant RGE is

µ
d

dµ
yt =

1

16π2
yt

[
9

2
y2
t −

17

20
g2

1 −
9

4
g2

2 − 8g2
3

]
. (44)

B.2 SU(4)C ⊗ SU(2)L ⊗ SU(2)R

As discussed in Sec. 3.1, above the intermediate mass scale, the theory contains the SM
fermions, the gauge bosons, the (10,1,3)C field, and the (1,2,2)C Higgs field. The
beta-function coefficients in this case are given by

b(1)
a =


−3

11/3

−23/3

 , b
(2)
ab =


8 3 45/2

3 584/3 765/2

9/2 153/2 643/6

 , (45)

where a = 2L, 2R, 4 correspond to SU(2)L, SU(2)R, and SU(4)C , respectively. The match-
ing conditions at the intermediate mass scale are

1

g2
1(Mint)

=
3

5

1

g2
2R(Mint)

+
2

5

1

g2
4(Mint)

,

g2(Mint) = g2L(Mint) ,

g3(Mint) = g4(Mint) . (46)
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B.3 SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D
In this case, the (10,3,1)C field is added to the previous theory. The beta-function
coefficients then become

b(1)
a =


11/3

11/3

−14/3

 , b
(2)
ab =


584/3 3 765/2

3 584/3 765/2

153/2 153/2 1759/6

 , (47)

where a = 2L, 2R, 4 correspond to SU(2)L, SU(2)R, and SU(4)C , respectively.

B.4 SU(4)C ⊗ SU(2)L ⊗U(1)R

This theory contains the SM fermions, the gauge bosons, the (10,1, 1)C field, and the
(1,2, 1

2
) Higgs field. The beta-function coefficients in this case are given by

b(1)
a =


−19/6

15/2

−29/3

 , b
(2)
ab =


35/6 1/2 45/2

3/2 87/2 405/2

9/2 27/2 −101/6

 , (48)

where a = 2L, 1R, 4 correspond to SU(2)L, U(1)R, and SU(4)C , respectively. The match-
ing conditions at the intermediate mass scale are

1

g2
1(Mint)

=
3

5

1

g2
1R(Mint)

+
2

5

1

g2
4(Mint)

,

g2(Mint) = g2L(Mint) ,

g3(Mint) = g4(Mint) . (49)

B.5 SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L

This theory contains the SM fermions, the gauge bosons, the (1,1,3,−2)C field, and the
(1,2,2, 0) Higgs field. The beta-function coefficients in this case are given by

b(1)
a =


−3

−7/3

11/2

−7

 , b
(2)
ab =


8 3 3/2 12

3 80/3 27/2 12

9/2 81/2 61/2 4

9/2 9/2 1/2 −26

 , (50)

where a = 2L, 2R,BL, 3 correspond to SU(2)L, SU(2)R, U(1)B−L and SU(3)C , respec-
tively. The U(1)B−L charge is normalized such that it satisfies the normalization condi-
tion of the SO(10) generators: TB−L =

√
3/8(B − L). The matching conditions at the
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intermediate mass scale are

1

g2
1(Mint)

=
3

5

1

g2
2R(Mint)

+
2

5

1

g2
BL(Mint)

,

g2(Mint) = g2L(Mint) ,

g3(Mint) = g3(Mint) . (51)

B.6 SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L ⊗D
For this left-right symmetric theory, the (1,3,1, 2)C field is added to the previous case.
The beta-function coefficients are then modified to

b(1)
a =


−7/3

−7/3

7

−7

 , b
(2)
ab =


80/3 3 27/2 12

3 80/3 27/2 12

81/2 81/2 115/2 4

9/2 9/2 1/2 −26

 , (52)

where a = 2L, 2R,BL, 3 correspond to SU(2)L, SU(2)R, U(1)B−L and SU(3)C , respec-
tively.

B.7 SU(3)C ⊗ SU(2)L ⊗U(1)R ⊗U(1)B−L

This theory contains the SM fermions, the gauge bosons, the (1,1,1,−2)C field, and the
(1,2, 1/2, 0) Higgs field. The beta-function coefficients in this case are given by

b(1)
a =


−19/6

9/2

9/2

−7

 , b
(2)
ab =


35/6 1/2 3/2 12

3/2 15/2 15/2 12

9/2 15/2 25/2 4

9/2 3/2 1/2 −26

 , (53)

where a = 2L, 1R,BL, 3 correspond to SU(2)L, U(1)R, U(1)B−L and SU(3)C , respectively.
The matching conditions at the intermediate mass scale are

1

g2
1(Mint)

=
3

5

1

g2
1R(Mint)

+
2

5

1

g2
BL(Mint)

,

g2(Mint) = g2L(Mint) ,

g3(Mint) = g3(Mint) . (54)

B.8 Model I

For DM model I, a (1,1,3)D Dirac fermion and a (1,1,3)R real scalar field are added to
the theory described in Appendix B.2. The beta-function coefficients are then computed
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as

b(1)
a =


−3

20/3

−23/3

 , b
(2)
ab =


8 3 45/2

3 740/3 765/2

9/2 153/2 643/6

 , (55)

where a = 2L, 2R, 4 correspond to SU(2)L, SU(2)R, and SU(4)C , respectively.

B.9 Model II

For DM model II, a (15,1,1)W Weyl fermion and a (15,1,1)R real scalar field are added to
the theory described in Appendix B.3. The beta-function coefficients are then computed
as

b(1)
a =


11/3

11/3

−4/3

 , b
(2)
ab =


584/3 3 765/2

3 584/3 765/2

153/2 153/2 2495/6

 , (56)

where a = 2L, 2R, 4 correspond to SU(2)L, SU(2)R, and SU(4)C , respectively.

C One-loop formulae for gauge coupling unification

At the one-loop level, the gauge coupling RGEs are easily solved analytically. By using
the solutions, we can obtain analytic expressions for Mint, MGUT, and αGUT as follows:

Mint = mZ exp

[
2π(b̃× n) ·α−1

(b̃× n) · b

]
, (57)

MGUT = mZ exp

[
2π(∆b× n) ·α−1

(b̃× n) · b

]
, (58)

α−1
GUT =

(b̃×α−1) · b
(b̃× n) · b

, (59)

with

α−1 ≡


α−1

1 (mZ)

α−1
2 (mZ)

α−1
3 (mZ)

 , b ≡


b1

b2

b3

 , b̃ ≡


b̃1

b̃2

b̃3

 , n ≡


1

1

1

 , (60)

where ∆b ≡ b̃ − b, and ba and b̃a denote the beta-function coefficients below and above
the intermediate scale, respectively. The U(1) beta function above the intermediate scale
is given by a linear combination of the beta functions of the intermediate gauge group.
For instance, in the case of SU(4)C ⊗ SU(2)L ⊗ SU(2)R, we have

b̃1 =
2

5
b4 +

3

5
b2R . (61)
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Similar expressions are obtained for other intermediate groups. Notice that the compo-
nents of the beta-function coefficients which are proportional to n do not affect MGUT

and Mint, as one can see from the formulae. Therefore, if one adds a multiplet to, e.g., the
SU(4)C ⊗ SU(2)L ⊗ SU(2)R theory whose contribution to the beta-function coefficients is
∆b4 = ∆b2L = ∆b2R, then the multiplet does not alter MGUT and Mint at one-loop level.

We also note that physics above the intermediate scale gives negligible effects on the
determination of Mint in the presence of the left-right symmetry. We can see this feature
by using Eq. (57). Let us consider the case of SU(4)C⊗SU(2)L⊗SU(2)R⊗D. In the left-
right symmetric theories, the beta functions of the SU(2)L and SU(2)R gauge couplings
should be the same. Therefore, we have b2L = b2R, and

b̃× n = (b2L − b4)c , (62)

with

c =


1

−3
5

−2
5

 . (63)

Therefore, Eq. (57) reads

Mint = mZ exp

[
2πc ·α−1

c · b

]
, (64)

and thus, the intermediate scale does not depend on the beta function above Mint. One
can also see this feature by noting that above the intermediate scale g2L = g2R holds
at any scale. Hence, the intermediate scale corresponds to a point at which g2L becomes
equivalent to g2R, which is determined only by the running below Mint. A similar argument
holds in the case of SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ⊗D.

D Proton decay in SO(10)→ SU(4)⊗ SU(2)⊗ SU(2)

Here, we give details of the calculation for the proton decay lifetime in the intermediate
scale scenario. We consider the case of SO(10) → SU(4) ⊗ SU(2) ⊗ SU(2), which was
discussed in Sec. 5.2.

In non-SUSY GUTs, proton decay is induced by gauge interactions. The relevant
interactions are written as

Lint =
gGUT√

2

[
(Q)ar /XairPR(LC)i + (Q)ai /XairPL(LC)r + εijεrsεabc(QC)

ar /XbisPLQ
cj + h.c.

]
,

(65)

where

Q =

(
u

d

)
, L =

(
ν

e−

)
, (66)
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and X denotes the superheavy gauge bosons which induce the baryon-number violating
interactions; gGUT is the unified gauge coupling constant; a, b, c, i, j, and r, s are the
SU(3)C , SU(2)L, and SU(2)R indices, respectively; PR/L ≡ (1 ± γ5)/2 are the chirality
projection operators.

After integrating out the SO(10) gauge fields X, we obtain the dimension-six proton
decay operator. The operator is expressed in a form that respects the intermediate gauge
symmetry, SU(4)⊗ SU(2)⊗ SU(2):

Leff = C(MGUT) · εijεrsεαβγδ(ΨC)αiPLΨβj(ΨC)γrPRΨδs , (67)

where α, β, . . . denote the SU(4) indices, and Ψ is given in Eq. (13). Notice that

εijεklεαβγδ(ΨC)
αiPLΨβj(ΨC)γkPLΨδl = εrsεtuεαβγδ(ΨC)

αrPRΨβs(ΨC)γtPRΨδu = 0 , (68)

and thus the operator in Eq. (67) is the unique choice. At tree level, the coefficient of the
effective operator is evaluated as

C(MGUT) =
g2

GUT

2M2
X

, (69)

with MX the mass of the heavy gauge field X. Here, we have neglected fermion flavor
mixings [51] for simplicity.

The Wilson coefficient is evolved down to the intermediate scale using the RGE. The
renormalization factor is computed to be [52]

C(Mint) =

[
α4(Mint)

αGUT

]− 15
4b4

[
α2L(Mint)

αGUT

]− 9
4b2L

[
α2R(Mint)

αGUT

]− 9
4b2R

C(MGUT) . (70)

At the intermediate scale, the SU(4)⊗SU(2)⊗SU(2) theory is matched onto the SM.
The effective Lagrangian is written as

Leff =
4∑
I=1

CIOI , (71)

with the effective operators given by [53–55]

O1 = εabcεij(u
a
Rd

b
R)(Qci

LL
j
L) ,

O2 = εabcεij(Q
ai
LQ

bj
L )(ucReR) ,

O3 = εabcεijεkl(Q
ai
LQ

bk
L )(Qcl

LL
j
L) ,

O4 = εabc(u
a
Rd

b
R)(ucReR) . (72)

We evaluate the coefficients CI as

C1(Mint) = 4C(Mint) ,

C2(Mint) = −4C(Mint) ,

C3(Mint) = C4(Mint) = 0. (73)
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We then run down the coefficients to the electroweak scale. The renormalization
factors are given by [55]

C1(mZ) =

[
α3(mZ)

α3(Mint)

]− 2
b3

[
α2(mZ)

α2(Mint)

]− 9
4b2

[
α1(mZ)

α1(Mint)

]− 11
20b1

C1(Mint) , (74)

C2(mZ) =

[
α3(mZ)

α3(Mint)

]− 2
b3

[
α2(mZ)

α2(Mint)

]− 9
4b2

[
α1(mZ)

α1(Mint)

]− 23
20b1

C2(Mint) . (75)

Note that the beta function coefficients should be appropriately modified when the num-
ber of quark flavors changes. Below the electroweak scale, the QCD corrections are the
dominant contribution. By using the two-loop RGE given in Ref. [56], we compute the
Wilson coefficients at the hadronic scale µhad as

Ci(µhad) =

[
αs(µhad)

αs(mb)

] 6
25
[
αs(mb)

αs(mZ)

] 6
23
[
αs(µhad) + 50π

77

αs(mb) + 50π
77

]− 173
825
[
αs(mb) + 23π

29

αs(mZ) + 23π
29

]− 430
2001

Ci(mZ) ,

(76)
with i = 1, 2.

In non-SUSY GUTs, the dominant decay mode of proton is p → π0e+. The partial
decay width of the mode is computed as

Γ(p→ π0e+) =
mp

32π

(
1− m2

π

m2
p

)2[
|AL|2 + |AR|2

]
, (77)

where mp and mπ are the masses of proton and the neutral pion, respectively, and

AL = C1(µhad)〈π0|(ud)RuL|p〉 ,
AR = 2C2(µhad)〈π0|(ud)LuR|p〉 . (78)

The hadron matrix elements are evaluated with the lattice QCD simulations in Ref. [57].
We have

〈π0|(ud)RuL|p〉 = 〈π0|(ud)LuR|p〉 = −0.103(23)(34) GeV2 , (79)

with µhad = 2 GeV. Here, the first and second parentheses indicate statistical and sys-
tematic errors, respectively.
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