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Abstract

We present a general framework for the calculation of soft functions for SCETI observables

through next-to-next-to-leading order (NNLO) in the strong coupling constant. As an example

of our formalism we show how it can be used to obtain the complete NNLO soft function for

the N -jettiness event shape variable. We present numerical results for two examples with phe-

nomenological impact: the one-jettiness soft function for both electron-proton and proton-proton

collisions.
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I. INTRODUCTION

The physics program at the Large Hadron Collider (LHC) and at other experiments

increasingly relies upon precision calculations within the Standard Model (SM) in order

to search for small deviations indicative of new physics. At the LHC, Run I was marked

by the discovery and initial characterization of the Higgs boson. Run II will focus on the

detailed investigation of this new state, in which an evermore precise characterization of the

SM benchmark will be critical. The small errors for most experimental measurements make

higher-order QCD calculations mandatory in interpreting the data. Such computations may

be performed at either fixed-order in QCD perturbation theory, or may additionally include

the resummation of large logarithms in certain regions of phase space, either through analytic

resummation or via the use of parton-shower simulations.

One feature of recent progress in precision calculations is the impact of analytic resum-

mation techniques on our understanding of jet properties. They led to the invention of

new variables such as N -jettiness [1] and N -subjettiness [2] that describe jet substructure.

Additionally, resummation of large logarithmic corrections improved our description of the

theoretical treatment of Higgs production in exclusive jet bins [3–15]. The starting point for

analytic resummation is a factorization theorem describing the observable under considera-

tion, usually in a region of phase space where an expansion of the full QCD result is possible.

A typical factorized cross section takes on the schematic form

σ ∼
∫
H ⊗B ⊗B ⊗ S ⊗

[∏
n

Jn

]
. (1)

Here, H describes the effect of hard radiation, B encodes the effect of radiation collinear

to one of the two initial beam directions, S describes the soft radiation, and Jn contains

the radiation collinear to a final-state jet. Depending on the observable and process under

consideration, only a subset of these terms may be present. Perturbative corrections to each

of these functions are minimized by the appropriate renormalization scale choice. Renor-

malization group equations for each separate function allow these scales to be evolved to

a common one, in the process resumming large logarithms. We have used the language of

soft-collinear effective theory (SCET) [16–20] in our description, although similar quantities

appear in other approaches to resummation.

Improving the accuracy of resummation requires both knowledge of the anomalous di-

mensions controlling the evolution of the various functions in the factorization theorem, and

the perturbative expansion of these quantities to higher orders in the strong coupling con-

stant αs. Knowledge of the singular structure of QCD gained with resummation formulae

has also improved our ability to calculate fixed-order QCD quantities to higher precision. A
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well-known example is the use of qT -subtraction to calculate cross sections through next-to-

next-to-leading order (NNLO) [21]. Currently, the hard function H is known to NNLO for

numerous phenomenologically interesting processes containing final-state jets [22–27]. The

NNLO beam functions for observables such as jettiness and beam thrust are available [28, 29],

as are the NNLO final-state jet functions [30, 31]. The only missing ingredient of the fac-

torization formula at NNLO for observables such as jettiness and beam thrust is the soft

function. The knowledge of these soft functions do not only enable the resummation accu-

racy of the corresponding observables to be improved; they are also important components

of the recently proposed jettiness-subtraction scheme for the calculation of jet cross sections

through NNLO in QCD [32].

We present in this manuscript a general method of computing soft functions through

NNLO for SCETI observables. It uses sector decomposition [34–36] to extract singularities

from the integrals which occur in the calculation and reduce them to a form amenable to

numerical integration. We illustrate our techniques using theN -jettiness event shape variable

TN as an example. We validate our approach against known results in the literature. The

N -jettiness soft function contains the logarithms ln(TN), and a contribution of the form

δ(TN). The logarithmic corrections at NNLO can be obtained by expanding the resummed

expression for the soft function to O(α2
s). We demonstrate that we reproduce these known

results with our technique. Our computation of the δ(TN) correction is new. We present

numerical results for two selected examples of recent phenomenological relevance: the one-

jettiness soft function in electron-proton collisions, and the one-jettiness soft function in

proton-proton collisions.

Our manuscript is organized as follows. We review the definition of the N -jettiness event

shape variable in Section II. Our calculational framework is presented in Section III, where

we show how to reduce the NNLO soft function to a form suitable for numerical evaluation.

In Section IV we present numerical results for two examples: one-jettiness in electron-proton

collisions, and one-jettiness in proton-proton collisions. We conclude in Section V.

II. DESCRIPTION OF JETTINESS

We begin with a brief review of the N -jettiness event-shape variable TN of Ref. [1]. TN is

defined by

TN =
∑
k

mini

{
2pi · qk
Qi

}
. (2)

Here, the pi are light-like reference vectors for each of the initial beams and final-state jets

in the problem, while the qk denote the four-momentum of final-state radiation. The Qi are
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dimensionful variables that characterize the hardness of the beam-jets and final-state jets.

For simplicity, we will set Qi = 2Ei, twice the energy of each jet. Writing the jet momenta

as pi = Eini, we have

TN =
∑
k

mini {ni · qk} . (3)

We will consider the calculation of TN through NNLO in QCD. It will receive non-zero

contributions from single emission and double emission processes. The contributions of

single and double-real emission processes to N -jettiness are given explicitly by the following

expressions:

• Single-real emission: TN = mini {ni · q1};

• Double-real emission: TN = mini {ni · q1}+ minj {nj · q2}.

The physical content of the above expression is that jettiness partitions the phase space of

each emission according to which external direction it is nearest. A pictorial representation

of this is given in Fig. 1. In each of the regions, TN is defined differently in terms of the

radiation four-momentum. This leads to the insertion of the following measurement functions

into the phase space for single and double-real emission processes:

M(q1) =
N∑
i=1

Θi
1, M(q1, q2) =

N∑
i,j=1

Θij
12, (4)

where we have abbreviated

Θr
i = δ(TN − nr · qi)

∏
k 6=r

θ(nk · qi − nr · qi),

Θrs
ij = δ(TN − nr · qi − ns · qj)

∏
k 6=r

θ(nk · qi − nr · qi)
∏
l 6=s

θ(nl · qj − ns · qj). (5)

For the QCD processes considered here, Θrs
ij is symmetric under interchange of either its

upper or lower indices. This allows us to reduce the number of phase-space regions relevant

for the calculation of double-real emission processes from nine to six.

III. CALCULATIONAL FRAMEWORK

With the variable TN and the structure of the measurement function discussed, we are

now ready to discuss the calculation of the soft function. The soft function can be expanded

as a perturbation series in the strong coupling constant,

S(TN) = S(0)(TN) +
αs
2π
S(1)(TN) +

(αs
2π

)2

S(2)(TN). (6)

4



FIG. 1. Sketch of the division of phase space into regions for the one-jettiness variable. i, j and

k denote representative hard directions. A two-dimensional projection of the full space has been

performed for simplicity of presentation.

We have suppressed the dependence on the renormalization scale µ. The leading-order

result S(0)(τ) is just δ(TN), while the calculation of the NLO contribution S(1)(TN) has been

discussed extensively in Ref. [37]. We focus our attention on the computation of S(2)(TN).

The diagrammatic contributions to the integrand involve emission of gluons from eikonal

lines, but are most easily obtained from known results for the NNLO soft limits of QCD

amplitudes. As with all NNLO calculations there are contributions from two-loop virtual

corrections, one-loop virtual corrections to single-real emission processes (real-virtual), and

double-real emission diagrams. The two-loop virtual corrections are scaleless in dimensional

regularization, leaving only the real-virtual and double-real corrections. We are left with the

following pieces to calculate:

• the real-virtual corrections to the single-gluon emission process;

• the qq̄ double-real emission correction;

• the double-real gluon emission contribution.

A. The real-virtual correction

We begin by discussing the real-virtual correction to the soft function. It receives con-

tributions from diagrams of the form shown in Fig. 2. The integrand resulting from these
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diagrams can be obtained from the one-loop soft-gluon current in QCD [38]. We write the

real-virtual part of the soft function as

S
(2)
RV (TN) =

∫
dd−1q1

(2π)d−1
E

(2)
RV (q1)M(q1), (7)

where the explicit form of the integrand E
(2)
RV (q1) can be obtained from Eq. (26) of Ref. [38].

Although this expression is complex, the structure of QCD at NNLO guarantees that the

result takes the form of a sum of emissions of q1 from a dipole pair (i, j), where i, j denote

two hard directions in the problem, together with appropriate color correlations. We are

therefore led to consider the integration of the following building blocks from which the

real-virtual corrections for TN can be constructed:

Iij(q1) = −8π2CA
ε2

e2εγE(4π)−ε
Γ4(1− ε)Γ3(1 + ε)

Γ2(1− 2ε)Γ(1 + 2ε)
[Sij(q1)]1+ε,

Sij(q1) =
ni · nj

2ni · q1 nj · q1

. (8)

CA = 3 is the usual QCD color constant. γE is the Euler constant, which arises from

rewriting the bare coupling constant in terms of the renormalized one. Since the building

block for the soft function is the integral of the Iij(q1) over the real-emission phase space,

we will consider the auxiliary quantity

I
(2),ij
RV (TN) =

∫
dd−1q1

(2π)d−1
Iij(q1)M(q1), (9)

from which we can form the entire integrated real-virtual correction.

FIG. 2. Representative diagrams contributing to the real-virtual piece of the soft function. The

dashed lines represent the eikonal directions.
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We now discuss the appropriate representation of phase space for the calculation of this

integral. We introduce a Sudakov decomposition of the radiation momentum q1 in terms of

two light-like directions nm and nn:

qµ1 = q+
1

nµm
nm · nn

+ q−1
nµn

nm · nn
+ qµ1⊥ (10)

with q+
1 = nn · q1, q−1 = nm · q1, and nm · q1⊥ = nn · q1⊥ = 0. With this decomposition it is

straightforward to write the following expression for the phase space:∫
dd−1q1

(2π)d−1
=

Ωd−3

4(2π)d−1

1

nm · nn

(nm · nn
2

)ε
T 2−2ε
N

∫
dξ ds dφ1 ξ

1−2εs−2+εsin−2ε(φ1), (11)

where we have set q+ = TNξ, q− = TNξ/s, and have used the angle φ1 to parameterize the

orientation of q1⊥ in the azimuthal plane.

Upon plugging in the measurement function of Eq. (4) and the integrand Iij(q1) into

the phase space, we arrive at three terms, depending on which Θr
1 occurs. These form two

distinct sets: two integrals in which r is one of the two directions i, j appearing in the

integrand Iij, and one in which it does not. We consider the two integrals corresponding to

r = i and r = k with k distinct from i, j. The r = i case can be written as

I
(2),ij
RV,i (TN) =

∫
dd−1q1

(2π)d−1
Iij(q1) Θi

1, (12)

where we have introduced the subscript i to denote this contribution. The case r = j can be

obtained by simply permuting the indices i and j in this result. It is convenient to choose

the light-cone directions nm = ni, nn = nj for this integral. Doing so, it is straightforward

to derive the following final expression for the integral:

I
(2),ij
RV,i (TN) = −CA

ε2
BRV T −1−4ε

N (ni · nj)2ε 2−1−4ε

∫ 1

0

ds dx2 s
−1+2ε sin−2ε(φ1)

×
∏
k 6=i,j

θ [Aij,k(s, φ1k)− s] .
(13)

We have set φ1 = 2πx2, and have introduced the angles φ1k that denote the separation

between q1 and the hard directions k in the transverse plane. We have also introduced the

quantities

BRV = 1− 2π2

3
ε2 − 14

3
ζ3ε

3 +
π4

15
ε4,

Aij,k(x, φ) =
ni · nk
ni · nj

+ x
nj · nk
ni · nj

− 2 cos(φ)

√
xni · nk nj · nk

ni · nj
. (14)
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Poles in ε occur in three places in I
(2),ij
RV,i : from the explicit overall factor of 1/ε2; from the

term T −1−4ε
N in the limit TN → 0; from the limit s→ 0 of the term s−1+2ε in the integrand.

The presence of the theta function makes this expression difficult to integrate analytically

and extract the pole in s. However, the poles can be easily extracted using plus-distribution

expansions in s and TN :

x−1+ε =
1

ε
δ(x) +

∑
n=0

εn

n!

[
lnn x

x

]
+

, (15)

where x denotes either s or TN . Once this is done the resulting coefficients of the Laurent

expansion in ε can be easily integrated numerically. The case r = j is obtained by permuting

the indices i and j in the quantity Aij,k. We note that the s→ 0 limit is associated with an

ultraviolet singularity, since q− → ∞. In SCETI such singularities can always be regulated

in dimensional regularization, mapped to the unit hypercube and extracted with a variable

change of the type used here.

The second case with r = k proceeds similarly, except that the Sudakov decomposition of

the radiation momentum instead uses nm = nk, nn = ni. We denote this contribution with

the subscript k. Proceeding as before, we derive the final result

I
(2),ij
RV,k (TN) = −CA

ε2
BRV T −1−4ε

N (ni · nj)1+ε (ni · nk)−1+ε 2−1−4ε

∫ 1

0

ds dx2 s
3ε sin−2ε(φ1)

× [Aki,j(s, φ1)]−1−ε
∏
l 6=i,k

θ [Aki,l(s, φ1l)− s] .
(16)

This form is again suitable for numerical implementation, as the quantity Aki,j remains

finite throughout the allowed phase space. Using I
(2),ij
RV,i and I

(2),ij
RV,k , the entire real-virtual

contribution to the NNLO soft function for N -jettiness can be derived.

Before proceeding we comment on our treatment of the ultraviolet singularities mentioned

above. We renormalize the soft function using the MS scheme. We note that after combining

the real-virtual, double-real, and two-loop virtual corrections to the soft function, all infrared

poles cancel and we are left with only ultraviolet poles (although scaleless, the two-loop

virtual corrections help convert infrared poles to ultraviolet ones). The coefficients of these

ultraviolet poles are obtained from the coefficients of the 1/ε poles of the Laurent expansion

described above, and can be removed with appropriate renormalization constants in the

effective theory. A similar renormalization procedure was used for the O(α2
s) dijet soft

function [39].
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B. The qq̄ double-real correction

We next consider the correction arising from the emission of a qq̄ pair from the hard

eikonal lines. Several representative diagrams are shown in Fig. 3. The integrand can again

be obtained from the QCD result for the emission of a soft qq̄ pair, as presented in Ref. [40].

It is expressed in terms of the function

Iij(q1, q2) =
pi · q1pj · q2 + pj · q1p·q2 − pi · qjq1 · q2

(q1 · q2)2[pi · (q1 + q2)][pj · (q1 + q2)]
. (17)

However, color conservation of QCD amplitudes restricts the ways in which Iij enters the

soft function. The factorization of the QCD amplitude in the double-soft limit indicates that

|M(. . . , q1, q2)|2 ≈ 〈M|

(∑
i,j

Iij Ti ·Tj

)
|M〉, (18)

where we have used color-space notation [41] in writing the color-correlated product of am-

plitudes on the right-hand side. Color conservation allows us to write∑
j

Tj|M〉 = 0. (19)

We use this relation to remove all color structures of the form Ti ·Ti in Eq. (18), by dotting

Eq. (19) with Ti and solving for the Ti · Ti term. Doing so, we find that the coefficient of

each remaining color structure Ti · Tj, with i 6= j, contains the combination

Jij = Iii + Ijj − 2Iij. (20)

This is the basic building block of the qq̄ contribution whose integration over phase space

we will study.

The integral we must consider is

I
(2),ij
qq̄ (TN) = 64π4e2εγE(4π)−2ε

(αs
2π

)2
∫

dd−1q1

(2π)d−1

dd−1q2

(2π)d−1
Jij(q1, q2)M(q1, q2). (21)

The overall numerical factor comes from expressing the bare coupling constant in terms of

the renormalized one. We have kept explicit the overall coefficient of (αs/(2π))2 in order

to make clear the normalization of our result. It is convenient to divide this integral into

several different structures, according to which phase-space parameterization is most suitable

for performing the extraction of singularities. We first divide it into regions according to

whether the radiated quarks q1 and q2 are closest to one of the emitting eikonal lines i, j, or

are closer to non-emitting lines which we label as k, l. This leads us to five distinct regions

to investigate:
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FIG. 3. Representative diagrams arising from emission of a qq̄ pair. The dashed lines represent the

eikonal directions.

1. both q1 and q2 closest to the same emitting direction i, which we denote as I
(2),ij
qq̄,ii ;

2. q1 and q2 closest to different emitting directions, which we denote as I
(2),ij
qq̄,ij ;

3. q1 closest to i and q2 nearest to k, which we call I
(2),ij
qq̄,ik ;

4. both q1 and q2 closest to k, which we call I
(2),ij
qq̄,kk ;

5. q1 and q2 closest to different non-emitting directions, which we denote as I
(2),ij
qq̄,kl .

We furthermore find it convenient to divide the integrand Jij into two structures according

to whether the denominator is quadratic or linear in the invariant q1 · q2. We label these as

I and II, respectively, so that Jij = J I
ij + J II

ij . Written explicitly, the integrands for these

two structures are

J I
ij = −2

[pi · q1pj · q2 + pj · q1p·q2]2

(q1 · q2)2[pi · (q1 + q2)]2[pj · (q1 + q2)]2
,

J II
ij = 2

pi · pj
(q1 · q2)[pi · (q1 + q2)][pj · (q1 + q2)]

. (22)

This leaves us with a total of ten integrals to compute. The entire qq̄ contribution to the soft

function can be obtained by appropriately permuting the indices of these structures. Since

the computation proceeds similarly for all ten terms, we will focus on the representative

example I
(2),ij,II
qq̄,kk which exhibits all of the complexities that must be addressed in the general

case.

We begin by performing a Sudakov decomposition of both q1 and q2 as in Eq. (10),

choosing the light-cone directions m = k and n = i. The explicit representations of the
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transverse vectors q1⊥ and q2⊥ are as follows:

qµ1⊥ = |q1⊥| (cos(φ1), sin(φ1); 0) ,

qµ2⊥ = |q2⊥| (cos(φ2), sin(φ2) cos(α); sin(φ2) sin(α) n̂ε) . (23)

The last component of each momentum appearing after the semi-colon denotes the ε-

dimensional component of transverse momentum (we recall that the dimensionality of the

transverse plane is 2 − 2ε in dimensional regularization). n̂ε denotes a unit vector in the

−2ε-dimensional space. A single angle is needed in the general N -jettiness case to param-

eterize this direction. It is now straightforward to write down the following expression for

the integral:

I
(2),ij,II
qq̄,kk = 21−8εBRR

(αs
2π

)2

T −1−4ε
N ni · nj[ni · nk]−1+2ε

∫ 1

0

dξ ds dt dx4 dx5 dx6 dΩ(ε)

× [ξ(1− ξ)]−2ε[λ(1− λ)]−εsin−2ε(φ1)[−εx−1−ε
6 ](1− x6)−ε[s t]1+ε|s− t|−1−2ε

×
{

(
√
s−
√
t)2 + 4λ

√
st
}2ε

ξ tAki,j(s, φ1) + (1− ξ)sAki,j(t, φ2k)

1

ξt+ (1− ξ)s

×
∏
l 6=i,k

θ [Aki,l(s, φ1l)− s] θ [Aki,l(t, φ2l)− t] ,

(24)

where we have introduced the abbreviation

BRR = 1− π2

3
ε2 − 8

3
ζ3ε

3 +
π4

90
ε4. (25)

We have made the following variable changes to arrive at this expression:

q+
1 = TNξ, q−1 =

TNξ
s
, q+

2 = TN(1− ξ), q−2 =
TN(1− ξ)

t
,

φ1 = 2πx4, λ = sin2(πx5/2), cos(α) = 1− 2x6.

(26)

We have in addition followed the sector decomposition approach to NNLO calculations [36,

42, 43] and have made a non-linear change of variables to map cos(φ2) to the unit hypercube.

The quantity dΩ(ε) denotes the angular parameterization of the direction n̂ε in Eq. (23),

normalized so that it integrates to unity. We note that in the zero-jettiness and one-jettiness

cases, we may immediately integrate over dΩ(ε) to obtain unity.

This integral is not yet suitable for numerical implementation, as there are singularities

associated with the joint limit s, t→ 0 that cannot yet be extracted with a plus-distribution

expansion. We order these two limits by inserting the following partition into phase space,

as is done in sector decomposition of real radiation in QCD [36, 42, 43]:

1 = θ(s− t) + θ(t− s). (27)
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We then remap the limits of integration to the unit hypercube. Doing so renders all singular-

ities amenable to a plus distribution expansion. Focusing on the s > t sector for illustrative

purposes and setting ξ = x1, s = x2, and t = x2(1− x3), we find the following final result:

I
(2),ij,II
qq̄,kk,s>t = 21−8εBRR

(αs
2π

)2

T −1−4ε
N ni · nj[ni · nk]−1+2ε

∫ 1

0

dx1 dx2 dx3 dx4 dx5 dx6 dΩ(ε)

× [x1(1− x1)]−2ε[λ(1− λ)]−εsin−2ε(φ1)[−εx−1−ε
6 ](1− x6)−εx2ε

2 (1− x3)1+εx−1−2ε
3

×
{

(1−
√

1− x3)2 + 4λ
√

1− x3

}2ε

x1(1− x3) tAki,j(x2, φ1) + (1− x1)Aki,j(x2(1− x3), φ2k)

1

1− x1x3

×
∏
l 6=i,k

θ [Aki,l(x2, φ1l)− x2] θ [Aki,l(x2(1− x3), φ2l)− x2(1− x3)] .

(28)

The poles in this expression come only from expanding the overall T −1−4ε
N and the factor

x−1−2ε
3 using the plus distribution expansion of Eq. (15). Once this expansion in performed,

the integral can be simply evaluated numerically. The computations of the other sector and

the other integrals required for the qq̄ contribution proceed similarly. Only the ordering of

the s and t limits is needed to make all singularities manifest.

C. The gg double-real correction

Finally, we consider the correction arising from the emission of two gluons from the hard

eikonal lines. Several representative diagrams are shown in Fig. 4. The integrand can be

obtained from Ref. [40]. Two distinct types of contributions to the soft function can be

identified. The first type comes from the squares of single-gluon currents, and can be easily

obtained following the techniques of Ref. [37]. We do not discuss it further here. The second

type is a genuinely non-abelian contribution proportional to CA that is not simply the square

of one-loop terms. It can be written in the form of Eq. (18), except with the replacement

of eikonal functions Iij → Sij, with Sij given in Eq. (110) of Ref. [40]. The same color

conservation argument as for the qq̄ case indicates that only the combination

Tij = Sii + Sjj − 2Sij (29)

contributes to the result. Simple algebraic manipulation leads us to the result

Tij = (1− ε)J I
ij + 2J II

ij +

(
pi · q1pj · q2 + pj · q1pi · q2

[pi · (q1 + q2)][pj · (q1 + q2)]
− 2

)
S

(s.o.)
ij ,

S
(s.o.)
ij =

pi · pj
q1 · q2

(
1

pi · q1pj · q2

+
1

pj · q1pi · q2

)
− (pi · pj)2

pi · q1pi · q2pj · q1pj · q2

. (30)

12



The first two terms with J I
ij and J II

ij are the same structures as found in the qq̄ case. The

structure proportional to the function S
(s.o.)
ij arises from the strongly-ordered limit of QCD,

in which there is a hierarchy between the energies of the radiated gluons. It is straightforward

to follow the same parameterizations and steps presented in Sec. III B to render this structure

suitable for numerical evaluation, and we do not repeat the details here.

FIG. 4. Representative diagrams arising from emission of a gg pair. The dashed lines represent the

eikonal directions.

IV. NUMERICAL RESULTS FOR ONE-JETTINESS

We present in this section numerical results for the NNLO contributions to N -jettiness,

including validation against known results in the literature. We focus on two example cases in

order to illustrate our results. We begin with one-jettiness in electron-proton collisions, which

has received recent interest in the contexts of probing nuclear dynamics in electron-nucleus

collisions [44, 45], and of improving jet phenomenology in deep inelastic scattering [46, 47].

We also consider one-jettiness in proton-proton collisions, for which the NNLO soft function

is a necessary component of a recently introduced subtraction scheme for NNLO fixed-order

calculations [32, 33]. The restriction to one-jettiness only simplifies the color structure of

the integrands. The basic building blocks are those presented in the previous section.

A. One-jettiness in ep collisions

We begin with a presentation of the one-jettiness soft function in ep collisions as a valida-

tion of our calculation. In this case the soft function can be obtained analytically from the

known result for the thrust distribution in e+e− collisions [48]. We present the analytic result
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in the Appendix. It is most convenient to express the result in terms of the soft contribution

to the O(α2
s) cumulative cross section for one-jettiness:

Σ
(2)
soft(T

cut
1 ) =

∫ T cut
1

0

dT1

dσ
(2)
soft

dT1

=
(αs

2π

)2 (
C4 L

4 + C3 L
3 + C2 L

2 + C1 L + C0

)
, (31)

with L = log(T cut
1 /µ). Since all components of the soft function contain the overall depen-

dence T −1−4ε
1 , the integration over T1 to obtain this cumulant is trivial to perform. We use

the numerical approach described in the previous section and compare it against the ana-

lytic result for the C0 coefficient. We compare in Figs. 5, 6 and 7 the separate contributions

from the coupling-constant renormalization, the double-real emission contribution and the

real-virtual correction. In the former two cases, we further separate the NF TR and CF CA

color structures. Each contribution is plotted as a function of s12 = n1 · n2. In all cases, the

numerical prediction for C0 agrees perfectly with the analytic calculation.
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FIG. 5. Comparison between the analytic and numerical calculations of the C0 coefficients from

renormalization, for both the NF TR (left panel) and CF CA (right panel) terms, as a function of

s12. The blue solid lines represent the analytic calculation and the red dots are from our numerical

approach.

B. One-jettiness in pp collisions

We next consider the one-jettiness soft function in proton-proton collisions. We calculate

the O(α2
s) cumulative cross section defined in Eq. (31). The one-jettiness soft function

depends on three hard directions, which we label as n1, n2, and n3. We align n1 and n2

with the incoming beam axes in the ±z directions, and let n3 lie along the outgoing jet

direction. The Ci in Eq. (31) can then be written as functions of the kinematic invariant
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FIG. 6. Comparison between the analytic and numerical calculations of the C0 coefficients from

the double-real contribution, for both the NF TR (left panel) and CF CA (right panel) terms, as a

function of s12. The blue solid lines represent the analytic predictions and the red dots are from

our numerical approach.
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FIG. 7. Comparison between the analytic and numerical calculations of the C0 coefficients from

the real-virtual contribution. The blue solid lines represent the analytic predictions and the red

dots are from our numerical approach.

s13 = n1 ·n3. We note that C4, C3, C2 and C1 can be determined by expanding the resummed

soft function to order α2
s. We use these terms to verify our direct fixed-order calculation. We

show the results for the Abelian and the non-Abelian contributions separately. In both cases

we assume that the color factors associated with partons in the n1, n2 and n3 directions are

CF , CA and CF , respectively.

In Figs. 8 and 9 we compare the coefficients Cn of Ln for n = 4, 3, 2, 1 from the direct
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NNLO computation and the expanded resummed soft function to order α2
s for the Abelian

and non-Abelian contributions. We find complete agreement between the fixed-order calcu-

lations and the resummation predictions. In fig. 10 we show our calculations of C0 for both

the Abelian and non-Abelian terms. We note that the Abelian result can be predicted from

exponentation of soft emissions. This prediction is shown in Fig 10, and agrees perfectly

with our numerical derivation. The non-Abelian contribution to the C0 term is new.
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FIG. 8. Comparison between the analytic and numerical calculation of the coefficients of Ln

(n = 4, 3, 2, 1) for the Abelian contribution to the soft function. The red solid lines represent our

direct NNLO calculation, and the blue dots are predicted by expanding the resummed results to

O(α2
s).

V. CONCLUSIONS

In this manuscript we have presented a calculational framework for obtaining NNLO

results for the soft functions which are ubiquitous in effective field theory descriptions of

scattering processes. Using the approach of sector decomposition, which has long been a
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FIG. 9. Comparison between the analytic and numerical calculation of the coefficients of Ln

(n = 4, 3, 2, 1) for the non-Abelian contribution to the soft function. The red solid lines represent

our direct NNLO calculation, and the blue dots are predicted by expanding the resummed results

to O(α2
s).

crucial part of the fixed-order QCD calculational toolbox, we have extracted all singular-

ities from the soft-function integrands and reduced the computation to a set of numerical

integrals which are simple to evaluate. We have illustrated our technique using the N -

jettiness event shape variable [1]. Several recent ideas suggested in the literature require

the NNLO soft function for N -jettiness. These include the improved theoretical description

of electron-nucleus collisions [44] and deep inelastic scattering [46], and a recently proposed

NNLO subtraction scheme for LHC processes containing final-state jets [32]. We have shown

numerical results for the one-jettiness soft function in both ep and pp collisions that address

these needs. We note in addition that the ultraviolet poles and therefore the anomalous

dimensions of the soft function can be easily obtained with our framework.

Although we have focused on N -jettiness as an example, the techniques introduced hold

more generally for SCETI observables which feature constraints on the light-cone momenta

of the final-state radiation. In such cases all singularities that appear in the integrand can
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FIG. 10. L0 contributions to the O(α2
s) soft function, for both Abelian (left panel) and non-Abelian

(right panel) cases. The red solid lines represent our direct NNLO calculation. In the Abelian case,

the blue dots are obtained by expanding the exponentiated NLO soft function.

be regulated with dimensional regularization. For SCETII observables which instead have a

constraint on the transverse momentum of the measured radiation, additional singularities

not controlled by dimensional regularization appear. We believe that our formalism can be

extended to also provide NNLO calculations in such cases when an appropriate regulator is

chosen [49–51]. We look forward to pursuing these and other extensions of our work.
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APPENDIX

We present here the analytic result for the one-jettiness soft function in electron-proton

collisions. We organize this result according to color structure, and to whether it arises from

a double-real or a real-virtual contribution:

S(2)(T1) = CF CA S
(2)
RR,CFCA

(T1) + CF NF TR S
(2)
RR,NF

(T1) + S
(2)
RV (T1). (32)
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The individual components are as follows:

S
(2)
RR,CFCA

(T1) =

[
2

ε3
+

1

ε2

(
11

3
+ 4L12

)
+

1

ε

(
67

9
− 4π2

3
+ 4L2

12 +
22

3
L12

)
+

(
404

27
− 11π2

6
− 58ζ3

3
+

8

3
L3

12 +
22

3
L2

12 +

(
134

9
− 8

3
π2

)
L12

)
+ε

(
4L4

12

3
+

44L3
12

9
+

(
134

9
− 8

3
π2

)
L2

12 +

(
808

27
− 11π2

3
− 116ζ3

3

)
L12

+
2140

81
+

335π2

54
− 682ζ3

9
− 17π4

36

)]
T −1−4ε

1 , (33)

S
(2)
RR,NF

(T1) =

[
−4

3ε2
− 1

ε

(
20

9
+

8

3
L12

)
− 112

27
+

2π2

3
− 8

3
L2

12 −
40

9
L12

+ε

(
−16

9
L3

12 −
40L2

12

9
+

(
4π2

3
− 224

27

)
L12 +

248ζ3

9
− 74π2

27
− 80

81

)]
T −1−4ε

1 ,

(34)

S
(2)
RV (T1) = CACF

[
−2

ε3
− 4

ε2
L12 +

1

ε

(
π2 − 4L2

12

)
+

16ζ3

3
− 8

3
L3

12 + 2π2L12

+ε

(
−4

3
L4

12 + 2π2L2
12 +

32ζ3

3
L12 −

π4

60

)]
T −1−4ε

1 . (35)

We have set Lij = log(ni · nj/2).
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