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We present a global fit for αs(mZ), analyzing the available C-parameter data measured at
center-of-mass energies between Q = 35 and 207 GeV. The experimental data is compared to a
N3LL′ + O(α3

s) + Ω1 theoretical prediction (up to the missing 4-loop cusp anomalous dimension),
which includes power corrections coming from a field theoretical nonperturbative soft function.
The dominant hadronic parameter is its first moment Ω1, which is defined in a scheme which
eliminates the O(ΛQCD) renormalon ambiguity. The resummation region plays a dominant role
in the C-parameter spectrum, and in this region a fit for αs(mZ) and Ω1 is sufficient. We find
αs(mZ) = 0.1123 ± 0.0015 and Ω1 = 0.421 ± 0.063 GeV with χ2/dof = 0.988 for 404 bins of data.
These results agree with the prediction of universality for Ω1 between thrust and C-parameter within
1-σ.

I. INTRODUCTION

In order to study Quantum Chromodynamics (QCD)
accurately in the high-energy regime, it is useful to ex-
ploit the wealth of data from previous e+ e− colliders
such as LEP. Here the final states coming from the under-
lying partons created in the collisions appear as boosted
and collimated groups of hadrons known as jets. Event
shapes have proven to be very successful to study these
collisions quantitatively. They combine the energy and
momenta of all of the measured hadrons into an infrared-
and collinear-safe parameter which describes the geomet-
ric properties of the whole event by a single variable dis-
tribution. Due to their global nature event shapes have
nice theoretical properties, making it possible to obtain
very accurate theoretical predictions using QCD. Most
e+e− event shape variables quantify how well the event
resembles the situation of two narrow back-to-back jets,
called dijets, by vanishing in this limit. Because the dijet
limit involves restrictions that only allow collinear and
soft degrees of freedom for the final state radiation, such
QCD predictions involve a number of theoretical aspects
that go beyond the calculation of higher-order pertur-
bative loop corrections. These include factorization, to
systematically account for perturbative and nonpertur-
bative contributions, and the resummation of large log-
arithmic corrections by renormalization group evolution.
Comparisons of predictions for event shapes with experi-
mental data thus provide non-trivial tests of the dynam-
ics of QCD.

Due to the high sensitivity of event shapes to jets
induced by gluon radiation they are an excellent tool
to measure the strong coupling αs. For more inclusive
hadronic cross sections (like e+e− → hadrons) the αs de-
pendence is subleading because it only occurs in correc-
tions to a leading order term, while for event shapes the
αs dependence is a leading order effect. For this reason,
the study of event shapes for determining αs has a long
history in the literature (see the review [1] and work-
shop proceedings [2]), including recent analyses which

include higher order resummation and corrections up to
O(α3

s) [3–12].

Several previous high-precision studies which deter-
mine αs(mZ) [4, 5, 9–11] focus on the event shape called
thrust [13],

τ = 1− T = min
~n

(
1−

∑
i |~n · ~pi|∑
j |~pj |

)
, (1)

where ~n is called the thrust axis and 0 ≤ τ ≤ 1/2. An-
other event shape, known as C-parameter [14, 15], can
be written as:

C =
3

2

∑
i,j |~pi||~pj | sin

2 θij

(
∑
i |~pi|)

2 , (2)

where θij gives the angle between particles i and j. It
is straightforward to show that 0 ≤ C ≤ 1. In a pre-
vious paper [12] we computed the C-parameter distribu-
tion with a resummation of large logarithms at N3LL′

accuracy, including fixed order terms up to O(α3
s) and

hadronization effects using a field theoretic nonperturba-
tive soft function. These results were achieved by using
the Soft Collinear Effective Theory (SCET) [16–20]. Our
results for C are valid in all three of the peak, tail, and
far-tail regions of the distribution, and are the most ac-
curate predictions available in the literature, having a
perturbative uncertainty of ' 3% at Q = mZ for the re-
gion relevant for αs(mZ) and Ω1 fits. The same accuracy
was previously achieved for thrust, where the remaining
perturbative uncertainty in the τ distribution is ' 2% in
this region [9]. In this paper we make use of these new
C-parameter theoretical results [12] to carry out a global
fit to all available data, comparing the results with the
analogous global fit for thrust [9] where appropriate.

Since both τ and C vanish in the dijet limit, it is worth-
while to compare them in order to anticipate differences
that will appear in the analysis. Differences between C
and τ include:
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a) calculating τ requires identifying the thrust axis
with a minimization procedure, while C does not
involve a minimization;

b) τ has a single sum over particles while C has a
double sum;

c) the size of the nonperturbative region, where the
entire shape function is important, is larger for C
compared to τ due to an enhancement by a factor
of 3π/2;

d) the resummation region for C is larger than for
thrust since the logarithms appear as ln(C/6) com-
pared to ln(τ), which increases the range of C val-
ues that are useful for αs fits;

e) fixed-order predictions for the thrust cross sec-
tion are smooth across the threshold where non-
planar events first contribute, τ = 1/3, while the
fixed-order C-parameter cross section has an inte-
grable singularity at this threshold, Cshoulder = 3/4.
The singularity for C comes from the fact that
the leading order distribution is not continuous at
C = Cshoulder. (The C-distribution can be made
smooth here using LL resummation [21].)

A key similarity is that in the dijet limit (C, τ � 1) the
partonic cross sections for thrust and C-parameter are
related up to NLL by using τ = C/6 [22]. This relation
quantifies several qualitative relations between C and τ
in the dijet region.

Recent higher order event-shape analyses [4, 9–11] have
found values of αs(mZ) significantly lower than the world
average of αs(mZ) = 0.1185 [23] which is dominated by
the Lattice QCD determination [24]. This includes the
determination carried out for thrust at N3LL′+O(α3

s)
in Ref. [9]1, which is also consistent with analyses at
N2LL +O(α3

s) [11, 25] which consider the resummation
of logs at one lower order. In Ref. [26] a framework for a
numerical code with N2LL precision for many e+e− event
shapes was found, which could also be utilized for αs fits
in the future. In Ref. [9] it was pointed out that includ-
ing a proper fit to power corrections for thrust causes
a significant negative shift to the value obtained for
αs(mZ), and this was also confirmed by subsequent anal-
yses [11]. Recent results for αs(mZ) from τ -decays [27],
DIS data [28], the static potential for quarks [29], as well
as global PDF fits [30, 31] also find values below the
world average. With the new analysis we present here,

1 Note that results at N3LL require the currently unknown QCD
4-loop cusp anomalous, but conservative estimates show that
this has a negligible impact on the perturbative uncertainties.
Results at N3LL′ also technically require the unknown 3-loop
non-logarithmic constants for the jet and soft functions which
are also varied when determining our uncertainties, but these
parameters turn out to only impact the peak region which is
outside the range of our αs(mZ) fits in the resummation region.

we provide another event-shape determination of αs(mZ)
with this high level of precision. We will also simultane-
ously examine the leading power correction to the dis-
tribution, which should be universal between thrust and
C-parameter.

This paper is organized as follows. In Sec. II we review
the theoretical calculation of the C-parameter cross sec-
tion, presented in more detail in [12]. The details on the
experimental data and fit procedure used in our analysis
are given in Secs. III and IV. In Sec. V we present the
results of our fit for αs(mZ) and the first moment of the
nonperturbative soft function, ΩC1 . Fits which include
hadron mass effects are discussed in Sec. V E. In Sec. VI
we make predictions for the peak and far tail regions of
the distribution, which are not used in our fit, and com-
pare those regions to experimental data. The universal-
ity of Ω1 is discussed in Sec VII, where we compare our
results with the previous fit done using thrust in [9]. Fi-
nally, Sec. VIII contains our conclusions. We also include
three appendices. The first, App. A, contains the formu-
lae needed to calculate the profile functions, the second
App. B contains results that support our choice for the
definition of the renormalon free Ω1 parameter to use for
C, and the third compares fit results for thrust with our
profiles and those from Ref. [9].

II. THEORY REVIEW

Until a few years ago, the theoretical uncertainties re-
lated to perturbative contributions as well as hadronic
power corrections were still larger than the experimen-
tal uncertainties. The situation on the theory side has
dramatically changed with the calculation of O(α3

s) cor-
rections [3, 7, 32–35], and the pioneering use of SCET to
obtain higher order perturbative corrections in [5], and
to obtain accurate predictions for the full spectrum and
a precision description of power corrections in [9]. In
this section we review the theoretical work behind our
calculation of dσ/dC, presented in Ref. [12].

SCET separates the physics occurring at the different
energy and momentum scales which are relevant to the
underlying jets whose properties are characterized by an
event shape. For the C-parameter distribution the rele-
vant scales are: (i) the hard scale µH , which is related
to the production of partons at short distances and is of
the order of the center of mass energy Q; (ii) the jet scale

µJ ∼ Q
√
C/6, which governs the formation and evolu-

tion of the jets; and (iii) the soft scale µS ∼ QC/6, which
is the scale of large angle soft radiation. All three scales
are widely separated in the dijet region C � 1, where
most of the events occur and where the distribution is
maximal. There is one function associated to each one of
these scales in the factorization theorem that describes
the dominant contribution of the C-parameter distribu-
tion in the dijet limit: (i) the hard function H (the mod-
ulus squared of the QCD to SCET matching coefficient),
which is common to all dijet event-shape factorization
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theorems; (ii) the jet function Jτ (given by matrix ele-
ments of quark fields with collinear Wilson lines), which
is common for C-parameter [12], thrust [9] and Heavy Jet
Mass (ρ) [8]; and (iii) the soft function SC̃ (defined by
a vacuum matrix element of purely soft Wilson lines),
which in general depends on the specific form of the
event shape. Whereas the former two are perturbative
(µH , µJ � ΛQCD), permitting the calculation of the hard
and jet functions as an expansion in powers of αs, the
soft function has perturbative corrections (µS � ΛQCD)
as well as nonperturbative contributions that need to be
accounted for (µS >∼ ΛQCD). Renormalization evolution
between the three scales µH , µJ , and µS sums up large
logarithms to all orders in perturbation theory. It turns
out that the soft function anomalous dimension for C and
τ are identical [12], providing a connection between these
two event shapes at every order of perturbation theory.
Only corrections related to non-logarithmic terms in their
soft functions, and the associated towers of logarithms,
differ between these two event shapes.

The soft function can be further factorized into a par-
tonic soft function ŜC̃ , calculable in perturbation theory,
and a nonperturbative shape function FC , which has to
be obtained from fits to data. In the strict MS scheme
this factorization was achieved in Refs. [36, 37]. (Ana-
lytic power corrections for the C-parameter distributions
have also been studied in other schemes and frameworks,
see e.g. Refs. [38–40].)

The treatment of hadronic power corrections greatly
simplifies in the tail of the distribution, defined by
QC � 3πΛQCD, where the shape function can be ex-
panded in an OPE. Here the leading power correction is
parametrized by ΩC1 , the first moment of the shape func-
tion. The main effect of this leading power correction
is a shift of the cross section, dσ̂(C)→ dσ̂(C − ΩC1 /Q).
Interestingly, this matrix element is related to the corre-
sponding one in thrust by

Ωτ1
2

=
ΩC1
3π
≡ Ω1 . (3)

This relation was first derived using dispersive models
with a single soft-gluon approximation in Refs. [40]. The
equality can actually be derived to all orders in QCD
just using quantum field theory [41], but ignoring hadron
mass effects [42]. These hadron mass effects can also
be formulated purely with quantum field theory opera-
tors [43]. Although they may in general give large cor-
rections, hadron mass effects turn out to violate Eq. (3)
at only the 2% level, which is well below the 15% level
determination of Ω1 that we will achieve here. When pre-
senting the results of our fits, we parametrize the power
correction using Ω1 defined in Eq. (3) to ease compari-
son with our previous analysis which determined this Ω1

based on thrust [9, 10].

A. Factorized Cross Section Formula

In order to understand the perturbative components
of the C-parameter cross section we make use of the
C-parameter factorization formula. To make the connec-
tion to thrust simpler we will often make use of functions

defined using the variable C̃ = C/6. For the perturbative
cross section we find [12]:

1

σ0

dσ̂s

dC
=
Q

6
H(Q,µ)

∫
ds Jτ (s, µ)SC̃

(
QC

6
− s

Q
, µ

)
. (4)

Here Jτ is the thrust jet function, obtained by the con-
volution of the two hemisphere jet functions, Jτ = J⊗J .
Jτ describes the collinear radiation in the direction of the
two jets. Its definition and expression up to O(α3

s) [44–
46] can be found in [5, 9]. The three loop non-logarithmic
coefficient of this jet function, j3, is not known, and we
vary it in our scans. The anomalous dimension of Jτ is
known at three loops, and can be obtained from Ref. [47].

The hard factor H contains short-distance QCD effects
and is obtained from the Wilson coefficient of the QCD-
SCET matching of the vector and axial vector currents.
The hard function is the same for all event shapes for
massless quarks, and its expression up to O(α3

s) [48–54],
can be found in [9]. The full anomalous dimension of H
is known at three-loops, O(α3

s) [49, 51, 55].
The soft function SC̃ describes wide angle soft radia-

tion between the two jets. It is defined as

SC̃(`, µ) =
1

NC
〈 0 |trY Tn̄Ynδ

(̀
− QĈ

6

)
Y †nY

∗
n̄ | 0 〉 , (5)

where Ĉ is an operator whose eigenvalues on physical
states correspond to the value of C-parameter for that

state: Ĉ|X〉 = C(X)|X〉. Since the hard and jet func-
tions are the same as for thrust, the anomalous dimen-
sion of the soft function has to coincide with the anoma-
lous dimension of the thrust soft function. Hence one
only needs to determine the non-logarithmic terms of
the C-parameter soft function. In Ref. [12] we computed

it analytically at one loop, sC̃1 = −π2CF /6, and used
EVENT2 to numerically determine the two-loop non-

logarithmic coefficient sC̃2 , with the result

sC̃2 = − 43.2 ± 1.0 . (6)

The three-loop non-logarithmic coefficient of the

C-parameter soft function, sC̃3 , is currently not known,
and we estimate it with a Padé approximation, assigning
a very conservative uncertainty. We vary this constant

in our scan analysis. The precise definitions of j3 and sC̃2
as well as sC̃3 can be found in Eqs. (A12) and (A10) of
Ref. [12], respectively.

In Eq. (4) the hard, jet and soft functions are evalu-
ated at a common scale µ. If fixed-order expressions are
used for these functions, then there is no scale choice that
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simultaneously minimizes the logarithms for these three
functions. One can instead renormalization-group evolve
from µ to the respective scales µH ∼ Q, µJ ∼ Q

√
C/6

and µS ∼ QC/6 at which the logs in each of H, Jτ , and
SC̃ are minimized, and only use fixed-order expressions
for these functions at these scales. In this way, large logs
of ratios of the scales are summed up in the renormaliza-

tion group evolution kernels UH , UτJ , and U C̃S :

1

σ0

dσ̂s

dC
=

Q

6
H(Q,µH)UH(Q,µH , µ)× (7)∫

dsds′ Jτ (s, µJ)UτJ (s− s′, µ, µJ)∫
dk U C̃S (k, µ, µS)SC̃

(
QC

6
− s

Q
− k, µS

)
.

The evolution kernels UH , UτJ and U C̃S resum the
large logarithms, ln(C/6), and explicit expressions can
be found in [12]. The only unknown piece in our resum-
mation of logarithms at N3LL order is the small con-
tribution from the four-loop cusp anomalous dimension,
Γcusp

3 , which we estimate using a Padé approximation and
conservatively vary in our analysis.

While Eq. (7) gives the part of the cross section that
is singular and non-integrable as C → 0, we also need to
include the integrable or nonsingular contribution. This
can be written as

1

σ0

dσ̂ns

dC
=

αs(µns)

2π
f1(C) (8)

+

(
αs(µns)

2π

)2[
f2(C) + β0 ln

(µns

Q

)
f1(C)

]
+

(
αs(µns)

2π

)3{
f3(C) + 2β0 ln

(µns

Q

)
f2(C)

+

[
β1

2
ln
(µns

Q

)
+ β2

0 ln2
(µns

Q

)]
f1(C)

}
+ O(α4

s) .

The functions f1(C), f2(C), and f3(C) were determined
in Ref. [12] using the fixed-order results at O(α1,2,3

s ) [3,
7, 32–35, 56–59]. The nonsingular cross section dσ̂ns/dC
is independent of the renormalization scale µ order-by-
order, and therefore we evaluate these pieces at the non-
singular scale µns, and vary this scale to estimate higher
order perturbative nonsingular corrections. The scale
variation of µns will be discussed further in Section II B.

The full partonic cross section is then given by

1

σ0

dσ̂

dC
=

1

σ0

dσ̂s

dC
+

1

σ0

dσ̂ns

dC
. (9)

Nonperturbative effects are included by convolving
Eq. (9) with a shape function:

1

σ0

dσ

dC
=

∫
dp

1

σ0

dσ̂

dC

(
C − p

Q

)
FC(p) . (10)

One important property of this shape function is that its
first moment encodes the leading power correction to our
cross section. In the MS scheme this moment is given by

Ω
C

1 ≡
∫

dk k FC(k) . (11)

Up to the normalization factors shown in Eq. (3) we
expect approximate universality between the Ω1 for
C-parameter and thrust. For the calculation of the cross
section, the shape function is expanded in a complete ba-
sis of functions obtained by an appropriate infinite-range
mapping of the Legendre polynomials [37], with the coef-
ficients chosen to maintain the first moment. For further
details on the implementation of the shape function for
C-parameter see [12]. We remove an O(ΛQCD) renor-
malon by using the Rgap scheme [60, 61], which intro-
duces a subtraction scale R into our formula, as well as
the model gap parameter ∆̄ and the perturbative scheme
change gap parameter δ(R,µS). Here, δ(R,µS) is given
by a perturbative series in αs(µS) whose mass dimension
is set by an overall factor of R, and which also contains
ln(µS/R) factors. The convolution with the shape func-
tion now becomes,

dσ

dC
=

∫
dp e−3π

δ(R,µs)
Q

∂
∂C

dσ̂

dC

(
C − p

Q

)
(12)

×FC
(
p− 3π∆̄(R,µS)

)
.

The final component of our cross section is properly
accounting for hadron mass effects following Ref. [43].
Hadron mass effects induce an additional series of
large perturbative logarithms which start at NLL,
αks lnk(µS/ΛQCD), and also break the exact universality
between ΩC1 and Ωτ1 given in Eq. (3). These effects are
accounted for by including dependence on the transverse
velocity, r ≡ p⊥√

p2⊥+m2
H

, in the nonperturbative matrix

elements (here, mH gives the non-zero hadron mass). In
particular, in the Rgap scheme the first moment of the
shape function is actually given by∫

dk k FC
(
k − 3π∆̄(R,µS)

)
= ΩC1 (R,µS) (13)

= 3π

∫ 1

0

dr gC(r) Ω1(R,µS , r) .

In the MS scheme the definition accounting for hadron
mass effects is the same as Eq. (13), but one sets ∆̄ = 0
and removes R as an argument for these parameters. Ac-
counting for both the the MS running due to hadron
masses and the R-evolution running in the Rgap scheme,
the evolution of the integrand on the right hand side of
Eq. (13) is given by,

gC(r) Ω1(R,µ, r) = gC(r)

[
αs(µ)

αs(µ∆)

]γ̂1(r)

Ω1(R∆, µ∆, r)

+ ∆diff(R∆, R, µ∆, µ, r) , (14)
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where R∆ and µ∆ give the initial scales where the func-
tion Ω1(R∆, µ∆, r) is defined. The perturbative evolution
kernel ∆diff gives the R and µ running for each value of
r. The function gC encodes the event shape dependence
of the hadron mass effects and γ̂1 gives the solution to
the one loop RGE for Ω1 with hadron masses derived
in Ref. [43]. Since the two- and three-loop r-dependent
anomalous dimensions are unknown, we do not treat the
logs generated by hadron mass effects to the same level
of precision. When hadron mass effects are accounted
for we always sum the associated logarithms at NLL. An
analogous formula to Eq. (14) also holds for the thrust
parameter Ωτ1 .

Combining all of these elements gives the complete
cross section. Note that we can resum to any order up to
N3LL′ and can choose to include or leave out the shape
function, renormalon subtraction and hadron mass ef-
fects. This flexibility allows us to see how the analysis
changes when we take into account each of these addi-
tional physical considerations and enables us to test how
robust the fits are to various changes in the theoretical
treatment.

B. Profile Functions

In order to smoothly transition between the nonpertur-
bative, resummation, and fixed-order regions we make
use of profile functions µi(C) for the renormalization
scales µH , µJ(C), µS(C), R(C), and µns(C). In the three
C regions, the requirements on the scales which properly
deal with large logarithms, nonperturbative effects, and
the cancellations between singular and nonsingular con-
tributions in the fixed order region are

1) nonperturbative: C <∼ 3πΛQCD

µH ∼ Q, µJ ∼
√

ΛQCDQ, µS∼R∼ΛQCD ,

2) resummation: 3πΛQCD � C < 0.75 (15)

µH ∼ Q, µJ ∼ Q
√
C

6
, µS∼R∼

QC

6
� ΛQCD ,

3) fixed-order: C > 0.75

µns = µH = µJ = µS = R ∼ Q� ΛQCD .

In addition we take the fixed order nonsingular scale
µns ∼ µH in the nonperturbative and resummation re-
gions. Our profile functions µi(C) satisfy these con-
straints, and provide continuous and smooth transitions
between these C regions. The resummed perturbative
cross section is independent of O(1) variations in all
renormalization scales order-by-order in the logarithmic
resummation. Therefore the dependence on parameters
appearing in the profile functions gets systematically
smaller as we go to higher orders, and their variation
provides us with a method of assessing perturbative un-
certainties.

For the hard renormalization scale we use the C-

independent formula

µH = eH Q , (16)

where eH is a parameter that we vary from 0.5 to 2 in
order to account for theory uncertainties.

The soft scale has different functional dependence in
the three regions of Eq. (15), and hence depends on the
following parameters:

µS = µS(C, µ0, rs, µH , t0, t1, t2, ts). (17)

Here, µ0 controls the intercept of the soft scale at C = 0,
t0 is near the boundary of the purely nonperturbative
region and t1 controls the end of this transition, where
the resummation region begins. The transition from non-
perturbative to perturbative is Q dependent, so we use
the Q-independent parameters n0 ≡ t0Q/(1 GeV) and
n1 ≡ t1Q/(1 GeV). In the resummation region the pa-
rameter rs determines the slope of the soft scale rela-
tive to the canonical resummation region scaling, with
µS = rsµHC/6. The parameter t2 controls where the
transition occurs between the resummation and fixed-
order regions and ts sets the value of C where the renor-
malization scales all become equal as required in the
fixed-order region. For the jet scale we have the depen-
dence

µJ = µJ(µH , µS(C), eJ) , (18)

where eJ is a parameter that is varied in our theory scans
to slightly modify the natural relation between the scales.
The exact functional form for µS and µJ in Eqs. (17) and
(18) is given in App. A.

To avoid large logarithms in the soft function subtrac-
tions in δ, the scale R(C) is chosen to be the same as
µS(C) in the resummation and fixed-order regions. In the
nonperturbative region we need R(C) < µS(C) to obtain
an O(αs) subtraction that stabilizes the soft function in
this region (removing unphysical negative dips that ap-
pear in the MS scheme). This introduces an additional
parameter R0 = R(C = 0). Therefore we have

R = R(µS(C), R0). (19)

The exact functional form for R is also given in App. A.
For the nonsingular scale µns, we use the variations

µns(C) =


1
2

[
µH(C) + µJ(C)

]
, ns = 1

µH , ns = 0
1
2

[
3µH(C)− µJ(C)

]
, ns = − 1

. (20)

Here the three choices vary µns in a manner that allows
it to have some independence from µH in the resumma-
tion and nonperturbative regions, while still being equal
µH in the fixed order region (where µJ = µH). These
variations of µns probe the higher order fixed-order un-
certainty in the nonsingular cross section contribution. In
the fixed-order region the variation of µH alone precisely
reproduces the standard fixed order scale variation.
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parameter default value range of values

µ0 1.1 GeV -

R0 0.7 GeV -

n0 12 10 to 16

n1 25 22 to 28

t2 0.67 0.64 to 0.7

ts 0.83 0.8 to 0.86

rs 2 1.78 to 2.26

eJ 0 − 0.5 to 0.5

eH 1 0.5 to 2.0

ns 0 − 1, 0, 1

Γcusp
3 1553.06 − 1553.06 to + 4659.18

sC̃2 − 43.2 − 44.2 to − 42.2

j3 0 − 3000 to + 3000

sC̃3 0 − 500 to + 500

εlow
2 0 − 1, 0, 1

εhigh
2 0 − 1, 0, 1

εlow
3 0 − 1, 0, 1

εhigh
3 0 − 1, 0, 1

TABLE I. C-parameter theory parameters relevant for esti-
mating the theory uncertainty, their default values and range
of values used for the theory scan during the fit procedure.
The last four parameters control the statistical errors induced
by fit functions used in the non-singular terms at O(α2

s) (εlow
2

and εhigh
2 ) and O(α3

s) (εlow
3 and εhigh

3 ) in the region below (εlow
2

and εlow
3 ) and above (εhigh

2 and εhigh
3 ) the shoulder, see Sec. V

of Ref. [12].
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FIG. 1. Bands for the profile functions for the renormalization
scales µH , µJ(C), µS(C) when varying the profile parameters.

The details of the variations of the profile function pa-
rameters used to assess uncertainties are given in Tab. I.
The plot in Fig. 1 shows how the scales vary with the
changes to our C-parameter profile parameters. The
vertical arrow on the hard scale indicates the overall
up/down variation, which causes a variation to all the

parameter default value range of values

µ0 1.1 GeV -

R0 0.7 GeV -

n0 2 1.5 to 2.5

n1 10 8.5 to 11.5

t2 0.25 0.225 to 0.275

ts 0.4 0.375 to 0.425

rs 2 1.77 to 2.26

eJ 0 − 1.5 to 1.5

eH 1 0.5 to 2.0

ns 0 − 1, 0, 1

j3 0 − 3000 to + 3000

sτ3 0 − 500 to + 500

ε2 0 − 1, 0, 1

ε3 0 − 1, 0, 1

TABLE II. Thrust theory parameters relevant for estimating
the theory uncertainty, their default values and range of values
used for the theory scan during the fit procedure. The last
two parameters control the statistical errors induced by fit
functions used in the non-singular terms at O(α2

s) (ε2) and
O(α3

s) (ε3), see Sec. E of Ref. [9].

scales. Also shown (in gray) are plots of the canonical

soft scale QC/6 and canonical jet scale Q
√
C/6. In the

resummation region, these correspond fairly well with the
profile functions, indicating that in this region our anal-
ysis will avoid large logarithms. As discussed in detail in
Ref. [12], to improve the convergence of the C-parameter
cross sections we take rs = 2 as our default slope parame-
ter, explaining why our soft and jet scales are larger than
the canonical values in Fig. 1 (by a factor that itself does
not induce further large logs). In the analysis of Sec. V,
we will see how varying each of these profile parameter
affects our final fit results.

For the numerical analyses carried out in this work
we have created within our collaboration two completely
independent codes. One code within Mathematica [62]
implements the theoretical expressions exactly as given
in Ref. [12], and another code is based on theoretical for-
mulae in Fourier space and realized as a fast Fortran [63]
code suitable for parallelized runs on computer clusters.
These two codes agree for the C-parameter distribution
at the level of 10−6.

We will also repeat the thrust fits of Ref. [9], imple-
menting the same type of profile functions used here.
These profiles have several advantages over those in
Ref. [9], including a free variable for the slope, a flat
nonperturbative region, and parameters whose impact
is much more confined to one of the three regions in
Eq. (15). For the thrust profiles we redefine rs → 6 rs,
which eliminates the factors of 6 in Eqs. (A1) and (A4).
This way, the canonical choice of slope is rs = 1 for both
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C-parameter and thrust. We use rs = 2 as our default for
thrust as well, again to improve the perturbative conver-
gence, as discussed in Ref. [12]. The profile parameters
for thrust and their variations are summarized in Tab. II.
These choices create profiles that are very similar to those
used in [9]. The new fit results for thrust are fully com-
patible with those of Ref. [9] in the resummation region
used for the αs fits. They do give a better description
in the nonperturbative region which is outside of our fit
range.

C. Hadron mass effects

In Ref. [43] it was shown that hadron mass effects,
apart from breaking the universality properties of the
leading power correction for various event shapes, also
induce a nontrivial running. Since these are single loga-
rithms, they start at NLL order. In Ref. [43] the corre-
sponding leading anomalous dimension was determined,
which yields the NLL resummation of larger logs between
the scales µS and ΛQCD for a large set of event shapes.
The pieces necessary for a higher order resummation have
not yet been computed. One might be worried that ac-
counting for only the NLL running for Ω1 in an expression
as accurate as N3LL in cross section logs could be inade-
quate, or that it could leave significant perturbative un-
certainties. However, one should recall that the hadronic
parameter Ω1 itself is a correction, and hence it is valid to
account for the related resummation with less precision.
In this section we show that the Ω1 evolution at NLL or-
der suffices for the precision of our N3LL′ +O(α3

s) anal-
ysis. Indeed, it turns out that the effect of the hadron
mass running on the fit outcome is very small as com-
pared to other uncertainties, and therefore can be safely
neglected.

For our C-parameter analysis the implementation of
hadron mass running effects has been explained at length
in Ref. [12], and we only summarize here the most rele-
vant aspects needed to understand the fit results. In the
MS scheme the leading power correction can be written
as an integral of a universal hadron function, Ω1(µ, r),
common to all event shapes

Ω
e

1 (µ) = ce

∫ 1

0

dr ge(r) Ω1(µ, r) , (21)

where r is the transverse velocity, e denotes a specific
event shape, ce is a calculable normalization factor, and
ge(r) is an event-shape dependent function encoding the
hadron mass effects. The functions ge(r) are known ana-
lytically, and specific examples can be found in Ref. [43].
For C-parameter cC = 3π, while for thrust cτ = 2. For
the simple case of the MS scheme the running between
the initial reference scale µ0 where the universal hadron
function is specified, and the soft scale µS , is given at

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

r

3 Π gC HrLW1 HRD,ΜD, rL

W1
C HRD,ΜDL

Θ = 0

Θ =
Π

4

Θ =
Π

2

Θ =
3 Π

4

FIG. 2. Plots of the r dependence of gC(r) Ω1(R∆, µ∆, r) for
different values of θ(R∆, µ∆). We normalize to ΩC1 (R∆, µ∆),
since it is simply an overall multiplicative factor.

leading order by

Ω1(µS , r) = Ω1(µ0, r)

[
αs(µS)

αs(µ0)

]γ̂1(r)

, (22)

with γ̂1(r) = 2CA
β0

ln(1−r2). The corresponding evolution

formula for the Rgap scheme is considerably more com-
plex, as shown by the form displayed in Eq. (14) above.
Ensuring that the renormalon is not reintroduced by the
renormalization group evolution requires an additional
evolution in the scale R, so ∆diff(R∆, R, µ∆, µ, r) con-
tains evolution in both the µ and R scales. Also here we
have two reference scales µ∆ and R∆ to specify the ini-
tial parameter Ω1(R∆, µ∆, r). The full formula for ∆diff

is given in Eq. (67) of Ref. [12].
Note that the renormalization group evolution is a

function of r and takes place independently for each r,
but the required result for C-parameter or thrust requires
an integral over r. Due to this integration the functional
form that we assume for the initial condition Ω1(r, µ0)
or Ω1(R∆, µ∆, r) gets entangled with the perturbative
resummation.

With current constraints on the r dependence, and
with the lack of even more precise experimental data to
probe this issue, a model-independent formulation (like a
complete functional basis for the r dependence at the ref-
erence scales, R∆ and µ∆) is not feasible. To implement
this running we have therefore tested several models for
the r dependence in Ref. [12], and found that generically
the experimental data is sensitive to the normalization
which specifies Ω1, but not to the detailed form used for
the r dependence as long as it satisfies several reason-
able constraints. Therefore for the fits performed here
we simply adopt the default form from Ref. [12],

Ω1(R∆, µ∆, r) = [ a(R∆, µ∆)fa(r) + b(R∆, µ∆)fb(r) ]2,

fa(r) = 3.510 e
− r2

1−r2 , (23)
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fb(r) = 13.585 e
− 2 r2

1−r2 − 21.687 e
− 4 r2

1−r2 .

This model ensures that Ω1(R∆, µ∆, r) is always positive
definite and smoothly goes to zero at the r = 1 endpoint
(where the ratio of the hadron mass to pT goes to zero).
The functions fa,b form an orthonormal basis upon inte-
gration with gC(r), which yields the following relation:

ΩC1 (R∆, µ∆) = 3π [ a(R∆, µ∆)2 + b(R∆, µ∆)2 ] , (24)

which determines the normalization. We also define

θ(R∆, µ∆) ≡ arctan

(
b(R∆, µ∆)

a(R∆, µ∆)

)
, (25)

which was chosen to have an effect orthogonal to the
more relevant parameter ΩC1 (R∆, µ∆). By examining
our ability to simultaneously measure ΩC1 (R∆, µ∆) and
θ(R∆, µ∆) we have a means to test for the impact that
the initial r dependence has on our fits. As we can see
in Fig. 2, our model captures different behavior for the r
dependence of Ω1(R∆, µ∆, r) by choosing different values
of θ(R∆, µ∆). Over the interval r ∈ [0, 1], all the curves
in this figure are normalized so that they integrate to 1.

III. EXPERIMENTAL DATA

Data on the C-parameter cross section are given by
several experiments for a range of Q from 35 GeV to
207 GeV. We use data from ALEPH 2 with Q = {91.2,
133, 161, 172, 183, 189, 200, 206} GeV [64], DELPHI
with Q = {45, 66, 76, 89.5, 91.2, 93, 133, 161, 172, 183,
189, 192, 196, 200, 202, 205, 207} GeV [65–68], JADE
with Q = {35, 44} GeV [69], L3 with Q = {91.2, 130.1,
136.1, 161.3, 172.3, 182.8, 188.6, 194.4, 200.2, 206.2}GeV
[70, 71], OPAL with Q = {91, 133, 177, 197} GeV [72],
and SLD with Q = 91.2 GeV [73]. As each of these data
sets is given in binned form, our cross section in Eq. (12)
is integrated over each bin before being compared to the
data. The default range on C used in fitting the data is
25 GeV/Q ≤ C ≤ 0.7. A lower limit of 25 GeV/Q elimi-
nates the peak region where higher nonperturbative mo-
ments ΩCn>1 become important. The upper limit is cho-
sen to be 0.7 in order to avoid the far-tail region as well
as the Sudakov shoulder at C = 0.75. Any bin that con-
tains one of the end points of our range (C = 25 GeV/Q
or 0.7) is included if more than half of that bin lies within
the range. Using the default range and data sets gives a
total of 404 bins. As a further test of the stability of our
analysis, both this C-parameter range and the selection

2 The ALEPH dataset with Q = 91.2 GeV has two systematic
uncertainties for each bin. The second of these uncertainties
is treated as correlated while the first one is treated as an un-
correlated uncertainty and simply added in quadrature to the
statistical uncertainty.
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FIG. 3. Difference between the default cross section and the
cross section varying only one parameter. We vary αs(mZ)
by ± 0.001 (solid red), 2 Ω1 by ± 0.1 (dashed blue) and ΩC2
by ± 0.5 (dash dotted green). The three plots correspond
to three different center of mass energies: (a) Q = 35 GeV,
(b) Q = 91.2 GeV, (c) Q = 206 GeV.

of data sets is varied in the numerical analysis contained
in Sec. V.

In our fitting procedure, we consider both the sta-
tistical and systematic experimental uncertainties. The
statistical uncertainties can be treated as independent
between bins. The systematic experimental uncertain-
ties come from various sources and full documentation of
their correlations are not available, so dealing with them
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in our χ2 analysis is more complicated, and we have to use
a correlation model. For this purpose we follow the LEP
QCD working group [64, 72] and use the minimal overlap
model. Within one C-parameter dataset, which consists
of various C-parameter bins at one Q value for one ex-
periment, we take for the bin i, bin j off diagonal entry
of the experimental covariance matrix [min(∆sys

i ,∆sys
j )]2.

Here ∆sys
i,j are the quoted systematic uncertainties of the

bins i and j. Within each dataset, this model implies
a positive correlation of systematic uncertainties. In ad-
dition to this default model choice, we also do the fits
assuming uncorrelated systematic uncertainties, in order
to test whether the minimal overlap model introduces
any bias. See Sec. V B for more details on the correlation
matrix.

IV. FIT PROCEDURE

In order to accurately determine both αs(mZ) and the
leading power correction in the same fit, it is important
to perform a global analysis, that is, simultaneously fit-
ting C-spectra for a wide range of center-of-mass energies
Q. For each Q, effects on the cross sections induced by
changes in αs(mZ) can be partly compensated by changes
in Ω1, resulting in a fairly strong degeneracy. This is re-
solved by the global fit, just as in the thrust analysis of
Ref. [9]. Fig. 3 shows the difference between the theoret-
ical prediction for the cross section at three different val-
ues of Q, when αs(mZ) or Ω1 are varied by ± 0.001 and
± 0.05 GeV, respectively. It is clear that the potential
degeneracy in these parameters is broken by having data
at multiple Q values. In Fig. 3 we also vary the higher or-
der power correction parameter ΩC2 , which clearly has a
much smaller effect than the dominant power correction
parameter Ω1.

To carry out a fit to the experimental data we fix
the profile and theory parameters to the values shown
in Tab. I. The default values are used for our primary
theory cross section. We integrate the resulting theo-
retical distribution over the same C-parameter bins as
those available experimentally, and construct a χ2 func-
tion with the uncorrelated statistical experimental uncer-
tainties and correlated systematic uncertainties. This χ2

is a function of αs(mZ) and Ω1, and is very accurately
described by a quadratic near its global minimum, which
therefore determines the central values and experimental
uncertainties. The value of Ω1 and its associated uncer-
tainties encode the dominant hadronization effect as well
as the dominant residual uncertainty from hadronization.

To obtain the perturbative theoretical uncertainty we
consider the range of values shown for the theory parame-
ters in Tab. I. Treating each of these as a flat distribution,
we randomly generate values for each of these parameters
and then repeat the fit described above with the new χ2

function. This random sampling and fit is then repeated
500 times. We then construct the minimum ellipse that
fully contains all 500 of the central fit values by first cre-

ating the convex envelope that contains all of these points
within it. Then, we find the equation for the ellipse that
best fits the points on the envelope, with the additional
restrictions that all values lie within the ellipse and its
center is the average of the maximum and minimum val-
ues in each direction. This ellipse determines the per-
turbative theoretical uncertainty, which turns out to be
the dominant uncertainty in our fit results. In our final
results the perturbative and experimental uncertainties
are added in quadrature. This procedure is similar to
that discussed in the Appendix of Ref. [10].

V. RESULTS

In this section we discuss the results from our global
analysis. We split the presentation into several subsec-
tions. In Sec. V A we discuss the impact that resumma-
tion and the inclusion of power corrections have on the fit
results. In Sec. V B we present the analysis which yields
the perturbative uncertainty in detail, cross checking our
method by analyzing the order-by-order convergence. We
also analyze the impact of removing the renormalon. In
Sec. V C we discuss the experimental uncertainties ob-
tained from the fit. Section V D discusses the impact
that varying the theory parameters one by one has on
the best-fit points, allowing us to determine which pa-
rameters dominate the theoretical uncertainty. The im-
pact of hadron-mass resummation is discussed in detail in
Sec. V E. We examine the effects of changing the default
dataset in Sec. V F. The final fit results are collected in
Sec. V G. When indicating the perturbative precision,
and whether or not the power correction Ω1 is included
and at what level of precision, we follow the notation:

O(αks ) fixed order up to O(αks )

NkLL′+O(αks ) perturbative resummation

NkLL′+O(αks )+Ω1 MS scheme for Ω1

NkLL′+O(αks )+Ω1(R,µ) Rgap scheme for Ω1

NkLL′+O(αks )+Ω1(R,µ, r) Rgap scheme with

hadron masses for Ω1 .

A. Impact of Resummation and Power Corrections

In Fig. 4 we show αs(mZ) extracted from fits to the
tail of the C-parameter distribution including sequential
improvements to the treatment of perturbative and non-
perturbative components of our code, using the highest
perturbative accuracy at each stage. The sequence from
left to right shows the fit results using: O(α3

s) fixed or-
der results only, adding N3LL resummation, adding the
Ω1 power correction, adding renormalon subtractions and
using the Rgap power correction parameter Ω1(R∆, µ∆),
and adding hadron mass effects. These same results to-
gether with the corresponding χ2/dof are also collected
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Below error bars & ± ® perturbative error

All errors: ΑsHmZL = 0.1123 ± 0.0015OHΑs
3L fixed-order

0.1317 ± 0.0052

+ N
3LL' summation

0.1219 ± 0.0028
+ Power Correction

0.1117 ± 0.0016

+ R-scheme

0.1123 ± 0.0014
+ hadron mass effects

0.1119 ± 0.0013

0.110
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ΑsHmZL from global C-parameter tail fits

FIG. 4. The evolution of the value of αs(mZ) adding components of the calculation. An additional ∼ 8% uncertainty from not
including power corrections is not included in the left two points.

in Tab. III. The fit with only fixed order O(α3
s) results

has a relatively large χ2/dof and also its central value
has the largest value of αs(mZ). Including the resum-
mation of large logarithms decreases the central αs(mZ)
by 8% and also decreases the perturbative uncertainty
by ∼ 50%. Due to this smaller perturbative uncertainty
it becomes clear that the theoretical cross section has
a different slope than the data, which can be seen, for
example, at Q = mZ for 0.27 < C < 0.35. This leads
to the increase in the χ2/dof for the “N3LL′ no power
corr.” fit, and makes it quite obvious that power correc-
tions are needed. When the power correction parameter
Ω1 is included in the fit, shown by the third entry in
Tab. III and the result just to the right of the vertical
dashed line in Fig. 4, the χ2/dof becomes 1.004 and this
issue is resolved. Furthermore, a reduction by ∼ 50%
is achieved for the perturbative uncertainty in αs(mZ).
This reduction makes sense since some of the perturba-
tive uncertainty of the cross section is now absorbed in
Ω1, and a much better fit is achieved for any of the vari-
ations associated to estimating higher order corrections.
The addition of Ω1 also caused the fit value of αs(mZ) to
drop by another 8%, consistent with our expectations for
the impact of power corrections and the estimate made in
Ref. [12]. Note that the error bars of the first two purely
perturbative determinations, shown at the left hand side
of the vertical thick dashed line in Fig. 4 and the last two
entries in Tab. III, do not include the ∼ 8% uncertainties
associated with the lack of power corrections.

The remaining corrections we consider are the use of
the R-scheme for Ω1 which includes the renormalon sub-
tractions, and the inclusion of the log-resummation ef-
fects associated to the hadron mass effects. Both of these
corrections have a fairly small impact on the determi-

nation of αs(mZ), shifting the central value by +0.5%
and − 0.3% respectively. Since adding the − 0.3% shift
from the hadron mass corrections in quadrature with the
' 1.2% perturbative uncertainty does not change the
overall uncertainty we will use the R-scheme determi-
nation for our main result. This avoids the need to fully
discuss the extra fit parameter θ(R∆, µ∆) that appears
when hadron masses are included. Further discussion
of the experimental uncertainties and the perturbative
uncertainty from the random scan are given below in
Secs. V B and V D, and a more detailed discussion of
the impact of hadron-mass resummation is given below
in Sec. V E.

The values of Ω1 obtained from the fits discussed above
can be directly compared to the Ω1 power correction ob-
tained from the thrust distribution. Values for Ω1 from
the C-parameter fits are given below in Secs. V B and V D
and the comparison with thrust is considered in Sec. VII.

B. Perturbative Uncertainty from the Scan

To examine the robustness of our method of determin-
ing the perturbative uncertainty by the random scan, we
consider the convergence and overlap of the results at
different perturbative orders. Fig. 5 shows the spread of
best-fit values at NLL′, N2LL′ and N3LL′. The left panel,
Fig. 5(a), shows results from fits performed in the Rgap
scheme, which implements a renormalon subtraction for
Ω1, and the right-panel, Fig. 5(b), shows results in the
MS scheme without renormalon subtractions. Each point
in the plot represents the outcome of a single fit, and dif-
ferent colors correspond to different orders in perturba-
tion theory. Not unexpectedly, fits in the Rgap scheme
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FIG. 5. The first two panels show the distribution of best-fit points in the αs(mZ)-2Ω1 and αs(mZ)-2Ω1 planes. Panel (a)
shows results including perturbation theory, resummation of large logs, the soft nonperturbative function and Ω1 defined in
the Rgap scheme with renormalon subtractions. Panel (b) shows the results as in panel (a), but with Ω1 defined in the MS
scheme without renormalon subtractions. In both panels the dashed lines corresponds to an ellipse fit to the contour of the
best-fit points to determine the theoretical uncertainty. The respective total (experimental + theoretical) 39% CL standard
uncertainty ellipses are displayed (solid lines), which correspond to 1-σ (68% CL) for either one-dimensional projection. The
big points represent the central values in the random scan for αs(mZ) and 2 Ω1. Likewise, the two panels at the bottom
show the distribution of best-fit points in the αs(mZ)-χ2/dof plane. Panel (c) shows the χ2/dof values of the points given in
panel (a), whereas panel (b) shows the χ2/dof values of the points given in panel (b).

show generally smaller theory uncertainties.

In order to estimate correlations induced by theoreti-
cal uncertainties, each ellipse in the αs-2Ω1 plane is con-

structed following the procedure discussed in Sec. IV.
Each theory ellipse constructed in this manner is inter-
preted as an estimate for the 1-σ theoretical uncertainty
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αs(mZ) χ2/dof

N3LL′ + hadron 0.1119(13)(06) 0.991

N3LL′ with Ω1(R,µ) 0.1123(14)(06) 0.988

N3LL′ with Ω1 0.1117(16)(06) 1.004

N3LL′ no power corr. 0.1219(28)(02) 2.091

O(α3
s) fixed order

no power corr.
0.1317(52)(03) 1.486

TABLE III. Comparison of C-parameter tail fit results for
analyses when we add various components of the theoreti-
cal result (from the bottom to top). The first parentheses
gives the theory uncertainty, and the second is the experi-
mental and hadronic uncertainties added in quadrature for
the first three rows, and experimental uncertainty for the last
two rows.

order αs(mZ) (with Ω1) αs(mZ) (with Ω1(R∆, µ∆))

NLL′ 0.1071(60)(05) 0.1059(62)(05)

N2LL′ 0.1102(32)(06) 0.1100(33)(06)

N3LL′ (full) 0.1117(16)(06) 0.1123(14)(06)

TABLE IV. Central values for αs(mZ) at various orders with
theory uncertainties from the parameter scan (first value
in parentheses), and experimental and hadronic uncertainty
added in quadrature (second value in parentheses). The bold
N3LL′ value is our final result.

ellipse for each individual parameter (39% confidence for
the two parameters), and is represented by a dashed el-
lipse in Fig. 5. The solid lines represent the combined
(theoretical plus experimental) standard uncertainty el-
lipses at 39% confidence for two parameters, obtained
by adding the theoretical and experimental error matri-
ces from the individual ellipses, where the experimental
ellipse corresponds to ∆χ2 = 1. Fig. 5 clearly shows
a substantial reduction of the perturbative uncertainties
when increasing the resummation accuracy, and given
that they are 39% confidence regions for two parameters,
also show good overlap between the results at different
orders.

The results for αs(mZ) and Ω1 from the theory scan at
different perturbative orders are collected in Tabs IV and
V. Central values here are determined from the average
of the maximal and minimal values of the theory scan,
and are very close to the central values obtained when
running with our default parameters. The quoted per-
turbative uncertainties are one-parameter uncertainties.

In Tab. III above we also present αs(mZ) results with
no power corrections and either using resummation or
fixed-order perturbative results. Without power correc-
tions there is no fit for Ω1, so we take the central value
to be the average of the maximum and minimum value
of αs(mZ) that comes from our parameter scan. Our
estimate of the uncertainty is given by the difference be-
tween our result and the maximum fit value. For the
fixed order case, since there is only one renormalization

order Ω1 [GeV] Ω1(R∆, µ∆) [GeV]

NLL′ 0.533(154)(18) 0.582(134)(16)

N2LL′ 0.443(119)(19) 0.457(83)(19)

N3LL′ (full) 0.384(91)(20) 0.421(60)(20)

TABLE V. Central values for Ω1 at the reference scales
R∆ = µ∆ = 2 GeV and for Ω1 and at various orders. The
parentheses show first the theory uncertainties from the pa-
rameter scan, and second the experimental plus the uncer-
tainty due to the imprecise determination of αs (added in
quadrature). The bold N3LL′ value is our final result.

scale, we know that the uncertainties from our parame-

ter variation for eH , sC̃2 , εlow
2 and εlow

3 are uncorrelated.
So, we take the fit value for αs(mZ) with the default
parameters as our result and add the uncertainties from
variations of these parameter in quadrature to give the
total uncertainty.

An additional attractive result of our fits is that the ex-
perimental data is better described when increasing the
order of the resummation and fixed-order terms. This
can be seen by looking at the minimal χ2/dof values
for the best-fit points, which are shown in Fig. 5. In
Figs. 5(c) and 5(d) we show the distribution of χ2

min/dof
values for the various αs(mZ) best-fit points. Figure 5(c)
displays the results in the Rgap scheme, whereas Fig. 5(d)
shows the results in the MS scheme. In both cases we
find that the χ2

min values systematically decrease with
increasing perturbative order. The highest-order analy-
sis in the MS scheme leads to χ2

min/dof values around
unity and thus providing an adequate description of the
whole dataset, however one also observes that account-
ing for the renormalon subtraction in the Rgap scheme
leads to a substantially improved theoretical description
having χ2

min/dof values below unity essentially for all
points in the random scan. Computing the average of
the χ2

min values we find at N3LL′ order for the Rgap

and MS schemes 0.988 and 1.004, respectively (where the
spread of values is smaller in the Rgap scheme). Likewise
for N2LL′ we find 1.00 and 1.02, and for NLL′ we find
1.09 and 1.14. These results show the excellent descrip-
tion of the experimental data for various center-of-mass
energies. They also validate the smaller theoretical un-
certainties obtained for αs and Ω1 at N2LL′ and N3LL′

orders in the Rgap scheme.

C. Experimental Fit Uncertainty

Next we discuss in more detail the experimental un-
certainty in αs(mZ) and the hadronization parameter Ω1

as well as the combination with the perturbative uncer-
tainty done to obtain the total uncertainty.

Results are depicted in Fig. 6 for our highest order
fit including resummation, power corrections and renor-
malon subtractions. The inner green dotted ellipse,
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FIG. 6. Experimental ∆χ2 = 1 standard uncertainty ellipse
(dotted green) at N3LL′ accuracy with renormalon subtrac-
tions, in the αs - 2Ω1 plane. The dashed blue ellipse represents
the theory uncertainty which is obtained by fitting an ellipse
to the contour of the distribution of the best-fit points. This
ellipse should be interpreted as the 1-σ theory uncertainty for
1 parameter (39% confidence for 2 parameters). The solid
red ellipse represents the total (combined experimental and
perturbative) uncertainty ellipse.

blue dashed ellipse, and solid red ellipse represent the
∆χ2 = 1 uncertainty ellipses for the experimental, the-
oretical, and combined theoretical and experimental un-
certainties respectively. These ellipses correspond to the
one-dimensional projection of the uncertainties onto ei-
ther αs(mZ) or Ω1 (39% confidence ellipse for two param-
eters). The correlation matrix of the experimental, the-
ory, and total uncertainty ellipses are (for i, j = αs, 2 Ω1),

Vij =

(
σ2
αs 2σαsσΩ1ραΩ

2σαsσΩ1
ραΩ 4σ2

Ω1

)
, (26)

V exp
ij =

(
4.18(52) · 10−7 − 0.24(5) · 10−4 GeV

− 0.24(5) · 10−4 GeV 1.60(47) · 10−3 GeV2

)
,

V theo
ij =

(
1.93 · 10−6 − 0.27 · 10−4 GeV

− 0.27 · 10−4 GeV 1.45 · 10−2 GeV2

)
,

V tot
ij =

(
2.35(5) · 10−6 − 0.51(5) · 10−4 GeV

− 0.51(5) · 10−4 GeV 1.61(5) · 10−2 GeV2

)
.

Note that the theoretical uncertainties dominate by a sig-
nificant amount. The experimental correlation coefficient
is significant and reads

ρexp
αΩ = − 0.93(15) . (27)

The theory correlation coefficient is small, ρtheo
αΩ =

− 0.16, and since these uncertainties dominate it reduces
the correlation coefficient for the total uncertainty to

ρtotal
αΩ = − 0.26(2) . (28)

In both Eqs. (27) and (28) the numbers in parentheses
indicate a ± range that captures all values obtained from
the theory scan. The correlation exhibited by the green
dotted experimental uncertainty ellipse in Fig. 6 is given
by the line describing the semimajor axis

Ω1

30.84 GeV
= 0.1257− αs(mZ) . (29)

Note that extrapolating this correlation to the extreme
case where we neglect the nonperturbative corrections
(Ω1 = 0) gives αs(mZ) → 0.1257 which is consistent
with the 0.1219 ± 0.0028 result of our fit without power
corrections in Tab. III.

From V exp
ij in Eq. (26) it is possible to extract the

experimental uncertainty for αs(mZ) and the uncertainty
due to the imprecise determination of Ω1:

σexp
αs = σαs

√
1− ρ2

αΩ = 0.0002 ,

σΩ1
αs = σαs |ραΩ| = 0.0006 , (30)

and to extract the experimental uncertainty for Ω1 and
its uncertainty due to the imprecise determination of
αs(mZ):

σexp
Ω1

= σΩ1

√
1− ρ2

αΩ = 0.014 GeV ,

σαs

Ω1
= σΩ1 |ραΩ| = 0.037 GeV . (31)

The projections of the outer solid ellipse in Fig. 6
shows the total uncertainty in our final one-parameter
results obtained from V tot

ij , which are quoted below in
Eq. (34).

D. Individual Theory Scan Errors

To gain further insight into our theoretical precision
and in order to estimate the dominant source for theory
uncertainty from missing higher order terms, we look at
the size of the theory uncertainties caused by the indi-
vidual variation of each one of the theory parameters
included in our random scan. In Fig. 7 two bar charts
are shown with these results for αs(mZ) (left panel) and
Ω1(R∆, µ∆) (right panel) for fits corresponding to our
best theoretical setup (with N3LL′ accuracy and in the
Rgap scheme). The dark blue bars correspond to the
result of the fit with an upward variation of the given
parameter from Tab. I, while the light green bars corre-
spond to the fit result from the downward variation in
Tab. I. Here we vary a single parameter keeping the rest
fixed at their default values. We do not show parameters
that have a negligibly small impact in the fit region, e.g.
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FIG. 7. Variations of the best-fit values for αs(mZ) and Ω1 from up (blue) and down (green) variations for the theory parameters

according to Tab. I. We do not display those parameters which do not affect the fit region (εhigh
2 , εhigh

3 , µ0, R0, n0).

εhigh
2 and εhigh

3 , which only have an effect on the cross
section to the right of the shoulder, or n0, which only
affects the cross section in the nonperturbative region.

We see that the dominant theory uncertainties are re-
lated to variations of the profile functions (eH , rs, eJ , t2),
where eH is the largest source of uncertainty, and is par-
ticularly dominant for Ω1. The second most important
uncertainty comes from rs for αs and t2 for Ω1, and eJ
also has a significant effect on both parameters.

As expected, the parameters associated to the tran-
sitions on the sides of our fit region, n1 and ts, hardly
matter. The renormalization scale parameter ns for the
nonsingular partonic distribution dσ̂ns/dC also causes a
very small uncertainty since the nonsingular terms are
always dominated by the singular terms in our fit region.
The uncertainties related to the numerical uncertainties
of the perturbative constants (sC̃2 , sC̃3 , j3) as well as the
numerical uncertainties in the extraction of the nonsin-
gular distribution for small C values, (εlow

2 , εlow
3 ) are –

with the possible exception of j3 – much smaller and do
not play an important role. The uncertainty related to
the unknown 4-loop contribution to the cusp anomalous
dimension is always negligible. Adding quadratically the
symmetrized individual uncertainties shown in Fig. 7, we
find 0.0007 for αs and 0.05 for Ω1. This is about one
half of the theoretical uncertainty we have obtained by
the theory parameter scan for αs (or five sixths for Ω1),
demonstrating that incorporating correlated variations
through the theory parameter scan represents a more re-
alistic method to estimate the theory uncertainty.

E. Effects of Ω1 hadron-mass resummation

The fit results presented in the previous two sections
ignored the small hadron mass effects. These effects are
analyzed in greater detail in this section. We again per-
form 500 fits for a theory setup which includes N3LL′ ac-
curacy and a power correction in the Rgap scheme, but
this time it also includes hadron-mass induced running.

Since the impact of hadron mass effects is small, one
finds that the experimental data in the tail of the dis-
tribution is not accurate enough to fit for θ(R∆, µ∆) in
Eq. (25), in addition to αs(mZ) and Ω1(R∆, µ∆). This is
especially true because it enters as a small modification to
the power correction, which by itself is not the dominant
term. Indeed, fitting for a(R∆, µ∆) and b(R∆, µ∆) as de-
fined in Eq. (23) gives a strongly correlated determina-
tion of these two parameters. The dominant hadronic pa-
rameter ΩC1 (R∆, µ∆), which governs the normalization,
is still as accurately determined from data as the Ω1 in
Tab. V. However, the orthogonal parameter θ(R∆, µ∆) is
only determined with very large statistical uncertainties.
As discussed in Ref. [12], the specific value of θ(R∆, µ∆)
has a very small impact on the cross section, which is
consistent with the inability to accurately fit for it.

The results of our fit including hadron mass effects are

αs(mZ) = 0.1119± 0.0006exp+had ± 0.0013pert , (32)

Ω1(R∆, µ∆) = 0.411± 0.018exp+αs ± 0.052pert GeV .

Note that the meaning of Ω1(R∆, µ∆) here is different
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FIG. 8. Comparison of fits to the C-parameter tail distri-
bution with theory prediction which include/ignore hadron
mass effects (in red/blue). Although a direct comparison of
αs values is possible, one has to keep in mind that Ω1(µ∆, R∆)
has a different meaning once hadron mass running effects are
included.

from the case in which hadron-mass running effects are
ignored because there are extra evolution effects needed
to translate this value to that used in the cross section
at a given value of C, compared to the no hadron mass
case.

In Fig. 8 we compare the outcome of the 500 fits at
N3LL′ in the Rgap scheme. Results with hadron mass
effects give the red ellipse on the left, and without hadron
mass effects give the blue ellipse on the right. (The latter
ellipse is the same as the one discussed above in Sec. V B.)
The effects of hadron masses on αs(mZ) are to decrease
its central value by 0.3% and reduce the percent pertur-
bative uncertainty by 0.1%. Given that the total pertur-
bative uncertainties are 1.2%, these effects are not sta-
tistically significant. When studying the effect on Ω1

one has to keep in mind that its meaning changes when
hadron mass effects are included. Ignoring this fact we
observe that hadron masses shift the central value down-
wards by 2.4%, and reduces the percent theoretical un-
certainty by 1.6%. Again, given that the perturbative
uncertainty for Ω1 is 14%, this shift is not significant.

Since the theory uncertainties become slightly smaller
when hadron mass effects are incorporated, one could
use this setup as our default. However we take a more
conservative approach and consider the 0.3% shift on the
central value as an additional source of uncertainty, to
be added in quadrature to the hadronization uncertainty
already discussed in Sec. V B. This increases the value
of the hadronization uncertainty from 0.0006 to 0.0007,
and does not affect the total αs uncertainty. The main
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FIG. 9. Global fit results for different choices of
dataset, using our best theory setup at N3LL′ with
power corrections in the Rgap scheme. Considering
the central values from left to right, the data sets
read [Cmin, Cmax ]# of bins: [ 29/Q, 0.7 ]371, [ 22/Q, 0.75 ]453,
[ 23/Q, 0.7 ]417, [ 0.24, 0.75 ]403, [ 24/Q, 0.7 ]409, [ 25/Q, 0.7 ]404

(default), [ 25/Q, 0.6 ]322, [ 25/Q, 0.75 ]430, [ 27/Q, 0.7 ]386,
[ 25/Q, 0.65 ]349, [ 22/Q, 0.7 ]427. We accept bins which are at
least 50% inside these fit regions. The ellipses correspond to
total 1-σ uncertainties (experimental + theory) for two vari-
ables (αs and Ω1), which are suitable for a direct comparison
of the outcome of two-parameter fits. The best-fit points are
also shown.

reason we adopt this more conservative approach is that,
while well motivated, the ansatz that we take in Eq. (23)
is not model independent. We believe that this ansatz
serves as a good estimate of what the numerical effect of
hadron masses are, but should likely not be used for the
central fit until further theoretical insight on the form of
Ω1(r) is gained. We do not add an additional uncertainty
to Ω1 since hadron mass effects change its meaning and
uncertainties for Ω1 are large enough that these effects
are negligible.

In App. B we also consider fits performed using the
Rgap scheme with C-parameter gap subtractions, rather
than our default Rgap scheme with thrust gap subtrac-
tions. The two results are fully compatible. As discussed
in Ref. [12] the thrust gap subtractions give better per-
turbative convergence, and hence are used for our default
cross section.

F. Dataset dependence

In this section we discuss how much our results de-
pend on the dataset choice. Our default global dataset
accounts for all experimental bins for Q ≥ 35 GeV in the
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intervals [Cmin, Cmax ] = [ 25/Q, 0.7 ], (more details are
given in Sec. III). The upper limit in this range is moti-
vated by the fact that we do not want to include data too
close to the shoulder, since we do not anticipate having
the optimal theoretical description of this region. The
lower limit avoids including data too close to the non-
perturbative region, which is near the cross section peak
for Q = mZ , since we by default only include the leading
power correction Ω1 in the OPE expansion of the shape
function. To consider the impact of this dataset choice
we can vary the upper and lower limits used to select the
data.

In Fig. 9 the best fits and the respective total exper-
imental + theory 68% CL uncertainty ellipses (for two
parameters) are shown for global datasets based on dif-
ferent choices of data ranges. The result for our default
global dataset is given in red color, with a thicker, dashed
ellipse. In the caption of Fig. 9 the data ranges and the
number of bins are specified for each one of the plotted
ellipses.

Interestingly all uncertainty ellipses have very similar
correlation and are lined up approximately along the line

Ω1

41.26 GeV
= 0.1221− αs(mZ) . (33)

As expected, the results of our fits depend only weakly
on the C range and the size of the global data sets, as
shown in Fig. 9. The size and tilt of the total uncer-
tainty ellipses is very similar for all data sets (with the
exception of [ 22/Q, 0.7 ], which clearly includes too much
peak data). Since the centers and the sizes of the uncer-
tainty ellipses are fully statistically compatible at the 1-σ
level, this indicates that our theory uncertainty estimate
at N3LL′ really reflects the accuracy at which we are
capable of describing the different regions of the spec-
trum. Therefore a possible additional uncertainty that
one could consider due to the arbitrariness of the dataset
choice is actually already represented in our final uncer-
tainty estimates.

G. Final Results

As our final result for αs(mZ) and Ω1, obtained at
N3LL′ order in the Rgap scheme for Ω1(R∆, µ∆), we ob-
tain

αs(mZ) = 0.1123 ± 0.0002exp (34)

± 0.0007hadr ± 0.0014pert,

Ω1(R∆, µ∆) = 0.421 ± 0.007exp

± 0.019αs(mZ) ± 0.060pert GeV,

where R∆ = µ∆ = 2 GeV and we quote individual 1-σ
uncertainties for each parameter. Here χ2/dof = 0.99.
Eq. (34) is the main result of this work.

Eq. (34) accounts for the effect of hadron mass running
through an additional (essentially negligible) uncertainty.
Also, it neglects QED and finite bottom mass corrections,

FIG. 10. C-parameter distribution at N3LL′ order at Q = mZ

showing the fit result for the values for αs(mZ) and Ω1. The
blue band corresponds to the theory uncertainty as described
in Sec. V B. Experimental data is also shown.

which were found to be small effects in the corresponding
thrust analysis in Ref. [9].

Given that we treat the correlation of the system-
atic experimental uncertainties in the minimal overlap
model, it is useful to examine the results obtained when
assuming that all systematic experimental uncertain-
ties are uncorrelated. At N3LL′ order in the Rgap
scheme the results that are analogous to Eqs. (34) read
αs(mZ) = 0.1123±0.0002exp±0.0007hadr±0.0012pert and
Ω1(R∆, µ∆) = 0.412 ± 0.007exp±0.022αs±0.061pert GeV
with a combined correlation coefficient of ρtotal

αΩ =
− 0.091. The results are compatible with Eqs. (34), in-
dicating that the ignorance of the precise correlation of
the systematic experimental uncertainties barely affects
the outcome of the fit.

In Fig. 10 we show the theoretical fit for the
C-parameter distribution in the tail region, at a center
of mass energy corresponding to the Z-pole. We use the
best-fit values given in Eq. (34). The band corresponds to
the perturbative uncertainty as determined by the scan.
The fit result is shown in comparison with experimental
data from DELPHI, ALEPH, OPAL, L3 and SLD. Good
agreement is observed for this spectrum, as well as for
spectra at other center of mass values.

VI. PEAK AND FAR TAIL PREDICTIONS

Even though our fits were performed in the resumma-
tion region which is dominated by tail data, our theoret-
ical results also apply for the peak and far-tail regions.
As an additional validation for the results of our global
analysis in the tail region, we use the best-fit values ob-
tained for αs and Ω1 to make predictions in the peak and
the far-tail regions where the corresponding data was not
included in the fit.
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FIG. 11. C-parameter distribution below the fit region, shown
at N3LL′ order at Q = mZ using the best-fit values for
αs(mZ) and Ω1. Again the blue band corresponds to the
theory uncertainty and error bars are used for experimental
data.

FIG. 12. C-parameter distribution above the fit range, shown
at N3LL′ order at Q = mZ using the best-fit values for
αs(mZ) and Ω1. Again the blue band corresponds to the the-
ory uncertainty and the error bars are used for experimental
data.

Predictions from our full N3LL′ code in the Rgap
scheme for the C-parameter cross section at the Z-pole
in the peak region are shown in Fig. 11. The nice agree-
ment within theoretical uncertainties (blue band) with
the precise data from DELPHI, ALEPH, OPAL, L3, and
SLD indicates that the value of Ω1 obtained from the fit
to the tail region is the dominant nonperturbative effect
in the peak. The small deviations between the theory
band and the experimental data can be explained due to
the fact that the peak is also sensitive to higher order
power corrections ΩCk≥2, which have not been tuned to
reproduce the peak data in our analysis.
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FIG. 13. Comparison of determinations of αs(mZ) and Ω1

with the corresponding total 1-σ uncertainty ellipses. As an
illustration we display the determination of ΩC1 obtained from
fits to the C-parameter distribution (green), which is clearly
different from Ωτ1 obtained from thrust fits (blue), and the de-
termination of Ωτ1 as obtained from C-parameter distribution
fits (red). All fits performed with N3LL′ theoretical predic-
tions with power corrections and in the Rgap scheme. The
dashed vertical lines indicate the PDG 2014 [23] determina-
tion of αs(mZ).

In Fig. 12 we compare predictions from our full N3LL′

code in the Rgap scheme to the accurate DELPHI,
ALEPH, L3, and SLD data at Q = mZ in the far-tail re-
gion.3 We find excellent agreement with the data within
the theoretical uncertainties (blue band). The key fea-
ture of our theoretical prediction that matters most in
the far-tail region is the merging of the renormalization
scales toward µS = µJ = µH at C ∼ 0.75 in the profile
functions. This is a necessary condition for the cancel-
lations between singular and nonsingular terms in the
cross section to occur above the shoulder region.4 At
Q = mZ the theoretical cross section presented here ob-
tains accurate predictions in the region both below and
above the shoulder that agree with the data. Our analy-

3 The OPAL data was excluded from the plot because its bins are
rather coarse in this region, making it a bad approximation of
the differential cross section.

4 It is worth mentioning that in the far-tail region we employ the
MS scheme for Ω1, since the subtractions implemented in the
Rgap scheme clash with the partonic shoulder singularity, re-
sulting in an unnatural behavior of the cross section around
C = 0.75. The transition between the Rgap and MS schemes
is performed smoothly, by means of a hybrid scheme which in-
terpolates between the two in a continuous way. This hybrid
scheme has been discussed at length in Ref. [12].
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FIG. 14. Distribution of best-fit points in the αs(mZ)-2Ω1

plane for both thrust (blue) and C-parameter (red) at N3LL′+
O(α3

s)+Ω1(R,µ). The outer solid ellipses show the ∆χ2 = 2.3
variations, representing 1-σ uncertainties for two variables.
The inner dashed ellipse correspond to the 1-σ theory uncer-
tainties for each one of the fit parameters. The dotted ellipses
correspond to ∆χ2 = 1 variations of the total uncertainties.
All fits performed with N3LL′ theoretical predictions with
power corrections and in the Rgap scheme. This plot zooms
in on the bottom two ellipses of Fig. 13.

sis does not include the full O(αksΛQCD/Q) power correc-
tions (for k < 4), since they are not part of our master
formula. Nevertheless, and in analogy with what was
found in the case of thrust, agreement with the experi-
mental data seems to indicate that these missing power
corrections may be smaller than naively expected.

VII. UNIVERSALITY AND COMPARISON TO
THRUST

An additional prediction of our theoretical formal-
ism is the universality of Ω1 between the thrust and
C-parameter event shapes. Therefore, a nontrivial test
of our formalism can be made by comparing our result
for Ω1 with the determination from the earlier fits of the
thrust tail distributions in Ref. [9] and the first moment
of the thrust distribution in Ref. [10].

Since we have updated our profiles for thrust, it is ex-
pected that the outcome of the αs and Ω1 determination
is slightly (within theoretical uncertainties) different from
that of Ref. [9]. We also have updated our code to match
that of Ref. [10] (higher statistics for the 2-loop nonsin-
gular cross sections and using the exact result for the
two-loop soft function non-logarithmic constant). In ad-
dition we have corrected the systematic uncertainty for
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FIG. 15. Distribution of best-fit points in the αs(mZ)-2Ω1

plane for both thrust (blue) and C-parameter (red) at N3LL′+
O(α3

s) + Ω1. The meaning of the different ellipses is the same
as in Fig. 14.

the ALEPH data, Q = 91.2 GeV of Ref. [64].5 When we
compare thrust and C-parameter we neglect bottom mass
and QED effects in both event shapes. In this setup, we
find an updated result for thrust:

αs(mZ) = 0.1134± 0.0002exp (35)

± 0.0005hadr ± 0.0011pert,

Ω1(R∆, µ∆) = 0.329± 0.009exp

± 0.021αs(mZ) ± 0.060pert GeV.

For completeness we also quote an updated thrust result
when both QED and bottom mass effects are taken into
account:

αs(mZ) = 0.1128± 0.0002exp (36)

± 0.0005hadr ± 0.0011pert,

Ω1(R∆, µ∆) = 0.322± 0.009exp

± 0.021αs(mZ) ± 0.064pert GeV.

Both the results in Eqs. (35) and (36) are fully compatible
at 1-σ with those in Ref. [9], as discussed in more detail
in App. C.

5 In Ref. [9] we assumed that two quoted uncertainties where asym-
metric uncertainties, but it turns out they are two sources of sys-
tematic uncertainties that need to be added in quadrature. This
has no significant effect on the results of Ref. [9].
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When testing for the universality of Ω1 between thrust
and C-parameter, there is an important calculable nu-
merical factor of 3π/2 = 4.7 between Ωτ1 and ΩC1 that
must be accounted for, see Eq. (3). If we instead make
a direct comparison of Ωτ1 and ΩC1 , as shown in Fig. 13
(lowest blue ellipse vs upper most green ellipse, respec-
tively) then the results are 4.5-σ away from each other.
Accounting for the 3π/2 factor to convert from ΩC1 to
Ωτ1 the upper green ellipse becomes the center most red
ellipse, and the thrust and C-parameter determinations
agree with one another within uncertainties. Due to our
high precision control of perturbative effects, the Ω1 pa-
rameters have only ∼ 15% uncertainty, yielding a test of
this universality at a higher level of precision than what
has been previously achieved.

A zoomed-in version of this universality plot is shown
in Fig. 14. The upper red ellipse again shows the re-
sult from fits to the C-parameter distribution, while the
lower blue ellipse shows the result from thrust tail fits.
For both we show the theory uncertainty (dashed lines)
and combined theoretical and experimental (dotted lines)
39% CL uncertainty ellipses, as well as the solid ellipses
which correspond to ∆χ2 = 2.3 which is the standard
1-σ uncertainty for a two-parameter fit (68% CL). We
see that the two analyses are completely compatible at
the 1-σ level. An important ingredient to improve the
overlap is the fact that we define the power corrections
in the renormalon-free Rgap scheme. This is shown by
contrasting the Rgap result in Fig. 14 with the overlap
obtained when using the MS scheme for Ω1, as shown in
Fig. 15.

VIII. CONCLUSIONS AND COMPARISON TO
OTHER αs DETERMINATIONS

In this paper an accurate determination of αs from fits
to the C-parameter distribution in the resummation re-
gion was presented. We fit to the tail of the distribution
defined by 3πΛQCD/Q� C <∼ 3/4, where the dominant
hadronization effects are encoded in the first moment of
the shape function Ω1, which is a power correction to
the cross section. Fitting to data at multiple Q’s the
strong coupling αs(mZ) and Ω1 can be simultaneously
determined. The key points to our precise theoretical
prediction are: a) higher order resummation accuracy
(N3LL′), achieved through an SCET factorization the-
orem, b) O(α3

s) matrix elements and fixed-order kine-
matic power corrections, c) field-theoretical treatment of
nonperturbative power corrections, and d) switching to
a short-distance Rgap scheme, in which the sensitivity to
infrared physics is reduced.

As our final result from the C-parameter global fit we
obtain:

αs(mZ) = 0.1123± 0.0015 , (37)

Ω1(R∆, µ∆) = 0.421± 0.063 GeV,

where αs is defined in the MS scheme, and Ω1 in the

Rgap scheme (without hadron mass effects) at the refer-
ence scales R∆ = µ∆ = 2 GeV. Here the respective total
1-σ uncertainties are shown. The results with individ-
ual 1-σ uncertainties quoted separately for the different
sources of uncertainties are given in Eq. (34). Neglect-
ing the nonperturbative effects incorporated by Ω1, the
fits yields αs(mZ) = 0.1219 which exceeds the result in
Eq. (37) by 8%. This is consistent with a simple scaling
argument one can derive from experimental data, pre-
sented in Ref. [12]. We have also presented an updated
thrust result, using our improved profiles for thrust and
including bottom mass and QED effects (but neglecting
hadron mass effects). This global fit for thrust gives

αs(mZ) = 0.1128 ± 0.0012 , (38)

Ω1(R∆, µ∆) = 0.322 ± 0.068 GeV.

Our theoretical prediction is the most complete treat-
ment of C-parameter at this time, and, to the best of
our knowledge, all sources of uncertainties have been in-
cluded into our final uncertainty. Possible improvements
which are expected to be negligible relative to our final
uncertainty include finite bottom mass effects, QED ef-
fects, and axial-singlet contributions. From our results
there are a number of theoretical avenues that lead to
small effects but which would be interesting to investi-
gate further in the future. These are common to almost
every event-shape analysis in the literature and include
(i) resummation of logarithms for the nonsingular par-
tonic cross section; (ii) the structure of nonperturbative
power corrections for the nonsingular contributions (the
last two points can be clarified with subleading SCET
factorization theorems); (iii) analytic perturbative com-
putations of the O(α3

s) nonlogarithmic coefficients in the
partonic soft function and the jet function, as well as the
4-loop QCD cusp anomalous dimension (and to a lesser

extent, the numerically determined sC̃2 constant of the
two-loop partonic soft function); (iv) better understand-
ing of hadron mass effects, and in particular their resum-
mation beyond NLL; (v) better theoretical description
of the region around and above the shoulder. Concern-
ing (i), and following the common lore, we have incor-
porated in our analysis the nonsingular contributions in
fixed-order perturbation theory. However we have esti-
mated the uncertainty related to the higher order loga-
rithms through the usual renormalization scale variation.
Concerning (ii) we observe that the effect of these ne-
glected power corrections is much smaller than naively
expected, as can be seen from a comparison of our theo-
retical prediction and LEP data in the far-tail region. A
first step towards clarifying (i) and (ii) has been taken in
Refs. [74, 75], for the case of thrust. The computation of
missing perturbative terms (iii) is a priori feasible with
current computational knowledge but do not dominate
our perturbative uncertainties. Concerning (iv) we have
shown that hadron mass effects have a very small impact
in the determination of αs, hence unless the rest of the
sources of uncertainty become substantially smaller, our
lack of knowledge does not constitute a problem. As for
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(v), our fits do not include data above the shoulder, so
this problem has no impact in our fit. Nevertheless an
analysis of these subleading effects would be interesting.

The same theoretical program carried out for thrust
and C-parameter can be applied to other event-shapes,
and the most prominent one is Heavy-Jet-Mass. This
has partially worked out already in Ref. [8] at the purely
perturbative level using fully canonical profiles. Their de-
termination of αs is discussed below. For recoil-sensitive
observables such as Jet Broadening [76–80], one needs to
deal with rapidity singularities, which imply additional
logs to be resummed, and more complicated nonpertur-
bative power corrections. The former has been pushed
to the N2LL in Ref. [81], and the latter has been stud-
ied in [82]. Recoil insensitive versions of Broadening have
also been derived [83], but not yet studied experimentally.
Finally, it is very straightforward to generalize our theo-
retical treatment to the case of oriented event shapes [84],
in which one additionally measures the angle between the
beam and the thrust axes.

At this point we compare our result for αs with other
determinations from event shapes at O(α3

s). To the
best of our knowledge, the only analyses which fit to
the tail of the C-parameter distribution using three-
loop input are [85] (using purely fix-order perturbation
theory) and [86] (including NLL resummation). Both
analyses use MC to estimate hadronization effects, and
fit αs for different Q values, finding values αs(mZ) =
0.1288 ± 0.0043 and 0.1252 ± 0.0053 respectively for a
fit to theQ = 91.2 GeV data. These larger αs(mZ) values
are consistent with our fits which neglect power correc-
tions, and following Ref. [9] we can conclude from this
that Monte Carlo is not providing a reasonable estimate
of the power corrections when including the higher order
perturbative contributions. In Ref. [25] two-parameter
global fits to the first five moments of the C-parameter
distribution are performed. Hadronization effects are in-
cluded via the frozen coupling model, and the value ob-
tained, αs(mZ) = 0.1181±0.0048, is fully consistent with
our result in Eq. (37) at 1-σ.

A graphical comparison with other event-shape deter-
minations is shown in Fig. 16. The figure includes de-
terminations where power corrections are estimated with
MC generators, labeled by 7-10. Analyses 1-6 correspond
to those in which power corrections are incorporated with
an analytic method (either a shape function or the disper-
sive model). In the analyses 1-6 global fits are performed,
whereas in the 7-10 analyses αs is determined at multiple
Q values and the final result is an average of those. Only
analyses 1 [10], 3 (this work), and 4 [9] use a completely
field theoretical approach for the power corrections. We
also show both results from fits to the event-shape dis-
tributions (3-10) and from fits to moments of the event
shape distribution (1 and 2). Although all analysis in-
cludeO(α3

s) matrix elements, different levels of resumma-
tion have been achieved. Analyses 2 [25] and 10 [85] do
not include resummation; 6 [4] and 9 [86] include NLL re-
summation; 5 [11] includes N2LL resummation; and anal-
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FIG. 16. Comparison of our determination of αs(mZ) (red)
with similar analyses from thrust [9, 10] (green) and other
determinations from fits to event shape distributions using
O(α3

s) theory predictions and different levels of resummation.
Results shown below the lower dashed line include power cor-
rections as predicted by MC generators, and results above
this line treat power corrections either from a shape func-
tion (red and green) or from the dispersive model (orange [4]
and purple [11]). Determinations above the upper dashed line
correspond to fits to moments of the distributions, and those
below to fits to the tail of the differential distribution. The
translucent green band correspond to the world average from
[23]

yses 3,4,7,8 include N3LL resummation. Analyses 2, 9,
and 10 simultaneously fit to many event shapes, whereas
the others focus on a single observable: thrust (1, 4-6
and 8 [5]), Heavy-Jet-Mass (7 [8]), and C-parameter (3,
which is this work). The analyses 1, 3, 4, 7 and 8 use
SCET to perform Sudakov log resummation. All results
that use an analytic treatment of power corrections have
smaller values of αs. This is consistent with a simple di-
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FIG. 17. Comparison of our determination of αs(mZ)
(red) with similar previous analyses at N3LL′ for thrust
(green) [9, 10] and other selected determinations: lattice [24]
and static energy potential [29] (both use lattice input, in
blue), Electroweak precision observables fits [87] (black), Deep
Inelastic Scattering [28] and global PDF fits [30, 31], and
hadron τ decays [27] (Fixed Order Perturbation Theory lower,
and Contour Improved Perturbation Theory, both in gray).
The current world average [23] is shown as a translucent green
band.

mensional analysis argument (see Refs. [9, 12]). Higher
order resummation results in a convergent perturbation
series and smaller uncertainties, and the Rgap scheme
also reduces uncertainties. Accounting that results rely-
ing on MC for the treatment of power corrections should
likely have larger hadronization uncertainties, all results
are compatible among one another. The most precise re-
sults are however clearly in disagreement with the world
average, which is dominated by lattice QCD results (see
below) and shown as a translucent green band.

We conclude this work by comparing our result for
αs(mZ) with the results of a selection of recent analy-
ses using other techniques and observables, as shown in
Fig. 17. We include a N3LO analysis of data from deep
inelastic scattering from the ABM group [28], the global
PDF fits of the MSTW group [31] and the NNPDF col-
laboration [30]; the most recent (and accurate) determi-
nation from the HPQCD lattice collaboration [24], from
the analysis of Wilson loops and pseudoscalar correla-
tors; a determination analyzing the lattice prediction for
the QCD static potential [29]; a reanalysis of electroweak
precision observables by the Gfitter collaboration [87];
the most recent analysis of tau decays in which the re-
cently released ALEPH data was used together with the
OPAL data; the previous determinations from fits to the
thrust distribution [9] and moments of the thrust distri-
bution [10]; and of course the current world average [23]
(shown as the green band). The ABM (DIS) and thrust
results are compatible with our determination, while in
contrast the disagreement with either lattice QCD or the
world average is 4-σ. Many other determinations lie be-

tween these two values. The source of this disagreement
is an important open question.
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Appendix A: Profile Formulae

In this appendix, we give the details for the profile
functions that control the renormalization scales as laid
out in Sec. II B. For the soft profile function, we use the
form,

µS =



µ0 0 ≤ C < t0

ζ(µ0, 0, 0, rs µH6 , t0, t1, C) t0 ≤ C < t1

rs µH
C
6 t1 ≤ C < t2

ζ(0, rs µH6 , µH , 0, t2, ts, C) t2 ≤ C < ts

µH ts ≤ C < 1

, (A1)

where the physical meaning of the parameters is ex-
plained in Sec. II B. The function ζ(a1, b1, a2, b2, t1, t2, t)
(with t1 < t2), smoothly connects two straight lines of
the form l1(t) = a1 + b1 t for t < t1 and l2(t) = a2 + b2 t
for t > t2 is given by:

ζ(t) =

{
â1 + b1(t− t1) + e1(t− t1)2 t1 ≤ t ≤ tm
â2 + b2(t− t2) + e2(t− t2)2 tm ≤ t ≤ t2

,

â1 = a1 + b1 t1 , â2 = a2 + b2 t2 , (A2)

e1 =
4 (â2 − â1)− (3 b1 + b2) (t2 − t1)

2 (t2 − t1)2
,

e2 =
4 (â1 − â2) + (3 b2 + b1) (t2 − t1)

2 (t2 − t1)2
.

For the jet scale, we use the form

µJ(C) =

{[
1 + eJ(C − ts)2

]√
µH µS(C) C ≤ ts

µH C > ts
, (A3)
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FIG. 18. Comparison of αs determinations from C-parameter
tail fits in the thrust Rgap scheme (lower red ellipse) and the
C-parameter Rgap scheme (upper blue ellipse). The leading
power correction ΩC1 in the C-parameter Rgap scheme is con-
verted to Ω1 in the thrust Rgap in order to have a meaningful
comparison. Theoretical uncertainty ellipses are shown which
are suitable for projection onto 1-dim to obtain the 1-σ un-
certainty, without experimental uncertainties.

which allows a slight modification of the natural relation
between the scales µJ =

√
µHµS in order to account for

theoretical uncertainties.

For the subtraction scale, we have

R(C) =


R0 0 ≤ C < t0

ζ(R0, 0, 0, rs µH6 , t0, t1, C) t0 ≤ C < t1

µS(C) t1 ≤ C ≤ 1

.

(A4)

As explained earlier, we take R = µS in the resum-
mation region to avoid large logs and R 6= µS in the
nonperturbative region to remove the renormalon. The
ζ function here interpolates smoothly between these two
regions.

It is necessary to vary the profile parameters to es-
timate the theory uncertainty. We hold the difference
between the parameters associated with the purely non-
perturbative region constant: µ0 −R0 = 0.4 GeV, and
we set as default values µ0 = 1.1 GeV, R0 = 0.7 GeV.
We are then left with nine profile parameters to vary
during the theory scan, whose central values and vari-
ation ranges used in our analysis are: rs = 2× 1.13±1,
n0 = 12 ± 2, n1 = 25 ± 3, t2 = 0.67 ± 0.03,
ts = 0.83 ± 0.03, eJ = 0 ± 0.5, eH = 2±1 and ns = 0±1.
These variations are shown in Tab. I.
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FIG. 19. Comparison of thrust αs determinations using our
new profiles (left red ellipse) and the profiles of Ref. [9] (right
blue ellipse). Theoretical uncertainty ellipses are shown which
are suitable for projection onto 1-dim to obtain the 1-σ un-
certainty, without experimental uncertainties.

Appendix B: Comparison of thrust and C-parameter
subtractions

In Fig. 18 we compare fits performed in the Rgap
scheme with C-parameter gap subtractions as the upper
red ellipse, and for our default fits in the Rgap scheme
with thrust gap subtractions as the lower blue ellipse.
At N3LL′ order with C-parameter subtractions the re-
sults are αs(mZ) = 0.1126 ± 0.0002exp ± 0.0007hadr ±
0.0022pert and Ω1(R∆, µ∆) = 0.447±0.007exp±0.018αs±
0.065pert GeV, with χ2

min/dof = 0.988. One can see that,
even though both extractions are fully compatible, the
thrust subtractions lead to smaller perturbative uncer-
tainties. This is consistent with the better perturbative
behavior observed for the cross section with thrust sub-
tractions in Ref. [12].

Appendix C: Comparison of thrust results with [9]

In Fig. 19 we compare global fits for the thrust distri-
bution using the profiles of Ref. [9] (shown by the right
ellipse in blue) and the profiles used here (shown by the
left ellipse in red). As mentioned earlier, the profiles
used here have several advantages over those of Ref. [9]
in terms of their ability to independently impact the dif-
ferent regions of the thrust distribution, and in particular
do a better job in the nonperturbative region (which is
outside our fit region). The two versions of the profiles
are consistent within their variations, and the fit results
shown for 39% CL for 2-dim in Fig. 19 (which is 68% CL
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for each 1-dim projection) are fully compatible.
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