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We consider non-perturbative aspects of a composite Higgs model that serves
as a prototype for physics beyond the Standard Model, in which a new strongly
interacting sector undergoes chiral symmetry breaking, and generates the Higgs
particle as a pseudo Nambu–Goldstone boson. In addition, the top quark couples
linearly to baryons of the new strong sector, thereby becoming partially compos-
ite. We study the dynamics leading to the top quark Yukawa coupling as well
as the top quark contribution to the effective potential for the Higgs, obtaining
expressions for these couplings in terms of baryonic correlation functions in the
underlying strongly interacting theory. We then show that a large-N limit exists
in which the top quark contribution to the Higgs effective potential overcomes
that of the weak gauge bosons, inducing electroweak symmetry breaking. The
same large-N limit also suggests that the baryons that couple to the top quark
may be relatively light. This composite Higgs model, and similar ones, can be
studied on the lattice with the methods developed for lattice QCD.

1



I. INTRODUCTION

Since the discovery of a light Higgs boson at the LHC, interest in beyond-the-Standard-
Model scenarios has focused on models in which the Higgs is naturally light compared to
the typical scale of new physics. One approach postulates the existence of a new strongly
interacting sector, which we will refer to as hypercolor in this paper. The Higgs doublet of
the Standard Model (SM) emerges among the Nambu–Goldstone bosons (NGBs) originating
from dynamical symmetry breaking of the flavor symmetry group G of the hypercolor the-
ory. The electroweak gauge bosons as well as the SM fermions then couple to these NGBs,
breaking the symmetry group G explicitly to a smaller group, thereby generating an effective
potential for the NGBs. Under suitable conditions, this radiatively induced effective poten-
tial leads to electroweak symmetry breaking, with the Higgs field acquiring an expectation
value as in the SM. This framework still allows for many different possibilities. For reviews
that span the evolution of this field, as well as for generic features of these models, we refer
to Refs. [1–5].

We will be interested in composite-Higgs models in which the sector external to the
hypercolor gauge theory, which includes the SM gauge bosons and fermions, is as simple as
possible. For instance, we do not wish to introduce any weakly coupled gauge bosons besides
the electroweak gauge bosons, as in Little Higgs models [1]. The electroweak gauge bosons
have to stay massless at the dynamical symmetry breaking scale of the hypercolor theory,
and therefore they have to couple to generators in the unbroken flavor subgroup H ⊂ G. As
a result, the effective potential generated for the hypercolor NGBs by the electroweak gauge
bosons will not lead to electroweak symmetry breaking, a phenomenon often referred to as
vacuum alignment [6].

Electroweak symmetry breaking must therefore originate in the effective potential gener-
ated by the top quark, being the SM fermion with the strongest coupling to the Higgs, and,
hence, to the hypercolor theory. We will postulate that the top quark couples linearly to
hyperbaryons (the baryons of the hypercolor theory), as first proposed in Ref. [7]. This idea
is attractive from the point of view of CP violation and flavor-changing neutral currents
(FCNC) [4]. Here, we will limit ourselves to a discussion of the top quark sector, where the
main concerns are to generate the experimentally measured value of the top quark’s mass
naturally,1 together with a Higgs potential that triggers electroweak symmetry breaking. It
is generally acknowledged that the mass of the top quark sets it apart from the other SM
fermions as it is the only SM fermion with a mass of the order of the electroweak symmetry
breaking scale, v ∼ 250 GeV. This suggests that the top quark may play an essential role
in generating electroweak symmetry breaking, whereas the origin of the other SM fermion
masses, and the strength of other symmetry breakings such as CP violation and FCNC,
might be very different.

The concrete hypercolor theory we will study in this article was proposed in Ref. [8].
It was preceded by a general study that highlighted what makes that theory particularly
attractive [10].2 The hypercolor theory is a vector-like SU(4) gauge theory with fermions
in two different irreps (irreducible representations). One of these irreps, the six-dimensional
two-index antisymmetric irrep, is real. With 5 Majorana (or Weyl) fermions in this irrep,
dynamical symmetry breaking in that sector of the theory gives rise to an SU(5)/SO(5)

1 Without causing problems for Z → bb decays [8, 9].
2 See also Ref. [11].
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non-linear sigma model as its low-energy effective theory. As we will see in detail below, the
Higgs field lives in this non-linear sigma model.

Generally speaking, composite-Higgs models often rely on an SU(Nw)/SO(Nw) non-linear
sigma model, which can arise from chiral symmetry breaking in a theory containing Nw Weyl
(or Majorana) fermions in a real irrep. An alternative coset structure is SU(Nw)/Sp(Nw),
for which the Nw Weyl fermions should be in a pseudoreal irrep [6]. For recent lattice work
involving the pseudoreal fundamental irrep of SU(2) gauge theory we refer to Refs. [12, 13].
For a review on beyond-the-SM lattice work, see Ref. [14].

The most familiar example of a real irrep is the adjoint representation, which occurs for
example in supersymmetric theories [15]. However, 5 Majorana fermions in the adjoint irrep
would most likely push the theory from being confining to being conformal, even before
the introduction of any fermions in another irrep.3 Avoiding the adjoint irrep, the smallest
instance of a real irrep is the sextet of SU(4).

Our goals are as follows. First, a gauge theory such as this SU(4) hypercolor theory is
amenable to investigations using the methods of lattice gauge theory. The effective theory
below the hypercolor scale, relevant for SM phenomenology, can be parametrized in terms of
low-energy couplings (LECs). These LECs can be expressed in terms of correlation functions
in the hypercolor theory, which, in turn, allows for their computation on the lattice. While
this is well understood for the electroweak gauge sector, a similar careful derivation of the
LECs controlling the top sector has to our knowledge not been given to date. We derive the
necessary correspondence using spurion techniques.

Second, once the connection between the effective theory and the hypercolor theory has
been established, we find that it is possible to obtain semi-quantitative estimates of the
size of these LECs, using large-N methods and factorization. In particular, we show that
the contribution of the top quark to the Higgs effective potential indeed drives electroweak
symmetry breaking in a particular large-N limit.

We expect that the techniques developed in this article can be easily extended to similar
hypercolor models. In this sense, our choice of the model of Ref. [8] should be considered as
a useful example.

This article is organized as follows. Sec. II introduces and reviews the hypercolor theory
[8], including its field content, symmetries, and the effective non-linear fields that will be
needed for the low-energy effective theory. In Sec. III we briefly discuss the contribution of
the electroweak gauge bosons to the Higgs effective potential. The main part of this article is
Sec. IV, where we discuss the top quark sector in detail. We introduce the top quark spurions
and the hyperbaryons in Sec. IVA. We discuss the top Yukawa coupling in Sec. IVB, and the
top quark contribution to the Higgs effective potential in Sec. IVC. In Sec. IVD we define
a large-N limit of the model, and show that for large enough N the top-induced Higgs
potential will lead to electroweak symmetry breaking. For simplicity, we assume a minimal
explicit breaking of the flavor group of the hypercolor theory by the couplings to the SM.
In Sec. IVE we briefly comment on the more general situation that arises if we relax this
assumption. In Sec. V we discuss the similarities between the hypercolor theory and QCD,
thus arguing that techniques developed to study QCD on the lattice should be sufficient for
hypercolor theories as well. Section VI contains our conclusions. A short appendix collects
some of our conventions.

3 See Ref. [14] and references therein.
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II. FERRETTI’S MODEL

In Ref. [10], several requirements were put forward for a class of composite Higgs models
based on a hypercolor gauge theory as a UV completion. We begin by listing these require-
ments. The gauge group is assumed to be simple, and the dynamical symmetry breaking
pattern, G→ H , to be such that

H ⊃ SU(3)color × SU(2)L × SU(2)R × U(1)X (2.1)

⊃ SU(3)color × SU(2)L × U(1)Y ,

with the SM gauge group in the last line. The group SU(2)R is the familiar custodial sym-
metry of the SM, and the hypercharge is Y = T 3

R+X . The SM Higgs doublet, with quantum
numbers (1, 2, 2)0 under SU(3)color×SU(2)L×SU(2)R×U(1)X , should be contained in the
NGB multiplet associated with the symmetry breaking G → H . In order to accommodate
a partially composite top quark [7], i.e., for the top quark to acquire its mass through lin-
ear couplings to hyperbaryons, there must exist hyperbaryons with quantum numbers that
match those of the SM quarks. This includes a set of right-handed, spin-1/2 hyperbaryons
with quantum numbers (3, 2)1/6 of the SM gauge group SU(3)color×SU(2)L×U(1)Y , which
serve as partners of the SM quark doublet qL; and left-handed, spin-1/2 hyperbaryons with
the quantum numbers (3, 1)2/3, to serve as partners of the SM quark singlet tR. Finally, the
hypercolor theory should be asymptotically free, and both the hypercolor gauge group and
the SM gauge group should be free of anomalies.

The hypercolor model with the smallest gauge group that satisfies all these require-
ments is an SU(4) gauge theory [10]. The hyperfermion content consists of five Majorana
fermions χi, i = 1, . . . , 5, transforming in the six-dimensional two-index antisymmetric irrep

of hypercolor, which is a real representation; and three Dirac fermions ψa, a = 1, 2, 3, in
the fundamental representation. The Majorana field χ can be written in terms of a Weyl
fermion Υ as

χABi =

(

ΥABi

1
2
ǫABCD ǫ (Ῡ

CD
i )T

)

, (2.2a)

χAB
i =

1

2
ǫABCDχT

CDi C =
(

−1
2
ǫABCD(ΥCDi)

T ǫ ῩAB
i

)

. (2.2b)

We use capital letters for the SU(4) hypercolor indices, with lower indices for the fundamen-
tal irrep, and upper indices for the anti-fundamental irrep. Several lower or upper indices
will always be fully antisymmetrized. A Dirac fermion ψ in the fundamental irrep can be
written in terms of two right-handed Weyl fermions, Ψ in the fundamental irrep and Ψ̃ in
the anti-fundamental, as

ψAa =

(

ΨAa

ǫ ¯̃ΨT
Aa

)

, ψ
A

a =
(

−(Ψ̃A
a )

T ǫ Ψ̄A
a

)

. (2.3)

We suppress spinor indices. C is the charge-conjugation matrix, ǫ = iσ2 is the two-
dimensional ǫ-tensor acting on the Weyl spinor index, and the superscript T denotes the
transpose in spinor space. With the lattice in mind, we work in euclidean space, choosing
our Dirac matrices to be hermitian and using the chiral representation, see App. A.

The hypercolor theory possesses a flavor symmetry group

G = SU(5)× SU(3)× SU(3)′ × U(1)X × U(1)′ , (2.4)
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with quantum numbers (5, 1, 1)(0,−1) for Υ; (1, 3̄, 1)(1/3,5/3) for Ψ; and (1, 1, 3)(−1/3,5/3) for

Ψ̃.4

We assume that dynamical symmetry breaking takes place, generating a condensate
〈χiχj〉 ∝ δij that breaks SU(5) → SO(5). Consistent with the general considerations of
Ref. [6], the Majorana bilinear χiχj is antisymmetric on its spinor indices and symmetric
on its hypercolor indices, and so it is symmetric on its flavor indices. In addition, there is
a condensate 〈ψaψb〉 ∝ δab that breaks SU(3)× SU(3)′ to its diagonal subgroup, which we
identify with SU(3)color. Both condensates also break U(1)′. The unbroken group is

H = SO(5)× SU(3)color × U(1)X . (2.5)

For heuristic arguments supporting this pattern of symmetry breaking, see Refs. [6, 8]. Of
course, whether this is the actual symmetry breaking pattern is something that can be
investigated on the lattice. Indeed the symmetry breaking pattern of the Dirac fermions,
with SU(3)×SU(3)′ breaking to the diagonal SU(3) subgroup, is consistent with all known
lattice results. A first study of the real-irrep symmetry breaking pattern, in a similar theory
except with four, instead of five, Majorana fermions, has recently appeared in Ref. [16].

The effective theory at energy scales much below the hypercolor scale ΛHC thus contains
NGBs parametrizing the U(1)′ group manifold, and the cosets SU(3) × SU(3)′/SU(3)color
and SU(5)/SO(5), amounting to 1, 8 and 14 NGBs for each of these factors, respectively.
These NGBs are massless when all couplings of the hypercolor theory to the SM are turned
off. A non-trivial effective potential is induced both by the SM gauge bosons, as we briefly
review in Sec. III, and by the coupling to the third-generation quarks. The latter, which is
the main subject of this paper, will be studied in Sec. IV.

The Higgs doublet is a subset of the NGBmultiplet parametrizing the coset SU(5)/SO(5).
In more detail, the 14 NGBs corresponding to the generators in this coset are described
by a non-linear field Σ ∈ SU(5) obtained by considering fluctuations around the vacuum
〈Σ〉 = Σ0 = 1,

Σ = uΣ0 u
T = exp(iΠ/f) Σ0 exp(iΠ/f)

T = exp(2iΠ/f) , (2.6)

with5

Σ = ΣT ⇒ Π = ΠT . (2.7)

Under g ∈ SU(5), Σ transforms as Σ → gΣgT .
At the level of the algebra, SU(2)L × SU(2)R in Eq. (2.1) is equivalent to the SO(4) ⊂

SO(5) associated with the first four rows and columns. The explicit form of the generators
is given in the appendix. With this choice, the field Π can be written as

Π = Θ +Θ† + Φ0 + Φ+ + Φ†
+ + η , (2.8)

with Θ containing the Higgs doublet H = (H+, H0)
T ,

Θ =













0 0 0 0 −iH+/
√
2

0 0 0 0 H+/
√
2

0 0 0 0 iH0/
√
2

0 0 0 0 H0/
√
2

−iH+/
√
2 H+/

√
2 iH0/

√
2 H0/

√
2 0













. (2.9)

4 Compare Table 1 of Ref. [8].
5 Note that in Ref. [8], the notation Σ is used for the field u of Eq. (2.6).
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For the explicit parametrization of the rest of Π, we refer to Ref. [8], as we will not need
it here. The Higgs doublet comprises four of the NGBs, and the SU(2)L triplets φ0, φ+

and φ− = (φ+)
† comprise 9 more NGBs.6 Finally, Π has a component η proportional to the

generator diag(1, 1, 1, 1,−4), which is neutral with respect to the entire SM model gauge
group, and which completes the multiplet of 14 NGBs.

While they play only a small role, we will need also the non-linear fields associated with
the other broken symmetries. We account for the SU(3) × SU(3)′/SU(3)color coset by a
non-linear field Ω ∈ SU(3), transforming as Ω → gΩh† for g ∈ SU(3) and h ∈ SU(3)′.
A similar non-linear field arises in the familiar chiral lagrangian of 3-flavor QCD, but the
reader should keep in mind the different physical roles of the various SU(3) groups in the
case at hand. Throughout most of this paper, we will assume that the only source of explicit
breaking of SU(3)×SU(3)′ to SU(3)color arises from the coupling of the SU(3)color currents
to the SM gluons. A wider range of possibilities than what is the main focus of this article
is allowed if we relax this assumption. This is briefly discussed in Sec. IVE. The 8 NGBs
associated with the non-linear Ω field transform in the adjoint irrep of SU(3)color. They are
singlets under both SU(2)L and U(1)Y .

Finally, to account for the spontaneous breaking of U(1)′ we introduce a non-linear field
Φ ∈ U(1) with unit charge under U(1)′. The associated NGB, η′, is neutral under the SM
gauge interactions. Using a ∼ sign to indicate identical transformation properties under the
entire flavor group G, we thus have

Φ−2Σij ∼ χiPRχj ∼ ǫABCD(ΥCDi)
T ǫΥABj , (2.10a)

Φ−10/3 Ωab ∼ ψaPLψb ∼ Ψ̄A
a ǫ (

¯̃ΨAb)
T . (2.10b)

III. HIGGS EFFECTIVE POTENTIAL FROM ELECTRO-WEAK GAUGE

BOSONS

In this section, we briefly review the contribution from the SM gauge bosons to the
effective potential for the NGBs, starting with the effective potential for the SU(5)/SO(5)
non-linear field Σ generated by the electroweak gauge bosons. This part of the effective
potential takes the form

V EW
eff (Σ) = CLR

∑

Q

tr (QΣQ∗Σ∗) , (3.1)

if we work to leading (i.e., quadratic) order in the SM gauge couplings. The sum over Q runs
over the SU(2)L generators gT a

L with T a
L given in Eq. (A5), and the hypercharge generator

g′Y = g′ (T 3
R +X), with X = 0 for the Π field. Here

CLR =
1

(4π)2

∫ ∞

0

dq2 q2ΠLR(q
2) , (3.2)

and

(

q2δµν − qµqν
)

ΠLR(q
2) =

∫

d4x eiqx tr 〈γµPR[χ(x)χ(0)]γνPL[χ(0)χ(x)]〉 , (3.3)

6 In the notation of Ref. [8], φ0 = (φ−

0 , φ
0
0, φ

+

0 ) with φ0
0 real and φ+

0 = (φ−

0 )
∗, while φ+ = (φ−

+, φ
0
+, φ

+
+), with

all components complex.
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where [χ(x)χ(y)] is the Majorana fermion propagator for the field χ of Eq. (2.2), and 〈. . . 〉
indicates the expectation value with respect to the hypercolor gauge fields. This type of
effective potential goes back to the well-known formula for the mass difference between the
charged and neutral pions in QCD. For further explanations and a derivation of this result
in the present context we refer to the review article Ref. [4] and to the appendix of Ref. [17].7

The proof of Ref. [18] that CLR > 0 applies also in this case. Using the explicit form (A5),
the minimum of V EW

eff (Σ) is equal to −CLR(3g
2+ g′2), which is attained at Σ = 1. This part

of the effective potential does not rotate the vacuum of the hypercolor theory, exhibiting the
phenomenon of vacuum alignment [6].

Expanding Σ to quadratic order in Π inside V EW
eff , we find the mass terms

V
EW(2)
eff =

CLR

f 2

{

(3g2 + g′2)

(

2H†H +
16

3
φ†
+φ+

)

+ 8g2φ†
0φ0

}

. (3.4)

The explicit symmetry breaking by the electroweak gauge bosons produces a positive mass-
squared for all components of the NGB multiplet Π except η.

To summarize, when we couple the hypercolor theory to the SM gauge bosons, an effective
potential for the non-linear field Σ is generated. At lowest order, it is proportional to the
squares of the electroweak couplings gEW = g for SU(2)L, or gEW = g′ for U(1)Y , where it
is understood that all SM couplings are evaluated at the hypercolor scale ΛHC. Because of
vacuum alignment, the expectation value Σ0 will remain equal to one, but the Higgs doublet
and the three SU(2)L triplets will acquire a mass proportional to gEWf , while the singlet
η will remain massless. To avoid confusion, the contribution to the effective potential from
the top quark has not yet been included, and will be discussed in the next section.

Similarly, when we turn on the QCD interactions, an effective potential for the Ω non-
linear field is generated,

V QCD
eff (Ω) = −CQCD

LR

∑

Q

tr
(

QΩQΩ†
)

, (3.5)

where now Q runs over the 8 generators gsλa of SU(3)color, and gs is the QCD coupling

(at the hypercolor scale). In the underlying hypercolor theory, CQCD
LR has a representation

analogous to Eq. (3.2), except that the Majorana-fermion propagator in Eq. (3.3) is replaced
by the Dirac-fermion propagator [ψ(x)ψ(y)]. Once again there is vacuum alignment, nailing
down the vacuum at 〈Ωab〉 = δab, and giving the octet of NGBs a mass of order gsf . Thus,
as long as f is much larger than the electroweak scale, both the SU(2)L triplet NGBs and
the color-octet NGBs are much heavier than the electroweak gauge bosons or the top quark.

As already noted, the NGB η′ of the spontaneously broken U(1)′ is inert under all the SM
gauge interactions. Moreover, the coupling of the hypercolor sector to the SM considered
in the next section does not break U(1)′ explicitly. Therefore, no effective potential will be
generated for the associated non-linear field Φ, and η′ will remain exactly massless.

IV. THE TOP QUARK SECTOR

We now proceed to the main part of this article, which is the study of the dynamics
arising from the coupling of the top quark to the hypercolor theory. There are two aspects

7 In Ref. [17] we referred to CLR as Cw.
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of interest: the contribution of the top quark to the effective potential for the non-linear
field Σ containing the Higgs field, analogous to the contribution from the weak gauge bosons
in Eq. (3.1); and the mass of the top quark itself.

We will begin with the coupling of the top quark to the hypercolor theory at the “micro-
scopic” level, which involves only the elementary fields: the hypercolor gauge fields, and the
hyperfermions of Eqs. (2.2) and (2.3). We introduce fermionic spurions which transform in
complete representations of the flavor group G of Eq. (2.4), and which contain the SU(2)L
doublet qL of the left-handed top and bottom quarks tL and bL, as well as the right-handed
top quark tR. Following the mechanism proposed in Ref. [7], the spurions will be coupled
linearly to suitable hyperbaryon fields, which are three-fermion operators in the hypercolor
theory. We demand that the spurion–hyperbaryon interactions are invariant under G, be-
cause the microscopic theory does not know about the dynamical breaking G→ H .

The spurion–hyperbaryon interaction terms are four-fermion operators, and are assumed
to arise from some extended hypercolor (EHC) sector with a dynamical scale ΛEHC ≫ ΛHC,
the origin of which we will not specify. We will return to this point in the conclusion section.
The hyperbaryon operators and the four-fermion couplings are constructed in Sec. IVA.

We then turn to the effective low-energy theory. We demand that also the effective
theory is invariant under G, but it can now depend on the effective fields: the SU(5)/SO(5)
coset field Σ, which plays a central role since it contains the Higgs field, as well as the
SU(3)× SU(3)′/SU(3)color field Ω and the U(1)-valued field Φ. Note that we do not allow
the effective theory to contain any effective fields for hyperbaryons. This strategy generalizes
the standard construction of the chiral lagrangian for QCD.8

We proceed in two steps. First, in Sec. IVB, we consider the coupling of the SM quarks
qL and tR to the effective non-linear fields, integrating out all other states in the hypercolor
theory. This will lead to an expression for the top Yukawa coupling in terms of a hyperbaryon
two-point function in the hypercolor theory.

Next, in Sec. IVC, we consider the contribution to the effective potential obtained by
integrating also over the third-generation quarks to leading order in the top Yukawa coupling.
This involves restricting the spurions to their SM values, in which all components except
those corresponding to qL = (tL, bL) and to tR are set equal to zero, and integrating over qL
and tR. Like the coupling to the SM gauge bosons (Sec. III), this breaks explicitly the flavor
group G. However, in the approximation in which we work, only SU(5) is broken explicitly,
whereas all other factors in Eq. (2.4) are not. As a result, no effective potential is generated
for Ω or Φ.

The explicit breaking of SU(5) generates an effective potential for Σ. This new contri-
bution is parametrized by one new LEC, Ctop, analogous to CLR in Eq. (3.1). We will show
that Ctop can be expressed as an integral over a hyperbaryon four-point function convoluted
with two free, massless fermion propagators.

Up to this point, our analysis is from first principles. In Sec. IVD we turn to physical
but non-rigorous considerations. We show that a large-N limit exists (where N = 4 for
the hypercolor group SU(4) we consider here) in which the hyperbaryon four-point function
factorizes, leading to a simple result for Ctop, and ultimately to a non-trivial expectation
value for the Higgs field.

Finally, in Sec. IVE we comment on the phenomenological consequences of our analysis.
This includes a brief discussion of the more general situation where the explicit breaking of

8 See for instance Ref. [19].
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SU(5) SU(3) × SU(3)′ SU(3)c U(1)X U(1)′

Υ(ΨΨ) 5 (3,1)× (3,1) → (3,1) 3 2/3 7/3 BR

Υ( ¯̃Ψ ¯̃Ψ) 5 (1,3)× (1,3) → (1,3) 3 2/3 -13/3 B′
R

Ῡ(Ψ̄Ψ̄) 5 (3,1)× (3,1) → (3,1) 3 -2/3 -7/3 BR

Ῡ(Ψ̃Ψ̃) 5 (1,3)× (1,3) → (1,3) 3 -2/3 13/3 B
′
R

Ῡ(ΨΨ) 5 (3,1)× (3,1) → (3,1) 3 2/3 13/3 BL

Ῡ( ¯̃Ψ ¯̃Ψ) 5 (1,3)× (1,3) → (1,3) 3 2/3 -7/3 B′
L

Υ(Ψ̄Ψ̄) 5 (3,1)× (3,1) → (3,1) 3 -2/3 -13/3 BL

Υ(Ψ̃Ψ̃) 5 (1,3)× (1,3) → (1,3) 3 -2/3 7/3 B
′
L

TABLE 1: Local hyperbaryons operators. The leftmost column gives the Weyl-fermion content,

and the rightmost column the notation used for the operator. The remaining columns list the

quantum numbers.

SU(3) × SU(3)′ to its diagonal subgroup SU(3)color is allowed to come from other sources
than the QCD gluons.

A. Top quark spurions and hyperbaryons

We begin with introducing the top-quark spurions, a left-handed spurion TL, which we
choose in the 5 irrep of SU(5), and a right-handed spurion TR, which we choose in the 5̄

irrep. Both irreps reduce to the 5 of SO(5). This choice ensures that terms like TLTR in
the effective potential are disallowed by SU(5), but allowed by SO(5).9 Both TL and TR
will have U(1)X charge 2/3, as this will yield the correct hypercharges for qL and tR. The
SM values for these spurions are

TL = T̂L ≡ 1√
2















ibL
bL
itL
−tL
0















, TR = T̂R ≡















0

0

0

0

itR















. (4.1)

Using Eq. (A5), it is straightforward to verify that the pair (tL, bL) transforms as an SU(2)L
doublet, and has hypercharge Y = 1/6. The SU(2)L singlet tR has hypercharge Y =
2/3. The quantum numbers of the spurions under the remaining flavor symmetries will be
discussed shortly.

The spurions couple to the hypercolor theory through the G-invariant lagrangian

LEHC = λ1TLBR + λ∗1BRTL + λ2TRBL + λ∗2BLTR , (4.2)

9 We may switch 5 with 5̄, but the key point is that the two spurions are chosen to be in different SU(5)

irreps.
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where BL,R are hyperbaryon fields with appropriate quantum numbers. Setting the spurions
TL,R equal to their SM values (4.1) then tells us how the SM quarks tL, bL and tR couple
to the hypercolor theory. Since we will use three-hyperfermion local interpolating fields for
the hyperbaryons, the four-fermion interactions in LEHC have engineering dimension six.
LEHC originates from some other sector with scale ΛEHC ≫ ΛHC, with effective couplings
λ1,2 ∼ O(Λ−2

EHC) just below that scale.
Limiting ourselves to local hyperbaryon fields, all operators that can be used in the

construction of a G-invariant LEHC are listed in Table 1. The schematic structure in terms
of Weyl fields is indicated in the first column of the table, followed by the quantum numbers
under the flavor group G. The column labeled as SU(3)c gives the SU(3)color irrep. The
spinor index of the hyperbaryon field is always carried by the Majorana fermion χ. Using
Eqs. (2.2) and (2.3), explicit expressions for the unprimed operators in Table 1 are

BRia = −1

2
ǫABCDǫabc PR χABi

(

ψT
CbCPR ψDc

)

(4.3a)

=
1

2
ǫABCDǫabc ΥABi

(

ΨT
Cb ǫΨDc

)

,

BRia =
1

2
ǫABCDǫabc χ

AB
i PL

(

ψ
C

b CPL

(

ψ
D

c

)T
)

(4.3b)

=
1

2
ǫABCDǫabc Ῡ

AB
i

(

Ψ̄C
b ǫ
(

Ψ̄D
c

)T
)

,

BLia = −1

2
ǫABCDǫabc PLχABi

(

ψT
CbCPR ψDc

)

(4.3c)

= ǫabc ǫ
(

ῩAB
i

)T
(

ΨT
Ab ǫΨBc

)

,

BLia =
1

2
ǫABCDǫabc χ

AB
i PR

(

ψ
C

b CPL

(

ψ
D

c

)T
)

(4.3d)

= ǫabc Υ
T
ABi ǫ

(

Ψ̄A
b ǫ
(

Ψ̄B
c

)T
)

. (4.3e)

The primed operators in Table 1 are obtained from Eq. (4.3) by interchanging PR ↔ PL

inside the ψψ and ψψ bilinears.
When the spurions TL,R are restricted to their SM values, the phases of λ1,2 in Eq. (4.2)

can be removed by (non-anomalous) SU(2)L and SU(2)R transformations on the spurion
fields, implying that, from now on, we may take λ1,2 to be real and positive. This allows us
to require that the lagrangian (4.2) be CP invariant. The CP transformation acts as

ψ → γ2ψ
T
, ψ → ψTγ2 , (4.4)

for both Dirac and Majorana fermions (see App. A for our Dirac matrices conventions).
The sign choices we have made in Eq. (4.3) imply that a CP transformation applied to
the elementary fields χ, ψ and ψ induces a CP transformation of the same form on the
hyperbaryon fields as well, thereby ensuring the CP invariance of LEHC.

The unprimed fields in Table 1 transform non-trivially under SU(3) and are singlets under
SU(3)′, whereas for the primed fields the opposite is true. Choosing either the primed or the
unprimed version for each hyperbaryon field gives rise to a total of four different possibilities
for LEHC. The quantum numbers of the spurions TL and TR are chosen accordingly, so as
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to ensure the G invariance of LEHC. The SM quark fields qL and tR are endowed with same
SU(3)×SU(3)′×U(1)X×U(1)′ quantum numbers as their parent spurion. This construction
is consistent with the SM, since the resulting quantum numbers under SU(3)color will always
be the same. In addition, it follows that the entire theory, including the hypercolor sector,
the SM lagrangian, and their coupling via LEHC, is invariant under both SU(3) and SU(3)

′,
provided that the QCD interactions can be neglected. This is indeed the case in this section,
because we calculate the Higgs effective potential to second order in all SM couplings, and
since the result will be quadratic in the top Yukawa coupling, any corrections that involve
an additional dependence on the QCD coupling gs are neglected.

Note that we cannot generalize Eq. (4.2) to include, simultaneously, terms that couple
a given spurion to both of the unprimed and primed hyperbaryons, as this will not allow
for any consistent assignment of SU(3) × SU(3)′ quantum numbers. For example, TL can
couple to either BR or B′

R, but not to both. It is because of this fact that LEHC depends on
only two coupling constants λ1,2. This will lead to considerable simplification in our analysis.
In Sec. IVE we briefly comment on the more general case, where LEHC is restricted only by
SU(3)color.

B. The top quark Yukawa coupling

Our next task is to construct the electroweak effective field theory. As a first step,
we integrate only over the gauge fields and fermions of the hypercolor theory, and obtain
an effective theory that depends on the spurions TL and TR, and on the non-linear fields,
including in particular the SU(5)/SO(5) field Σ. We assume that the electroweak scale
mW ∼ mt is much smaller than the hypercolor scale f ∼M ∼ ΛHC, where M is of order the
mass of the hyperbaryons which are assumed to couple to the top quark in Eq. (4.2). This
provides us with a power counting, and, in particular, the effective theory can be organized
according to a derivative expansion. We will be concerned with the lowest non-trivial order
in this expansion.

Demanding full G invariance, the leading order spurion potential is

Vtop = µLΦ
2 TRΣ

∗TL + µRΦ
−2 TLΣTR . (4.5)

Terms like TLTL vanish because of chiral projectors, while terms like TLT
T

R are not allowed
by U(1)X symmetry. Bilinear terms independent of Σ are possible, but thanks to SU(5)
invariance, they have an LL or RR structure, and need an insertion of γµ. Therefore, they
contain at least one derivative, and their role is to renormalize the kinetic terms for the
top and bottom quarks, which are present when these SM fields are made dynamical. It
can be checked that the correction is of order y, where y is the top quark Yukawa coupling
introduced in Eq. (4.12) below.
Vtop depends on two effective fields, Σ and Φ. The role of Φ is to reinstate U(1)′ invariance

(cf. Eq. (2.10)). When we choose both hyperbaryons in Eq. (4.2) to be unprimed ones, the
hyperbaryons and the spurions transform non-trivially only under SU(3), and are singlets
of SU(3)′. Therefore, Vtop is invariant under SU(3) × SU(3)′ as it stands, without having
to introduce any dependence on the effective field Ω.

If we set Σ = Φ = 1, and substitute the SM values T̂L and T̂R defined in Eq. (4.1) for TL
and TR, we find that Vtop vanishes. Σ will need to develop a non-trivial expectation value
for the SM top quark to acquire a non-zero mass. This will be discussed in Sec. IVC below.
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In order to find the LECs µL,R in Eq. (4.5), we consider the second derivatives

∂2

∂TL(y)∂TR(x)
logZ ,

∂2

∂TR(y)∂TL(x)
logZ , (4.6)

where Z is the partition function of either the effective or the microscopic theory. Requiring
the effective theory to match the microscopic theory (and noting that the fermionic spurions
are Grassmann) yields the relations

−µLPL〈Φ2Σ∗〉δ(x− y) + · · · = λ1λ2PL〈BL(x)BR(y)〉PL , (4.7)

−µRPR〈Φ−2Σ〉δ(x− y) + · · · = λ1λ2PR〈BR(x)BL(y)〉PR .

The ellipses on the left-hand side indicate that the leading-order low-energy theory given by
Vtop reproduces the correlation functions on the right-hand side only to leading order in a
derivative expansion.

By assumption, symmetry breaking in the hypercolor theory yields 〈χiχj〉 ∝ 〈Σij〉 = δij,
up to a symmetry transformation. (When the SM fields become dynamical we may in general
have 〈Σij〉 6= δij, but these corrections are of higher order in the SM gauge and Yukawa
couplings.) Setting 〈Σij〉 = δij and 〈Φ〉 = 1 in Eq. (4.7) provides us with expressions for the
parameters µL,R. Assembling the chiral baryon fields together as

B = BR +BL , B = BR +BL , (4.8)

where B is a Dirac field with quantum numbers (5, 3) under the unbroken SO(5)×SU(3)color,
and writing

δ(x− y) =

∫

d4p

(2π)4
eip(x−y) , (4.9)

〈

B(x)B(y)
〉

=

∫

d4p

(2π)4
eip(x−y)SB(p) ,

we find, to leading order in the momentum expansion of the effective theory,

µLPL = −λ1λ2PLSB(0)PL , (4.10)

µRPR = −λ1λ2PRSB(0)PR .

Apart from the chiral projectors, these two expressions must be equal, because any hyper-
baryon fields occurring in Eq. (4.2) can only have a Dirac mass; Majorana masses (such as
BT

RǫBR or BT
L ǫBL) are forbidden by U(1)X symmetry. Therefore,

µ = µL = µR = −λ1λ2SB(0) , (4.11)

where we have used that at zero momentum SB(0) is proportional to the unit matrix in
spinor space.

We may now introduce the top quark Yukawa coupling y by writing

µ = yf/2 , (4.12)

with f the decay constant of the hypercolor theory. If the Higgs field will now develop a
non-zero expectation value,

〈H0〉 = 〈H†
0〉 = h/

√
2 , (4.13)
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this will induce a top quark mass

mt =
1

2
√
2
yf sin (2h/f) ≈ 1√

2
yh , (4.14)

where we have used Eqs. (2.6), (2.9), (4.1) and (4.5), and the approximate equality holds
for h/f ≪ 1.

We may introduce an effective hyperbaryon field B̃ which is canonically normalized by
writing

B = f 3
√

ZBB̃ . (4.15)

We defineM as the zero-momentum mass of the canonically normalized B field, correspond-

ing to a term MB̃B̃. In other words, SB(0) = f 6ZB/M . This gives

y = −2λ1λ2 ZB f
5/M . (4.16)

We comment that the field B does not necessarily correspond to any baryon mass eigenstate
of the hypercolor theory. Still, generically we might expect it to couple to the lightest
hyperbaryon with quantum numbers that match those of the SM quarks, in which case M
will be a quantity of the order of this smallest hyperbaryon mass.

We conclude this subsection with a technical comment. If in Eq. (4.2) we choose one
unprimed and one primed hyperbaryon field, this implies that one of the spurions transforms
non-trivially under SU(3) while the other under SU(3)′. In this case, Vtop will depend on
Ω. For definiteness, replacing BL in Eq. (4.2) by B′

L implies that now TR transforms non-
trivially under SU(3)′, and Eq. (4.5) gets replaced by

Vtop = µLΦ
−14/3 TRΣ

∗Ω†TL + µRΦ
14/3 TLΣΩTR . (4.17)

This hardly changes our analysis, because, in order to obtain expressions for the parameters
µL,R in Eq. (4.5) we are setting all non-linear fields equal to the identity anyway.

In the next subsection, we will work out the effective potential after integrating over the
third-generation quarks. In this calculation, any dependence on both Ω and Φ will drop
out regardless of our choice of hyperbaryon fields in Eq. (4.2), as it must be because both
SU(3)× SU(3)′ and U(1)′ are not explicitly broken in the top sector to the order we work,
and therefore no effective potential can be generated for those non-linear fields. In particular,
when Vtop depends on Ω as in Eq. (4.17), then expression (4.19c) below, which is the only
term that will contribute to the effective potential, gets multiplied by tr(ΩΩ†) = tr1,
showing that indeed the Ω dependence cancels out.

C. Higgs effective potential induced by the top quark

We now integrate over the SM top quark in order to obtain the associated contribution
V top
eff (Σ) to the effective potential. Adding this to Eq. (3.1) gives the complete effective

potential for Σ to second order in the SM gauge and Yukawa couplings. We will disregard
all the other SM fermions, including the bottom quark, on the grounds that their Yukawa
couplings are much smaller, and so their contribution to the effective potential will be much
smaller as well.

13



We begin by splitting the spurions TL,R as follows10

TL(x) = tL(x)vL , TR(x) = tR(x)vR . (4.18)

The new global spurions vL,R carry the SU(5) quantum numbers, which contains the SM
symmetry SU(2)L. We also assign U(1)X to these spurions, because the hypercharge Y
is the sum of the charge X and the third component of SU(2)R, with the latter being a
subgroup of SU(5) as well. The (Grassmann) fields tL,R carry the spin index. They also
inherit the SU(3) and SU(3)′ quantum numbers from TL,R. We promote tL,R to dynamical
fields by adding tree-level kinetic terms tL/∂tL + tR/∂tR.

The effective potential V top
eff at order y is obtained by substituting Eq. (4.18) into Vtop

of Eq. (4.5), and integrating over the top quark, leading to a contribution with the form of
Φ−2vLΣvR + h.c.. This contribution vanishes, however, because the only non-zero tree-level
top propagators are

〈

tLtL
〉

and
〈

tRtR
〉

.

The leading contribution to V top
eff is of order y2. It involves four global spurions. Momen-

tarily suppressing any dependence on the Ω and Φ fields, the possible terms that depend on
Σ are

(vLΣvR)
2 + h.c. , (4.19a)

(vRΣ
∗vL)

2 + h.c. , (4.19b)

(vLΣvR)(vRΣ
∗vL) . (4.19c)

The tree-level top propagators allow for the generation of the last term only. If the effective
potential (4.19c) arises as the product of the two interactions in Eq. (4.5), the Φ dependence
evidently cancels out. Moreover, as we have explained in the previous section, regardless of
the choice of hyperbaryon fields we make in Eq. (4.2), V top

eff will be independent of Ω and Φ,
because, to the order we are working, SU(3), SU(3)′ and U(1)′ are not broken explicitly.

Promoting the fields tL and tR in Eq. (4.1) to be dynamical amounts to setting

vL = v̂L ≡ 1√
2















0

0

i

−1

0















, vR = v̂R ≡















0

0

0

0

i















, (4.20)

with v̂L,R = v̂†L,R. The resulting contribution to the effective potential is

y2Ctop (v̂LΣv̂R)(v̂RΣ
∗vL) =

y2

2
Ctop (Σ35 − iΣ45) (Σ

∗
35 + iΣ∗

45) . (4.21)

Ctop is a new LEC. We have factored out the square of the Yukawa coupling y to make
explicit the order at which we work.

However, we are not done yet. In order to arrive at this result we have used Eq. (4.20) for
the global spurions, which projects onto a particular component of the SU(2)L doublet qL,

10 Whether or not tL in Eq. (4.18) coincides with the component with the same name of T̂L in Eq. (4.1)

depends on the value we choose for vL, as we will see below.
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the one denoted tL in Eq. (4.1). In order to add the contribution of the other component,
denoted bL, we replace v̂L of Eq. (4.20) by (i, 1, 0, 0, 0)T/

√
2 (the right-handed singlet spurion

v̂R is unchanged). Adding the two contributions together we arrive at the SU(2)L invariant
effective potential

V top
eff =

y2

2
Ctop

(

|Σ35 − iΣ45|2 + |Σ15 + iΣ25|2
)

. (4.22)

This is the leading contribution of dynamical third-generation quarks to the effective poten-
tial. Expanding the non-linear Σ field to quadratic order in the NGB fields gives

V
top(2)
eff = 4y2

Ctop

f 2
H†H . (4.23)

When the Higgs field H = (H+, H0)
T acquires an expectation value, conventionally it is

assigned to the lower component H0, as in Eq. (4.13). This selects tL (rather than any other
linear combination of the doublet fields tL and bL) as the left-handed field that, together
with the right-handed field tR, forms the physical top quark.

Let us pause to consider these results. The full effective potential Veff(Σ) is the sum of
Eqs. (3.1) and (4.22). If Ctop is positive, the global minimum is attained for Σ = Σ0 = 1

(with Σi5 = 0 for i = 1, . . . , 4). For electroweak symmetry breaking to take place, Ctop must
therefore be negative. To second order in the NBG fields, the effective potential is the sum
of Eqs. (3.4) and (4.23). As already observed in Ref. [8], the curvature at the origin can
become negative only in the direction of the H field. This happens when

Ctop

CLR
< −3g2 + g′2

2y2
= −2m2

W +m2
Z

m2
t

≈ −0.7 , (4.24)

triggering a non-zero expectation value for the Higgs field.
If we use Eq. (4.13) and, moreover, assume that all other NGB fields in Eq. (2.8) remain

zero, the total effective potential is

Veff(h) = −CLR

(

3g2 + g′2
)

cos2 (h/f) +
y2

2
Ctop sin2 (2h/f) . (4.25)

While the global minimum of Veff(Σ) must occur at non-zero h if Eq. (4.24) is satisfied, due
to the complexity of Veff(Σ) we have not been able to prove that, given arbitrary values of
the SM couplings or the LECs, the global minimum will never involve non-zero expectation
values for any other NGBs.

We next turn to the calculation of the low-energy constant Ctop. As in the previous
subsection, this is done by matching the effective potential (4.22) to the underlying theory
with top-hyperbaryon couplings as given in Eq. (4.2). The difference is that now we also
integrate over the SM top quark field. After splitting the TL,R spurions as in Eq. (4.18), the
matching will involve taking four derivatives, one with respect to each of the global spurions
vL,R and vL,R.

11 Once again we will set Σ = 1. This implies that we must take into account

11 We will discuss later on what values to choose for the global spurions in Eq. (4.18), or equivalently, with

respect to which component of each global spurion one would choose to differentiate.
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terms independent of Σ that have a similar dependence on the global spurions as Eq. (4.19c).
There are two such terms,

y2C1(vLvL)(vRvR) + y2C2(vLv
T
R)(v

T
RvL) , (4.26)

where we introduced new LECs C1 and C2, and, for convenience, separated out a factor of
y2, as we did in Eq. (4.21). Taking the four derivatives in the effective theory we find, after
setting Σ = 1,

∂4

∂vLi∂vRj∂vRk∂vLℓ
logZeff = −y2V (Ctop δijδkℓ + C1 δiℓδjk + C2 δikδjℓ) , (4.27)

where V is the volume. In the microscopic theory we find

∂4

∂vLi∂vRj∂vRk∂vLℓ
logZ (4.28)

= (λ1λ2)
2

∫

d4x1 d
4x2 d

4x3 d
4x4

×
〈

(BRℓtL)(x4)(tLBRi)(x1)(BLjtR)(x2)(tRBLk)(x3)
〉

= −(λ1λ2)
2

∫

d4x1 d
4x2 d

4x3 d
4x4

∫

d4p

(2π)4
d4q

(2π)4
pµ
p2

qν
q2
eip(x4−x1)+iq(x2−x3)

×
〈(

BRℓ(x4)γµPRBRi(x1)
) (

BLj(x2)γνPLBLk(x3)
)〉

.

In the last equality we have integrated over the top quark, substituting free massless fermion
propagators for its two-point functions. The remaining expectation value on the last line is
to be computed in the pure hypercolor theory. We may now project onto the Ctop term in
Eq. (4.27) by choosing i = j 6= k = ℓ, obtaining

Ctop =
(λ1λ2)

2

y2
1

V

∫

d4x1 d
4x2 d

4x3 d
4x4

∫

d4p

(2π)4
d4q

(2π)4
pµ
p2

qν
q2
eip(x4−x1)+iq(x2−x3)

×
〈(

BRk(x4)γµPRBRi(x1)
) (

BLi(x2)γνPLBLk(x3)
)〉

i 6=k
. (4.29)

In terms of the Fourier transform

〈(

BRℓ(k4)γµPRBRi(k1)
) (

BLj(k2)γνPLBLk(k3)
)〉

(4.30)

=

∫

d4x1 d
4x2 d

4x3 d
4x4 e

−ik1x1+ik2x2−ik3x3+ik4x4

×
〈(

BRℓ(x4)γµPRBRi(x1)
) (

BLj(x2)γνPLBLk(x3)
)〉

,

we may write this in momentum space as12

Ctop =
(λ1λ2)

2

y2
1

V

∫

d4p

(2π)4
d4q

(2π)4
pµ
p2

qν
q2
〈(

BRk(p)γµPRBRi(p)
)(

BLi(q)γνPLBLk(q)
)〉

i 6=k
.

(4.31)

12 In finite volume, the momentum integral
∫

d4p/(2π)4 is to be understood as a momentum average,

V −1
∑

pµ
. Alternatively, in infinite volume, V is to be interpreted as (2π)4δ(0) in momentum space.
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(a) (b) (c)

FIG. 1: The three possible Majorana-fermion contractions contributing to Eq. (4.28), corresponding

to (a) Ctop, (b) C1, and (c) C2. Only the top quark (solid lines) and Majorana fermions (dashed

lines) are shown. The vertices x1, . . . , x4 of Eq. (4.28) correspond to a clock-wise motion starting

at the lower-left corner.

This is our main result.
The top sector effective potential, Eq. (4.22), depends on the experimentally known top

Yukawa coupling, and on Ctop. Using Eq. (4.16), we may reexpress the ratio λ1λ2/y in
Eq. (4.31) in terms of quantities that are calculable in the pure hypercolor theory. This
determines V top

eff completely. The dependence on the extended hypercolor sector, coming
from the couplings λ1,2, has dropped out.

Diagrammatically, each term on the right-hand side of Eq. (4.27) originates from diagrams
of the microscopic theory with a distinct topology. This is shown in Fig. 1, where we have
kept only the propagators of the top quark (solid lines) and of the Majorana fermions χ
(dashed-dot lines). All other fields, including the Dirac fermions in the fundamental irrep
of hypercolor, have been suppressed. With these conventions, Ctop arises from the class of
diagrams represented by Fig. 1(a), while C1 and C2 arise from Fig. 1(b) and 1(c) respectively.

D. Large-N estimate of y2Ctop

Determining Ctop using Eq. (4.31) requires knowledge of the ratio λ1λ2/y, and a strong-
coupling calculation that can be done using lattice gauge theory. Such a lattice calculation,
however, would be a major undertaking (see Sec. V). In this subsection, we resort to analytic
techniques hoping to shed some light on the most interesting question, which is whether Ctop

could indeed be negative, and large enough in size to cause electroweak symmetry breaking.
We will first consider what can be said if we assume that the hyperbaryon four-point

function in Eq. (4.31) factorizes into the product of two hyperbaryon two-point functions.
We will show that Ctop is negative in this case. We will then argue that a large-N limit
exists in which the factorized contribution dominates, and thus the Higgs field acquires a
non-zero expectation value.
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Assuming factorization, and using13

PR〈BRi(p)BLj(q)〉PR = (2π)4δ(p− q)δijPRSB(p)PR , (4.32)

PL〈BLi(q)BRj(p)〉PL = (2π)4δ(p− q)δijPLSB(p)PL ,

where SB(p) was defined in Eqs. (4.8) and (4.9), Eq. (4.31) leads to

C fact
top = −(λ1λ2)

2

y2

∫

d4p

(2π)4
pµpν
(p2)2

tr (γµPRSB(p)γνPLSB(p)) . (4.33)

Using a dispersive representation for the hyperbaryon propagator,

SB(p) =

∫ ∞

0

ds

2π
ρ(s)

−i/p +√
s

p2 + s
, (4.34)

with ρ(s) ≥ 0 for all s ≥ 0, this becomes

C fact
top = − 1

8π2

(λ1λ2)
2

y2

∫ ∞

0

ds

2π

∫ ∞

0

dt

2π
ρ(s)ρ(t)

√
ts

t− s
log

t

s
. (4.35)

This result is negative, because the integrand is manifestly positive.14 As a simple example,
if we take ρ(s) = 2πf 6ZBδ(s−M2), Eq. (4.35) reduces to

C fact
top = − 1

8π2

(λ1λ2)
2

y2
f 12Z2

B = − 1

32π2
f 2M2 , (4.36)

where we used Eq. (4.16).
We next consider a large-N limit in which factorization can be shown to hold. Of course,

in the model of Ref. [8], the number of (hyper)colors is N = 4. What makes this general-
ization non-trivial is that, unlike the SU(4) case where the two-index antisymmetric irrep

is real, for any N > 4 this irrep is complex. This means that the Majorana condition (2.2b)
cannot be imposed without violating gauge invariance. In order to cope with this, in ad-
dition to Weyl fields ΥABi in the antisymmetric representation of SU(N), we introduce
Weyl fields Υ̃AB

i belonging to the irrep made out of the antisymmetrized product of two
anti-fundamentals.15 Instead of Majorana fermions, we now construct Dirac fermions out of
these Weyl fields according to

ω̃ABi =

(

ΥABi

ǫ ¯̃ΥT
ABi

)

, (4.37)

¯̃ωAB
i =

(

−(Υ̃AB
i )T ǫ ῩAB

i

)

,

as well as their charge conjugates

ωAB
i = C(¯̃ωAB

i )Ti =

(

Υ̃AB
i

ǫ(ῩAB
i )T

)

, (4.38)

ωABi = ω̃T
ABiC =

(

−(ΥABi)
T ǫ ¯̃ΥABi

)

.

13 On the right-hand side, δij follows from SO(5) invariance.
14 Only the factorizable contribution appears to have been considered in Refs. [4, 8].
15 This is the same as the antisymmetric product of N − 2 fundamentals, since Υ̃AB ∼

ǫA1A2...AN−2ABΥ′

A1A2...AN−2
.
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(a) (b) (c) (d)

FIG. 2: A hyperbaryon in large N .

The index i = 1, . . . , Nf , now counts the number of Dirac fermions. Going back to the SU(4)
theory, we have been forced to consider an even number, 2Nf , of Majorana fermions. There
is no large-N generalization that would involve the desired odd number of five Majorana
fermions for the SU(4) theory. Even more, for any N > 4 the symmetry breaking pattern
becomes that of complex-irrep Dirac fermions, namely, SU(Nf )× SU(Nf ) → SU(Nf) [6].

We have shown in Fig. 1 the contractions of the antisymmetric-irrep fermions that con-
tribute to Ctop. According to Eq. (4.31), we should choose fixed values i 6= k. The minimal
number of Dirac fermions we need in order to distinguish Fig. 1(a) from Figs. 1(b) and 1(c)
is two, and so we will take Nf = 2 Dirac fermions in the antisymmetric irrep. For N = 4,
this is equivalent to a theory with four Majorana fermions (instead of five). This is the
best we can do in terms of a large-N generalization. According to Eq. (4.31), for the left
side of Fig. 1(a) we need the contraction PR 〈ωiωi〉PR, whereas for the right side we need
PL 〈ωkωk〉PL. Once these contractions have been fixed we can drop the indices i and k,
and forget about the flavor index. This suggests that the number of flavors is not crucial if
our goal is to obtain a large-N estimate of the class of diagrams depicted in Fig. 1(a), and
thus that the necessary transition from Majorana fermions to Dirac fermions for N > 4 is
inconsequential.

We are now ready to give the generalization of the hyperbaryon operators. In the N > 4
theory with Nf = 2 Dirac flavors they are defined by

BRia = ǫabc PRω
AB
i (ΨT

bA ǫΨBc) , (4.39)

BRia = ǫabc ωiABPL

(

Ψ̄Ab ǫ (Ψ̄Bc)T
)

,

BLia = ǫabc PLω
AB
i (ΨT

Ab ǫΨBc) ,

BLia = ǫabc ωiABPR

(

Ψ̄Ab ǫ (Ψ̄Bc)T
)

.

We have used index conventions similar to the previous sections. For N = 4 we may impose
the Majorana condition ω = ω̃, and then these definitions reproduce Eq. (4.3).

Before we work out the more complicated case of Fig. 1(a), let us consider the behavior of
a single hyperbaryon in large N . The hyperbaryons are bound by interchanging hypergluons
between their elementary constituents. The situation here is different from the conventional
large-N limit of baryons made only of fundamental-irrep fermions, where the number of
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constituents grows linearly with N [20]. For our hyperbaryons, the number of elementary
constituents (as well as the number of hypercolor indices of each field) is fixed. This resembles
the behavior of mesons within the usual large-N treatment.

In Fig. 2 we show a few examples. The bottom end of each diagram represents a hyper-
baryon, say BR (first line of Eq. (4.39)), and the top end the corresponding anti-baryon,
say BL (last line of Eq. (4.39)). Starting with Fig. 2(a) the two vertical lines in the middle
represent the propagation of the double-indexed fermion of the antisymmetric irrep, and
the lines on the sides the propagation of the two fundamental-irrep fermions, one on each
side. The lines are oriented: the arrows point from a superscript index to a subscript index.
Fig. 2(b) shows an alternative index contraction, still without hypergluon fields. Note that
Fig. 2(a) dominates over Fig. 2(b) in large N , since the former is of order N2 and the latter
of order N . In Fig. 2(c) we have added hypergluon interactions. Introducing the ‘t Hooft

coupling λ = g
√
N it follows that that planar diagram is again of order N2. The factors

of g = λ/
√
N from each hypergluon vertex are compensated by a matching increase in the

number of index loops. While the diagram appears disconnected to the eye, this is really
not the case, because the two central vertical lines correspond to the two-point function of a
single two-index fermion,

〈

ωABωCD

〉

. Fig. 2(d) shows a different arrangement of hypergluon
interactions. The hypergluon that is exchanged at the center of the diagram represents a
self-energy correction for

〈

ωABωCD

〉

, which, to be consistent with the directionality of the
index lines, gives rise to a non-planar diagram. This diagram is subleading in the large-N
counting.

The upshot is that, in large N , the dominant diagrams that bind the hyperbaryon are
planar diagrams of order N2, such as for example those in Fig. 2(a) and Fig. 2(c). The
hyperbaryon two-point function in Eq. (4.9) will exhibit this large-N behavior, much like
the two-point function of NGBs made out of antisymmetric-irrep fermions [16], which, in
turn, leads to f ∼ N for large N .16 Using Eqs. (4.15) and (4.16), it follows that M is
independent of N , while ZB ∼ 1/N4, and the top Yukawa coupling behaves like y ∼ N . In

contrast to QCD, where mnucleon/fπ grows like
√
N , we find that M/f decreases like 1/N .

If M is indeed related to the mass of the lightest hyperbaryon in the theory, this suggests
that the lightest hyperbaryon could be relatively light compared to ΛHC.

With the contractions of the double-index hyperfermions fixed to be those in Fig. 1(a), let
us now study the large-N behavior of the various possible contractions of the single-index,
fundamental-irrep fields. Since U(1)X is not broken spontaneously, the Wick contractions
have to comply with this symmetry. Let us start, for example, with the two Ψ fields of
the BR hyperbaryon at the bottom left of Fig. 1(a). They can be contracted with the
corresponding fields in the top left or the bottom right, but not with those in the top right.
There are three possibilities: (1) both Ψ fields are contracted with those at the top left, (2)
both are contracted with those at the bottom right, or (3) one is contracted with a field at
the top left and the other with a field at the bottom right.

Let us consider these three cases in turn. First we contract both Ψ fields at the lower left
corner with the Ψ̄ fields of the BL hyperbaryon at the upper left corner, i.e., case (1) above.
Remembering that also the two-index field at the lower left corner of Fig. 1(a) is contracted

16 Note the difference with QCD, where the decay constant fπ of the fundamental-irrep NGBs scales like√
N .
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(a) (b) (c)

FIG. 3: Different large-N contributions to Fig. 1(a). The curved lines at the top and the bottom

represent the two top-quark propagators.

with the two-index field at the upper left corner, this gives a contribution proportional to

(

δACδ
B
D − δADδ

B
C

) (

δCAδ
D
B − δDA δ

C
B

)

= 2N(N − 1) , (4.40)

where we label the SU(N) indices as ωABΨAΨB at the lower left corner and as ωCDΨ̄
CΨ̄D

at the upper left corner. We get a similar factor from the right side of the diagram, so that
the total diagram is of order (N(N − 1))2 ∼ N4. In Fig. 3(a) we show as an example the
order-N4 contribution coming from using twice the diagram of Fig. 2(a).

For case (2), the Ψ fields at the lower left corner are both contracted with the corre-
sponding fields at the lower right corner. Using SU(N) indices AB at the lower left, CD at
the upper left, EF at the lower right, and GH at the upper right corners, this contraction
leads to a contribution of order

δ
[A
C δ

B]
D δ

[G
E δ

H]
F δ

[E
A δ

F ]
B δ

[C
G δ

D]
H ∼ N2 . (4.41)

The notation [. . . ] denotes antisymmetrization in the pair of indices inside the brackets. An
example is shown in Fig. 3(b).

Finally we consider the mixed case (3), where one of the Ψ fields is contracted with the
lower right corner, and the other with the upper left one. It is straightforward to see that
this gives a contribution

δ
[A
C δ

B]
D δ

[G
E δ

H]
F δ

[C
A δ

D]
G δ

[E
B δ

F ]
H ∼ N3 . (4.42)

An example is shown in Fig. 3(c).
We should also consider diagrams “dressed” with hypergluons. The interesting case is that

of Fig. 3(a), where hypergluons exchanged between the two hyperbaryons on the left and on
the right make these hyperbaryons interact. Such interactions would spoil the factorization
of the four-point function in Eq. (4.29). However, these interactions are suppressed in large
N for the same reason that meson-meson interactions are suppressed in large-N QCD.
Any hypergluon connecting the left and right sides of Fig. 3(a) will reduce the number of
hypercolor loops by one, in addition to adding a factor of g2/N . The key point here is that
the number of hyperfermion constituents of the hyperbaryons is fixed to three, in contrast
to the case of baryons in QCD, where the number of constituent quarks grows linearly with
N .
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We conclude that the factorizable part of Fig 1(a), which grows like N4, is the dominant
large-N contribution of the top-quark sector. Ctop itself grows like N2, since V top

eff is pro-
portional to y2Ctop and y scales like N (this is consistent with the large-N behavior of the
right-hand side of Eq. (4.36)). According to the discussion in the beginning of this subsec-
tion, this produces a negative value for Ctop, which, in turn, generates a negative curvature
for the Higgs field in Eq. (4.25).

We recall that the other contribution to the effective potential (4.25) for the Higgs field
is coming from a single electroweak gauge-boson exchange. This contribution, which is
parametrized by CLR, always produces a positive-curvature term in the effective potential.
It is easily seen that CLR is subleading in the large-N counting. The electroweak gauge
group SU(2)L is a subgroup of SU(5), whereas hypercharge is a subgroup of SU(5) ×
U(1)X . Therefore all the electroweak gauge bosons interact with the antisymmetric-irrep
hyperfermions, from which the SU(5)/SO(5) coset fields are formed. CLR involves a single
closed fermion loop, and so for the antisymmetric-irrep fields it is of order N2. (For the
fundamental irrep, CLR would be of order N . Observe that the electroweak gauge bosons do
not carry hypercolor, and therefore their exchange has no effect on the large-N counting.)
This is subleading to the factorizable contribution of the top sector, which is of order N4. It
follows that, in large N , Eq. (4.25) is dominated by the contribution of the top-quark sector,
developing a negative curvature at the origin that triggers electroweak symmetry breaking.

E. Phenomenological consequences

Our analysis in this section was based on the lagrangian (4.2). While LEHC depends on
two coupling constants λ1 and λ2, only their product enters the determination of the top
Yukawa coupling in Sec. IVB, and of the induced effective potential for the Higgs studied
in Sec. IVC. An additional free parameter of the model is the scale of the hypercolor theory
itself, ΛHC . Using the results of Sec. IVB and Sec. IVC, we may in principle perform a
lattice calculation that will fix the values of λ1λ2 and of ΛHC in terms of the experimentally
known values of the top Yukawa coupling y, and of the Higgs field’s expectation value,
provided that Ctop turns out to be large enough compared to CLR to trigger condensation
(see Eq. (4.24)).17

The only remaining uncertainty then arises from the four different choices for the hyper-
baryon fields (that each can be a primed or an unprimed one, cf. Table 1) in Eq. (4.2).
This gives rise to a discrete four-fold ambiguity in the predicted values of λ1λ2 and of ΛHC .
For each of these four possibilities, one can proceed to compare other predictions of the
hypercolor theory with experimental constraints, which can in principle rule out, or rule in,
that particular version of the hypercolor theory.

A less constrained hypercolor model can be obtained by relaxing the assumption that
SU(3)× SU(3)′ is broken explicitly to SU(3)color only by the QCD interactions. There are
at least two alternative ways to introduce such an explicit breaking.

First, one can introduce a Dirac mass termmψψ for the fundamental-irrep hyperfermions,
with m>∼ΛHC. We may think of m as arising from the expectation value of a three by
three global spurion Mab = mδab, where Mab has the same transformation properties as
the SU(3)× SU(3)′/SU(3)color coset field Ωab. Using the global spurion Mab allows for the
coupling of each SM spurion field TL,R to both of the unprimed an primed hyperbaryon fields

17 We are assuming that none of the SU(2)L triplet NGBs acquires an expectation value.
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from Table 1. In fact, if the hyperbaryon field is assumed to have well defined transformation
properties under SU(3)color only, some additional operators besides those shown in Table 1
may occur. For their structure, see Table 2 of Ref. [8]. The bottom line is that LEHC can
now depend on four (or more) coupling constants, instead of just two.

An alternative mechanism involves the introduction of two more spurions T ′
L,R, and as-

suming that the unprimed hyperbaryon fields and spurions transform under SU(3), while
the primed ones transform under SU(3)′. Twice as many terms are then allowed by
SU(3) × SU(3)′ invariance of LEHC, with each term involving either unprimed or primed
fields. The explicit breaking to SU(3)color then occurs by assigning to all spurions, both
primed and unprimed, the same SM values as in Eq. (4.1).

In any one of these more general schemes, the matching of the top Yukawa coupling and of
Ctop to the underlying theory can be done using the same techniques as before. However, the
predictive power will be reduced, since this analysis would still provide just two constraints
on the larger set of parameters, which includes ΛHC and all the coupling constants that may
now occur in LEHC.

Finally, note that if we expand both Σ and Φ in Eq. (4.5) to first order in the NGB

fields, and use the SM values T̂L,R, we obtain the dimension-five operators (y/f ′)η′tRHiǫijqLj
and its hermitian conjugate, where f ′ is the decay constant of η′. This couples η′ to the
SM fields. If we set the Higgs field to its vacuum expectation value, the above operator
reduces to (mt/f

′)η′tRtL. The phenomenological implications of these interactions have to
be looked into. If they turn out to be incompatible with experiment, this would necessitate
the introduction of an explicit breaking of U(1)′ that makes the η′ sufficiently heavy. One
possible source for this explicit breaking is the Dirac mass term mψψ discussed above.

V. LATTICE ASPECTS

In this short section, we explain why a lattice computation of Ctop would be a “QCD-
like” computation. The question to address is why the lattice formulation of hypercolor
theories such as considered here resembles the lattice formulation of QCD, in view of the
well-known complications with fermion doubling and chirality on the lattice. The fermion
doubling problem has its roots in the observation that a single Weyl fermion cannot live on
the lattice [22, 23]. Since the hypercolor theory contains an odd number of Weyl fermions
in the two-index antisymmetric irrep, this might seem to imply that the model we consider
here cannot be easily discretized.

The first observation is that the integration over the SM quark fields qL and tR is done
analytically, as we did in this article. The results for the top Yukawa coupling y (Eqs. (4.11)
and (4.12)) and for Ctop (Eq. (4.31)) are obtained in terms of pure hypercolor correlation
functions. Hence only the hypercolor theory needs to be considered on the lattice, and the
lattice action does not contain the four-fermion lagrangian LEHC of Eq. (4.2).

Let us start from the sector that resembles QCD most closely, namely, the Dirac fermions
ψa in the fundamental irrep of SU(4) hypercolor. These can be treated in exactly the same
way as the quark fields of Nf -flavor QCD. In the Wilson formulation of the theory, the
gauge invariant Wilson mass term removes the fermion doublers at the price of breaking
the symmetry group SU(Nf )L×SU(Nf )R of the continuum theory explicitly to its diagonal
SU(Nf ) subgroup. Tuning the bare mass appropriately, one then recovers the massless
theory with the full chiral symmetry group in the continuum limit [22]. In the hypercolor
theory we have Nf = 3 Dirac fermions. The chiral flavor group SU(3)L × SU(3)R has
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been renamed SU(3) × SU(3)′, and the unbroken diagonal subgroup was identified with
SU(3)color.

We next turn to the novel feature of the hypercolor theory, which is the 5 real-irrep
Weyl fermions ΥABi. The key point is that each of these Weyl fermions can be assembled
together with its antifermion into a Majorana fermion field χABi. A Majorana mass term of
the form χAB

i χABi is allowed by the SU(4) gauge symmetry, just like a Dirac mass term is
allowed in the familiar case of fundamental-irrep fermions. Therefore, a Wilson formulation
of the Majorana fermions is possible, with a Wilson mass term that once again removes
fermion doublers without breaking gauge invariance. The hypercolor theory is chiral with
respect to the SU(5) flavor symmetry of the Majorana or Weyl fields, and consequently, the
Majorana–Wilson mass term breaks SU(5) explicitly down to SO(5). Again, the full SU(5)
chiral symmetry should be recovered in the continuum limit after appropriate tuning of the
bare mass.18

The situation with respect to (complex-irrep) Dirac fermions and to (real-irrep) Majorana
fermions is thus completely parallel. In both cases, what we anticipate as the spontaneous
symmetry breaking pattern of the continuum theory turns into an explicit breaking in the
Wilson formulation. The explicit breaking disappears, and the full chiral symmetry group
can be recovered, in the continuum limit by tuning the bare mass terms. In particular, the
flavor group SO(5) of the Majorana-Wilson fermion action in the hypercolor theory enlarges
to SU(5) in the continuum limit, much like the diagonal SU(Nf ) symmetry the Dirac-Wilson
action of QCD enlarges to the full SU(Nf)L × SU(Nf )R symmetry in the continuum limit.

In short, it is precisely the unbroken flavor symmetry group H of Eq. (2.5) that is pre-
served in a lattice formulation with Wilson fermions. It is actually possible to gauge the
SM group SU(3)color × SU(2)L × U(1)Y in this lattice formulation, because this group is
contained in H . The difficulties caused on the lattice with chiral gauge symmetries19 would
only appear were one to couple also the SM fermions to this model.

The lattice formulation of the hypercolor theory is not without technical challenges. First,
two fermion irreps need to be introduced simultaneously. While clearly a coding task, this is
something that to our knowledge has not been done to date. Also, the computation of a four-
point function as in Eq. (4.29) would be very demanding. Because there are two independent
momentum variables, the cost is expected to grow like the square of the 4-volume of the
lattice. The computation of SB(0) in Eq. (4.11), and of the factorizable contribution to Ctop,
would already be interesting. Here only the hyperbaryon two-point function is required, and
the cost grows linearly with the 4-volume.

VI. CONCLUSION

In this article, we discussed a recently proposed composite Higgs model [8], concentrating
on the top quark sector. This “hypercolor” model is an SU(4) gauge theory, with a quintu-
plet of two-index antisymmetric Majorana fermions and a color triplet of SU(4)-fundamental
Dirac fermions. We considered the top Yukawa coupling and the top contribution to the
effective potential for the Higgs, showing how to match the relevant low-energy constants

18 The lattice formulation of an adjoint Majorana fermion was studied extensively in the context of super-

symmetric theories, see, e.g., Ref. [15].
19 For a review, see [21].
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µ = yf/2 and Ctop to correlation functions of the hypercolor theory.
This matching is the starting point for any non-perturbative evaluation of the low-energy

constants. The needed computations can in principle be done on the lattice, using methods
that are much the same as those employed in lattice QCD. The main differences are that
now the gauge group is SU(4) instead of SU(3), and that there are fermions in more than
one irrep of the gauge group. For the Higgs effective potential, a four-point hyperbaryon
correlation function needs to be considered; this appears to have been overlooked in at least
some of the literature on models of this type. A lattice calculation of this four-point function
would be very demanding, and how to do it efficiently is a question that goes beyond the
scope of this paper. As mentioned in Sec. V, only a two-point function is needed for the
low-energy constant µ, as well as for the factorizable contribution to Ctop. This computation
would be comparable in scope with a lattice computation of CLR, the LEC controlling the
contribution to the Higgs effective potential from the SM gauge bosons (cf. Sec. III).

We found that a large-N limit exists in which the factorizable contribution to the hy-
perbaryon four-point function dominates Ctop. We also showed that the factorizable con-
tribution generates a negative curvature at the origin. This is a necessary condition for
electroweak symmetry breaking, because the effective potential induced by the SM gauge
bosons does not break the SM symmetries, a manifestation of vacuum alignment.

For very large N , the top sector dominates the whole Higgs effective potential. This
maximizes the symmetry breaking, with the minimum of Veff(h) presumably occurring for
sin(2h/f) = 1 in Eq. (4.25). Phenomenologically, this is not allowed [4, 8]. The hope is that
for N = 4, electroweak symmetry breaking with a phenomenologically acceptable value of
h/f takes place. Only the lattice can address this question quantitatively.

In order to couple the SM fermions to the hypercolor theory, an extended hypercolor
sector is necessary. While the detailed structure of the EHC theory is very important for
phenomenology, the lattice setup is largely blind to these details. At energy scales much
below ΛEHC, the SM–hypercolor coupling is summarized by the four-fermion lagrangian LEHC

of Eq. (4.2). Much like the familiar treatment of hadronic matrix elements of the electroweak
interactions, LEHC is not taken as part of the lattice action. Instead, one evaluates the
hypercolor-theory correlation functions that arise from working to leading order in the four-
fermion lagrangian LEHC.

In the most constrained case, which is the one we have worked out in detail in this paper,
LEHC depends on only two couplings λ1,2. A lattice computation can then in principle
determine their product λ1λ2, alongside with the hypercolor scale λHC, in terms of the
experimental values of the top Yukawa coupling and the Higgs expectation value, up to a
four-fold ambiguity. In a less constrained setup, a similar lattice computation would supply
two constraints among the parameters of the hypercolor theory.

The parameters λ1,2 have mass dimension two. According to naive dimensional analysis,
their values would be of order (ΛHC/ΛEHC)

2, making the top Yukawa coupling of order
y ∼ (ΛHC/ΛEHC)

4. For comparison, we recall that in classic (walking) technicolor, the top
Yukawa coupling is naively of order (ΛTC/ΛETC)

2, where ΛTC and ΛETC are the scales of
the technicolor and of the extended technicolor theories. Naively, the case for a partially-
composite top seems even worse than for technicolor. On the other hand, it might be that
the experimental constraints allow ΛEHC to be much closer to ΛHC than ΛETC to ΛTC. We
also found that the hyperbaryons that couple to the top quark in LEHC might be relatively
light, as suggested by large-N counting, and this helps boost the value of the top Yukawa
y as well. The key reason for the possible lightness of these hyperbaryons is that they are
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composed of hyperfermions in two different irreps of the gauge group. As far as large-N
counting goes, these hyperbaryons behave more like mesons than like baryons in the usual
large-N limit of QCD.

Yet another feature that may be needed for a phenomenologically viable partial-
compositeness model is large anomalous dimensions for the hyperbaryon fields [4]. It should
be possible to study on the lattice whether or not this is the case.
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Appendix A: Conventions

We choose our γ matrices to be hermitian, and we use the chiral representation

γk =

(

0 iσk
−iσk 0

)

, γ4 =

(

0 1

1 0

)

, (A1)

with σk, k = 1, 2, 3, the Pauli matrices. The chiral projectors are PR = (1 + γ5)/2, PL =
(1− γ5)/2, where

γ5 = −γ1γ2γ3γ4 =
(

1 0

0 −1

)

. (A2)

The charge conjugation matrix occurring in Eq. (2.2) is C = −γ2γ4. It satisfies

Cγµ = −γTµC , (A3)

and C−1 = C† = CT = −C.
For the invariant SU(2) subgroups of SO(4) we may choose the generators as the following

tensor products of Pauli matrices and the 2× 2 identity matrix I,

2 T 1
L = σ2 × σ1 , (A4)

2 T 2
L = −σ2 × σ3 ,

2 T 3
L = I × σ2 ,

2 T 1
R = σ1 × σ2 ,

2 T 2
R = σ2 × I ,

2 T 3
R = σ3 × σ2 .

Identifying SO(4) with the upper-left 4 × 4 block, the SU(2)L generators and the third
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SU(2)R generator (which is used to construct the hypercharge Y ) are given explicitly by

T 1
L =

i

2















0 0 0 −1 0

0 0 −1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0















, T 2
L =

i

2















0 0 1 0 0

0 0 0 −1 0

−1 0 0 0 0

0 1 0 0 0

0 0 0 0 0















, (A5)

T 3
L =

i

2















0 −1 0 0 0

1 0 0 0 0

0 0 0 −1 0

0 0 1 0 0

0 0 0 0 0















, T 3
R =

i

2















0 −1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 0
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