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We present the first study of the cusp effect (the movement of resonant poles due to the proximity
of multiparticle thresholds) caused by the creation of diquark-antidiquark pairs. The cusp profile
for such states is obtained from constituent counting rules. We compare the effectiveness of diquark
cusps in moving resonant poles with that from a phenomenological form commonly used for meson-
pair creation, and find that mesons tend to be more effective at lower energies (e.g ., the KK
threshold), while diquarks tend to be more effective at the charm [X(3872)] scales and above.
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I. INTRODUCTION

One of the most important discoveries of the past
year in hadron physics was the experimental confirma-
tion by LHCb [1] of a new type of hadron joining the
q̄q mesons and qqq baryons – the tetraquark (q̄qq̄q) res-
onance Z+

c (4430). In fact, this state is just one of
an ever-growing menagerie of hadrons now believed to
be tetraquarks, all of which have been observed since
the 2003 discovery by Belle [2] of an unusually narrow
charmonium-like state, the X(3872). However, until the
discovery of charged states (now called Zc), one could
not be certain that the X(3872) was not just an unusual
conventional charmonium state or a hybrid c̄cg; and un-
til the observation of a phase δ increase by π

2 radians
in the complex scattering amplitude in which Zc is pro-
duced [1], one could not be certain that the states are
true resonances as opposed to, say, kinematical reflec-
tions of t-channel exchanges. There now seems to be little
doubt that the Z+

c (4430) is a tetraquark resonance with
JP = 1+ quantum numbers and valence quark structure
c̄cd̄u. In addition, all indications suggest that the charge-
zero X(3872) is a JP = 1+ c̄cq̄q state, where q̄q is some
linear combination of ūu and d̄d.

But waiting for the final confirmation of the tetraquark
label did not preclude early speculation on the com-
position and structure of such states. The initial in-
terpretation – and still the most prevalent one – is
that the tetraquarks are di-meson molecules, bound to-
gether by color van der Waals-type forces (see [3] for
a recent review). This interpretation is suggested by
the proximity of the mass of several of the states to
the corresponding two-meson thresholds. For example,
mX(3872) − mD∗0 − mD0 = −0.11 ± 0.21 MeV. How-
ever, several other tetraquark candidates lie just above
such thresholds – clearly muddling the simple bound-
state interpretation – and several others lie nowhere near
any two-meson thresholds. Furthermore, the substan-
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tial prompt production cross section for the X(3872) at
colliders seems to be incompatible with the state being
solely composed of loosely-bound meson pairs [4, 5] –
even taking into account a substantial modification due
to final-state interactions [6, 7]. Another well-known in-
terpretation is hadro-charmonium [8], in which an ordi-
nary charmonium state lies at the core of a light-quark
cloud, although the cohesiveness of such states, and the
extent to which they mix with conventional charmonium
states, is unclear.

In this work, we employ yet another noteworthy in-
terpretation for the tetraquark states, that of a diquark-
antidiquark (δ-δ̄) bound-state pair. Originally proposed
for charmonium-like tetraquarks in Ref. [9], the diquark
picture has the advantage of possessing a much richer
color dynamics (the diquarks necessarily being color non-
singlets), but it also has the potential drawback of pro-
ducing many more tetraquark states than are currently
observed. However, if one assumes that the dominant
interactions are due to spin-spin couplings within each
diquark, one can obtain a rather satisfactory accounting
of the presently known tetraquark candidates [10].

One may wonder why the component quarks in a δ-
δ̄ bound state do not immediately rearrange themselves
into color-singlet q̄q pairs, returning one to the molecular
picture. Indeed, the strength of the color force between
quarks (or antiquarks) in SU(3)-color representations R1

and R2 coupling to a representation R is proportional to
the combination of quadratic Casimirs given by C2(R)−
C2(R1) − C2(R2). The only attractive channels are the
q̄q singlet (R1 = 3̄, R2 = 3, R = 1) and the qq antitriplet
(R1 = R2 = 3, R = 3̄), with the former being twice as
strong as the latter.

Rather than treating the tetraquark as a metastable δ-
δ̄ bound state, we proposed in Ref. [11] a new paradigm,
in which the tetraquarks are the quantized modes of a
color flux-tube stretched between a rapidly separating δ
(color-3̄) and δ̄ (color-3) pair. This picture naturally ex-
plains why many, but not all, of the tetraquarks lie near
hadron thresholds (energies at which the color string is al-
lowed to break); for example, the state X(4632) lies only
slightly higher than the lightest charmed-baryon Λ+

c Λ̄−c
threshold at 4573 MeV, and it decays dominantly to this
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baryon pair, as is explained by the fragmentation of the
flux-tube to a light q̄q pair. The widths of the states be-
low this threshold are not especially large, because they
hadronize by wave function overlaps with the mesons
formed from quarks in δ̄ and antiquarks in the δ, which
in turn can achieve a substantial separation (over 1 fm) if
sufficient initial kinetic energy is imparted to the system,
as in a B-meson decay. Evidence for this large separation
is apparent in the decay of the Zc(4430), which greatly
favors coupling to ψ(2S)π rather than J/ψ π [12] – even
though the charmonium states have the same JPC = 1−−

quantum numbers and there is smaller phase space for
the heavier (and spatially much larger) ψ(2S).

This paper presents the first dynamical study of the
δ-δ̄ tetraquark picture, using the well-known constituent
counting rules [13–23], which determine the fall-off scal-
ing of hard exclusive processes in the high-energy regime.
In essence, the counting rules predict that the cross sec-
tions, or equivalently, the form factors for processes at
high values of Mandelstam s at fixed θcm, fall off as a
power of s directly determined by the total number (in-
coming plus outgoing) of fundamental constituents par-
ticipating in the hard subprocess. Here we are inter-
ested in comparing the effects of δ-δ̄ state production
with that due to meson-meson states on the masses of
tetraquark resonances coupled to them, using dispersion
relation techniques. In another paper to appear [24],
we will directly discuss the phenomenological uses of the
cross-section scalings themselves.

The method to be used is the well-known cusp effect,
in which the presence of thresholds for the opening of
on-shell states coupled to resonances creates a modifica-
tion to the self-energy function that tends to drag the
bare resonant pole mass toward the threshold. The basic
idea appears to have been known since the early 1960’s,
but was first presented in its current form in the mid
1990’s [25], and first applied to the new heavy exotics
in 2008 [26]. Furthermore, recent calculations [27] show
that these states cannot just be cusps (although ones
in the BB̄ system might be [28, 29]); the presence of
real resonances is required. In this paper we compare
the effectiveness of this dragging effect due to the pres-
ence of both δ-δ̄ and two-meson thresholds, and find first,
that the potential amount of shifting of resonant poles
decreases for heavier-quark systems (KK vs. DD̄∗ vs.
BB̄∗), and second, that the δ-δ̄ states become more ef-
fective at pole-dragging than two-meson states for the
DD̄∗ and BB̄∗ thresholds associated with the new heavy
exotic resonances. Since δ is not a color singlet, using a
δ-δ̄ threshold in a QCD dispersion relation (where “on
shell” usually means not only that the particles are not
virtual, but also asymptotically free) must be interpreted
with some care; for the purposes of this calculation, we
assert that the substantial δ-δ̄ separation advocated in
[11] creates states that are in a sense “almost” free, and
therefore possess an on-shell threshold.

This paper is organized as follows: In Sec. II we briefly
review the meaning and origin of the cusp effect, and

establish the mathematical formalism used for its im-
plementation, with some details relegated to the Ap-
pendix. In Sec. III we address in greater detail the issue
of whether diquark pairs truly produce physically mean-
ingful thresholds. Section IV presents a brief overview
of the constituent counting rules used to establish the
large-energy scaling of the δ-δ̄ form factor. In Sec. V
we describe the algebraic results for both the mesonic
and diquark forms, and present our numerical results in
Sec. VI. In Sec. VII we summarize and indicate future
directions.

II. THE CUSP EFFECT

The cusp effect has a rather straightforward origin in
the analyticity of the self-energy functions Π(s) that ap-
pear in the propagator of resonant or bound states and
source the creation of their decay products. Closely fol-
lowing notation introduced in Refs. [25, 26], we start with
the propagator denominator

P−1
αβ (s) = (M2

0,α − s)δαβ −Παβ , (1)

where α, β index resonances that can mix; for simplic-
ity, in this work we assume only unmixed propagating
states and henceforth suppress this index. The sign of
Π(s) is chosen to match that appearing in the majority
of quantum field theory texts (e.g., [30]); when positive,
it is seen to correspond to an attractive interaction.

Π(s) is analytic everywhere in the complex s plane ex-
cept for cuts (or poles) along the positive real s axis that
result from the opening of on-shell channels, which we
label by i. Consider explicitly the creation of such two-
particle states of masses m1,i, m2,i via the form factors
Fi(s), conventionally normalized to unity at threshold,
sth,i ≡ (m1,i + m2,i)

2. Defining the (dimensionful) cou-
pling constant to state i as gi, one has

Im Π(s) =
∑
i

g2
i ρi(s)F

2
i (s) θ(s− sth,i) , (2)

and ρi is the two-body phase-space factor given in terms
of the c.m. momentum ki or the Källén function λ by

ρi(s) ≡
2ki√
s

=
λ

1
2 (s,m2

1,i,m
2
2,i)

s
. (3)

Defining sth,1 as the lowest threshold (and therefore the
branch point whose cut extending to s =∞ overlaps all
others), one may apply Cauchy’s theorem to a contour
that goes around this cut, obtaining the standard unsub-
tracted dispersion relation:

Re Π(s) =
1

π
P

∫ ∞
sth, 1

ds′
Im Π(s′)

s′ − s
, (4)

where P indicates the standard Cauchy principal value
prescription. For reasons to be discussed below, we find
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it useful to use the once-subtracted form (at s = 0) of
Eq. (4):

Re Π(s) = Re Π(0) +
s

π
P

∫ ∞
sth, 1

ds′

s′
Im Π(s′)

s′ − s
, (5)

One notes immediately from Eqs. (2)–(3) that Im Π(s)
is zero on the real s axis for s < sth,1, and positive for
s > sth,1. One further sees from Eq. (4) or Eq. (5) that
the integrand in Re Π(s) is positive for all s < sth,1 since
s′ − s > 0 in the entire integration range, and there-
fore acts as an attractive interaction. As shown below,
explicit functional forms for F (s) give rise to a positive
ReΠ(s) that reaches a peak, or cusp, at sth,1 and falls off
in either direction, remaining always positive for s < sth,1

but generally passing through the axis (and effectively
creating a potential barrier) for some value of s > sth,1.
This effective attraction acts to pull the pole position of
the propagator Eq. (1) toward sth,1, a synchronization of
the resonance with a threshold (although in Sec. VI we
see some interesting exceptions to this expectation).

In the bulk of this work, for simplicity we specialize to
the equal-mass case m1,i = m2,i ≡ mi, which is rather
closely satisfied for the cases of experimental interest.
Full expressions analogous to the ones appearing in the
text below are presented in the Appendix, where it is
seen that the relevant expansion parameter is

ε ≡
(
m1,i −m2,i

m1,i +m2,i

)2

. (6)

For X(3872), with m1,i = mD0 and m2,i = mD̄∗0 , one
finds ε = 1.35 · 10−3. In the equal-mass case,

ρi(s) =

√
1− 4m2

i

s
=

√
1− sthi

s
, (7)

and its analytic continuation for s < sth,i = 4m2
i is

vi(s) =

√
4m2

i

s
− 1 =

√
sth,i

s
− 1 . (8)

To illustrate the cusp explicitly, let us consider the
special case Fi(s) = 1 described in [26]. This particular
choice is unphysical because unitarity and perturbative
QCD require real hadronic form factors to fall off at large
s, but it is an interesting toy model for cases in which the
dispersion relation is dominated by the form factor near
threshold. It is also interesting because the dispersion
integrals can be carried out explicitly; the nonvanishing
large-s behavior of Fi(s) requires one to use the once-
subtracted form Eq. (5) to obtain finite results at finite
s. Allowing the constant Re Πi(0) = − 2

π to renormalize
the pole mass M0 in the propagator Eq. (1), one finds:

Re Πi(s)

g2
i

=
ρi
π

ln
1− ρi
1 + ρi

= −2ρi
π

tanh−1ρi , s ≥ sth,i ,

= −vi +
2vi
π

tan−1 vi , s < sth,i . (9)

FIG. 1: The threshold cusp in Re Πi(s)/g
2
i (green, solid)

and corresponding Im Πi(s)/g
2
i (red, dashed) for form fac-

tor Fi(s) = 1, as given by Eq. (9). s is expressed in units of
s/sth,i, and Re Πi(s)/g

2
i is shifted to equal 1 at s = sth,i.

Using Eqs. (7)–(8), note that the tan−1 and tanh−1

terms are analytic continuations of the same function of
s in different regimes; the only unmatched term is −vi,
which is induced by analyticity of Π(s) and the discon-
tinuity of Im Πi(sth,i). In Fig. 1, we plot Eq. (9) [and
Im Πi(sth,i)/g

2
i ] as a function of s/sth,i, and see that the

below-threshold term −vi is responsible for the cusp.
Cusp behavior also appears for more realistic choices of

form factor Fi(s), although the dispersion relation inte-
grations must often be carried out numerically. Two fea-
tures of the integrals hamper the convergence of numeri-
cal calculations: First, the integration range stretches to
s = ∞, and second, the denominator factor s′− s pro-
duces a logarithmic singularity when s > sth,i. A simple
change of variable cures the first problem; noting from
Eq. (7) that s ∈ [sth,i,∞) maps to ρi ∈ [0, 1), one defines
the integration variable ρ′i analogously to Eq. (7), but
with s → s′. Then one finds the unsubtracted relation
Eq. (4) to become

Re Πi(s)

g2
i

=
2

π

sth,i

s
P

∫ 1

0

dρ′i
ρ′ 2i

1− ρ′ 2i
1

ρ′ 2i − ρ2
i

F 2
i (s′) ,

(10)
where [inverting Eq. (7)] s′ = sth,i/(1− ρ′ 2i ). In fact, the
once-subtracted relation Eq. (5) becomes even simpler:

1

g2
i

[Re Πi(s)− Re Πi(0)] =
2

π
P

∫ 1

0

dρ′i
ρ′ 2i

ρ′ 2i − ρ2
i

F 2
i (s′) .

(11)
Since, as discussed above, one expects Re Πi(s) → 0 as
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s → ∞ for physical Fi(s), no information is lost by us-
ing the once-subtracted and functionally simpler form
Eq. (11). The logarithmic singularity does not arise for
s < sth,i; since ρ2

i = −v2
i according to Eqs. (7)–(8), one

may rewrite the integrand factor in Eq. (11) for s < sth,i

as the nonsingular form

ρ′ 2i
ρ′ 2i − ρ2

i

→ 1− v2
i

ρ′ 2i + v2
i

. (12)

The logarithmic singularity for s ≥ sth,i is readily han-
dled via an integration by parts on the 1/(s′−s) factor in
Eq. (5), followed by conversion to the integration variable
ρ′. One obtains:

1

g2
i

[Re Πi(s)− Re Πi(0)] =

− 1

π

∫ 1

0

dρ′i

[
F 2
i (s′) +

2sth,i ρ
′ 2
i

(1− ρ′ 2i )2

dF 2
i (s′)

ds′

]
ln

∣∣ρ′ 2i − ρ2
i

∣∣
1− ρ2

i

.

(13)

The singularity at ρi = ρ′i remains, but now it is inte-
grable for any smooth F 2

i (s) that asymptotes to zero as
s → ∞. Moreover, the non-logarithmic part of this in-
tegral is just the exact differential d[ρi(s

′)F 2
i (s′)], whose

argument vanishes at s′ = sth,i and also at s′ = ∞ if
F 2
i (s′) falls off faster than 1/ρi(s

′); in such a case, the
(ρ′i-independent) term 1 − ρ2

i in the logarithm may also
be deleted. Since the function obtained from Eq. (5),
i.e., the explicit left-hand side of (11) or (13), is cen-
tral to our analysis, let us henceforth abbreviate it as
πi(s) ≡ [Re Πi(s)− Re Πi(0)]/g2

i .

III. DO DIQUARK PAIRS HAVE
THRESHOLDS?

Before proceeding, one must address the issue men-
tioned in the Introduction of whether a δ state, being
colored, really possesses a well-defined mass, and there-
fore whether the δ-δ̄ state really possesses a well-defined
threshold. Strictly speaking, the quoted masses of col-
ored particles like quarks depend upon the choice of
renormalization scheme, and therefore do not carry the
same status of being observables as do meson masses.
Nevertheless, quark masses are extracted using a vari-
ety of methods (quark models, lattice gauge theory, sum
rules, etc.), and the numerical values thus obtained are
bestowed with some degree of physical significance.

An elegant discussion of such issues appears in the
classic text by Georgi [31] (Sec. 3.2); he considers a uni-
verse in which the strong coupling constant αs is as small
as αEM, but confinement still occurs. The scale ΛQCD

then becomes extremely large (' 1020 cm), and for all
practical purposes, quarks would be just as visible in
experiments as electrons, and would possess easily de-
termined quantum numbers such as mass. Georgi then
continues the analysis by increasing ΛQCD towards its

physical O(250 MeV) value, and argues that not until
ΛQCD ' αsmq (including the running value of αs) do
quarks become inseparable from their hadrons, and hence
hidden from view.

We take this lesson as our touchstone, that substan-
tial physical separation implies identifiability as particles
with well-characterized masses, even in the presence of
confinement. The color dynamics allows diquarks to form
as bound states, and kinematics permits them to separate
a distance before being forced to hadronize. The salient
question then becomes: How far is far enough, before
the diquarks can reasonably be said to appear as iden-
tifiable particles possessing a well-defined mass thresh-
old? We argue that this event occurs when the δ-δ̄ state
can no longer be mistaken for one in which the diquark
wave functions have substantial wave function overlap.
Of course, the size of diquark wave functions is not at
all a known quantity, but we can obtain a reasonable es-
timate by considering the size of mesons with analogous
quark content. That is, instead of cu and c̄d̄ diquarks, we
consider D mesons. Again, meson radii are not directly
observable quantities and the precise nature of the fall-off
of their wave functions with r is unknown, but at least in
this case some calculations have been performed. For ex-
ample, Ref. [32] calculates the electromagnetic charge ra-
dius of the D+ to be 0.43 fm, rather smaller than charge
radii of the unflavored mesons, due to the presence of
the heavy c quark. One may expect the diquarks to be
slightly larger because the initial color attraction between
the quark components is smaller; however, the true size
is dominated by some combination of nonperturbative
gluodynamics and the heavy quark mass, so we expect
the diquarks to be not much larger. We take from this
result that 1 fm is not an unreasonable estimate for the
onset of significant separation between the diquarks, and
hence the identification of a well-defined diquark mass
and pair-production threshold. Again, an important in-
gredient in this estimate appears to be the presence of
heavy quarks, which might very well be related to the
reason why exotics have first become clearly visible in
the charm system.

Furthermore, as first pointed out in Ref. [25], the cusp
effect treatment of the previous section holds at full
strength [as in Eq. (3)] only for thresholds of particles
in a relative s wave. Only certain δ-δ̄ states will fall into
this category, in precisely the same way that the con-
ventional cusp effect is most prominent for thresholds of
mesons produced in a relative s wave.

A very interesting question is how the diquark thresh-
olds disappear if their separation is insufficient to pre-
vent a large wave function overlap. We speculate that
these thresholds gradually dissolve into correlations be-
tween the couplings to meson pairs to which the exotics
preferentially decay, and such correlations would create
a smeared “cusp” that would gradually disappear for
smaller and smaller diquark separations. The exact sepa-
ration at which such a structure first appears, and hence
the assumption that a viable diquark cusp effect is sup-
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portable, is very much open to debate, but we believe
1 fm is a reasonable estimate. The diquark cusps stud-
ied in this paper are of course based upon an idealized
picture of this behavior.

IV. CONSTITUENT COUNTING RULES

In this section we present a brief summary of the con-
stituent counting rules developed over a number of years
following the advent of perturbative QCD (pQCD) [13–
23]. They reflect the underlying conformal features
and scale invariance of the QCD coupling. More re-
cently, they were derived nonperturbatively by Polchin-
ski and Strassler [33] using AdS/QCD. A more thorough
pedagogical introduction, particularly with an eye to-
ward discerning exotic hadronic structure, is presented in
Ref. [34]; here, we present an abridged discussion identi-
fying the central points leading to the correct counting.
In Ref. [35], the same authors show how to use the large-
s scaling behavior to study the underlying generalized
parton distributions and distribution amplitudes enter-
ing into these processes.

The constituent counting rules for large-angle scatter-
ing processes (i.e., those in which no kinematical variable
is small due to the near-collinearity of any particles) at
high c.m. energy

√
s originate from a remarkably simple

source: Each of the individual constituents being scat-
tered must be redirected through a finite angle by a large
momentum transfer. In this limit, all constituent masses
are negligible, and all three Mandelstam variables s, t,
and u ' −s − t are large, so that one may express all
dimensionful quantities in powers of s and dimensionless
coefficients as functions of t/s. In the pQCD picture,
these deflections are accomplished through hard gluon
exchanges; if leptons are included, then hard electroweak
boson exchanges also appear. In the case of AdS/QCD,
the counting rules reflect the twist dimension of the in-
terpolating field at short distances.

For the moment, let us consider processes in which
the constituents are all fermions. Then, assuming that
each of the n = nin + nout constituents shares a finite
fraction of the total s, the leading-order Feynman dia-
grams require a minimum of n

2 − 1 hard gauge boson
exchanges and a minimum of n

2 − 2 internal constituent

propagators. These features supply factors of 1/s
n
2−1

and 1/
√
s

( n
2−1)

to the invariant amplitude M, respec-
tively. Noting that each external constituent fermion
field carries a spinor normalization scaling as s

1
4 , one

sees that all of the fermion scaling factors cancel except
for an overall factor s. In total,

M∝ 1/s
n
2−2 . (14)

Assuming a conventional scattering process in which the
constituents combine into two initial and two final parti-

cles, the cross section is given by

dσ

dt
=

1

16πs2
|M|2 ≡ 1

sn−2
f

(
t

s

)
, (15)

where f has the appropriate mass dimension (M2n−8)
to match that (M−4) of the left-hand side, but does not
itself scale as a power of s; its dimensionful factors are
essentially the amplitudes describing the binding of the
constituents into the composite states, i.e., decay con-
stants.

Each external gauge boson introduced (e.g., turning an
electroproduction process into photoproduction) removes
two external fermion lines [∼ (

√
s)2] and one hard gauge

boson propagator (∼ 1/s), leaving the form of the scaling
formula for M and dσ/dt invariant.

Hadronic form factors in the large-s regime can be
studied analogously. For example, according to Eq. (14),
the electromagnetic (or any other current-produced)
form factor FX(s) appearing in the pair-production am-
plitude M for tetraquark states X scales as

FX(s)→ 1

s
1
2 (1+1+4+4)−2

=
1

s3
. (16)

While the origin of 1/s factors via hard exchanges is nat-
ural and simple, one may worry about technical compli-
cations in real perturbative QCD that disrupt the sim-
ple counting. These effects include the running of αs(s),
the renormalization-group scaling of the constituent dis-
tribution amplitudes [36, 37], the presence of Sudakov
logarithms [38–40], “pinch” singularities due to the van-
ishing of internal gluon propagators [41], and endpoint
singularities occurring in configurations where some of
the constituents do not share an O(1) fraction of the hard
scale s [42]. However, it is believed that the net result
of these effects is not sufficiently severe as to change the
leading s power scaling for exclusive processes.

V. MESONIC VS. DIQUARK FORM FACTORS

The discussion of the previous section shows that the
pair-production form factor Fi(s) for a state with n con-
stituents in the high-s regime scales as 1/sn−1. Of course,
this scaling is not expected to hold in the low-s region,
particularly since confinement physics is not taken into
account in this fundamentally perturbative approach.

A. Meson Form Factors

In the case of pair creation of conventional mesons,
an exponential form is traditionally favored by phe-
nomenological fits to data. For example, for KK̄ pro-
duction, Ref. [26] uses F 2

i = exp(−k2
iR

2/3), where
R = 0.6 fm, while for BB̄∗ production, Ref. [29] uses
F 2
i = exp(−s/β2

i ) (once the coupling constant gi is
removed), and studies the choices βi = 0.4, 0.5, and
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0.7 GeV. To put these choices on a common footing, note
from Eqs. (3) and (7) that ki = 1

2

√
s− sth,i, and that the

form in [29] can be normalized to unity at threshold by
multiplying F 2

i by a constant, F 2
i = exp[−(s−sth,i)/β

2
i ].

Then the exponential form may be written as

F 2
i (s) = exp

(
− µiρ

2
i

1− ρ2
i

)
, (17)

where

µi =
sth,iR

2

12
=
sth,i

β2
i

, (18)

so that µi = 0.738 for [26], and R = 0.6 fm corresponds to
βi = 1.14 GeV. If ki from Eq. (3) is identified with the
nonrelativistic momentum |ki|, then one may compute
the normalized nonrelativistic matter density ρ(r) (not
to be confused with ρi) as its Fourier transform:

ρ(r) =
1

(2π~)3

∫
d3k e−ik·r/~F (k2) , (19)

giving in this case a Gaussian form:

ρ(r) =

(
3

4πR2

) 3
2

exp

(
− 3r2

4R2

)
. (20)

Inserting Eq. (17) into Eq. (11) leads to integrals for
πi(s) that do not appear to be expressible in closed form
except at special values of s. That the subtraction is
performed at s = 0, and hence that πi(0) = 0, is guar-
anteed by noting that s = 0 in Eq. (8) corresponds to
v2
i = −ρ2

i = ∞. In terms of the Kummer (confluent hy-
pergeometric) function U(a, b, z), the function πi(s) and
its slope π′i(s), can be computed at a few key values of s:

πi(0) = 0, π′i(0) = 1
2
√
πsth,i

U( 3
2 , 0, µ) ,

πi(sth,i) = 1√
π
U( 1

2 , 0, µ) , π′i(s
−
th,i) =∞,

πi(∞) = − 1
2
√
π
U( 3

2 , 1, µ) , π′i(∞) = 0.

(21)

These values can also be written as somewhat more com-
plicated expressions in terms of the modified Bessel func-
tions K0 and K1. Note especially the cusp π′(s−th,i) =∞
(approaching from s < sth,i), which follows directly from
Eq. (11) for any F 2

i (s) that is smooth at s = sth,i (ρi =
0). The slope π′(s+

th,i) (approaching from s > sth,i), on

the other hand, is generally finite (and negative) due to
the smoothing effect of the principal-value prescription
in Eq. (11).

It is important to note that a form factor F 2
i (s) ex-

ponential in s cannot truly represent the full physical
amplitude [43] in the entire complex s plane, since it pro-
duces an essential singularity for large s in some direc-
tions. Such behavior in dispersion relations would lead,
for example, to a violation of causality. For our purposes,
however, one may suppose that the behavior of F 2

i (s) re-
mains numerically close to the exponential form along a

substantial portion of the real s axis, but that the exact
form contains a functional dependence in s (for example,
the power-law fall-off predicted by quark-counting rules)
that restores the proper analytic behavior for all complex
values of s.

B. Diquark Form Factors

The discussion of Sec. IV shows that the tetraquark
form factor F (s) at large s scales as 1/s3 due to the ex-
change of hard gluons needed to maintain the integrity
of the exclusive tetraquark state. Indeed, the true scal-
ing is [αs(s)/s]

3; however, the large-s scaling of αs is
logarithmic and therefore varies slowly compared to the
power-law behavior, and henceforth is neglected.

The corresponding large-s behavior was not used for
the mesonic case because one expects the four quarks pro-
duced at any low or intermediate s immediately to con-
fine into two hadrons; the only color interactions between
the two mesons are then the “color van der Waals” forces
represented by final-state interactions. In the model of
Ref. [11], however, the (colored) diquarks separate a sig-
nificant distance before they are forced to hadronize, and
so the fundamental color forces can be expected to re-
main active at much lower values of s than for the meson
case. Since the natural scale at which the high-s scaling
should become significant is given by the diquark mass√
sth,i = 2mδ, we model the diquark form factor by

Fi(s) =
(sth,i

s

)3

, (22)

which of course is properly normalized, Fi(sth,i) = 1.
Using Eqs. (3) and (19), the matter density associated
with this form factor is

ρ(r) =
1

32πr3
C

(
1 +

r

rC

)
e−r/rC , (23)

where rC is the diquark Compton wavelength 1/mδ.
In this case, the integrals in πi(s) can be performed in

closed form. First, for s > sth,i, one finds

πi(s) =

1

π

{
− ρi

(
1− ρ2

i

)6
ln

(
1 + ρi
1− ρi

)
+

2048

3003

−2ρ2
i

(
793

231
− 667

63
ρ2
i +

562

35
ρ4
i−

66

5
ρ6
i +

17

3
ρ8
i− ρ10

i

)}
.

(24)

In the s < sth,i case, we define [using Eq. (8)] the param-
eter

γi ≡
s

sth,i
=

1

1 + v2
i

, (25)

which varies from 0 → 1 as s increases from 0 → sth,i.
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One then computes:

πi(s) =
1

πγ6
i

{
−
√

1− γi
γi

[
π

2
− tan−1

(
1
2 − γi√
γi(1− γi)

)]

+2

(
1− 1

3
γi −

2

15
γ2
i −

8

105
γ3
i −

16

315
γ4
i −

128

3465
γ5
i

− 256

9009
γ6
i

)}
. (26)

These precise forms are not terribly illuminating in their
own right, but they can be used to compute various limits
for purposes of comparison with the mesonic case. For
example, Eq. (26) appears to have a very strong singu-
larity at γi = 0 (s = 0), but the complicated polynomial
in γi has precisely the right form to cancel the all terms
in the expansion of the tan−1 expression in powers of γi
to the same order to give πi(0) = 0, and furthermore to
give a finite value at γi = 1 (s = sth,i) that matches the
one from Eq. (24) at ρi = 0, but with a derivative from
below that is infinite. In comparison with Eq. (21),

πi(0) = 0, π′i(0) = 2048
45045πsth,i

,

πi(sth,i) = 2048
3003π , π

′
i(s
−
th,i) =∞,

πi(∞) = − 512
9009π , π

′
i(∞) = 0.

(27)

VI. NUMERICAL RESULTS

In this section we present explicit numerical compar-
isons of the effects of threshold cusps due to mesons com-
pared to those due to δ-δ̄ pairs. But first, we make a few
comments about how best to present and interpret these
effects.

While it is rather suggestive to describe the attractive
cusp in Re Πi(s) at s = sth,i as a potential well that at-
tracts a bare pole to the threshold, it is important not to
be overly seduced by the analogy with a configuration-
space potential well, which always attracts a particle to
the vicinity of its minimum. The intuition one develops
for the cusp effect needs to be more nuanced. In fact,
the entire portion of the cusp over which ReΠi(s) is pos-
itive and appreciable in magnitude provides a source of
attraction for the pole. For example, even if the bare
pole mass sits exactly at M0 =

√
sth,i, the cusp can drive

the pole mass to a value slightly larger than
√
sth,i; such

an effect is visible in the results in Table II of Ref. [26].
The corrected pole mass Mpole is the pole of the propa-

gator, i.e., the zero of Eq. (1). As the physical resonance
pole first appears on the second Riemann sheet, one must
take care to choose the sign corresponding to the correct
branch in the self-energy function Πi(s). The effect of
the threshold cusp on the position of a pole can then be
described succinctly in terms of the dimensionless ratios
M0/
√
sth,i and Mpole/

√
sth,i. In light of the observation

that the whole profile of the cusp is active in dragging
M0 to Mpole, one expects that the cusp is most effec-
tive in dragging the pole if either the coupling gi to the

opening threshold is large, or the cusp function Re Πi(s)
is broad in s. The question of whether the mesonic or
diquark threshold cusp is more effective in pole dragging
thus comes down to these two criteria.

To exhibit the effectiveness of the cusp numerically,
we first superimpose two plots in Fig. 2. The first is a
sample (diquark) cusp πi(s) with gi = 0.370 GeV and√
sth,i = 3.872 GeV, which uses the abscissa x ≡ s/sth,i.

Its peak is normalized at threshold (x = 1) to match that
of the second plot, which uses the abscissa x ≡M0/

√
sth,i

and an ordinate that gives a measure of the effectiveness
of the cusp in dragging the pole, chosen to be

y ≡ Mpole −M0√
sth,i

, (28)

The pole-dragging function y very closely follows the
shape of the cusp, but does not precisely match it. Qual-
itatively, this result means that the cusp does indeed at-
tract the pole over a significant range of M0/

√
sth,i. To

consider the effect more carefully, we characterize regions
of the plot:

1.
M0√
sth,i

<
Mpole√
sth,i

< 1:

attraction of below-threshold pole toward sth,i;

2.
M0√
sth,i

< 1 <
Mpole√
sth,i

:

attraction of below-threshold pole past sth,i;

3. 1 <
M0√
sth,i

<
Mpole√
sth,i

:

repulsion of above-threshold pole from sth,i;

4. 1 <
Mpole√
sth,i

<
M0√
sth,i

:

attraction of above-threshold pole toward sth,i.

The other two possibilities, i.e., repulsion of a below-
threshold pole from sth,i and attraction of an above-
threshold pole past sth,i, do not occur for cusp functions
of the types considered here. The interesting possibility
(Region 2) mentioned above, of the cusp causing a below-
threshold pole to overshoot threshold, is represented in
Fig. 2 as the sliver of the plot between the line 1− x and
the vertical line x = M0/

√
sth,i = 1. At these input val-

ues, the peak of the pole-dragging function y lies slightly
below the peak of the cusp function (at x = 1), but still
above the dividing line 1− x, so that Region 2 has a fi-
nite extent. Equally interesting is Region 3, between the
lines x = 1 and where y = 0, in which the bare pole
M0 lies near threshold but is repelled by it nonetheless.
Both of these effects are caused by the continuing attrac-
tion (to larger s values) of the cusp beyond sth,i. From
Fig. 2, one sees that the most effective dragging of the
pole (the maximum of y) falls very close to the dividing
line y = 1− x, which is the point where Mpole =

√
sth,i.
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FIG. 2: A sample threshold cusp (solid, green) using the di-
quark form presented in Sec. V B, plotted as a function of
x ≡

√
s/sth,i. Its peak normalization is chosen to match

that of the overlaid (dashed, red) pole-dragging effect of
this cusp, y ≡ (Mpole − M0)/

√
sth,i, with gi = 0.370 GeV

and
√
sth,i = 3.872 GeV, and plotted as a function of a

second abscissa x ≡ M0/
√
sth,i. Also plotted is the line

y = 1− x ≡ 1−M0/
√
sth,i (dotted, blue) dividing Regions 1

and 2, as defined in the text.

We now turn to a direct comparison between the pole-
dragging efficiency of diquark and mesonic cusps, which
are chosen to have the same value of sth,i. Of course,
the presence of a cusplike structure not coinciding with a
known mesonic threshold could suggest the presence of a
distinct diquark threshold, possibly mixed with a δ-δ̄ res-
onance as discussed here, or even a heretofore unknown
q̄q resonance; and even in the case that a meson and di-
quark threshold coincide or overlap, the shape of their
combined effect would be distinct from that of a meson
threshold alone. For the diquark form, the only free pa-
rameters are the coupling constant gi and the bare pole
mass as a multiple of threshold, M0/

√
sth,i. The mesonic

cusp, on the other hand, contains the additional free pa-
rameter βi indicative of a typical hadronic scale, which
should assume roughly the same ≈ 0.5–1.0 GeV value
for any hadronic system; alternately, it can be expressed
[Eq. (18)] as the dimensionless combination µi, which
changes from system to system depending on the value
of sth,i.

In Fig. 3 we compare the pole-dragging effectiveness
parameter y of Eq. (28) as a function of x ≡ M0/

√
sth,i

for the choice
√
sth,i = mD0+mD∗0 = 3.872 GeV relevant

to the X(3872). The diquark pole-dragging plot is identi-
cal to that in Fig. 2 (it is the dashed curve there), where

FIG. 3: Comparison of the effectiveness of pole dragging by
cusps [y of Eq. (28)] as a function of x ≡M0/

√
sth,i, as created

by diquark (solid, green) and meson (dashed, red) thresholds.
The values of βi (in GeV) corresponding to the mesonic plots,
in increasing width of the profile (or darkness of the shading),
are 0.5, 0.8, 1.1, 1.4, and 1.7. The mesonic plots are scaled to
the same cusp height, in the manner discussed in the text.

it corresponds to gi,diquark = 0.370 GeV. The mesonic
pole-dragging plots are presented for several values of βi.
Since, as discussed below, the values of gi,diquark are cho-
sen to scale with gi,meson so that the diquark and mesonic
cusp functions have the same height in each case, and
since the absolute height of each mesonic pole-dragging
curve changes with βi, one should really view Fig. 3 as a
family of plots: a diquark and a mesonic curve for each
value of βi. The diquark plots inherit βi dependence only
through this scaling. The diquark and mesonic plots give
the indicated value of y only for βi = 1 GeV (where
gi,meson = 0.474 GeV), and both would be proportion-
ally larger (smaller) for βi > 1 GeV (< 1 GeV). How-
ever, for fixed

√
sth,i the diquark curves have a fixed

shape, and hence are scaled to the single (solid) curve
in Fig. 3, while the mesonic curves become broader as βi
grows. They increase monotonically in width (and hence
in pole-dragging effectiveness) as a function of βi, achiev-
ing near-parity with the diquark curve at βi = 1.7 GeV.
However, such a large value seems inconsistent with that
expected from ordinary hadronic matter; if one limits to,
e.g ., values βi = 1.1 GeV or less, then the mesonic curves
are much narrower than the diquark ones scaled to the
same height, and hence mesonic thresholds do not drag
resonant poles as effectively as diquark thresholds.

However, this very interesting result is also dependent
upon the absolute size sth,i of threshold. One expects
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the same range of βi values to occur due to hadronic
confinement physics, but the mesonic plots depend upon
the dimensionless combination µi of Eq. (18). In the
case of the KK threshold studied in Ref. [26],

√
sth,i =

0.991 GeV, while for the studies of Zb states in Ref. [29],
the threshold is

√
sth,i = mB +mB∗ = 10.604 GeV.

One must also take into account the chosen size for the
coupling constant gi. In Fig. 3, the same cusp function
peak value is used for both diquark and meson forms. Of
course, no diquark pair production coupling constant has
ever been measured experimentally; however, as noted in
the Introduction, the fundamental strength of the color
interaction between a qq pair forming a 3̄ is fully half
as strong as that between a q̄q pair forming a 1, so it is
reasonable to take the diquark and meson gi values to
be comparable in size. In the plot captions, gi,meson is
the given numerical value, and gi,diquark is derived from
normalizing the peak of its cusp function to match that of
the mesonic form; this ratio is computed using the values
of πi(sth,i) in Eqs. (21) and (27).

Furthermore, the coupling gi corresponds to the cre-
ation of hadrons containing heavy quarks of species Q
(s for KK, c for DD̄∗, b for BB̄∗), and therefore is
proportional to the decay constant fQ, which is known
from heavy-quark effective theory to scale in terms of the
heavy-quark mass mQ as 1/

√
mQ. In turn, the relevant

thresholds scale as
√
sth,i ∼ mQ, so that gi ∼ (sth,i)

−1/4.
The means by which all given coupling constants gi,meson

are given is therefore

g2
i = g2

KK̄

√
sth,KK̄

sth,i
, (29)

with g2
KK̄

= 0.875 GeV2, an example given in Ref. [26].
Clearly, one may dispute treating the s quark as heavy,
the accuracy of using

√
sth,i in place of mQ, or indeed the

scaling of diquark and meson cusp functions to have the
same peak height. However, all of these issues may be
adjusted to match one’s prejudices by including appropri-
ately chosen O(1) correction coefficients. Our prescrip-
tions are designed to make direct comparisons between
the forms as clear as possible.

In Figs. 4, 5, and 6 we compare the pole-dragging ef-
fectiveness parameter y obtained for diquark thresholds,
alongside the mesonic form with the KK, DD̄∗, and BB̄∗

thresholds, respectively, each with βi = 1.0 GeV. One
sees that the KK mesonic curve is much wider than the
diquark curve, while the DD̄∗ and BB̄∗ mesonic curves
are much narrower. We infer that the presence of a δ-δ̄
threshold is more effective in dragging a resonant pole
for heavy-quark systems, and the two-meson threshold is
more effective in dragging a resonant pole for light-quark
systems.

But several other interesting results follow from Figs. 4,
5, and 6. First, the maximum height of the pole-dragging
function y is much larger in the KK case than in the
DD̄∗ or BB̄∗ cases, for either diquark or mesonic forms.
Even taking into account the larger value of

√
sth,i for the

FIG. 4: Comparison of the effectiveness of pole dragging
by cusps [y of Eq. (28)] as a function of x ≡ M0/

√
sth,i,

from the diquark cusp (solid, green) and from the mesonic
cusp (dashed, red) chosen to have βi = 1.0 GeV. Here,√
sth,i = 0.991 GeV, and gi,diquark = 1.348 GeV, while

gi,meson = 0.935 GeV to give the diquark and meson cusp
functions the same height.

FIG. 5: As in Fig. 4, except with
√
sth,i = 3.872 GeV, and

gi,diquark = 0.370 GeV, while gi,meson = 0.474 GeV to give the
diquark and meson cusp functions the same height. This case
can be compared directly to that with β = 1 GeV in Fig. 3.
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FIG. 6: As in Fig. 4, except with
√
sth,i = 10.604 GeV, and

gi,diquark = 0.136 GeV, while gi,meson = 0.286 GeV to give the
diquark and meson cusp functions the same height.

latter cases, the absolute size of the maximal pole drag-
ging is larger for the lighter cases; to wit, the numbers
are about 200 MeV, 4.3 MeV, and 0.2 MeV, respectively.
Some, but not all, of this decreased effectiveness can be
attributed to the decrease of gi via heavy-quark scaling
given by Eq. (29). Indeed, for a fixed value of sth,i, the
relative size of the pole-dragging effect y is found empiri-
cally to scale approximately as g2

i ; clearly, the magnitude
of
√
sth,i matters as well. In a related effect, the location

of the peak in y travels a greater distance from thresh-
old for lighter systems, and it is somewhat larger for the
mesonic than the diquark effect, even when the cusp func-
tions themselves have the same peak height. However,
one should not conclude from these facts that the cusp
effect is intrinsically less effective for heavy-quark sys-
tems; indeed, a number of the mass splittings between
heavy hadrons scale as 1/mQ, so a full analysis would
require one to take into account values of M0 that lie
naturally closer to

√
sth,i.

VII. DISCUSSION AND CONCLUSIONS

We have performed the first analysis of the cusp ef-
fect due to the opening of diquark-antidiquark thresh-
olds by using constituent counting rules to model their
production form factor. We directly compared our re-
sults to those obtained from employing a frequently-used
phenomenologically-based meson form factor, and found
that the magnitude of the pole-dragging effect is greater

in both relative and absolute terms for lighter systems
(KK vs. DD̄∗ or BB̄∗). We also found that the effect
due to mesonic cusps is larger than that due to diquark
cusps for the KK threshold, while the diquark cusp effect
is stronger for DD̄∗ or BB̄∗ thresholds.

This calculation is of course an idealization, in that
only one threshold is present in each example; in real-
ity, several thresholds, each with its own strength and
contributing with different signs (due to the different
Riemann sheets) are simultaneously present and all con-
tribute to the total effect. Furthermore, this calculation
assumes, for maximum clarity of comparison, that the
coupling constants for the diquark and mesonic cases give
cusp functions of the same height, and that the coupling
constants scale with the thresholds according to expec-
tations from heavy-quark effective theory. Any of these
approximations can be relaxed in a more detailed analy-
sis.

The central conclusion, however, is that if δ-δ̄ states
exist in the spectrum of QCD, then the opening of their
production thresholds produce measurable shifts in the
masses of resonances, which must be taken into account
in precisely the same way as shifts appearing due to the
opening of meson production thresholds. The cusp effect
appears to promise a rich source of new physical effects.
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Appendix: Expressions for Unequal Masses

In the case m1,i 6= m2,i, let us define

m ≡ 1

2
(m1,i +m2,i) ,

δ ≡ 1

2
(m1,i −m2,i) ,

ε ≡ δ2

m2
, (A.1)

and henceforth suppress the index i. Note that sth,i =
4m2. The kinematical variables are, in analogue to
Eqs. (3) and (7),

ρ =
2k√
s

=

√(
1− 4m2

s

)(
1− 4δ2

s

)
, (A.2)

and its inverse reads

s =
2m2

1− ρ2
(1 + ε)(1 + h) , (A.3)
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written in terms of the auxiliary variable

h ≡

√
1− 4ε(1− ρ2)

(1 + ε)2
, (A.4)

which equals 1 in the equal-mass case ε = 0. Analogous
primed forms hold for s→ s′.

Then the generalization of Eq. (11) becomes

π(s) =
1

π
P

∫ 1

0

dρ′
ρ′ 2

h′
F 2(s′)(

1−ρ2
1+h −

1−ρ′ 2
1+h′

) , (A.5)

and that of Eq. (13) is

π(s) =

− 1

π

∫ 1

0

dρ′
[
F 2(s′) +

4m2ρ′ 2(1 + ε)(1 + h′)

(1− ρ′ 2)2h′
dF 2(s′)

ds′

]
× ln

∣∣∣∣(1− ρ2)− (1− ρ′ 2)
1 + h

1 + h′

∣∣∣∣ . (A.6)
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