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Abstract

Factorization in gauge theories holds at the amplitude or amplitude-squared level
for states of given soft or collinear momenta. When performing phase-space integrals
over such states, one would generally like to avoid putting in explicit cuts to separate
soft from collinear momenta. Removing these cuts induces an overcounting of the soft-
collinear region and adds new infrared-ultraviolet divergences in the collinear region. In
this paper, we first present a regulator-independent subtraction algorithm for removing
soft-collinear overlap at the amplitude level which may be useful in pertubative QCD.
We then discuss how both the soft-collinear and infrared-ultraviolet overlap can be
undone for certain observables in a way which respects factorization. Our discussion
clarifies some of the subtleties in phase-space subtractions and includes a proof of the
infrared finiteness of a suitably subtracted jet function. These results complete the
connection between factorized QCD and Soft-Collinear Effective Theory.
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1 Introduction

Factorization is at the heart of our ability to use perturbative quantum chromodynamics
(QCD) to make theoretical predictions for scattering processes at high-energy particle col-
liders. It is extremely fortuitous that accurate particle distributions can be computed by
convolving universal parton distribution and hadronization models with perturbative calcu-
lations of jet formation. While factorization at the non-perturbative level is hard to establish,
factorization relevant to the structure and substructure of jets can be understood within per-
turbation theory. In particular, the radiation patterns in perturbative QCD factorize into
hard, collinear and soft contributions. Moreover, subtleties in perturbative factorization (for
example, related to non-global logarithms [1–7]) are a limiting factor in many ultra-precise
jet-substructure calculations. Thus, there has recently been renewed interest in studying
factorization, particularly in the context of Soft-Collinear Effective Theory (SCET).

A concise formulation of factorization in QCD was proposed and proven in [8] and [9],
hereafter referred to as [FS1] and [FS2] respectively. These papers build upon decades of
insight [10–16]. Up to color factors, the formula from [FS2] reads:

〈X1 · · ·XN ;Xs| O |0〉 ∼= CO(Sij)
〈X1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

· · · 〈XN |W †
Nψ |0〉

〈0|W †
NYN |0〉

〈Xs|Y †1 · · ·YN |0〉 (1)

In this expression, the state 〈X1 · · ·XN ;Xs| has soft particles, in 〈Xs|, and particles collinear
to various specified directions, in 〈Xi|. The left-hand side is a matrix element in QCD of an
operator like O = ψ̄ · · ·ψ in this state. The right hand side is a factorized product of matrix
elements, each of which involves only one collinear sector or the soft sector. The symbol ∼=
indicates that the two sides are identical at leading power. More precisely, if one were to
compute some infrared-safe observable dominated by soft or collinear radiation, such as the
sum of the jet masses τ = 1

Q2

∑
m2
i , all of the terms in dσ

dτ
that are dominant as τ → 0 will

be identical on both sides. More details can be found in Section 2 below and in [FS1] and
[FS2].

The formula in Eq. (1) presupposes that the external momenta are designated as soft or
collinear. If a particular momentum can be classified as soft or collinear, then the factorized
formula will hold whether it is put in 〈Xs| or in the appropriate 〈Xi|. For example, we can
place all the soft-collinear momenta in the soft sector by designating any particle with energy
less than some Λ as soft, and then draw cones of size R around each of the hard directions
to distribute particles in the collinear sectors. With such hard cutoffs, one can then square
the matrix elements on the right-hand side of Eq. (1) and perform the phase-space integrals
over the appropriate measurement function to get a differential distribution. The result will
agree at leading power with the the distribution computed using the left-hand side of Eq. (1)
in the limit R→ 0 and Λ→ 0.

There are two problems with the hard-cutoff prescription for resolving the soft-collinear
ambiguity. The first is practical: introducing an extra scale makes the relevant calculations
nearly impossible. Moreover, the cutoff dependence may not exactly cancel in the factorized
expression and therefore one must either take R → 0 and Λ → 0 after the calculation or
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live with power corrections in these cutoffs. The second is conceptual: the cutoffs violate
factorization in the following sense. There will in general be leading-power dependence on the
cutoff in the soft and collinear sectors separately (terms like 1

τ
lnR, for example) which only

cancel when the sectors are combined. Thus the two sectors are not completely separated.
It would be great if we could simply perform phase-space integrals over each sector

separately including all momenta. This is not as crazy as it sounds. We know that including
very energetic virtual momenta in the soft or collinear sectors causes no problem, since
the modification can always be compensated for in the matching coefficient (CO(Sij) in
Eq. (1)). Indeed, effective theories always have different ultraviolet (UV) structure from the
full theories to which they are matched. For example, in SCET, there are 1

ε2
UV poles at

1-loop in dimensional regularization, while in full QCD, one only ever has 1
ε

poles. In fact,
these double poles allow for the resummation of Sudakov double logarithms in SCET using
the renormalization group. We also know that one does not have to distinguish soft from
collinear momenta in loops when using Eq. (1): the overcounting is compensated for by the
vacuum matrix elements in the denominator of this equation. Thus, we have good reason to
believe that subtractions similar to the denominator factors in Eq. (1) can be added to this
formula to allow for unrestricted phase-space integrals.

Removing the overcounting of soft and collinear momenta has been addressed in the
traditional approach to factorization, for certain observables [17–19]. There, the soft limit
of collinear momenta is compensated for with eikonal jet functions [20]. In SCET, the
overcounting can be formally avoided by not including the zero-momentum bin in any of
the collinear sectors [21]. This exclusion translates into a subtraction diagram-by-diagram.
This zero-bin subtraction is necessary in SCET because the same soft-collinear momentum
region in QCD is represented by multiple fields in the effective theory (similar overcounting
is present in other effective theories, such as NRQCD). In [22–24] the two prescriptions were
shown to be equivalent. Alternatively, in the method-of-regions approach to SCET [25–28]
the overcounting is sidestepped through careful consideration of the analytic properties of
the contributions from different sectors. We briefly review these approaches and contrast
them with our approach in Section 3.3.

The formulation of factorization in [FS1] and [FS2] and Eq. (1) is intermediate between
traditional QCD and SCET. It provides a precise formulation of factorization purely in
terms the fields in full QCD, but has a factorized form with a natural effective field theory
interpretation. It is based on the observation of Freedman and Luke [16] that the unwieldy
Feynman rules of SCET can be avoided and the effective Lagrangian taken simply as the
direct sum of N +1 copies of the QCD Lagrangian, corresponding to N collinear sectors and
a soft sector. The formulation in [FS1] and [FS2] can be thought of as a generalization of
the Freedman-Luke proposal, equivalent but simpler at leading power, and that addresses
the soft-collinear overlap of virtual momenta. In this paper, we extend the formulation so
that phase-space integrations can be done without explicit cutoffs on the momenta of various
sectors.

There are two main results in this paper. First, in Section 2, we show how the specification
of which sector a gluon belongs to can be removed at the amplitude level. More precisely,
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suppose we have an amplitude M(p1, . . . , pn, q1 · · · qm) with n hard momenta and m other
momenta in QCD. We show how an approximation toM which we callMsub can be derived
with the property that when any of the qi become soft or collinear to any of the pi, Msub

agrees with M at leading power. That is, one does not have to specify which sector the qi
belong to – the matrix element is correct no matter what. While Msub is not a factorized
product of matrix elements, it is the sum of factorized products of matrix elements of fields
and Wilson lines. Each term in this product is simpler than full QCD. Thus such a subtracted
matrix element may be integrable analytically and therefore provide a useful basis for a
subtraction scheme in fixed-order QCD.

The second result, in Section 3, is a derivation of how at the amplitude-squared level
factorization can be preserved and phase-space cutoffs removed for certain inclusive event
shapes. Although the result of this section agrees with the eikonal-jet function subtraction
method of traditional QCD (which is itself equivalent to SCET), we believe our derivation
elucidates some subtleties and makes the procedure more systematic. In addition, we present
explicit 1-loop formulas for various relevant soft and jet functions, with and without cutoffs
and with different regulators. These formulas demonstrate which objects are infrared safe,
cutoff-dependent, and well-defined. Some calculational details are relegated to the appendix.
Section 3.3 contrasts our approach with previous approaches. We conclude in Section 4.

2 Factorization at the amplitude level

We begin by quickly reviewing the notation and main results of [FS1] and [FS2]. These
papers showed that factorization holds for massless particles whose momenta are either soft
or collinear to one of N directions nµj . States with particles of these momenta are written
as 〈X1 · · ·XN ;Xs|. The hard scale (such as the center-of-mass energy) is denoted as Q and
scaling parameters λj are defined each collinear sector and λs for the soft sector. Momenta
in each collinear sector scale as

〈Xj| = 〈. . . , qj, . . .| =⇒ 1

Q
(nj · qj, n̄j · qj, q⊥j ) ∼ (λ2

j , 1, λj), ∀j (2)

and momenta in the soft sector scale like

〈Xs| = 〈. . . , ks, . . .| =⇒ 1

Q
(nj · ks, n̄j · ks, k⊥s ) ∼ (λs, λs, λs) (3)

For simplicity, assume the scattering process under consideration is the decay of a heavy
particle mediated by an operator O in QED (to avoid cumbersome color indices of QCD).
Then, the factorization formula takes the form of Eq. (1):

〈X1 · · ·XN ;Xs| O |0〉 ∼= CO(Sij)
〈X1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

· · · 〈XN |W †
Nψ |0〉

〈0|W †
NYN |0〉

〈Xs|Y †1 · · ·YN |0〉

Here CO(Sij) is a finite function of the large products of the net momentum in each jet,
Sij = Pi · Pj; it does not depend on the small power-counting parameters, λj or λs. The
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Wilson lines, W †
j and Y †j , are defined in QCD as follows:

Y †j = P

{
exp

[
ig

∫ ∞
0

ds nj · A(x+ s nj) e
−εs
]}

(4)

and

W †
j = P

{
exp

[
ig

∫ ∞
0

ds tj · A(x+ s tj) e
−εs
]}

(5)

where tµj are some lightlike directions assumed not collinear to their associated nµj . The P{}
denotes path ordering; in QED the path ordering is trivial and the electromagnetic charge
is e = −g. Eq. (1) is an equality at leading power in all of λj and λs separately. For many
applications, such as for thrust, one takes λ2

j = λs for all j; in the SCET literature, this power
counting is referred to as SCETI [29]. For recoil sensitive observables like jet broadening, one
takes λj = λs as in SCETII [30]. The factorization in Eq. (1) holds for any relative scaling.

The important physics contained in Eq. (1) is that each factor on the right-hand side
represents a different factorized sector: the Wilson coefficient, CO(Sij), represents all of the
hard physics and must be IR-insensitive. Each collinear sector is represented by the ratio
〈Xj|W †

j ψ |0〉
/
〈0|W †

j Yj |0〉 and contains only nj-collinear IR divergences. Finally, the soft

sector is fully described by the matrix element, 〈Xs|Y †1 · · ·YN |0〉, which contains all of the
soft divergences of the full amplitude on the left-hand side of Eq. (1).

One attractive feature of Eq. (1) is that each matrix element is constructed out of full-
theory operators and evaluated using the full-theory Lagrangian; there are no additional
subtractions/prescriptions needed, just simple QCD/QED Feynman rules. Moreover, the
power counting is a consequence only of the scaling of the external momenta in the states
〈X1 · · ·XN ;Xs| O |0〉. An obvious fact with important repercussions is that Eq. (1) is not
valid when any of the momenta in a given sector does not obey the scaling that is associated
with that sector. Consequently, one cannot, for example, integrate over the entire phase
space of one of the external momenta in Eq. (1) because it would enter the scaling regime
of other sectors.

Therefore, when calculating cross sections by squaring Eq. (1) one can either integrate
over the phase space dΠXj

with cutoffs in the integrals restricting each integral to be within
the collinear region, or one can try to extend the integrations to the entire phase space and
perform a subtraction that gets rid of the errors that we introduced by extending dΠXj

to the
entire phase space. Introducing cutoffs to integrals is incredibly tedious and produces new
scales in the effective theory that obscure factorization (as shown explicitly in Section 3).
The subtraction procedure is the only reasonable way forward. We next discuss subtractions
at the amplitude level, and discuss subtractions at the cross section level in Section 3.

2.1 Example subtractions

Consider the case of a qq̄g final state, with quark momenta pµ1 and pµ2 in different direc-
tions and the gluon momentum qµ. Suppose we want to integrate over the gluon momenta
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inclusively. We can do so using Eq. (1) if when q ‖ p1 we use

M1(p1, p2, q) ≡
〈p1; q| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

〈p2|W †
2ψ |0〉

〈0|W †
2Y2 |0〉

〈0|Y †1 Y2 |0〉 , (6)

if q ‖ p2, we use

M2(p1, p2, q) ≡
〈p1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

〈p2; q|W †
2ψ |0〉

〈0|W †
2Y2 |0〉

〈0|Y †1 Y2 |0〉 , (7)

and if q is soft, we use

Ms(p1, p2, q) ≡
〈p1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

〈p2|W †
2ψ |0〉

〈0|W †
2Y2 |0〉

〈q|Y †1 Y2 |0〉 (8)

However we split up the integration regions (say with a soft energy cutoff Λ and cone radius
R) the dependence on the split (on Λ and R) will drop out at leading power when all three
contributions are added. Nevertheless, it would be nice to have an expression that we could
simply integrate over q without ever introducing Λ and R in the first place.

To proceed, we first examine the consequences of soft-collinear factorization for the op-
erator Oψ̄W = ψ̄W1 (rather than a local QCD operator like ψ̄ψ). The all-orders proof of
factorization in [FS2] applies to Oψ̄W . In this opeartors W1 is a Wilson line pointing in some
direction tµ1 ≡ nµ3 not collinear to nµ1 . Let us call this sector X3 to distinguish it from a
scetor X2 collinear to p2 introduced above. For two general collinear sectors X1 and X3 and
a general soft sector Xs, Eq. (1) applied to Oψ̄W gives

〈X1, X3, Xs| ψ̄W1 |0〉 ∼= Cψ̄W
〈X1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

〈X3|W †
3W1 |0〉

〈0|W †
3Y3 |0〉

〈Xs|Y †1 Y3 |0〉 (9)

In this equation and throughout, we use ∼= to mean equal at leading power. Note that both
W1 is a Wilson line pointing nµ3 direction and and so is Y3, thus Y3 = W1 and this equation
reduces to

〈X1, X3, Xs| ψ̄W1 |0〉 ∼= Cψ̄W 〈X1| ψ̄W1 |0〉
〈X3|W †

3W1 |0〉
〈0|W †

3W1 |0〉
〈Xs|Y †1 W1 |0〉
〈0|Y †1 W1 |0〉

(10)

To determine Cψ̄W , recall that the Wilson coefficient Cψ̄W only depends on the operator
and the net momentum in each direction. It does not depend on how the momentum in the
collinear and soft sectors are distributed or on the number of particles in the states, X1, X3

and Xs. In particular, if we take both X3 and Xs to have no particles, then the two sides are
identical (and agree at leading power) if and only if Cψ̄W = 1. Thus we must have Cψ̄W = 1
for any states. Thus, taking X3 empty, we get

〈X1, Xs| ψ̄W1 |0〉 ∼= 〈X1| ψ̄W1 |0〉
〈Xs|Y †1 W1 |0〉
〈0|Y †1 W1 |0〉

(11)
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The special case of relevance here has a single 1-collinear particle in X1 and a single soft
particle in Xs, Then, Eq. (11) implies that

〈p1; q| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

q soft∼=
〈p1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

〈q|Y †1 W1 |0〉
〈0|Y †1 W1 |0〉

(12)

Following similar logic, applying the general factorization formula to O = Y †1 Y2, we get

〈q|Y †1 Y2 |0〉
q ‖ p1∼=

〈q|Y †1 W1 |0〉
〈0|Y †1 W1 |0〉

× 〈0|Y †1 Y2 |0〉 (13)

In this case one can see that the Wilson coefficient is 1 to all orders by using the proof in
[FS2] that the factorization theorem is independent of the collinear Wilson-line direction, t1,
and then choosing tµ1 = nµ2 , so that W1 = Y2.

With these results, we can now analyze the following all-loop-order subtracted matrix
element:

Msub(p1, p2, q) ≡

{
〈p1; q| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

− 〈p1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

〈q|Y †1 W1 |0〉
〈0|Y †1 W1 |0〉

}
〈p2|W †

2ψ |0〉
〈0|W †

2Y2 |0〉
〈0|Y †1 Y2 |0〉

+
〈p1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

{
〈p2; q| ψ̄W2 |0〉
〈0|Y †2 W2 |0〉

− 〈p2| ψ̄W2 |0〉
〈0|Y †2 W2 |0〉

〈q|Y †2 W2 |0〉
〈0|Y †2 W2 |0〉

}
〈0|Y †1 Y2 |0〉

+
〈p1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

〈p2|W †
2ψ |0〉

〈0|W †
2Y2 |0〉

〈q|Y †1 Y2 |0〉 (14)

If we take q soft, then neither of the first two lines contribute by Eq. (12), and the result
is given by the third line which is the correct leading power matrix element Ms. When
q ‖ p1, then neither term in the second line is IR sensitive and the subtraction term in
the first line (which is IR-sensitive) is canceled by collinear limit of the third line, using
Eq. (13). Thus, only the first term on the first line contributes at leading power in this limit,
in agreement with M1. The analogous argument works for the q ‖ p2 limit. We conclude
that Msub(p1, p2, q) agrees with full QCD at leading power in any of the infrared-sensitive
limits of q. Thus, we can integrate Msub over phase space without splitting the soft and
collinear sectors.

To be explicit, we can evaluate Eq. (14) in perturbation theory. At tree-level,

M(p1, p2, q)
tree
= ū(p1)

{(−g/εq(/p1
+ /q)

2p1 · q
+
gt1 · εq
t1 · q

)
−
(−gn1 · εq

n1 · q
+
gt1 · εq
t1 · q

)}
v(p2)

+ ū(p1)

{(g(/p2
+ /q)/εq

2p2 · q
+
−gt2 · εq
t2 · q

)
−
(−gt2 · εq

t2 · q
+
gn2 · εq
n2 · q

)}
v(p2)

+ ū(p1)
(−gn1 · εq

n1 · q
+
gn2 · εq
n2 · q

)
v(p2) (15)
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where each term in round brackets corresponds to one of the matrix elements containing the
gluon, and thereby each satisfies the Ward identity separately. From the explicit expression
in Eq. (15) it is easy to check that each soft and collinear limit works out exactly as stated
in the paragraph after Eq. (14). It can also be seen that the tj dependent terms cancel out
completely as do the soft terms containing nj at this order, leaving:

Msub(p1, p2, q)
tree
= ū(p1)

(−g/εq(/p1
+ /q)

2p1 · q
+
g(/p2

+ /q)/εq
2p2 · q

)
v(p2)

tree
= M(p1, p2, q) (16)

So the the full matrix element of QED is reproduced exactly in this case. Of course, for
more complex calculations we expect M to only reproduce the full-theory matrix element
at leading power, rather than be exactly equal to it.

2.2 General amplitude-level subtraction

The generalization of Eq. (14) for arbitrary collinear and soft sectors is

〈X1 · · ·XN ;Xs; q| O |0〉 ∼=IR

〈X1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

· · · 〈XN |W †
Nψ |0〉

〈0|W †
NYN |0〉

〈Xs, q|Y †1 · · ·YN |0〉

+
N∑
i=1

〈X1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

· · ·
{
〈Xi, q|W †

i ψ |0〉
〈0|W †

i Yi |0〉

}
q

soft
sub

· · · 〈XN |W †
Nψ |0〉

〈0|W †
NYN |0〉

〈Xs|Y †1 · · ·YN |0〉 (17)

where the {}
q

soft
sub

notation means the operator matrix element corresponding to having sub-

tracted the q → soft limit. Note that, in the above equation, ∼=IR means equal at leading
power up to a Wilson coefficient as discussed in [FS2]. To be explicit, we can use the notation
S(q) as in [FS2] for the leading order contribution in the q → soft limit. Then{

〈Xi, q|W †
i ψ |0〉

〈0|W †
i Yi |0〉

}
q

soft
sub

≡ 〈Xi, q|W †
i ψ |0〉

〈0|W †
i Yi |0〉

−
(
〈Xi, q|W †

i ψ |0〉
〈0|W †

i Yi |0〉

)
S(q)

=
〈Xi, q|W †

i ψ |0〉
〈0|W †

i Yi |0〉
− 〈Xi|W †

i ψ |0〉 〈q|W
†
i Yi |0〉

〈0|W †
i Yi |0〉

2
(18)

This subtracted quantity is exactly the same as what was used in Eq. (14) and vanishes at
leading power in the q → soft limit by Eq. (12). Eq. (17) is a sum of factorized expressions
which agrees at leading power with full QCD in any soft or collinear limit of q.

To generalize to multiple gluons or quarks with momenta qi, the analogous formula is
easiest to define recursively. For example, adding a second gluon to Eq. (17), we can either
place it in the soft matrix element, or in a collinear matrix element. If it is in the collinear
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matrix element, we must subtract off the soft limit. Thus we get a sum of terms:

〈X1 · · ·XN ;Xs; q1, q2| O |0〉 ∼=IR

〈X1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

· · · 〈XN |W †
Nψ |0〉

〈0|W †
NYN |0〉

〈Xs, q1, q2|Y †1 · · ·YN |0〉

+
N∑
i=1

· · ·
{
〈Xi, q1|W †

i ψ |0〉
〈0|W †

i Yi |0〉

}
q1

soft
sub

· · · 〈Xs, q2|Y †1 · · ·YN |0〉

+
N∑
i=1

· · ·
{
〈Xi, q2|W †

i ψ |0〉
〈0|W †

i Yi |0〉

}
q2

soft
sub

· · · 〈Xs, q1|Y †1 · · ·YN |0〉

+
N∑

i,j=1

· · ·
{
〈Xi, q1|W †

i ψ |0〉
〈0|W †

i Yi |0〉

}
q1

soft
sub

· · ·
{〈Xj, q2|W †

j ψ |0〉
〈0|W †

j Yj |0〉

}
q2

soft
sub

· · · 〈Xs|Y †1 · · ·YN |0〉 (19)

where the · · · represent the other collinear matrix elements which do not contain any q’s.
In the last line, when i = j the soft subtraction must be done iteratively to ensure that the
subtraction mitigates the soft enhancement in any order of limits of q1 and q2 going soft.
That is,

〈Xj, q1, q2|W †
j ψ |0〉

〈0|W †
j Yj |0〉

∣∣∣∣q1,q2
soft
sub

≡
〈Xj, q1, q2|W †

j ψ |0〉
〈0|W †

j Yj |0〉
−
(〈Xj, q1, q2|W †

j ψ |0〉
〈0|W †

j Yj |0〉

)
S(q1,q2)

−

(
〈Xj, q1, q2|W †

j ψ |0〉
〈0|W †

j Yj |0〉
−
(〈Xj, q1, q2|W †

j ψ |0〉
〈0|W †

j Yj |0〉

)
S(q1,q2)

)
S(q1)

−

(
〈Xj, q1, q2|W †

j ψ |0〉
〈0|W †

j Yj |0〉
−
(〈Xj, q1, q2|W †

j ψ |0〉
〈0|W †

j Yj |0〉

)
S(q1,q2)

)
S(q2)

(20)

where S(q1, q2) means taking the leading-power expression in the q1, q2 → soft limit simul-
taneously and, therefore, does not drop q1 with respect to q2 or vice-versa. When taking the
soft limits, S, in the above equation, one must heed the brackets which specify a deliberate
order of the limits to be taken [31]. Note that, as always, we can write the soft limits in terms
of amplitudes with Wilson lines using the factorization theorem of Eq. (1). For example,(〈Xj, q1, q2|W †

j ψ |0〉
〈0|W †

j Yj |0〉

)
S(q1,q2)

=
〈Xj|W †

j ψ |0〉
〈0|W †

j Yj |0〉
〈q1, q2|W †

j Yj |0〉
〈0|W †

j Yj |0〉
(21)

where we know that the Wilson coefficient will always be 1 to all orders by the argument
given after Eq. (9).

That these subtractions will always work follows using the arguments of [FS2]. In par-
ticular, the “coloring algorithm” in Section 6 of that paper is exactly the recursive soft
subtraction procedure indicated by Eqs. (14), (17)–(20). As with the algorithm in [FS2],

the soft limit of any subset of the q’s in the
{}q1···qm

soft
sub

matrix elements are power suppressed,
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and they should correspondingly be colored blue. With this knowledge, it is easy to check

that Eq. (19) agrees in the IR: when q1, q2 → soft, all of the
{} qi

soft
sub

matrix elements are power

suppressed and only the top line survives, which gives the correct answer. When q1 ‖ pj and
q2 → soft, say, the bottom two lines are power suppressed and the S(q1)-subtracted term
cancels with the top line, leaving only the one term that matches the full-factorized formula
in this limit. Similarly, all other limits can be simply checked. The pattern of subtractions
with more than two gluons follows exactly as with the coloring algorithm stated in generality
in [FS2].

The procedure outlined in this section produces amplitudes which can be computed as
a sum of factorized terms. These amplitudes, which are a new result, reproduce all of the
leading-power IR-sensitive limits of the full-QCD amplitudes, at all-loop order. Each factor in
each term in the sum involves matrix elements of fields and Wilson lines that are universal and
simpler than the factors in the full QCD amplitude. Given these properties, an interesting
application of the matrix elements derived in this section might be towards subtraction
procedures for QCD calculations at NNLO or beyond. These subtraction procedures work
by splitting an amplitude into a universal IR-sensitive piece that is simple enough to integrate
analytically and a piece that is IR-finite which could be integrated numerically [32–36]. The
amplitudes presented in this section could be a candidate for such a procedure at any order
in perturbation theory and for any number of external particles. Of course, the results here
apply only at leading power. There can be infrared divergences at subleading power as well.
Although it is probably possible to construct a subtraction scheme like the one discussed in
this section that reproduces all of the infrared divergences of QCD, we do not attempt such
a construction here.

3 Factorization for distributions

Despite having many strengths, amplitudes as in Eq. (17), are no longer factorized: they
cannot be written as a single product of terms with the same external states (in this case
the collinear sectors and the soft sector are tangled). When the amplitudes are squared, the
interference effects between various terms in the sum contribute at leading power, so they
must all be included. Thus, while one can integrate over the momenta qj without overcount-
ing the infrared-sensitive region, the separation between soft and collinear contributions is
no longer manifest. Moreover, it is not clear how the large logarithms associated with the
leading-power IR sensitivity can be resummed using such amplitudes.

Fortunately, for certain observables, one can perform subtractions differently so that
factorization is preserved at the cross-section level. In this section, we discuss a class of
factorizing observables. Namely, we discuss observables whose measurement function, that
is, the mapping from the final-state momenta to the observable, is linear in the soft and
collinear momenta. These observables include many e+e− event shapes, such as thrust [37–
41], angularities [20,42,43] heavy jet mass [44], the C parameter [45–48] and jet broadening
[49–53]. Many hadron collider observables are also in this class [54], such Drell-Yan near
threshold [55], deep inelastic scattering as x→ 1 [56], direct photon production [57,58], W/Z
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+ jet [59–61], jet mass [62–64], or tt̄ production near the hadronic threshold [65, 66] as well
as N -(sub)jettiness [67–69].

Factorization at the cross-section level for observables in this class has been understood
already by traditional QCD and by Soft-Collinear Effective Theory (see above references).
The overcounting of soft and collinear integration regions is also well-understood in both
approaches, and the two approaches have already been shown to be equivalent [22–24].
Unfortunately, it is challenging to extract from the literature which aspects of the removal of
overcounting have been rigorously proven (in either approach) and which aspects are simply
assumed. Moreover, the overcounting in phase-space integrals has not been addressed at all
in the effective field theory formulation with full-theory fields [16], [FS1],[FS2]. The goal
of this section is to give a self-contained proof that the overcounting induced by removing
phase-space cutoffs can be completely compensated for. We thereby demonstrate a form of
factorization that holds exactly at leading power at the cross-section level with no phase
space cutoffs.

3.1 Factorization for thrust

For concreteness and simplicity, we begin our discussion with thrust, the paradigmatic ob-
servable whose distribution factorizes. Thrust, T , is defined as [37]

T ≡
∑

j |~pj · ~n|∑
j |~pj|

(22)

where ~n is the thrust axis, defined to maximize T . The region where factorization holds is
where τ = 1− T � 1. Then

τ ∼= 1−
∑
j

1

Q
|~pj · ~n| =

1

2Q

∑
j

Ωτ (pj) (23)

where Q is the center of mass energy and Ωτ (p) is the measurement function for thrust:

Ωτ (p) = p−θ(p+ − p−) + p+θ(p− − p+) (24)

where p+ = n · p and p− = n̄ · p.
Note that τ has the property that it is linear in the momenta: each particle momentum

contributes additively to thrust, independent of the other momenta in the final state 〈X|. In
particular, if we decompose 〈X| into soft, collinear and hard momenta, then we can compute
the contribution to thrust from each sector separately and just add the results. In other
words, linearity implies

δ
(
τ − 1

2Q
Ωτ (pX)

)
= δ
(
τ − 1

2Q
ps −

1

2Q
p1 −

1

2Q
p2 −

1

2Q
ph

)
(25)

where ps is the sum of Ωτ (k) over the soft momenta, p1 and p2 the sum over collinear momenta
in each direction and ph the sum over the remaining momenta. Writing the argument of the
δ-function as a sum lets us turn products of matrix elements into convolutions [70–72].

11



R1R2

ΛR̄

ΛR̄

H

Figure 1: Mutually exclusive sectioning of phase space into j-collinear, soft and hard mo-
mentum labelled by Rj, ΛR and H, respectively. In explicit formulas in this paper, R is
treated as a rapidity variable: R = tan2 θ

2
, with θ the opening angle of the cone.

To be concrete let us place the momenta into sectors using hard cuts: we draw cones
of angular size R around the ~n and −~n collinear directions and a ball of size Λ around the
origin; anything in the cones but not the ball is collinear, 〈Xj|, anything in the ball but not
the cones is soft, 〈Xs|. For later convenience, we include the soft-collinear radiation, which
is in both the ball and the a cone, in the collinear sector (we could equally well have put it
in the soft sector). Anything not in the cone or ball is called hard, 〈XH |. This breakdown
of phase space is shown in Fig 1.

Consider the thrust distribution in full QCD mediated by the operator O = ψ̄γµψ. That
is,

dσ

dτ
=
∑
X

∫
dΠX | 〈X| O |0〉 |2δ

(
τ − 1

2Q
Ωτ (pX)

)
(26)

where the sum is over all possible final states 〈X| and the normalization and momentum-
conserving δ-function are left implicit.

When τ is small, only states of the form 〈X| = 〈X1| 〈X2| 〈Xs| contribute at leading power
in τ . With the hard phase-space cuts in place, the factorization formula at the amplitude
level, Eq. (1) along with Eq. (25), immediately generates a factorization formula for the
thrust distribution:

dσ

dτ
∼= H × SΛR ⊗ JR1 ⊗ JR2 (27)

Here H = |C|2 refers to the hard function (the square of the Wilson coefficient in the
factorization formula). JR1 and JR2 are jet functions with restricted phase-space integrals:

JR1(τ) =
∑
X1

∫
dΠX1

∣∣∣∣〈X1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

∣∣∣∣2 δ(τ − p+
X1

)
(28)

with X1 the set of states all of whose momenta are within an angular distance R of the nµ

direction. Note that we have modified the measurement function from Ωτ (p) in Eq. (24) to
simply p+. This is allowed since all the momenta in the cone necessarily have p− > p+ so
the step functions in Eq. (24) can be evaluated explicitly. Analogously, the jet function, JR2 ,
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will have the measurement function replaced by p−. Lastly, SΛR is the phase-space restricted
soft function

SΛR(τ) =
∑
Xs

∫
dΠXs

∣∣∣〈Xs|Y †1 · · ·YN |0〉
∣∣∣2 δ(τ − 1

2Q
Ωτ (pXs)

)
(29)

Here the states have momenta which are not collinear, that is, they are an angular distance
greater than R from all jets, and they have energy less than Λ.

The equivalence in Eq. (27) holds at leading power in τ only if R and Λ are small enough
so that the collinear radiation is collinear and the soft radiation is soft. More precisely, it
holds at leading power in R and Λ, meaning that the two sides my differ by terms of order R
or order Λ which vanish as R→ 0 and Λ→ 0. Since the operators entering the soft and jet
function are different, we do not expect the R dependence to cancel exactly between them;
the factorization theorem only guarantees that it vanish at leading power.

We suspect it may be pedagogically useful to examine explicit expressions for SΛR and
JR. To distinguish UV divergences from IR divergences we include an off-shellness regulator
ω for the IR (see Eq. (52) in the Appendix) and analytically continue to d = 4−2ε dimensions
for the UV. Some intermediate steps are relegated to Section 6.2 in the Appendix. For the
unrenormalized jet function at finite R, we find

JRj(τ) ∼= δ(τ) +
αsCF

2π

(
µ2

Q2

)ε{
δ(τ)

(
2

ε2
+

3

2ε
+

7

2
+
π2

6

)
+ δ(τ)

(
−2

ε
lnω − 2 lnω lnR + 2 ln2 ω +O(R)

)
−
(

3

2
− 2 lnR

)[
1

τ

]
+

− 2

[
ln τ

τ

]
+

}
(30)

This expression includes both the real and virtual contributions to 〈X1| ψ̄W1 |0〉 and the
purely virtual contributions to 〈0|Y †1 W1 |0〉 in Eq. (28). Note that it has 1

ε2
UV poles, which

come from the virtual graphs. It also has an overlapping UV-IR singularity (the 1
ε

lnω term
on the second line). This singularity, which cannot be removed through local counterterms,
comes from loops involving the Wilson lines which go to infinite energy collinear to one of
the Wilson line directions. The logR dependence in Eq. (30) comes from the soft-collinear
region of the restricted phase-space integral. Indeed, it cannot come from the collinear-but-
not soft region, since at arbitrarily small τ , the radiation is forced arbitrarily close to the jet
axis and must be a finite distance from the cone boundary. In the soft-collinear region, the
radiation can be soft but an angular distance R from the axis, so there can be R dependence
at leading power in τ . That the lnR dependence comes from only the soft-collinear region
is to be expected if it is to be completely canceled by the soft function.
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The soft function outside the cones with finite Λ is

SΛR(τ) = δ(τ)+CF
αs
π

(
µ2

Q2

)ε{
δ(τ)

(
− 1

ε2
− 7π2

12
+

2

ε
lnω + 2 lnω lnR− 2 ln2 ω +O(R)

)

−
[

2

τ
lnR

]
+

}
θ
(

Λ− τ

R

)
+CF

αs
π

(
µ2

Q2

)ε{
δ(τ)

[
− 1

ε2
− π2

4
− 2

(
−1

ε
lnω + lnω ln

Λ

Q
+

1

2
ln2 ω

)]
−
[

2

τ
ln
τQ

Λ

]
+

}
θ
( τ
R
−Λ
)

(31)

This function also has an incomplete cancellation between the real and virtual contributions.
In particular, the virtual includes the soft-collinear region which is excluded from the real
emission. Note that the Λ dependence is entirely subleading power in τ : for small τ , the θ
function in the third line in Eq. (31) vanishes and the other θ function evaluates to unity.
The R dependence is not subleading power as τ → 0. There are also O(R) terms not shown
here but written out in Eq. (84). We will come back to the cancellation of the R dependence
among the two jet functions and the soft function shortly.

Convolving Eq. (30) for each jet with Eq. (31) we get

SΛR ⊗ JR1 ⊗ JR2

∼= δ(τ) + CF
αs
π

(
µ2

Q2

)ε{
δ(τ)

(
1

ε2
+

3

2ε
+

7

2
− 5π2

12
+O(R)

)
− 3

2

[
1

τ

]
+

− 2

[
ln τ

τ

]
+

}
(32)

Note that the Λ dependence has dropped out completely, and the R dependence which is
singular as R → 0 has also dropped out. It is not hard to verify that this result agrees
with the full-theory result for thrust at leading power, up to the coefficient of δ(τ) which is
corrected by the hard function.

While the factorization formula for thrust in Eq. (27) works, it has numerous flaws. On
the practical side, it is difficult to use because of the phase-space cuts. On the conceptual
side, the cuts introduce additional scales into the soft and jet functions which frustrate
factorization and resummation. The most serious flaw, however, is that the jet and soft
functions are not individually infrared safe: they each have infrared divergences which cancel
only when combined, as we saw with the explicit example above. These divergences come
from an incomplete cancellation between the real-emission graphs, which have phase-space
restrictions, and the virtual graphs, which do not. We could attempt to put phase-space
cuts on the virtual graphs as well. However, it is more logical to try to remove the phase-
space cuts from the real-emission contributions to the jet and soft functions, since this would
simplify their calculation and removes the spurious scales.

First we remove Λ. This is quite simple. Only the soft function depends on Λ. By our
definition, SΛR in Eq. (27) only integrates over the soft-but-not-collinear region of phase
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space. The phase-space region outside of the cones but with energy Λ < E < ∞ does not
contribute at all at leading power in τ . So we can simply define a new soft function by
including also this region:

SR ∼= SΛR (33)

where SR = S(Λ=∞)R has no cutoff on energy in the soft function. This equivalence can be
verified at order αs in Eq. (87), where the entire Λ dependence is subleading power in τ , as
observed above. Explicitly,

SR(τ) = δ(τ) + CF
αs
π

(
µ2

Q2

)ε{
δ(τ)

[
− 1

ε2
− 7π2

12

]

− 2δ(τ)

[
−1

ε
lnω − lnω lnR + ln2 ω +O(R)

]
−
[

2

τ
lnR

]
+

}
(34)

Note that SR is identical to the coefficient of θ(Λ− τ
R

) in Eq. (87). One might have imagined

that taking Λ → ∞ would introduce new UV poles. However, radiation in R, say in the
right hemisphere, at a given τ must have k+ = Qτ and k− < 1

R
k+ = Q τ

R
, so the energy

E = 1
2
(k+ +k−) < Qτ

2
(1+ 1

R
) of all radiation contributing to SR at fixed τ is in fact bounded

from above so there are no new UV divergences. Thus, we now have

dσ

dτ
∼= H × SR ⊗ JR1 ⊗ JR2 (35)

with no Λ dependence on either side. Keep in mind that this equivalence is still valid only
as R→ 0: there are power corrections in R on the right-hand side.

Removing the R dependence is more subtle, since the R dependence in both the soft
and jet functions is relevant at leading power in τ and since the dependence on R in both
functions is singular as R → 0. To remove it, we need a subtraction. To construct the
subtraction, first recall that the general amplitude-level factorization proof in [FS2] applies
to any operator, including one composed of Wilson lines. In particular, collinear factorization
for a Wilson-line operator implies

S ∼= SR ⊗ JR1
eik ⊗ J

R2
eik (36)

where S = SR=∞ has no angular or energy restriction and the eikonal jet function is
defined as

JR1
eik (τ) =

∑
X1

∫
dΠX1

∣∣∣∣∣〈X1|Y †1 W1 |0〉
〈0|Y †1 W1 |0〉

∣∣∣∣∣
2

δ(τ − p+
X1

) (37)

The eikonal jet function differs from the jet function in Eq. (28) in that Y †1 replaces the field
ψ̄. Note that the measurement function in the eikonal jet function is the power-expanded
version, δ(p− p+), rather than Ωτ (p). This is consistent with Eq. (36) since the phase space
in the eikonal jet function is restricted to be in a cone.
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Explicitly, to order αs, we find

J
Rj

eik(τ) = δ(k) +
αsCF

2π

(
µ2

Q2

)ε{
δ(τ)

[
2π2

3
− 2

ε
lnω − 2 lnω lnR + 2 ln2 ω +O(R)

]

+

(
2

ε
+ 2 lnR

)[
1

τ

]
+

− 4

[
ln τ

τ

]
+

}
(38)

Comparing Eq. (38) to Eq. (30), we see that the ω and R dependence in J
Rj

eik is the same as
that in JRj . This is expected, since the only IR-sensitive difference between the two is in
the collinear-but-not-soft region of 〈X1|Y †1 W1 |0〉 and 〈X1| ψ̄W1 |0〉. In this region, there is a
complete cancellation of real and virtual graph for both functions, hence both are IR-finite.
Note also that there are no 1

ε2
poles in the eikonal jet function. These double UV poles in

the regular jet function come from virtual graphs. In the eikonal jet function, the virtual
graphs in the numerator and denominator of Eq. (37) are identical and hence cancel in the
ratio to order αs. The lack of 1

ε2
poles also implies that there are no Sudakov double logs in

the eikonal jet function.
Now, if we convolve both sides of Eq. (27) with the eikonal jet functions and use Eq. (33)

and Eq. (36), we get
dσ

dτ
⊗ JR1

eik ⊗ J
R2
eik
∼= H × S ⊗ JR1 ⊗ JR2 (39)

At this point, no object in this leading-power equivalence depends on Λ and theR dependence
on both sides is only in the jet functions and eikonal jet functions. We still must have R
small though, since there are power corrections in R on both sides.

Finally, we want to remove the R-dependence completely. Let us call a jet function
with no restriction on R an inclusive jet function and denote it by J j. Removing the R
introduces additional unphysical singularities collinear to the Wilson-line direction tj which
are not regulated with the off-shellness regulator. We must introduced another regulator for
these singularities, so we use the ∆-regulator [73], δj, as shown in Eq. (53). To order αs we
find for the inclusive jet function

J j(τ) = δ(τ) +
αsCF

2π

(
µ2

Q2

)ε{
δ(τ)

(
2

ε2
+

3

2ε
+

7

2
− π2

6

)
+ δ(τ)

(
−2

ε
lnω + 2 lnω ln δj + ln2 ω

)
−
(

2 ln δj +
3

2

)[
1

τ

]
+

}
(40)

Similarly, for the inclusive eikonal jet function we find

J jeik(τ) = δ(τ) +
αsCF

2π

(
µ2

Q2

)ε{
δ(τ)

[
π2

3
− 2

ε
lnω + 2 lnω ln δj + ln2 ω

]
+

(
2

ε
− 2 ln δj

)[
1

τ

]
+

− 2

[
ln τ

τ

]
+

}
(41)
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Note that the δj dependence associated with the Wilson line direction is identical in the two
inclusive jet functions.

Next, note that since Rj does not contain the jet direction the only leading-power con-
tributions to the jet function from this region are soft.1 Thus, we can apply the general
amplitude-level factorization theorem to the operator ψ̄Wj to get

J j ∼= JRj ⊗ JRj

eik (42)

This equation can be verified at 1-loop by comparing Eq. (40) with the combination of
Eqs. (30), (38) and (41). Similarly,

J jeik
∼= J

Rj

eik ⊗ J
Rj

eik (43)

Therefore, convolving both sides of Eq. (39) with JR1
eik and JR2

eik gives

dσ

dτ
⊗ J1

eik ⊗ J2
eik
∼= H × S ⊗ J1 ⊗ J2 (44)

In this final form, all the dependence on Λ or R has been explicitly removed.
Finally, we want to isolate dσ

dτ
from Eq. (44). To do this, we use that convolutions map

to products in Laplace space. Taking the Laplace transform, Eq. (44) translates to∫
dτ
dσ

dτ
e−ντ ∼= H

S̃(ν)J̃1(ν)J̃2(ν)

J̃1
eik(ν)J̃2

eik(ν)
(45)

This form is in agreement with previously known expressions in the literature [20,22,74,75].

3.2 Jet broadening

The above discussion shows how the phase-space cutoffs separating collinear and soft radia-
tion as well as the UV phase-space cutoff can be removed in the factorization formula for a
particular observable (thrust). The derivation easily generalizes to many other observables.
The key general property that was used is that the vanishing limit of the observable forces
the phase space into the N -jet configuration at leading power. This allows the factorization
theorem in Eq. (1) to be used to factorize the matrix-element squared in the full distribution.
It also ensures that the dependence on the phase-space cutoffs is power suppressed, once the
eikonal jet functions are included. For observables whose measurement function is not linear
in each sector, the integrals will not be a simple convolution.

For a marginally different example, consider jet broadening [49–53]. (Total) jet broaden-
ing acting on a state |X〉 with particles of momenta pµj has the eigenvalue

b(X) =
1

2Q

∑
j

Ωb(pj), Ωb(p) = |~p⊥| (46)

1One might be concerned about collinear singularities associated with the Wilson-line direction tµj . How-
ever, since the measurement function forces p · n = τ , at small τ radiation cannot be collinear to both tµj
and the jet direction nµ. Thus, radiation collinear to tµj cannot contribute at leading power.
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where ~p⊥ are the components of the 3-momenta of the particles transverse to the thrust axis.
In the SCET literature, jet broadening is considered a SCETII observable because soft

emissions which are hard enough to recoil against collinear emissions contribute to jet broad-
ening at leading power, while they are subleading power for thrust. More explicitly, for thrust
only the small component of momentum p+ = n · p contributes (for particles going in the
n hemisphere). Thus collinear momenta, with (p−, p+, p⊥) ∼ Q(1, λ2, λ) and soft momenta
with p ∼ Qλ2 contribute at the same order. Soft momenta scaling like p ∼ Qλ give a
power-suppressed contribution to thrust. For jet broadening, p⊥ is measured. So collinear
momenta contribute p⊥ ∼ Qλ and therefore soft momenta scaling like p ∼ Qλ are relevant
at leading power making jet broadening a SCETII observable.

From the point of view of the factorization as set up in [FS1] and [FS2], the soft scaling is
unrelated to the collinear scaling. That is, the amplitude-level factorization formula, Eq. (1)
holds for any relationship between the soft-scaling parameter, λs, and the collinear-scaling
parameter, λc. SCETI corresponds to λs = λ2

c and SCETII to λs = λc. For example, the
λs = λc scaling is relevant for configurations in which soft particles recoil against collinear
particles, in which case the effect on the p⊥ components must be accounted for in the
factorization theorem [76]. The result is that the factorization formula has the form

dσ

db
= H

∫
dbsdb1db2d

2p⊥1 d
2~p⊥2 J

1(b1, ~p
⊥
1 )J2(b2, ~p

⊥
2 )S(bs,−~p⊥1 ,−~p⊥2 )δ(b− bs − b1 − b2) (47)

We can write this heuristically as

dσ

db
∼= H × J1 ⊗ J2 ⊗ S (48)

with the understanding that ⊗ for jet broadening refers to the double convolution in Eq. (47).
With phase-space restrictions, these jet functions are given by

JR1(b, ~p⊥) =
∑
X1

∫
dΠX1

∣∣∣∣〈X1| ψ̄W1 |0〉
〈0|Y †1 W1 |0〉

∣∣∣∣2 δ(b− b(X1)
)
δ(Q− p+

X1
)δ(~p⊥ − ~p⊥X1

) (49)

and the soft function by

SΛR(b, ~p⊥1 , ~p
⊥
2 ) =

∑
Xs

∫
dΠX

∣∣∣〈Xs|Y †1 Y2 |0〉
∣∣∣2 δ(b − b(Xs)

) [
δ(~p⊥1 − ~p1

Xs
) + δ(~p⊥2 − ~p2

Xs
)
]

(50)

where ~p1
Xs

is the net ⊥ momenta in the left hemisphere and ~p2
Xs

is the net ⊥ momenta
in the right hemisphere. As with thrust, these phase-space restricted functions will have
overlapping UV-IR divergences and unwieldy dependence on the cutoffs R and Λ. However,
as with thrust, we can convolve both sides of Eq. (48) with eikonal jet functions to get a
factorization formula with only objects with no phase space cutoffs. The result in Laplace
space is ∫

db
dσ

db
e−νb ∼= H

∫
d2x⊥Ld2x⊥R

J̃(x⊥L , ν) J̃(x⊥R, ν) S̃(x⊥L , x
⊥
R, ν)

J̃eik(x⊥L , ν) J̃eik(x⊥R, ν)
(51)
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Here, ν is the Laplace-conjugate variable to b and x⊥1 and x⊥2 are the Laplace conjugate
variables to p⊥1 and p⊥2 respectively.

3.3 Comparison to other approaches

We have seen how phase-space cutoffs can be removed for certain inclusive observables if
the double counting in the soft-collinear region is removed with an eikonal jet function. In
this section, we would like to emphasize some conceptual differences in our derivation and
previous ones and contrast with the literature.

First of all, it is easy to compare our results to those in traditional QCD, where the eikonal
jet function first appeared. The final factorization formulas are identical. One difference is
that in the early literature the eikonal jet functions were subtracted from the soft function
rather than the jet function. From the point of view of the final formula, there is no difference.
However, conceptually our analysis makes it clear that the eikonal jet function should be
subtracted from the jet function rather than the soft function. Indeed, the soft function is
by itself infrared finite while the naive inclusive jet function (without the subtraction) is not.
As shown explicitly in Eq. (40), the infrared divergences do not cancel between the real and
virtual graphs for the jet function. With the subtraction the jet function is a well-defined
and infrared safe object. The fact that the subtraction is more naturally applied in the
collinear sector was also appreciated in [22].

The comparison to SCET is perhaps more illuminating than the comparison to traditional
QCD. In the early days of SCET, calculations were mostly done in dimensional regularization
(DR) and the overlapping of soft and collinear phase-space regions were not much discussed.
In retrospect, it is easy to see why the correct answers result in DR without a subtraction:
the eikonal jet functions, as in Eq. (37), give scaleless integrals in DR and thus formally
vanish and can be ignored.

It is natural to be somewhat uncomfortable with setting scaleless but IR and UV divergent
integrals to zero in DR. The mathematical justification notwithstanding, it is dangerous from
a practical point of view if one hopes to extract an anomalous dimension from the poles in
the jet and soft functions at d = 4. The only way it will work is if the object one computes
is infrared finite. For infrared finite objects, all the poles are by definition UV. So setting

1
εUV
− 1

εIR
= 0 has no effect. As we have shown, the subtracted inclusive jet function is IR

finite, so practically, one can ignore the subtraction in DR. Morally, though, to do this one
must be able to show that the jet function is IR finite. Without the subtraction it is not. In
this respect, the success of SCET in pure DR was somewhat accidental.

The missing subtractions were understood in the classic paper on zero-bin subtraction by
Manohar and Stewart [21]. These authors showed the the proper derivation of the effective
Lagrangian for SCET involves binning the momenta into collinear momenta in different
directions and soft momenta. The zero bin in each collinear sector should be formally
excluded. In [21] it was shown that this exclusion amounts to the subtraction diagram-by-
diagram of the soft-limit of the collinear momenta. In [22–24], this subtraction procedure
was shown to be equivalent to the eikonal jet function subtraction of traditional QCD.
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A somewhat different perspective comes from the method-of-regions multipole-expansion
approach to SCET [25–27], as recently reviewed in [28]. In this approach, the soft-collinear
subtraction and the extension of the soft integrals to Λ = ∞ are not discussed or needed.
The basis of the argument is that the non-analytic dependence on the observable in each
region is independent of the possible phase-space cutoffs. Since all the physics is in this non-
analytic dependence, one can remove the cutoffs without consequence. For more details,
see [25, 28].

4 Conclusion

In this paper we have presented two new results. First, we have given a recursive formula for
constructing amplitudes which agree with full QCD at leading power to all-loop order in any
soft and collinear limit. The subtracted amplitudes we describe are matrix elements of fields
and Wilson lines. Unlike with the amplitude-level factorization formula in [FS2], one does
not have to specify whether the particles are soft or collinear ahead of time: the subtracted
matrix elements will be correct in any limit. Although the amplitudes appear simpler than in
full QCD (for example, the only interference effects from different directions involve gluons
emitted off Wilson lines), it remains to be seen whether they can be integrated simply to
provide a productive subtraction scheme. In our derivation of this formula, extensive use
was made of the proof of factorization in [FS2].

Second, we showed how phase-space cutoffs can be removed when integrating a factor-
ized amplitude squared against the measurement function for certain inclusive observables.
Removing the cutoffs does two things: it overcounts the soft-collinear region and adds UV
divergences to the phase-space integrals. These two effects can be compensated for by inte-
grating the full QCD distribution against an eikonal jet function. This convolution can be
easily disentangled, at least for thrust, jet broadening and angularities. This extends the
results of amplitude-level factorization from [FS1] and [FS2] to the level of observables.

In our presentation, we have included explicit 1-loop expressions for soft and jet functions
with cutoffs and for the eikonal jet function in a regularization scheme which separates UV
from IR. These expressions confirm generally the qualitative analyses that we have presented
of the UV and IR structure of the integrals.

Although our final factorization formulas are not new, we believe our derivation is sys-
tematic and rigorous. We hope that the step-by-step procedure we have presented will be
useful in future studies of factorization, where subtleties abound.
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6 Appendix

In this appendix, we report the explicit computations of many of the cut-off dependent
objects that appear in Section 3.1. All expressions are computed at one-loop order in QCD
for the observable thrust.

6.1 Regularization schemes

We will use dimensional regularization to control the UV divergences: we analytically con-
tinue to d = 4− 2ε dimensions, with ε > 0.

To regulate the IR divergences, we take the outgoing external fermion lines to have an
offshellness of Q2ω. Consequently, the propagator in Yj will look like

nµj
nj · k

→
pµj

pj · k + Q2ω
2

(52)

It is helpful when using an offshellness also to slightly modify the measurement function for
thrust, so that virtual graphs still contribute only at τ = 0. We can do this by replacing
δ(τ − 1

Q
p−)→ δ(τ − 1

Q
p− + ω).

In scaleless integrals involving Wilson lines, the offshellness may not completely control
all the IR divergences. Thus, in addition we use the ∆ regulator [73] for the collinear Wilson
line, so that the propagator in the Wj will be shifted by ∆

tj ·pj . More precisely, we define the

dimensionless parameter δj ≡ ∆/(tj · pj) and shift the eikonal propagators as

1

tj · k
→ 1

tj · k + ∆
tj ·pj

≡ 1

tj · k + δj(tj · pj)
(53)

With these two IR regulators, all the 1/ε poles in the following expressions correspond to
UV divergences only.

For simplicity, in the following sections we choose the direction of the collinear Wilson
line, W1 to be tµ1 = nµ2 = (1,−~n) and that of W2 to be tµ2 = nµ1 = (1, ~n), where ~n is the thrust
axis. Then, in light-cone coordinates

kµ =
1

2
k−nµ1 +

1

2
k+nµ2 + kµ⊥ = (k−, k+, k⊥) (54)

While it is not impossible to do the integrals for generic choices of tµ1 and tµ2 , the phase space
integrals inside the cone become significantly more complicated.

6.2 Jet Functions

We will denote a jet function restricted to a cone of size R by JR. In our notation, R is a
rapidity-type cone angle: a particle is in the n-cone if k+ < Rk−. R is related to the cone
opening angle θ by R = tan2 θ

2
.
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At order αs, the virtual contributions to the jet functions are of course independent of
phase space restrictions and therefore the same for the restricted or unrestricted jet functions.
The purely virtual contributions come from evaluating

[
J(τ)

]
virt.

=

∫
dp+

2π

∣∣∣∣∣ 〈p| ψ̄Wj |0〉
〈0|Y †j Wj |0〉

∣∣∣∣∣
2

2πδ
(
Qp+ −Q2ω

)
θ(p+)δ

(
τ − p+

Q
+ ω) (55)

= δ(τ)
1

Q

∣∣∣∣∣ 〈p| ψ̄Wj |0〉
〈0|Y †j Wj |0〉

∣∣∣∣∣
2

= δ(τ) +O(αs) (56)

where the sum over spins is implicit.
There are 3 virtual graphs contributing to 〈pj| ψ̄Wj |0〉 at 1-loop. The self-energy graph

on the Wilson line exactly vanishes; the vertex correction and quark self-energy graph sum
to

〈p| ψ̄Wj |0〉virt.

〈p| ψ̄Wj |0〉tree

= g2
sµ

2εCF

∫
ddk

(2π)d

(
2(p− − k−)

k+ + p−δj
+
d− 2

2

p+ − k+

p+

)
1

k2

1

(p− − k−)(p+ − k+)− k2
⊥

= −αsCF
4π

(
4πµ2

Q2

)ε
(−ω)−εΓ(ε)

Γ(1− ε)Γ(2− ε)
Γ(2− 2ε)

×
[
−(3 + ε) + 4

(
1 +

1

δj

)
2F1(1, 1− ε, 2− 2ε,− 1

δj
)

]
= −αsCF

4π

(
µ̃2

Q2

)ε [
3

2ε
− 3

2
lnω +

2

ε
ln δj − 2 lnω ln δj − ln2 δj +

7

2
− 2π2

3

]
(57)

In the last step, we expanded in δj and ω and dropped the O(δj) and O(ω) terms.
To one-loop, the denominator factor in the jet function evaluates to

Ẑj = 〈0|Y †j Wj |0〉 = 1 + g2
sµ

2εCF

∫
ddk

(2π)d
2

(
1

−k+ +Qω

1

k− +Qδj

)
1

k2

= −αsCF
4π

(
4πµ2

Q2

)ε
(−ω)−εΓ(ε)

[
2δ−εj Γ(ε)Γ(1− ε)

]
= −αsCF

4π

(
µ̃2

Q2

)ε [
− 2

ε2
+

2

ε
lnω − ln2 ω +

2

ε
ln δj − 2 lnω ln δj − ln2 δj −

π2

2

]
(58)

We note here that the δj dependence is identical in Eqs. (57) and (58). Thus virtual IR diver-
gences introduced by the Wj, which are regulated with the ∆-regulator, cancel in [J(τ)]virt.

to one loop. Explicitly,[
J(τ)

]
virt.

= δ(τ)− δ(τ)
αsCF

2π

(
µ̃2

Q2

)ε [
2

ε2
+

3

2ε
− 2

ε
lnω − 3

2
lnω + ln2 ω +

7

2
− π2

6

]
(59)
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Now let’s look at the real-emission diagrams. With emissions restricted to a cone of size
R, the real-emission contributions to the jet function at order αs are[

JRj(τ)
]

real
= 2g2

sµ
2εCF

∫
dp+

2π

∫
dp−

2π
(2π)δ(p− −Q)

×
∫

ddk

(2π)d
1

p+

(
2(p− − k−)

k+ + p−δ1

+
d− 2

2

p+ − k+

p+

)
2πδ(k+k− − k2

⊥)θ(k+)θ(k−)

× 2πδ
(

(p+ − k+)(p− − k−)− k2
⊥ −Q2ω

)
θ(p+ − k+)θ(p− − k−)δ(τ − p+/Q+ ω)

× θ
(k−
k+
−R

)
θ
(p− − k−
p+ − k+

−R
)

(60)

It is helpful to write the result as[
JRj(τ)

]
real

=
αsCF

2π

1

Γ(1− ε)

(
4πµ2

Q2

)ε
1

τ + ω

1

τ ε
IRj(τ) (61)

and we find

IRj(τ) =

∫ 1

τ/R

dx

[
2(1− x)

x+ δj
+ (1− ε)x

] [
1

x(1− x)

]ε
= Ij − 2(1 + δj)

(1− ε)δj

( τ
R

)1−ε
F1

(
1− ε, ε, 1; 2− ε; τ

R
,− τ

R δj

)
+

1

2

[ τ
R

(
1− τ

R

)]1−ε
+

1

2
(3 + ε)B

( τ
R

; 1− ε, 1− ε
)

=

(
−3

2
− 2 ln

( τ
R

+ δj

)
+O(τ)

)
+O(ε) (62)

where F1(α, β, β′; γ;x, y) is the Appell hypergeometric function and B(z; a, b) is the Incom-
plete Beta Function. These real emission graphs are of course UV finite, so we can simply
set ε = 0.

To expand the result for small ω, we can use that in the limit ω → 0

1

τ + ω
I(τ) = δ(τ)

[∫ 1

0

dτ ′

τ ′ + ω
I(τ ′)

]
+

[
I(τ)

τ

]
+

(63)

so that

[
JRj(τ)

]
real

=
αsCF

2π

{
δ(τ)

[
3

2
lnω − 2 lnω lnR + ln2 ω +O(R)

)]
+

[
1

τ

(
−2 ln

τ

R
− 3

2

)]
+

}
(64)

Eq. (64) shows that the jet function in cone does not have log δj singularity. Note, however,
that this jet function does have double logs of ω, coming from soft-collinear region; these
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will cancel against the virtual soft-collinear singularity in Eq. (58). The R dependent terms
logω logR come from soft emissions at the cone edge. These do not cancel against any other
contribution to JR, but will cancel against either SR of the eikonal jet function JReik.

Next, consider the inclusive jet function, J j. This is defined identically to JR, but
without the phase space restriction. The virtual contributions are the same. The real
emission contributions at order αs are the same without the phase space restriction on the
last line of Eq. (60). Using the same notation as in Eq. (61), we find

Ij =

∫ 1

0

dx

[
2(1− x)

x+ δj
+ (1− ε)x

] [
1

x(1− x)

]ε
=

4−1+ε
√
πΓ(1− ε)

δj Γ(3
2
− ε)

[
−(3 + ε)δj + 4(1 + δj) 2F1(1, 1− ε, 2− 2ε,− 1

δj
)

]
(65)

= −3

2
+ 2(1 + δj) ln(1 +

1

δj
) (66)

We have set ε = 0 on the last line since the real emission contribution to the inclusive jet
function, like with JR, is UV finite. Using Eq. (63) we then find

[
J j(τ)

]
real

=
αsCF

2π

{
δ(τ)

(
3

2
lnω + 2 lnω ln δj

)
+

[
1

τ

(
−2 ln δj −

3

2

)]
+

}
(67)

The phase space integral in the inclusive jet function contains single log of ω, indicating pure
collinear singularity. It also contains a double IR singularity, logω log δj, coming from the
soft-collinear region.

Next, we consider the eikonal jet function, with the field ψ̄ replaced by a soft Wilson line.
The virtual contributions are given by matrix elements similar to Eq. (55):[

Jeik(τ)
]

virt.
=

∫
dp+

2π

∣∣∣∣ 〈0|Y1W1 |0〉
〈0|Y †1 W1 |0〉

∣∣∣∣2 2πδ
(
p+ −Qω

)
θ(p+)δ

(
τ − p+

1

Q
+ ω) (68)

= δ(τ) (69)

Since there is an exact cancellation between numerator and denominator, the purely virtual
contribution is δ(τ) to all orders.

Using the same notation as above, for the phase-space restricted eikonal jet function, we
find

IRj

eik(τ) =

∫ ∞
τ/R

dx
2

x+ δj

[
1

x

]ε
= δ−εj B

(
Rδj
τ

; ε, 0

)
=

2

ε
− 2 ln

( τ
R

+ δj

)
+O(ε) (70)
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Note that now there is a UV divergence from the integral up to infinite energy in the k−

direction. This turns into[
J
Rj

eik(τ)
]

real
=
αsCF

2π

(
µ̃2

Q2

)ε
×

{
δ(τ)

[
2π2

3
− 2

ε
lnω − 2 lnω lnR + 2 ln2 ω +O(R)

]
+

[
1

τ

(
2

ε
+ 2 lnR− 4 ln τ

)]
+

}
(71)

For the unrestricted eikonal jet function

Ijeik =

∫ ∞
0

dx
2

x+ δj

[
1

x

]ε
= δ−εj 2Γ(ε)Γ(1− ε) (72)

and[
J jeik(τ)

]
real

=
αsCF

2π

(
µ̃2

Q2

)ε
×

{
δ(τ)

(
π2

3
− 2

ε
lnω + 2 lnω ln δj + ln2 ω

)
+

[
1

τ

(
2

ε
− 2 ln δj − 2 ln τ

)]
+

}
(73)

Finally, the jet functions with real and virtual contributions combined are given in
Eqs. (30), (38), (40) and (41) for JRj , J

Rj

eik , J j and J jeik respectively. The structure of
IR singularities in virtual and real contributions to the various objects are listed in Table 1.

6.3 Soft functions

Here we focus on the soft function for thrust, defined as

S(τ) =
∑
Xs

∫
dΠXs

∣∣∣〈Xs|Y †1 · · ·YN |0〉
∣∣∣2 δ(τ − 1

2Q
Ωτ (pXs)

)
(74)

with Ωτ (p) the measurement function for thrust defined in Eq. (24) and Xs the appropriately
phase-space restricted set of states.

The virtual contribution to the soft function comes from the matrix element 〈0|Y †1 Y2 |0〉
and is independent of phase-space restrictions. To order αs,

〈0|Y †1 Y2 |0〉 = 1 + g2
sµ

2εCF

∫
ddk

(2π)d
2

(
1

−k+ +Qω

1

k− +Qω

)
1

k2
(75)

so that [
S(τ)

]
virt.

= −δ(τ)
αsCF
π

1

Γ(1− ε)

(
4πµ2

Q2

)ε
(−ω)−ε(ω)−ε

(
Γ(ε)Γ(1− ε)

)2

(76)

= δ(τ)
αsCF
π

(
µ̃2

Q2

)ε(
− 1

ε2
+

2

ε
lnω − π2

4
− 2 ln2 ω

)
(77)
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collinear or soft soft-collinear UV-IR UV

lnω lnω logR lnω ln δj ln2 ω 1
ε

lnω 1
ε

ln δj
1
ε

1
ε2

〈pj| ψ̄Wj |0〉virt. X − X − − X X −

Ẑ = 〈0|YjWj |0〉 − − X X X X − X[
J
]

virt
X − − X X − X X[

JRj
]

real
X X − X − − − −[

J j
]

real
X − X − − − − −

JRj − X − X X − X X

J j − − X X X − X X[
J
Rj

eik

]
real

− X − X X − X −[
J jeik

]
real

− − X X X − X −

J
Rj

eik − X − X X − X −

J jeik − − X X X − X −

JRj − JRj

eik − − − − − − X X

J j − J jeik − − − − − − X X

Table 1: IR singularities in virtual and real phase-space integrals at order αs. Note that the
jet functions and eikonal jet functions are all IR divergent but the IR divergences cancels in
their difference. Indeed, the subtracted jet function is infrared safe and has no dependence
on ω or δj. Note that logω logR and logω log δj terms describe soft-collinear singularities.
After subtracting the eikonal jet function from the inclusive jet function, these singularities
drop out.
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We see that the virtual contribution has double poles in the UV and IR. In pure dimensional
regularization, these double poles would exactly cancel and the virtual contribution exactly
vanishes.

Next, we compute the real-emission contributions. First, we consider the inclusive soft
function. At order αs, the real emission contribution is given

[
S(τ)

]
real

= 2g2
sµ

2εCF

∫
ddk

(2π)d
2

(
1

k+ +Qω

1

k− +Qω

)
2πδ(k+k− − k2

⊥)θ(k+)θ(k−)

×
[
θ(k− − k+)δ(τ − k+

Q
) + θ(k+ − k−)δ(τ − k−

Q
)

]
(78)

As with the jet function, we write the result as

[
S
]

real
=
αsCF

2π

1

Γ(1− ε)

(
4πµ2

Q2

)ε
1

τ + ω

1

τ ε
Is(τ) (79)

We will use this parameterization for the inclusive and phase-space restricted soft functions.
For the inclusive soft function, we find

Is(τ) =

∫ ∞
τ

dx
2

x+ ω

[
1

x

]ε
= ω−εB

(ω
τ

; ε, 0
)

=
2

ε
− 2 ln (τ + ω) +O(ε) (80)

so that, using Eq. (63),

[
S(τ)

]
real

=
αsCF
π

(
µ̃2

Q2

)ε{
δ(τ)

(
−2

ε
lnω +

π2

3
+ 2 ln2 ω

)
+

[
1

τ

(
2

ε
− 4 ln τ

)]
+

}
(81)

adding the virtual contribution, we get to order αs

S(τ) = δ(τ) +
αsCF
π

(
µ̃2

Q2

)ε{
δ(τ)

(
− 1

ε2
+
π2

12

)
+

[
1

τ

(
2

ε
− 4 ln τ

)]
+

}
(82)

which is IR finite (no dependence on ω). The UV poles are removed by renormalization.
The inclusive soft function is IR finite, since all ω divergences cancel between real and

virtual diagrams, as we can see in Eq. (81) and Eq. (76). As with the jet functions, ΘRes,
represents the phase-space restriction. For the soft function in the ball, the phase space
restriction is ΘΛ ≡ θ(Λ−k−)θ(k−−k+) + θ(Λ−k+)θ(k+−k−); for the soft function outside
the cones, ΘR ≡ θ(R− k−/k+)θ(k−/k+ − 1/R); finally, for the soft function in the ball and
outside the cones, ΘΛR ≡ ΘΛΘR.

For the soft function phase-space restricted to radiation outside of cones around the jet
axes (but with no cutoff Λ on energy), we find

IRs (τ) =

∫ τ/R

τ

dx
2

x+ ω

[
1

x

]ε
= 2 ln

( τ
R

+ ω
)
− 2 ln

(
τ + ω

)
+O(ε) (83)
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Note that this soft function is not UV divergent, since at finite τ there is an implicit energy
cutoff E < τ

2
(1 + 1

R
), as discussed below Eq. (34). It leads to

[
SR(τ)

]
real

=
αsCF
π

{
δ(τ)

[
2 lnω ln

( R

−1 +R

)
− ln2 ω − 2Li2

(
1 + ω

ω(1−R)

)
+ 2Li2

(
1

1−R

)]

+

[
2

τ
lnR

]
+

}

=
αsCF
π

{
δ(τ)

(
−π

2

3
+ 2 lnω lnR +O(R,ω)

)
+

[
2

τ
lnR

]
+

}
(84)

Note that the IR-divergent lnω lnR term does not cancel against the virtual correction.
Thus the soft function outside the cones is not infrared safe.

For the soft function phase-space restricted to a ball with energy less than Λ, but no
angular restriction, we find

IΛ
s (τ) =

∫ Λ/Q

τ

dx
2

x+ ω

[
1

x

]ε
= 2 ln

(Λ

Q
+ ω

)
− 2 ln(τ + ω) (85)

This is also UV finite, as expected. To get the soft function outside the cones with energy
less then Λ, we can simply combine these two expressions with θ-functions:

IΛR
s (τ) = IΛ

s θ
( τ
R
− Λ

)
+ IRs θ

(
Λ− τ

R

)
(86)

which leads to

[
SΛR(τ)

]
real

= δ(τ)+CF
αs
π

(
µ2

Q2

)ε{
δ(τ)

[
−π

2

3
+ 2 lnω lnR +O(R)

]
−
[

2

τ
lnR

]
+

}
θ
(

Λ− τ
R

)
−CF

αs
π

(
µ2

Q2

)ε{
δ(τ)

[
1

ε2
+
π2

4
+ 2

(
1

ε
lnω + lnω ln

Λ

Q
− 1

2
ln2 ω

)]
+

[
2

τ
ln
τQ

Λ

]
+

}
θ
( τ
R
−Λ
)

(87)

Combining this with the virtual contribution leads to Eq. (31). Note that for τ sufficiently

small (τ < ΛR), IΛR
s and hence SΛR does not depend on Λ. In particular, at leading power

in τ we have
SΛR ' S(Λ=∞)R (88)

as in Eq. (33).

To repeat, we find that the inclusive soft function is IR finite while SR and SΛR are not,
due to an incomplete cancellation of IR singularities between virtual and real contributions.
Indeed, SR contains a lnω lnR term, coming from the real-soft region, and a ln2 ω term,
coming from the virtual-soft-collinear region. These singular terms exactly match with those
in J

Rj

eik , according to Eq. (84) and Eq. (71).
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