
This is the accepted manuscript made available via CHORUS. The article has been
published as:

C-parameter distribution at N^{3}LL^{′} including power
corrections

André H. Hoang, Daniel W. Kolodrubetz, Vicent Mateu, and Iain W. Stewart
Phys. Rev. D 91, 094017 — Published 15 May 2015

DOI: 10.1103/PhysRevD.91.094017

http://dx.doi.org/10.1103/PhysRevD.91.094017


UWTHPH 2014-37
MIT–CTP 4596
LPN14-123

C-parameter Distribution at N3LL′ including Power Corrections
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We compute the e+e− C-parameter distribution using the Soft-Collinear Effective Theory with
a resummation to N3LL′ accuracy of the most singular partonic terms. This includes the known
fixed-order QCD results up to O(α3

s), a numerical determination of the two loop non-logarithmic
term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops.
Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization
effects using a field theoretic nonperturbative soft function, with moments Ωn. In order to eliminate
an O(ΛQCD) renormalon ambiguity in the soft function, we switch from the MS to a short distance
“Rgap” scheme to define the leading power correction parameter Ω1. We show how to simultaneously
account for running effects in Ω1 due to renormalon subtractions and hadron mass effects, enabling
power correction universality between C-parameter and thrust to be tested in our setup. We discuss
in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant
fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ' 3% at Q = mZ .

I. INTRODUCTION

The study of event shape distributions in e+ e− collid-
ers has served as an excellent avenue to understand the
structure of jets in QCD. Currently they also provide an
important testing ground for new achievements in the-
oretical formalism, that can then also be extended to
applications at hadron colliders. Moreover, event shapes
provide accurate determinations of the strong coupling
constant, see for example [1] and [2]. Experimentally
they have been measured with high accuracy, and there
exist perturbative computations at O(α3

s) [3–8]. The
use of the Soft-Collinear Effective Theory (SCET) [9–12]
has simplified the analysis of factorization theorems for
event shapes [13–16], enabling a resummation of large
perturbative logs at next-to-next-to-next-to-leading log
(N3LL′) order and high-precision analyses for thrust and
the heavy jet mass distributions [17–20]. The correspond-
ing factorization theorems have recently been extended
to oriented event shapes in [21] and to account for the
effects of virtual and real secondary massive quark radi-
ation in [22, 23].

Our main motivations for studying the C-parameter
distribution are to:

a) Extend the theoretical precision of the logarithmic
resummation for C-parameter from NLL +O(α3

s)
to N3LL +O(α3

s).

b) Implement the leading power correction Ω1 using
only field theory and with sufficient theoretical pre-
cision to provide a serious test of universality be-
tween C-parameter and thrust.

c) Determine αs(mZ) using N3LL′+O(α3
s) + Ω1 the-

oretical precision for C, to make this independent
extraction competitive with the thrust analysis car-
ried out at this level in Refs. [19, 20].

In this article we present the theoretical calculation and
analysis that yields a N3LL′+O(α3

s) + Ω1 cross section
for C-parameter, and we analyze its convergence and per-
turbative uncertainties. A numerical analysis that ob-
tains αs(mZ) from a fit to a global C-parameter dataset,
and investigates the power correction universality will be
presented in a companion paper [24]. Preliminary ver-
sions of these results were presented in [25, 26].

A nice property of C-parameter is that its defini-
tion does not involve any minimization procedure, unlike
thrust. This makes its determination in data or Monte
Carlo simulations computationally inexpensive. Unfor-
tunately, this does not translate into a simplification of
perturbative theoretical computations, which are similar
to those for thrust.

The resummation of singular logarithms in
C-parameter was first studied by Catani and Webber in
Ref. [27] using the coherent branching formalism [28],
where next-to-leading log (NLL) accuracy was achieved.
Making use of SCET in this article we achieve a resum-
mation at N3LL order. The relation between thrust and
C-parameter in SCET discussed here has been used in
the Monte Carlo event generator GENEVA [29], where
a N2LL′ (next-to-next-to-leading log) C-parameter
result was presented. Nonperturbative effects for the
C-parameter distribution have been studied by a number
of authors: Gardi and Magnea [30], in the context of
the dressed gluon approximation; Korchemsky and
Tafat [31], in the context of a shape function; and
by Dokshitzer and Webber [32] in the context of the
dispersive model.

Catani and Webber[27] showed that up to NLL the
cross sections for thrust and the reduced C-parameter

C̃ =
C

6
, (1)

are identical. Gardi and Magnea [30] showed that this
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relation breaks down beyond NLL due to soft radiation
at large angles. Using SCET we confirm and extend
these observations by demonstrating that the hard and
jet functions, along with all anomalous dimensions, are

identical for thrust and C̃ to all orders in perturbation
theory. At any order in perturbation theory the per-
turbative non-universality of the singular terms appears
only through fixed-order terms in the soft function, which
differ starting at O(αs).

There is also a universality between the leading power
corrections for thrust and C-parameter which has been
widely discussed [32–35]. This universality has been
proven nonperturbatively in Ref. [35] using the field the-
ory definition of the leading power correction with mass-
less particle kinematics. In our notation this relation is

ΩC1 =
3π

2
Ωτ1 . (2)

Here Ωe1 is the first moment of the nonperturbative soft
functions for the event shape e, and in the tail of the
distribution acts to shift the event shape variable

σ̂(e)→ σ̂(e− Ωe1/Q) , (3)

at leading power. The exact equality in Eq. (2) can be
spoiled by hadron mass effects [36], which have been
formulated using a field theoretic definition of the Ωe1
parameters in Ref. [37]. Even though nonzero hadron
masses can yield quite large effects for some event shapes,
the universality breaking corrections between thrust and
C-parameter are at the 2.5% level, and hence for our
purposes are small relative to other uncertainties related
to determining Ω1. Since relations like Eq. (2) do not
hold for higher moments Ωen>1 of the nonperturative soft
functions, these are generically different for thrust and
C-parameter.

Following Ref. [19], a rough estimate of the impact
of power corrections can be obtained from the experi-
mental data with very little theoretical input. We write
(1/σ) dσ/dC ' h(C−ΩC1 /Q) = h(C)−h′(C) ΩC1 /Q+ . . .
for the tail region, and assume the perturbative func-
tion h(C) is proportional to αs. Then one can easily
derive that if a value αs is extracted from data by set-
ting ΩC1 = 0, then the change in the extracted value δαs
when ΩC1 is present will be

δαs
αs
' ΩC1

Q

h′(C)

h(C)
, (4)

where the slope factor h′(C)/h(C) should be constant at
the level of these approximations. By looking at the ex-
perimental results at the Z-pole shown in Fig. 1 we see
that this is true at the level expected from these approx-
imations, finding h′(C)/h(C) ' − 3.3± 0.8. This same
analysis for thrust T = 1− τ involves a different func-
tion h and yields [h′(τ)/h(τ)]τ ' − 14± 4 [19]. It is in-
teresting to note that even this very simple analysis gives
a value [h′(τ)/h(τ) ]τ/[h

′(C)/h(C) ]C ' 4.2 that is very
close to the universality prediction of 3π/2 = 4.7. In
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FIG. 1. Plot of d/dC ln[(1/σ)dσ/dC] ' h′(C)/h(C), com-
puted from experimental data at Q = mZ . The derivative
is calculated using the central difference with neighboring
points.

the context of Eq. (2) this already implies that in a C-
parameter analysis we can anticipate the impact of the
power correction in the extraction of the strong coupling
to be quite similar to that in the thrust analysis [19],
where δαs/αs ' − 9%.

In Ref. [38] it was shown that within perturbation the-
ory the C-parameter distribution reaches an infinite value
at a point in the physical spectrum 0 < C < 1, despite
being an infrared and collinear safe observable. This
happens for the configuration that distinguishes planar
and non-planar partonic events and first occurs at O(α2

s)
where one has enough partons to create a non-planar
event at the value Cshoulder = 3/4. However, this singu-
larity is integrable and related to the fact that at O(αs)
the cross section does not vanish at the three-parton end-
point Cshoulder. In Ref. [38] this deficiency was cured
by performing soft gluon resummation at Cshoulder to
achieve a smooth distribution at LL order. Since Cshoulder

is far away from the dijet limit (in fact, it is a pure
three-jet configuration) we will not include this resum-
mation. In our analysis the shoulder effect is included in
the non-singular contributions in fixed-order, and when
the partonic distribution is convoluted with a nonpertur-
bative shape function the shoulder effect is smoothed out,
providing a continuous cross section across the entire C
range.

This paper is organized as follows: In Sec. II we re-
view the definition of C-parameter and highlight some of
its properties and relations to other event shapes, and
in Sec. III we study simplifications that occur for the
calculation of C-parameter when we consider soft and
collinear radiation in the dijet limit. The latter are neces-
sary to derive the C-parameter factorization theorem and
to address the question of which perturbative objects are
common with thrust. In Sec. IV we establish the factor-
ization theorem for C and show how to perform large log
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resummation using the renormalization group evolution
(RGE). Some details on the form of the kinematically
power suppressed terms known as nonsingular contribu-
tions to the C-parameter distribution are discussed in
Sec. V and in Sec. VI we show results for our numerical
determination of the non-logarithmic coefficients of the
two-loop soft function. Section VII contains a presenta-
tion of the form of the nonperturbative power corrections
and their definition in a renormalon-free scheme. Our
method to implement scale variation using profile func-
tions is discussed in Sec. VIII. In Sec. IX we present our
main results for the C-parameter cross section, including
the impact of the resummation slope parameter, the con-
vergence of the resummed perturbation theory, and the
perturbative theoretical uncertainties. In Sec. X we give
the conclusions and an outlook.

The work contains seven appendices: Appendix A pro-
vides all needed formulae for the singular cross section be-
yond those in the main body of the paper. In App. B we
present a comparison of our SCET prediction, expanded
at fixed-order, with the numerical results in full QCD at
O(α2

s) and O(α3
s) from EVENT2 and EERAD3, respec-

tively. In App. C we give a general formula for the one-
loop soft function, valid for any event shape which is not
recoil-sensitive. In App. D we give analytic expressions
for the Bi and Gij coefficients of the fixed-order singular
logs up to O(α3

s) according to the exponential formula of
Sec. IX A. The R-evolution of the renormalon-free gap
parameter is described in App. E. Appendix F is devoted
to a discussion of how the Rgap scheme is handled in the
shoulder region above Cshoulder = 3/4. Finally, in App. G
we show results for the perturbative gap subtraction se-
ries based on the C-parameter soft function.

II. DEFINITION AND PROPERTIES OF
C-PARAMETER

C-parameter is defined in terms of the linearized mo-
mentum tensor [39, 40]:

Θαβ =
1∑
i |~pi|

∑
i

pαi p
β
i

|~pi|
, (5)

where α = 1, 2, 3 are spacial indices and i sums over
all final state particles. Since Θ is a symmetric positive
semi-definite matrix 1, its eigenvalues are real and non-
negative. Let us denote them by λi, i = 1, 2, 3. As Θ has
unit trace,

∑
i λi = 1, which implies that the eigenvalues

are bounded 0 ≤ λi ≤ 1. Without loss of generality we
can assume 1 ≥ λ1 ≥ λ2 ≥ λ3 ≥ 0. The characteristic
polynomial for the eigenvalues of Θ is:

x3 − x2 + (λ1λ2 + λ1λ3 + λ2λ3)x− λ1λ2λ3 = 0 . (6)

1 This property follows trivially from Eq. (5), since for any three-
vector ~q one has that qαqβΘαβ ∝

∑
i(~q · ~pi)2/|~pi| ≥ 0.

C-parameter is defined to be proportional to the coeffi-
cient of the term linear in x:

C = 3 (λ1λ2 + λ1λ3 + λ2λ3) (7)

= 3 [ (λ1 + λ2)(1− λ1)− λ2
2 ] ,

where we have used the unit trace property to write λ3 in
terms of λ1 and λ2 in order to get the second line. Sim-
ilarly one defines D-parameter as D = 27λ1λ2λ3, pro-
portional to the x-independent term in the characteristic
equation. Trivially one also finds that

Tr [ Θ2 ] =
∑
i

λ2
i = 1 − 2

3
C , (8)

where again we have used λ3 = 1 − λ1 − λ2. We can
easily compute Tr [ Θ2 ] using Eq. (5)

Tr [ Θ2 ] =
1

(
∑
i |~pi|)2

∑
ij

(~pi · ~pj)2

|~pi||~pj |
(9)

=
1

(
∑
i |~pi|)2

∑
ij

|~pi||~pj | cos2 θij

= 1 − 1

(
∑
i |~pi|)2

∑
ij

|~pi||~pj | sin2 θij .

From the last relation one gets the familiar expression:

C =
3

2

∑
i,j |~pi||~pj | sin

2 θij

(
∑
i |~pi|)

2 . (10)

From Eq. (10) and the properties of λi it follows that
C ≥ 0, and from the second line of Eq. (7) one finds
that C ≤ 1, and the maximum value is achieved for
the symmetric configuration λ1 = λ2 = λ3 = 1/3. Hence
0 ≤ C ≤ 1. Planar events have λ3 = 0. To see this sim-
ply consider that the planar event defines the x−y plane
and then any vector in the z direction is eigenstate of Θ
with zero eigenvalue. Hence planar events have D = 0
and C = 3λ1 (1 − λ1), which gives a maximum value
for λ1 = λ2 = 1/2, and one has 0 ≤ Cplanar ≤ 3/4.
Thus C > 3/4 needs at least four particles in the final
state. C-parameter is related to the first non-trivial Fox-
Wolfram parameter [41]. The Fox-Wolfram event shapes
are defined as follows:

H` =
∑
ij

|~pi||~pj |
Q2

P`(cos θij) . (11)

One has H0 = 1, H1 = 0 and

H2 = 1− 3

2

1

Q2

∑
ij

|~pi||~pj | sin2 θij , (12)

which is similar to Eq. (10). It turns out that for mass-
less partonic particles they are related in a simple way:
H2 = 1 − Cpart. As a closing remark we note that for
massless particles C-parameter can be easily expressed in
terms of scalar products with four vectors:

Cpart = 3− 3

2

1

Q2

∑
ij

(pi · pj)2

EiEj
. (13)
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III. C-PARAMETER KINEMATICS IN THE
DIJET LIMIT

We now show that in a dijet configuration with only
soft 2, n-collinear, and n̄-collinear particles, the value of
C-parameter can, up to corrections of higher power in
the SCET counting parameter λ, be written as the sum
of contributions from these three kinds of particles:

Cdijet = Cn + Cn̄ + Cs +O(λ4) . (14)

To that end we define

Cdijet = Cn,n + Cn̄,n̄ + 2Cn,n̄ + 2Cn,s + 2Cn̄,s + Cs,s ,

Ca,b ≡
3

2

1

(
∑
i |~pi|)

2

∑
i∈a,j∈b

|~pi||~pj | sin2 θij . (15)

The various factors of 2 take into account that for a 6= b
one has to add the symmetric term a↔ b.

The SCETI power counting rules implies the follow-
ing scaling for momenta: pµs ∼ Qλ2, pn ∼ Q (λ2, 1, λ),
pn̄ ∼ Q (1, λ2, λ), where we use the light-cone compo-
nents pµ = (p+, p−, p⊥). Each one of the terms in
Eq. (15), as well as Cdijet itself, can be expanded in pow-
ers of λ:

Ca,b =
∑
i=0

C
(i)
a,b , C

(i)
a,b ∼ O(λi+2) . (16)

The power counting implies that Cdijet starts at O(λ2)

and Cs,s is a power correction since C
(0)
s,s = 0, while

C
(2)
s,s 6= 0. All n and n̄-collinear particles together will

be denoted as the collinear particles with c = n ∪ n̄.
The collinear particles have masses much smaller than
Qλ and can be taken as massless at leading power. For
soft particles we have perturbative components that can
be treated as massless when Qλ2 � ΛQCD, and non-
perturbative components that always should be treated
as massive. Also at leading order one can use

∑
i |~pi| =∑

i∈c |~pi|+O(λ2) = Q+O(λ2) and |~pi∈c| = Ei∈c+O(λ2).

Defining Cs ≡ 2Cn,s + 2Cn̄,s we find:

Cs =
3

Q2

∑
i∈c,j∈s

|~pi||~pj | sin2 θij (17)

=
3

Q2

∑
i∈c

|~pi|
∑
j∈s

|~pj |
[

sin2 θj +O(λ2)
]

=
3

Q

∑
j∈s

(p⊥j )2

|~pj |
+O(λ4) =

3

Q

∑
j∈s

p⊥j
cosh ηj

+O(λ4) ,

where the last displayed term will be denoted as C
(0)
s .

Here θj is the angle between the three-momenta of a par-
ticle and the thrust axis, and hence is directly related to

2 In this paper, for simplicity we denote as soft particles what are
sometimes called ultrasoft particles in SCETI.

the pseudo-rapidity ηj . Also p⊥j ≡ |~p⊥j | is the magni-
tude of the three-momentum projection normal to the
thrust axis. To get to the second line we have used that
sin θij = sin θj + O(λ2), and to get the last line we have
used sin θj = |p⊥j |/|~pj | = 1/ cosh ηj . In order to compute

the partonic soft function it is useful to consider C
(0)
s for

the case of massless particles:

C(0)
s

∣∣∣
m=0

=
6

Q

∑
j∈s

p+
j p
−
j

p+
j + p−j

. (18)

Let us next consider Cn,n and Cn̄,n̄. Using energy con-
servation and momentum conservation in the thrust di-
rection one can show that up to O(λ2), En = En̄ = Q/2.
All n-collinear particles are in the plus-hemisphere,
and all the n̄-collinear particles are in the minus-
hemisphere. Here the plus- and minus-hemispheres are
defined by the thrust axis. For later convenience we de-
fine Pµa =

∑
i∈a p

µ
i and Ea = P0

a with a ∈ {n, n̄} denoting
the set of collinear particles in each hemisphere. We also
define sa = P2

a.
For Cn,n one finds

Cn,n =
3

2Q2

∑
i,j∈n

|~pi||~pj |(1− cos θij)(1 + cos θij) (19)

= [ 1 +O(λ2) ]
3

Q2

∑
i,j∈n

pi · pj =
3

Q2

(∑
i∈n

pi

)2
+O(λ4)

=
3

Q2
sn +O(λ4) =

3

Q

∑
i∈n

p+
i +O(λ4)

=
3

Q
P+
n +O(λ4) ,

and we can identify C
(0)
n,n = 3P+

n /Q. To get to the
second line we have used that for collinear particles in
the same direction cos θij = 1 + O(λ2). In the third
line we use the property that the total perpendicular
momenta of each hemisphere is exactly zero, and that
0 =

∑
i∈+ ~p

⊥
i =

∑
i∈n ~p

⊥
i +O(λ2) and sn = QP+

n . In a
completely analogous way we get

C
(0)
n̄,n̄ =

3

Q

∑
i∈n̄

p−i =
3

Q
P−n̄ . (20)

The last configuration to consider is Cn,n̄:

2Cn,n̄ =
3

Q2

∑
i,j∈n,n̄

|~pi||~pj |(1− cos θij)(1 + cos θij) (21)

=
6

Q2

∑
i,j∈n

(2EiEj − pi · pj)[ 1 +O(λ2) ]

=
3

Q2
(P+

n P+
n̄ + P−n P−n̄ − 2P⊥n · P⊥n̄ ) +O(λ4)

=
3

Q
(P+

n + P−n̄ ) +O(λ4) = C(0)
n,n + C

(0)
n̄,n̄ +O(λ4).
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In the second equality we have used that for collinear
particles in opposite directions cos θij = − 1 + O(λ2),
in the third equality we have written 2E = p+ + p−,
and in the fourth equality we have discarded the scalar
product of perpendicular momenta since it is O(λ4) and
also used that at leading order P−n = P+

n̄ = Q + O(λ2)
and P−n ∼ λ2, P+

n̄ ∼ λ2. For the final equality we use the
results obtained in Eqs. (19) and (20). Because the final
result in Eq. (21) just doubles those from Eqs. (19) and
(20) we can define

C(0)
n ≡ 2C(0)

n,n , C
(0)
n̄ ≡ 2C

(0)
n̄,n̄ . (22)

Using Eqs. (19), (20), and (21) we then have

C(0)
n =

6

Q
P+
n , C

(0)
n̄ =

6

Q
P−n̄ (23)

Equation (17) together with Eq. (23) finalize the proof
of Eq. (14). As a final comment we note that one can
express p± = p⊥ exp(∓ η) and since for n-collinear parti-
cles 2 cosh η = exp(η)[ 1 + O(λ2) ] whereas for n̄-collinear
particles 2 cosh η = exp(− η)[ 1 + O(λ2) ] one can also
write

C(0)
n =

3

Q

∑
i∈n

p⊥i
cosh ηi

, C
(0)
n̄ =

3

Q

∑
i∈n̄

p⊥i
cosh ηi

, (24)

such that the same master formula applies for soft and
collinear particles in the dijet limit and we can write

C
(0)
dijet =

3

Q

∑
i

p⊥i
cosh ηi

. (25)

IV. FACTORIZATION AND RESUMMATION

The result in Eq. (14) leads to a factorization in terms
of hard, jet, and soft functions. The dominant nonper-
turbative corrections at the order we are working come
from the soft function and can be factorized with the
following formula in the MS scheme for the power cor-
rections [31, 42, 43]:

1

σ0

dσ

dC
=

∫
dp

1

σ0

dσ̂

dC

(
C − p

Q

)
FC(p) , (26)

dσ̂

dC
=

dσ̂s

dC
+

dσ̂ns

dC
.

Here FC is a shape function describing hadronic effects,
and whose first moment ΩC1 is the leading nonperturba-
tive power correction in the tail of the distribution. ΩC1
and Ωτ1 are related to each other, as will be discussed
further along with other aspects of power corrections in
Sec. VII. The terms dσ̂/dC, dσ̂s/dC, and dσ̂ns/dC are
the total partonic cross section and the singular and non-
singular contributions, respectively. The latter will be
discussed in Sec. V.

After having shown Eq. (14) we can use the general re-
sults of [16] for the factorization theorem for the singular
terms of the partonic cross section that splits into a sum
of soft and collinear components. One finds:

1

σ0

dσ̂s

dC
=

1

6

1

σ0

dσ̂s

dC̃
(27)

=
Q

6
H(Q,µ)

∫
ds Jτ (s, µ)ŜC̃

(
QC̃ − s

Q
, µ
)
,

where in order to make the connection to thrust more
explicit we have switched to the variable C̃ = C/6. Here
Jτ is the thrust jet function which is obtained by the con-
volution of the two hemisphere jet functions, and where
our definition for Jτ coincides with that of Ref. [19]. It
describes the collinear radiation in the direction of the
two jets. Expressions up to O(α2

s) and the logarithmic
terms determined by its anomalous dimension at three
loops are summarized in App. A.

The hard factor H contains short-distance QCD ef-
fects and is obtained from the Wilson coefficient of the
SCET to QCD matching for the vector and axial vec-
tor currents. The hard function is the same for all event
shapes, and its expression up to O(α3

s) is summarized in
App. A, together with the full anomalous dimension for
H at three loops.

The soft function SC̃ describes wide-angle soft radia-
tion between the two jets. It is defined as

SC(`, µ) = 〈 0 |Y †n̄Y †n δ(`−QĈ)YnY n̄ | 0 〉 , (28)

SC̃(`, µ) = 〈 0 |Y †n̄Y †n δ
(
`− QĈ

6

)
YnY n̄ | 0 〉

= 6SC(6 `, µ),

where Yn and Yn̄ are Wilson lines in the fundamental
representation from 0 to ∞, and Y n and Y n̄ are Wil-
son lines in the anti-fundamental representation from 0

to ∞. Here Ĉ is an operator whose eigenvalues on phys-
ical states correspond to the value of C-parameter for

that state: Ĉ |X〉 = C(X) |X〉. Since the hard and jet
functions are the same as for thrust, the anomalous di-
mension of the C-parameter soft function has to coincide
with the anomalous dimension of the thrust soft function
to all orders in αs by consistency of the RGE. This allows
us to determine all logarithmic terms of SC up to O(α3

s).
Hence one only needs to determine the non-logarithmic
terms of SC . We compute it analytically at one loop
and use EVENT2 to numerically determine the two-loop

constant, sC̃2 . The three-loop constant sC̃3 is currently not
known and we estimate it with a Padé, assigning a very
conservative error. We vary this constant in our theo-
retical uncertainty analysis, but it only has a noticeable
impact in the peak region, outside of where one fits for
αs.

In Eq. (27) the hard, jet and soft functions are evalu-
ated at a common scale µ. There is no choice that simul-
taneously minimizes the logarithms of these three matrix
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elements. One can use the renormalization group equa-

tions to evolve to µ from the scales µH ∼ Q, µJ ∼ Q
√
C̃

and µS ∼ QC̃ at which logs are minimized in each piece.
In this way, large logs of ratios of scales are summed up
in the renormalization group factors:

1

σ0

dσ̂s

dC
=
Q

6
H(Q,µH)UH(Q,µH , µ)

∫
dsds′ dk (29)

× Jτ (s, µJ)UτJ (s− s′, µ, µJ)UτS (k, µ, µS)

×e− 3π
δ(R,µs)
Q

∂
∂C ŜC̃

(
QC − 3π∆̄(R,µS)

6
− s

Q
− k, µS

)
.

The terms δ and ∆ are related to the definition of the
leading power correction in a renormalon-free scheme, as
explained in Sec. VII below.

V. NONSINGULAR TERMS

We include the kinematically power suppressed terms
in the C-parameter distribution using the nonsingular
partonic distribution, dσ̂ns/dC. We calculate the non-
singular distribution using

dσ̂ns

dC
(Q,µns) =

dσ̂FO
full

dC
(Q,µns) −

dσ̂FO
s

dC
(Q,µns) . (30)

Here dσ̂FO
s /dC is obtained by using Eq. (29) with µ =

µH = µJ = µS = µns. This nonsingular distribution is
independent of the scale µns order-by-order in perturba-
tion theory as an expansion in αs(µns). We can identify
the nontrivial ingredients in the nonsingular distribution
by choosing µns = Q to give

1

σ0

dσ̂ns

dC
=

αs(Q)

2π
f1(C) +

(
αs(Q)

2π

)2
f2(C) (31)

+

(
αs(Q)

2π

)3
f3(C) + . . .

We can calculate each fi(C) using an order by order sub-
traction of the fixed-order singular distribution from the
full fixed-order distribution as displayed in Eq. (30).

At one loop, we can write down the exact form of the
full distribution as a two-dimensional integral [44]

1

σ0

∣∣∣∣ dσ̂dC

∣∣∣∣1−loop

= (32)

αs
2π

CF

∫ 1

0

dx1

∫ 1

0

dx2 θ(x1 + x2 − 1)
x2

1 + x2
2

(1− x1)(1− x2)

× δ
(
C − 6 (1− x1)(1− x2)(x1 + x2 − 1)

x1x2(2− x1 − x2)

)
,

which has support for 0 < C < 3/4, and jumps to zero for
C > 3/4. After resolving the delta function, it becomes
a one-dimensional integral that can be easily evaluated
numerically. After subtracting off the one-loop singular

0.0 0.2 0.4 0.6 0.8 1.0
-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

C

f1

H2 ΠL

FIG. 2. O(αs) nonsingular C-parameter distribution, corre-
sponding to Eq. (33).

0.0 0.2 0.4 0.6 0.8 1.0

-4

-2

0

2

4

C

f2

H2 ΠL2

fit interpolation interpol.

fit

FIG. 3. O(α2
s) nonsingular C-parameter distribution. The

solid line shows our reconstruction, whereas dots with error
bars correspond to the EVENT2 output with the singular
terms subtracted. Our reconstruction consists of fit functions
to the left of the red dashed line at C = 0.15 and between
the two red dashed lines at C = 0.75 and C = 0.8, and
interpolation functions elsewhere.

piece discussed in Sec. IV, we obtain the result for f1

shown in Fig. 2. For C > 3/4 the nonsingular distri-
bution at this order is simply given by the negative of
the singular and for practical purposes one can find a
parametrization for f1 for C < 3/4, so we use

f1(C < 0.75) = − 2.25168 + 0.506802C + 0.184585C2

+ 0.121051C3 + (0.890476− 0.544484C

− 0.252937C2 − 0.0327797C3) ln(C) ,

f1(C > 0.75) =
4

3C

[
3 + 4 ln

(
C

6

)]
. (33)

For an average over C this result for f1(C) is accurate
to 10−7, and at worst for a particular C is accurate at
10−5. An exact closed form in terms of elliptic functions
for the integral in Eq. (32) has been found in Ref. [30].

The full O(α2
s) and O(α3

s) fixed-order distributions
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FIG. 4. O(α3
s) nonsingular C-parameter distribution. The

solid line shows our reconstruction, whereas dots with error
bars correspond to the EERAD3 output with the singular
terms subtracted. Our reconstruction consists of two fit func-
tions, one for C < 0.75 and another one for 0.75 < C < 0.835,
and an interpolation for C > 0.835 (to the right of the red
dashed vertical line).

can be obtained numerically from the Fortran programs
EVENT2 [45, 46] and EERAD3 [5, 6], respectively. At
O(α2

s) we use log-binning EVENT2 results for C < 0.2
and linear-binning (with bin size of 0.02) results for
0.2 < C < 0.75. We then have additional log-binning
from 0.75 < C < 0.775 (using bins in ln[C − 0.75]) be-
fore returning to linear binning for C > 0.775. We used
runs with a total of 3×1011 events and an infrared cutoff
y0 = 10−8. In the regions of linear binning, the statisti-
cal uncertainties are quite low and we can use a numer-
ical interpolation for f2(C). For C < 0.15, we use the

ansatz f2(C) =
∑3
i=0 ai lni C + a4 C lnC and fit the co-

efficients from EVENT2 output, including the constraint
that the total fixed-order cross section gives the known
O(α2

s) coefficient for the total cross section. The result-

ing values for the ai are given as functions of sC̃2 , the
non-logarithmic coefficient in the partonic soft function.
Details on the determination of this fit function and the
determination of sC̃2 can be found below in Sec. VI. We
find

sC̃2 = − 43.2 ± 1.0 , (34)

whose central value is used in Figs. 3, 4, 5 and 11,
and whose uncertainty is included in our uncertainty
analysis. For 0.75 < C < 0.8, we employ another ansatz
f2(C) =

∑1
i=0

∑2
k=0 bik (C − 0.75)i lnk[ 8 (C − 0.75)/3].

We use the values calculated in Ref. [38] b01 = 59.8728,
b02 = 43.3122 and b12 = − 115.499 and fit the rest of the
coefficients to EVENT2 output. The final result for the
two-loop nonsingular cross section coefficient then has
the form

f2(C) + εlow
2 δlow

2 (C) + εhigh
2 δhigh

2 (C) . (35)

Here f2(C) gives the best fit in all regions, and δlow
2

and δhigh
2 give the 1-σ error functions for the lower fit

(C < 0.75) and upper fit (C > 0.75), respectively. The

two variables εlow
2 and εhigh

2 are varied during our theory
scans in order to account for the error in the nonsingular
function. In Fig. 3, we show the EVENT2 data as dots
and the best-fit nonsingular function as a solid blue line.
The uncertainties are almost invisible on the scale of this
plot.

In order to determine the O(α3
s) nonsingular cross sec-

tion f3(C) we follow a similar procedure. The EERAD3
numerical output is based on an infrared cutoff y0 = 10−5

and calculated with 6 × 107 events for the three leading
color structures and 107 events for the three subleading
color structures. The results are linearly binned with
bin size of 0.02 for C < 0.835 and bin size of 0.01 for
C > 0.835. As the three-loop numerical results have
larger uncertainties than the two-loop results, we em-
ploy a fit for all C < 0.835 and use interpolation only
above that value. The fit is split into two parts for C be-
low and above 0.75. For the lower fit we use the ansatz
f3(C) =

∑5
i=1 ai lni(C). The results for the ai depend

on the O(α2
s) partonic soft function coefficient sC̃2 , and a

combination of the three-loop coefficients in the partonic

soft and jet function, sC̃3 + 2 j3. Due to the amount of
numerical uncertainty in the EERAD3 results, it is not
feasible to fit for this combination, so each of these pa-
rameters is left as a variable that is separately varied in
our theory scans. Above C = 0.75 we carry out a sec-
ond fit, using the fit form f3(C) =

∑4
i=0 bi lni(C − 0.75).

We use the value b4 = 122.718 predicted by exponentia-

tion in Ref. [38]. The rest of the b’s depend on sC̃2 . The
final result for the three-loop nonsingular cross section
coefficient can once again be written in the form

f3(C) + εlow
3 δlow

3 (C) + εhigh
3 δhigh

3 (C) , (36)

where f3(C) is the best-fit function and the δ3’s give the
1-σ error function for the low (C < 0.75) and high (C >
0.75) fits. Exactly like for the O(α2

s) case, the ε3’s are
varied in the final error analysis. In Fig. 4, we plot the
EERAD3 data as dots, the best-fit function f3 as a solid

line, and the nonsingular results with εlow
3 = εhigh

3 = ± 1

as dashed lines. In this plot, we take sC̃2 to its best-fit

value and j3 = sC̃3 = 0.
In the final error analysis we vary the nonsingular pa-

rameters encoding the numerical extraction uncertainty
εi’s, as well as the profile parameter µns. The uncer-
tainties in our nonsingular fitting are obtained by taking

εlow
2 , εhigh

2 , εlow
3 , and εhigh

3 to be − 1, 0, and 1 indepen-

dently. The effects of εlow
2 , εhigh

2 and εhigh
3 are essentially

negligible in the tail region. Due to the high noise in the

EERAD3 results, the variation of εhigh
3 is not negligible

in the tail region, but because it comes in at O(α3
s), it

is still small. We vary the nonsingular renormalization
scale µns in a way described in Sec. VIII.

In order to have an idea about the size of the nonsin-
gular distributions with respect to the singular terms, we
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quote numbers for the average value of the one-, two-, and
three-loop distributions between C = 0.2 and C = 0.6:
5, 21, 76 (singular at 1-, 2- and 3-loops); − 0.4,− 1,− 4
(nonsingular at 1-, 2- and 3-loops). Hence, in the re-
gion to be used for fitting αs(mZ), the singular distribu-
tion is twelve (at 1-loop) to twenty (at 2-,3-loops) times
larger than the nonsingular one, and has the opposite
sign. Plots comparing the singular and nonsingular cross
sections for all C values are given below in Fig. 5.

VI. DETERMINATION OF TWO-LOOP SOFT
FUNCTION PARAMETERS

In this section we will expand on the procedure used
to extract the O(α2

s) non-logarithmic coefficient in the
soft function using EVENT2. For a general event shape,
we can separate the partonic cross section into a singular
part where the cross section involves δ(e) or lnk(e)/e, 3

and a nonsingular part with integrable functions, that
diverge at most as lnk(e). Of course, when these are
added together and integrated over the whole spectrum
of the event shape distribution, we get the correct fixed-
order normalization:

σ̂had =

∫ emax

0

de

(
dσ̂s

de
+

dσ̂ns

de

)
. (37)

Here emax is the maximum value for the given event shape
(for C-parameter, emax = 1). Using SCET, we can calcu-
late the singular cross section at O(α2

s), having the form

1

σ0

dσ̂
(2)
s

de
= Aδ δ(e) +

3∑
n=0

Dn

[
lnn e

e

]
+

. (38)

To define dσ̂
(2)
s /de we factor out α2

s/16π2 and set µ = Q.
The only unknown term at O(α2

s) for the C-parameter

distribution is the two-loop constant sC̃2 in the soft
function, which contributes to Aδ. The explicit re-
sult for the terms in Eq. (38) can be obtained from
H(Q,µ)P (Q,QC/6, µ) which are given in App. A. This
allows us to write the singular integral in (37) as a func-

tion of sC̃2 and known constants.
We extract the two-loop nonsingular portion of the

cross section from EVENT2 data. Looking now at the
specific case of C-parameter, we use both log-binning (in
the small C region, which is then described with high
accuracy) and linear binning (for the rest). By default
we use logarithmic binning for C < Cfit = 0.2, but this
boundary is changed between 0.15 and 0.25 in order to
estimate systematic uncertainties of our method. In the

3 The numerical outcome of a parton-level MC such as EVENT2
contains only the power of logs, but the complete distributions
can be obtained from knowledge of the SCET soft and jet func-
tions.

logarithmically binned region we use a fit function to ex-
trapolate for the full behavior of the nonsingular cross
section. In order to determine the coefficients of the fit
function we use data between Ccut and Cfit. By default
we take the value Ccut = 10−4, but we also explore dif-
ferent values between 5× 10−5 and 7.625× 10−4 to esti-
mate systematic uncertainties. We employ the following
functional form, motivated by the expected nonsingular
logarithms

1

σ0

dσ̂ns
fit

dC
=

3∑
i=0

ai lni C + a4 C lnn C , (39)

taking the value n = 1 as default and exploring values
0 ≤ n ≤ 3 as an additional source of systematic uncer-
tainty.

For the region with linear binning, we can simply calcu-
late the relevant integrals by summing over the bins. One
can also sum bins that contain the shoulder region as its
singular behavior is integrable. These various pieces all
combine into a final formula that can be used to extract
the two-loop constant piece of the soft function:

σ̂
(2)
had =

∫ 1

0

dC
dσ̂

(2)
s

dC
+

∫ Cfit

0

dC
dσ̂ns

fit

dC
+

∫ 1

Cfit

dC
dσ̂ns

int

dC
.

(40)

Using Eq. (40) one can extract sC̃2 , which can be decom-
posed into its various color components as

sC̃2 = C2
F s

[C2
F ]

2 + CF CAs
[CFCA]
2 + CF nfTF s

[nf ]
2 . (41)

The results of this extraction are

s
[C2
F ]

2 = − 0.46 ± 0.75 ,

s
[CFCA]
2 = − 29.08± 0.13 , (42)

s
[nf ]
2 = 21.87± 0.03 .

The quoted uncertainties include a statistical component
coming from the fitting procedure, and a systematical
component coming from the parameter variations ex-
plained above, added in quadrature. Note that the value

for s
[C2
F ]

2 is consistent with zero, as expected from ex-
ponentiation [47]. For our analysis we will always take

s
[C2
F ]

2 = 0. We have cross checked that, when a similar ex-
traction is repeated for the case of thrust, the extracted
values are consistent with those calculated analytically
in [48, 49]. This indicates a high level of accuracy in the
fitting procedure. We have also confirmed that follow-
ing the alternate fit procedure of [47] gives compatible
results, as shown in App. B.

VII. POWER CORRECTIONS AND
RENORMALON-FREE SCHEME

The expressions for the theoretical prediction of the
C-parameter distribution in the dijet region shown in
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Eqs. (26) and (27) incorporate that the full soft function
can be written as a convolution of the partonic soft func-
tion ŜC and the nonperturbative shape function FC [42] 4:

SC(k, µ) =

∫
dk′ ŜC(k − k′, µ)FC(k′,∆C) . (43)

Here, the partonic soft function ŜC is defined in fixed or-
der in MS. The shape function FC allows a smooth tran-
sition between the peak and tail regions, where different
kinematic expansions are valid, and ∆C is a parameter
of the shape function that represents an offset from zero
momentum, and which will be discussed further below.
By definition, the shape function satisfies the relations
FC(k,∆C) = FC(k − 2∆C) and FC(k < 0) = 0. In the
tail region, where QC/6 � ΛQCD this soft function can
be expanded to give

SC(k, µ) = ŜC(k)− dŜC(k)

dk
Ω
C

1 +O
(αsΛQCD

QC
,

Λ2
QCD

Q2C2

)
,

(44)

where Ω
C

1 is the leading nonperturbative power correc-
tion in MS which effectively introduces a shift of the dis-

tribution in the tail region [19]. The Ω
C

1 power correction

Ω
C

1 (µ) =
〈
0
∣∣Ȳ †n̄Y †n̄ (QĈ)YnYn̄

∣∣0〉 , (45)

is related to Ω
τ

1 , the first moment of the thrust shape
function, as given in Eq. (2). In addition to the nor-
malization difference that involves a factor of 3π/2, their
relation is further affected by hadron mass effects which
cause an additional deviation at the 2.5% level (com-
puted in Sec. VII A). The dominant contributions of
the O(αsΛQCD/QC) corrections indicated in Eq. (44) are
log-enhanced and will be captured once we include the
µ-anomalous dimension for ΩC1 that is induced by hadron
mass effects [37]. There are additional O(αsΛQCD/QC)
corrections, which we neglect, that do not induce a shift.
We consider hadron mass effects in detail in Sec. VII A.

From Eq. (43) and the OPE of Eq. (44) we can imme-
diately read off the relations∫

dk′k′FC(k′,∆C) = 2 ∆C +

∫
dk′k′FC(k′) = Ω

C

1 ,∫
dk′FC(k′) = 1 , (46)

which state that the first moment of the shape function
provides the leading power correction and that the shape
function is normalized. In the peak, it is no longer suffi-
cient to keep only the first moment, as there is no OPE
when QC/6 ∼ ΛQCD and we must keep the full depen-
dence on the model function in Eq. (43).

4 Here we use the relations ŜC(`, µ) = Ŝ
C̃

(`/6, µ)/6 and FC(`) =
F
C̃

(`/6)/6.

The partonic soft function in MS has an O(ΛQCD)
renormalon, an ambiguity which is related to a linear
sensitivity in its perturbative series. This renormalon
ambiguity is in turn inherited to the numerical values

for Ω
C

1 obtained in fits to the experimental data. It is
possible to avoid this renormalon issue by switching to a
different scheme for ΩC1 , which involves subtractions in
the partonic soft function that remove this type of in-
frared sensitivity. Following the results of Ref. [42], we
write ∆C as

∆C =
3π

2
[ ∆̄(R,µ) + δ(R,µ) ] . (47)

The term δ(R,µ) is a perturbative series in αs(µ) which

has the same renormalon behavior as Ω
C

1 . In the fac-
torization formula it is grouped into the partonic soft
function ŜC through the exponential factor involving
δ(R,µ) shown in Eq. (29). Upon simultaneous perturba-

tive expansion of the exponential together with ŜC , the
O(ΛQCD) renormalon is subtracted. The term ∆̄(R,µ)
then becomes a nonperturbative parameter which is free
of the O(ΛQCD) renormalon. Its dependence on the sub-
traction scale R and on µ is dictated by δ(R,µ) since ∆C

is R- and µ-independent. The subtraction scale R en-
codes the momentum scale associated with the removal
of the linearly infrared-sensitive fluctuations. The fac-
tor 3π/2 is a normalization coefficient that relates the
O(ΛQCD) renormalon ambiguity of the C soft function
SC to the one for the thrust soft function. Taking into
account this normalization we can use for δ(R,µ) the
scheme for the thrust soft function already defined in
Ref. [19],

δ(R,µ) =
R

2
eγE

d

d ln(ix)

[
lnSpart

τ (x, µ)
]
x=(iReγE )−1 , (48)

where Spart
τ (x, µ) is the position-space thrust partonic

soft function. From this, we find that the perturbative
series for the subtraction is

δ(R,µ) = ReγE
∞∑
i=1

αis(µ) δi(R,µ) . (49)

Here the δi≥2 depend on both the adjoint Casimir CA = 3
and the number of light flavors in combinations that are
unrelated to the QCD beta function. Using five light
flavors the first three coefficients have been calculated in
Ref. [47] as

π

2
δ1(R,µ) = − 1.33333LR ,

π

2
δ2(R,µ) = − 0.245482− 0.732981LR − 0.813459L2

R ,

π

2
δ3(R,µ) = − 0.868628 − 0.977769LR

− 1.22085L2
R − 0.661715L3

R , (50)

where LR = ln(µ/R). Using these δ’s, we can make a
scheme change on the first moment to what we call the
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Rgap scheme:

ΩC1 (R,µ) = Ω
C

1 (µ)− 3π δ(R,µ) . (51)

In contrast to the MS scheme Ω
C

1 (µ) the Rgap scheme
ΩC1 (R,µ) is free of the ΛQCD renormalon. From Eq. (46)
it is then easy to see that the first moment of the shape
function becomes∫

dk k FC
(
k − 3π∆(R,µ)

)
= ΩC1 (R,µ) . (52)

The factorization in Eq. (43) can now be written as

SC(k, µ) =

∫
dk′ e− 3πδ(R,µ) ∂∂k ŜC(k − k′, µ)

× FC
(
k′ − 3π∆(R,µ)

)
. (53)

The logs in Eq. (50) can become large when µ and R
are far apart. This imposes a constraint that R ∼ µ,
which will require the subtraction scale to depend on
C in a way similar to µ. On the other hand, we also

must consider the power counting Ω
C ∼ ΛQCD, which

leads us to desire using R ' 1 GeV. In order to sat-
isfy both of these constraints in the tail region, where
µ ∼ QC/6 � 1 GeV, we (i) employ R ∼ µ for the
subtractions in δ(R,µ) that are part of the Rgap par-
tonic soft function and (ii) use the R-evolution to relate
the gap parameter ∆̄(R,µ) to the reference gap param-
eter ∆̄(R∆, µ∆) with R∆ ∼ µ∆ ∼ O(1 GeV) where the
ΛQCD counting applies [47, 50, 51]. The formulae for the
R-RGE and µ-RGE are

R
d

dR
∆̄(R,R) = −R

∞∑
n=0

γRn

(
αs(R)

4π

)n+1

,

µ
d

dµ
∆̄(R,µ) = 2ReγE

∞∑
n=0

Γcusp
n

(
αs(µ)

4π

)n+1

, (54)

where for five flavors the Γcusp
n is given in App. A and

the γR coefficients are given by

γR0 = 0, γR1 = − 43.954260 , γR2 = − 606.523329 . (55)

The solution to Eq. (54) is given, at NkLL by

∆̄(R,µ) = ∆̄(R∆, µ∆) +ReγEω [ Γcusp, µ,R ]

+R∆e
γEω [ Γcusp, R∆, µ∆ ]

+ Λ
(k)
QCD

k∑
j=0

(−1)jSje
iπb̂1

×
[

Γ(− b̂1 − j, t1)− Γ(− b̂1 − j, t0)
]

≡ ∆̄(R∆, µ∆) + ∆diff(R∆, R, µ∆, µ) . (56)

For the convenience of the reader the definition for ω is
provided in Eq. (A19) and the values for b̂1 and the Sj
are given in Eq. (E1). In order to satisfy the power count-
ing criterion for R, we specify the parameter ∆̄(R∆, µ∆)
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FIG. 5. Singular and nonsingular components of the fixed-
order C-parameter cross section, including up to O(α3

s) terms,
with Ω1 = 0.25 GeV and αs(mZ) = 0.1141.

at the low reference scales R∆ = µ∆ = 2 GeV. We
then use Eq. (56) to evolve this parameter up to a
scale R(C), which is given in Sec. VIII and satisfies the
condition R(C) ∼ µS(C) in order to avoid large logs.
This R-evolution equation yields a similar equation for
the running of ΩC1 (R,µS), which is easily found from
Eqs. (47) and (51).

We also apply the Rgap scheme in the nonsingular part
of the cross section by using the convolution

∫
dk′ e− 3π

δ(R,µs)
Q

∂
∂C

dσ̂ns

dC

(
C − k′

Q
,
µns

Q

)
× FC

(
k′ − 3π ∆̄(R,µS)

)
. (57)

By employing the Rgap scheme for both the singular and
nonsingular pieces, the sum correctly recombines in a
smooth manner to the fixed-order result in the far-tail
region.

Note that by using Eq. (47) we have defined the
renormalon-free moment parameter ΩC1 (R,µ) in a scheme
directly related to the one used for the thrust analyses in
Refs. [19, 20]. This is convenient as it allows for a direct
comparison to the Ω1 fit results we obtained in both these
analyses. However, many other renormalon-free schemes
can be devised, and all these schemes are perturbatively
related to each other through their relation to the MS
scheme ∆C . As an alternative, we could have defined a
renormalon-free scheme for ΩC1 by determining the sub-

traction δ directly from the C̃ soft function SC̃ using
the analogue to Eq. (48). For future reference we quote
the results for the resulting subtraction function δC̃ in
App. G.

In close analogy to Ref. [19] we parametrize the shape
function FC in terms of the basis functions introduced
in [43]. In this expansion the shape function has the
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FIG. 6. Singular and nonsingular components of the fixed-
order thrust cross section, including up to O(α3

s) terms, with
Ω1 = 0.25 GeV and αs(mZ) = 0.1141.

form

FC(k, λ, {ci}) =
1

λ

[
N∑
n=0

cnfn

(
k

λ

)]2

, (58)

where the fn are given by

fn(z) = 8

√
2z3(2n+ 1)

3
e−2zPn[ g(z) ],

g(z) =
2

3

[
3− e−4z(3 + 12z + 24z2 + 32z3)

]
− 1, (59)

and Pn denote the Legendre polynomials. The additional
parameter λ is irrelevant when N →∞. For finite N it is
strongly correlated with the first moment ΩC1 (and with
c1). The normalization of the shape function requires

that
∑N
n=0 c

2
n = 1. When plotting and fitting in the tail

region, where the first moment of the shape function ΩC1
is the only important parameter, it suffices to take c0 = 1
and all ci>0 = 0. In this case the parameter λ directly
specifies our ΩC1 according to

ΩC1 (R∆, µ∆) = λ+ 3π ∆̄(R∆, µ∆) . (60)

In the tail region where one fits for αs(mZ) there is not
separate dependence on the nonperturbative parameters
λ and ∆̄(R∆, µ∆), they only appear together through the
parameter ΩC1 (R∆, µ∆). In the peak region, one should
keep more ci’s in order to correctly parametrize the non-
perturbative behavior.

In Fig. 5 we plot the absolute value of the four compo-
nents of the partonic fixed-order C distribution at O(α3

s)
in the Rgap scheme at Q = mZ . Resummation has been
turned off. The cross section components include the sin-
gular terms (solid blue), nonsingular terms (dashed blue),
and separately the contributions from terms that involve
the subtraction coefficients δi, for both singular subtrac-
tions (solid red) and nonsingular subtractions (dashed

red). The sum of these four components gives the total
cross section (solid black line). One can observe that the
nonsingular terms are significantly smaller than the sin-
gular ones in the tail region below the shoulder, i.e. for
C < 0.7. Hence the tail region is completely dominated
by the part of the cross section described by the SCET
factorization theorem, where resummation matters most.
Above the shoulder the singular and nonsingular C re-
sults have comparable sizes. An analogous plot for the
thrust cross section is shown in Fig. 6. We see that the
portion of the C-parameter distribution where the loga-
rithmic resummation in the singular terms is important,
is substantially larger compared to the thrust distribu-
tion.

A. Hadron Mass Effects

Following the analysis in Ref. [37], we include the ef-
fects of hadron masses by including the dependence of
ΩC1 on the distributions of transverse velocities

r ≡ p⊥√
p2
⊥ +m2

H

, (61)

where mH is the nonzero hadron mass and p⊥ is the
transverse velocity with respect to the thrust axis. For
the massless case one has r = 1. However, when the
hadron masses are nonzero, r can take any value in the
range 0 to 1. The additional effects of the finite hadron
masses cause non-trivial modifications in the form of the
first moment of the shape function:

Ω
e

1(µ) = ce

∫ 1

0

dr ge(r) Ω1(r, µ) , (62)

where e denotes the specific event shape that we are
studying, ce is an event-shape dependent constant, ge(r)
is an event-shape dependent function 5 that encodes the
dependence on the hadron mass effects and Ω1(r) is a
universal r-dependent generalization of the first moment,
described by a matrix element of the transverse velocity
operator. Ω1(r, µ) is universal for all recoil-insensitive
event shapes. Note that once hadron masses are included,
there is no limit of the hadronic parameters that reduces
to the case where hadron masses are not accounted for.

For the cases of thrust and C-parameter, we have

cC = 3π , gC(r) =
2r2

π
K(1− r2) , (63)

cτ = 2 , gτ (r) = 1− E(1− r2) + r2K(1− r2) ,

5 As discussed in Ref. [37], event shapes with a common ge function
belong to the same universality class. This means that their
leading power corrections are simply related by the ce factors. In
this sense, ge is universality-class dependent rather than event-
shape dependent.
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where E(x) and K(x) are complete elliptic integrals,
whose definition can be found in Ref. [36, 37]. Notice
that gC(r) and gτ (r) are within a few percent of each
other over the entire r range, so we expect the relation

2 Ω
C

1 (µ) = 3πΩ
τ

1(µ)
[
1 +O(2.5%)

]
, (64)

where the O(2.5%) captures the breaking of universality
due to the effects of hadron masses. We have determined
the size of the breaking by∫ 1

0
dr
[
gC(r)− gτ (r)

]∫ 1

0
dr
[
gC(r) + gτ (r)

]
/2

= 0.025. (65)

All r ∈ [ 0, 1] contribute roughly an equal amount to this
deviation, which is therefore well captured by this inte-
gral.

As indicated in Eq. (62) the moment Ω1(r, µ) in the
MS scheme is renormalization-scale dependent and at LL
satisfies the RGE of the form [37]

Ω1(r, µ) = Ω1(r, µ0)

[
αs(µ)

αs(µ0)

]γ̂1(r)

. (66)

In App. E we show how to extend this running to the
Rgap scheme in order to remove the O(ΛQCD) renor-
malon. The result in the Rgap scheme is

gC(r) ΩC1 (R,µ, r) = gC(r)

[
αs(µ)

αs(µ∆)

]γ̂1(r)

ΩC1 (R∆, µ∆, r)

+ReγE
(
αs(µ)

αs(R)

)̂γ1(r)

ω [ Γcusp, µ,R ]

+R∆e
γE

(
αs(µ)

αs(R∆)

)̂γ1(r)

ω [ Γcusp, R∆, µ∆]

+ Λ
(k)
QCD

(
β0αs(µ)

2π

)̂γ1(r) k∑
j=0

Srj (r)(−1)jeiπ[b̂1−γ̂1(r)]

×
[

Γ(− b̂1 + γ̂1(r)− j, t1)− Γ(− b̂1 + γ̂1(r)− j, t0)
]

≡ gC(r)

[
αs(µ)

αs(µ∆)

]γ̂1(r)

Ω1(R∆, µ∆, r)

+ ∆diff(R∆, R, µ∆, µ, r) . (67)

Here, the formula is resummed to NkLL and Λ
(k)
QCD is the

familiar NkLO perturbative expression for ΛQCD. We al-
ways use R∆ = µ∆ = 2 GeV to define the initial hadronic

parameter. The values for b̂1, γ1(r), t1, t0,and the Sj can
all be found in App. E and the resummed ω is given in
Eq. (A19).

In order to implement this running, we pick an ansatz
for the form of the moment at the low scales, R∆ and
µ∆, given by

Ω1(R∆, µ∆, r) =
[
a(R∆, µ∆)fa(r) + b(R∆, µ∆)fb(r)

]2
,

fa(r) = 3.510 e
− r2

1−r2 , (68)

fb(r) = 13.585 e
− 2 r2

1−r2 − 21.687 e
− 4 r2

1−r2 .

The form of Ω1(R∆, µ∆, r) was chosen to always be pos-
itive and to smoothly go to zero at the endpoint r = 1.
In the Rgap scheme Ω1 can be interpreted in a Wilso-
nian manner as a physical hadronic average momentum
parameter, and hence it is natural to impose positivity.
As r → 1 we are asking about the vacuum-fluctuation-
induced distribution of hadrons with large p⊥ which
is anticipated to fall off rapidly. We also check other
ansätze that satisfied these conditions, but choosing dif-
ferent positive definite functions has a minimal effect on
the distribution. The functions fa and fb were chosen

to satisfy
∫ 1

0
drgC(r)fa(r)2 =

∫ 1

0
drgC(r)fb(r)

2 = 1 and∫ 1

0
drgC(r)fa(r) fb(r) = 0. This allows us to write

ΩC1 (R∆, µ∆) = cC

∫ 1

0

dr gC(r) Ω1(R∆, µ∆, r)

= 3π
[
a(R∆, µ∆)2 + b(R∆, µ∆)2

]
, (69)

and to define an orthogonal variable

θ(R∆, µ∆) ≡ arctan

(
b(R∆, µ∆)

a(R∆, µ∆)

)
. (70)

The parameters a and b can therefore be swapped for
ΩC1 (R∆, µ∆) and θ(R∆, µ∆). This θ is defined as part of
the model for the universal function Ω1(R,µ, r) and so
should also exhibit universality between event shapes. In
Sec. IX D below we will demonstrate that θ has a small
effect on the cross section for the C-parameter, and hence
that ΩC1 (R∆, µ∆) is the most important hadronic param-
eter.

VIII. PROFILE FUNCTIONS

The ingredients required for cross section predictions
at various resummed perturbative orders are given in Ta-
ble I. This includes the order for the cusp and non-cusp
anomalous dimensions for H, Jτ , and SC , their pertur-
bative matching order, the beta function β[αs] for the
running coupling, and the order for the nonsingular cor-
rections discussed in Sec. V. It also includes the anoma-
lous dimensions γ∆ and subtractions δ discussed in this
section. In our analysis we only use primed orders with
the factorization theorem for the distribution. For the
unprimed orders only the formula for the cumulant cross
section properly resums the logarithms, see [52], but for
the reasons discussed in [19] we need to use the distri-
bution cross section for our analysis. The primed order
distribution factorization theorem properly resums the
desired series of logarithms for C, and was also used in
Refs. [19, 20] to make predictions for thrust.

The factorization formula in Eq. (29) contains three
characteristic renormalization scales, the hard scale µH ,
the jet scale µJ , and the soft scale µS . In order to avoid
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large logarithms, these scales must satisfy certain con-
straints in the different C regions

1) nonperturbative: C <∼ 3π
ΛQCD

Q

µH ∼ Q, µJ ∼
√

ΛQCDQ, µS∼R∼ΛQCD ,

2) resummation: 3π
ΛQCD

Q
� C < 0.75 (71)

µH ∼ Q, µJ ∼ Q
√
C

6
, µS∼R∼

QC

6
� ΛQCD ,

3) fixed-order: C > 0.75

µH = µJ = µS = R ∼ Q� ΛQCD .

In order to meet these constraints and have a continu-
ous factorization formula, we make each scale a smooth
function of C using profile functions.

When one looks at the physical C-parameter cross-
section, it is easy to identify the peak, tail, and far-tail as
distinct physical regions of the distribution. How much
of the physical peak belongs to the nonperturbative ver-
sus resummation region is in general a process dependent
statement, as is the location of the transition between
the resummation and fixed-order regions. For example,
in b → s γ the entire peak is in the nonperturbative re-
gion [43], whereas for pp→ H+1 gluon initiated jet with
pT ∼ 400 GeV the entire peak is in the resummation re-
gion [53]. For thrust with Q = mZ [19], and similarly
here for C-parameter with Q = mZ , the transition be-
tween the nonperturbative and resummation regions oc-
curs near the maximum of the physical peak. Note that,
despite the naming, in the nonperturbative region, where
the full form of the shape function is needed, resumma-
tion is always important. The tail for the thrust and
C-parameter distributions is located in the resummation
region, and the far-tail, which is dominated by events
with three or more jets, exists in the fixed-order region.

For the renormalization scale in the hard function, we
use

µH = eH Q , (72)

where eH is a parameter that we vary from 0.5 to 2.0 in
order to account for theory uncertainties.

The profile function for the soft scale is more compli-
cated, and we adopt the following form:

µS =



µ0 0 ≤ C < t0

ζ(µ0, 0, 0, rs µH6 , t0, t1, C) t0 ≤ C < t1

rs µH
C
6 t1 ≤ C < t2

ζ(0, rs µH6 , µH , 0, t2, ts, C) t2 ≤ C < ts

µH ts ≤ C < 1

. (73)

Here the 1st, 3rd, and 5th lines satisfy the three con-
straints in Eq. (71). In particular, µ0 controls the in-
tercept of the soft scale at C = 0. The term t0 con-
trols the boundary of the purely nonperturbative region

cusp non-cusp matching β[αs] nonsingular γµ,R,r∆ δ

LL 1 - tree 1 - - -

NLL 2 1 tree 2 - 1 -

N2LL 3 2 1 3 1 2 1

N3LL 4pade 3 2 4 2 3 2

NLL′ 2 1 1 2 1 1 1

N2LL′ 3 2 2 3 2 2 2

N3LL′ 4pade 3 3 4 3 3 3

TABLE I. Loop corrections required for specified orders.
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FIG. 7. Solid lines are the central results for the profile
functions for the renormalization scales µH , µJ(C), µS(C)
at Q = mZ . The bands and up-down arrow indicate the re-
sults of varying the profile parameters. The result for R(C)
is identical to µS(C) at the resolution of this figure, differing
only at small C. Above C = ts ' 0.8 all the scales merge,
µH = µJ = µS = R.

and the start of the transition to the resummation re-
gion, and t1 represents the end of this transition. As the
border between the nonperturbative and perturbative re-
gions is Q dependent, we actually use n0 ≡ t0(Q/1 GeV)
and n1 ≡ t1(Q/1 GeV) as the profile parameters. In the
resummation region t1 < C < t2 the parameter rs de-
termines the linear slope with which µS rises. The pa-
rameter t2 controls the border and transition between
the resummation and fixed-order regions. Finally, the
ts parameter sets the value of C where the renormal-
ization scales all join. We require both µS and its first
derivative to be continuous, and to this end we have de-
fined the function ζ(a1, b1, a2, b2, t1, t2, t) with t1 < t2,
which smoothly connects two straight lines of the form
l1(t) = a1 + b1 t for t < t1 and l2(t) = a2 + b2 t for t > t2
at the meeting points t1 and t2. We find that a conve-
nient form for ζ is a piecewise function made out of two
quadratic functions patched together in a smooth way.
These two second-order polynomials join at the middle
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parameter default value range of values

µ0 1.1 GeV -

R0 0.7 GeV -

n0 12 10 to 16

n1 25 22 to 28

t2 0.67 0.64 to 0.7

ts 0.83 0.8 to 0.86

rs 2 1.78 to 2.26

eJ 0 − 0.5 to 0.5

eH 1 0.5 to 2.0

ns 0 − 1, 0, 1

Γcusp
3 1553.06 − 1553.06 to + 4659.18

sC̃2 − 43.2 − 44.2 to − 42.2

j3 0 − 3000 to + 3000

sC̃3 0 − 500 to + 500

εlow
2 0 − 1, 0, 1

εhigh
2 0 − 1, 0, 1

εlow
3 0 − 1, 0, 1

εhigh
3 0 − 1, 0, 1

TABLE II. C-parameter theory parameters relevant for esti-
mating the theory uncertainty, their default values and range
of values used for the scan for theory uncertainties.

point tm = (t1 + t2)/2:

ζ(t) =

{
â1 + b1(t− t1) + e1(t− t1)2 t1 ≤ t ≤ tm
â2 + b2(t− t2) + e2(t− t2)2 tm ≤ t ≤ t2

,

â1 = a1 + b1 t1 , â2 = a2 + b2 t2 ,

e1 =
4 (â2 − â1)− (3 b1 + b2) (t2 − t1)

2 (t2 − t1)2
,

e2 =
4 (â1 − â2) + (3 b2 + b1) (t2 − t1)

2 (t2 − t1)2
. (74)

The soft scale profile in Eq. (73) was also used in Ref. [54]
for jet-mass distributions in pp→ Z + 1-jet.

In Ref. [19] slightly different profiles were used. For in-
stance there was no region of constant soft scale. This can
be reproduced from our new profiles by choosing t0 = 0.
Moreover, in Ref. [19] there was only one quadratic form
after the linear term, and the slope was completely de-
termined by other parameters. These new profiles have
several advantages. The most obvious is a variable slope,
which allows us to balance the introduction of logs and
the smoothness of the profiles. Additionally, in the new
set up, the parameters for different regions are more inde-
pendent. For example, the n0 parameter will only affect
the nonperturbative region in the new profiles while in
the old profiles, changing n0 would have an impact on
the resummation region. This independence makes ana-
lyzing the different regions more transparent.

parameter default value range of values

µ0 1.1 GeV -

R0 0.7 GeV -

n0 2 1.5 to 2.5

n1 10 8.5 to 11.5

t2 0.25 0.225 to 0.275

ts 0.4 0.375 to 0.425

rs 2 1.77 to 2.26

eJ 0 − 1.5 to 1.5

eH 1 0.5 to 2.0

ns 0 − 1, 0, 1

j3 0 − 3000 to + 3000

sτ3 0 − 500 to + 500

ε2 0 − 1, 0, 1

ε3 0 − 1, 0, 1

TABLE III. Thrust theory parameters relevant for estimating
the theory uncertainty, their default values and range of values
used for the scan for theory uncertainties.

For the jet scale we introduce a “trumpeting” factor
that modifies the natural relation to the hard and soft
scales in the following way:

µJ(C) =

{[
1 + eJ(C − ts)2

]√
µH µS(C) C ≤ ts

µH C > ts
. (75)

The parameter eJ is varied in our theory scans.
The subtraction scale R(C) can be chosen to be the

same as µS(C) in the resummation region to avoid large
logarithms in the subtractions for the soft function. In
the nonperturbative region we do not want the O(αs)
subtraction piece to vanish, see Eq. (50), so we choose
the form

R(C) =


R0 0 ≤ C < t0

ζ(R0, 0, 0, rs µH6 , t0, t1, C) t0 ≤ C < t1

µS(C) t1 ≤ C ≤ 1

. (76)

The only free parameter in this equation, R0, simply sets
the value of R at C = 0. The requirement of continuity at
t1 in both R(C) and its first derivative are again ensured
by the ζ function.

In order to account for resummation effects in the non-
singular partonic cross section, which we cannot treat
coherently, we vary µns. We use three possibilities,

µns(C) =


1
2

[
µH(C) + µJ(C)

]
ns = 1

µH ns = 0
1
2

[
3µH(C)− µJ(C)

]
ns = − 1

. (77)

Using these variations, as opposed to those in Ref. [19],
gives more symmetric uncertainty bands for the nonsin-
gular distribution.
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The plot in Fig. 7 shows the scales for the default pa-
rameters for the case Q = mZ (thick lines). Also shown

(in gray) are plots of QC/6 and Q
√
C/6. In the re-

summation region, these correspond fairly well with the
profile functions, indicating that in this region our analy-
sis will avoid large logarithms. Note that the soft and jet
scales in the plot would exactly match the gray dashed
lines in the region 0.25 < C < 0.67 if we took rs = 1 as
our default. For reasons discussed in Sec. IX B we use
rs = 2 as our default value. We also set as default val-
ues µ0 = 1.1 GeV, R0 = 0.7 GeV, eH = 1, eJ = 0, and
ns = 0. Default central values for other profile parame-
ters for C are listed in Table II.

Perturbative uncertainties are obtained by varying the
profile parameters. We hold µ0 and R0 fixed, which are
the parameters relevant in the region impacted by the en-
tire nonperturbative shape function. They influence the
meaning of the nonperturbative soft function parameters
in FC . The difference of the two parameters is impor-
tant for renormalon subtractions, and hence should not
be varies (µ0 − R0 = 0.4 GeV) to avoid changing the
meaning of FC . Varying µ0 and R0 keeping the differ-
ence fixed has a very small impact compared to variations
from FC parameters, as well as other profile parameters,
and hence is also kept constant. We are then left with
eight profile parameters to vary during the theory scan,
whose central values and variation ranges used in our
analysis are: rs = 2× 1.13±1, n0 = 12 ± 2, n1 = 25 ± 3,
t2 = 0.67± 0.03, ts = 0.83± 0.03, eJ = 0± 0.5, eH = 2±1

and ns = 0 ± 1. The resulting ranges are also listed in
Table II, and the effect of these variations on the scales
is plotted in Fig. 7. Since we have so many events in our
EVENT2 runs, the effect of εlow

2 is completely negligible
in the theory uncertainty scan. Likewise, the effect of

εhigh
2 is also tiny above the shoulder region.

Due to the advantages of the new profile functions, we
have implemented them for the thrust predictions from
Refs. [19] as well. For thrust we redefine rs → 6 rs, which
eliminates all four appearances of the factor of 1/6 in
Eqs. (73) and (76). After making this substitution, we
can specify the theory parameters for thrust, which are
summarized in Table III.These choices create profiles and
profile variations that are very similar to those used in
[19]. The only noticeable difference is the flat µS in the
nonperturbative region (which is relevant for a fit to the
full shape function, but is irrelevant for the αs tail fit).

IX. RESULTS

In this section we present our final results for the
C-parameter cross section, comparing to the thrust cross
section when appropriate. We will use different levels of
theoretical accuracy for these analyses. When indicating
the perturbative precision, and whether or not the power
correction Ω1 is included and at what level of precision,

Resummation Order Calculable Gij ’s and Bi’s

LL Gi, i+1

NLL′ Gi, i and B1

N2LL′ Gi,i−1 and B2

N3LL′ Gi,i−2 and B3

TABLE IV. By doing resummation to the given order, we can
access results for the entire hierarchy of Gij ’s listed.

we follow the notation:

O(αks ) fixed order up to O(αks )

NkLL′+O(αks ) perturbative resummation

NkLL′+O(αks )+Ω1 MS scheme for Ω1

NkLL′+O(αks )+Ω1(R,µ) Rgap scheme for Ω1

NkLL′+O(αks )+Ω1(R,µ, r) Rgap scheme with

hadron masses for Ω1 .

In first three subsections we discuss the determination of
higher order perturbative coefficients in the cross section,
the impact of the slope parameter rs, and the order-by-
order convergence and uncertainties. Since the effect of
the additional running induced by the presence of hadron
masses is a relatively small effect on the cross section, we
leave their discussion to the final fourth subsection.

A. Gij expansion

Our N3LL′ resummed predictions can be used to com-
pute various coefficients of the most singular terms in
the cross section. In this determination only perturba-
tive results are used. In order to exhibit the terms that
are determined by the logarithmic resummation, one can
take µ = Q and write the cumulant function in the fol-
lowing way:

Σ0(C) =
1

σ0

∫ C

0

dC ′
dσ

dC ′
=

(
1 +

∞∑
m=1

B[0]
m

(
αs(Q)

2π

)m)

× exp

 ∞∑
i=1

i+1∑
j=1

Gij

(
αs(Q)

2π

)i
lnj
(

6

C

), (78)

where σ0 is the tree-level total cross section. A different
normalization with respect to the total cross section in-
cluding all QCD corrections is also used in the literature
and reads

Σ(C) =
1

σhad

∫ C

0

dC ′
dσ

dC ′
=

(
1 +

∞∑
m=1

Bm

(
αs(Q)

2π

)m)

× exp

 ∞∑
i=1

i+1∑
j=1

Gij

(
αs(Q)

2π

)i
lnj
(

6

C

). (79)
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FIG. 8. Theory scan for C-parameter [ panels (a) to (f) ] and Thrust [ panels (g) to (l) ] cross section uncertainties at various
orders, for few center of mass energies Q and slopes rs. The theoretical predictions include log resummation and are purely
perturbative. The respective upper and lower rows use rs = 1 and rs = 2, respectively. The left, center and right columns
correspond to Q = 40 GeV, 91.2 GeV, and 200 GeV, respectively. Here we use αs(mZ) = 0.1141.

Notice that the different normalizations do not affect the
Gij ’s and only change the non-logarithmic pieces. Our

N3LL′ result allows us to calculate the B
[0]
m ’s and Bm’s to

third order and entire hierarchies of the Gij coefficients
as illustrated in Table IV.

The results for these coefficients through G34 are col-
lected in App. D. Note that, due to the equivalence of the
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FIG. 9. C-parameter (left panel) and thrust (right panel) cross section predictions at N3LL′ + O(α3
s) + Ω1(R,µ) for rs = 1

(blue) and rs = 2 (red). For these plots we use our most complete setup, with power corrections in the renormalon-free Rgap
scheme. Here we use αs(mZ) = 0.1141 and Ω1(R∆, µ∆) = 0.33 GeV.

thrust and C-parameter distributions at NLL (when us-

ing C̃), we know that the Gi, i+1 and Gi, i series are equal
for these two event shapes [27]. From our higher order
resummation analysis we find that the Gi,i−1 and Gi,i−2

coefficients differ for the C-parameter and thrust event

shapes because the fixed-order sC̃,τ1 and sC̃,τ2 constants
differ, and enter into the resummed results at N2LL′ and
N3LL′ respectively. The values of all the Bi coefficients
are also different. (If we had instead used the unprimed
counting for logarithms, NkLL, there is less precision ob-
tained at a given order, and each index of a Bi in Table IV
would be lowered by one.)

The Gij and Bm serve to illustrate the type of terms
that are included by having resummation and fixed order
terms at a given order. They are not used explicitly for
the resummed analyses in the following sections, which
instead exploit the full resummed factorization theorem
in Eq. (29).

B. The slope rs for C-parameter and Thrust

In the profiles of Sec. VIII, the parameter rs was de-
fined as the dimensionless slope of µS in the resummation
region. It would seem natural to pick rs = 1 to eliminate
the powers of ln(6µS/(QC)) and ln(µS/(Qτ)) that ap-
pear in the cross section formula for C and τ . However,
having a slightly steeper rise may also yield benefits by
smoothing out the profile. Using an rs that is larger
than 1, such as rs = 2, will only shift small ln(rs) factors
between different orders of the resummed cross section.
Just like other profile parameters the dependence on rs
will decrease as we go to higher orders in perturbation
theory, but the central value choice may improve the ac-
curacy of lower order predictions.

In order to determine whether rs = 1 or rs = 2 is a

better choice for the slope parameter, we examine the
convergence of the cross section between different orders
of resummation. For this analysis we will compare the
three perturbative orders N3LL′+O(α3

s), N2LL′+O(α2
s),

NLL′ + O(αs). We also fix αs(mZ) = 0.1141, which is
the value favored by the QCD only thrust fits [19]. (Use
of larger values of αs(mZ) leads to the same conclusions
that we draw below.) In Fig. 8, we show the perturbative
C-parameter cross section (upper two rows) and thrust
cross section (lower two rows) with a scan over theory
parameters (without including Ω1 or the shape function)
for both rs = 1 (first respective row) and rs = 2 (sec-
ond respective row). Additionally, we plot with differ-
ent values of Q, using Q = 40 GeV in the first column,
Q = 91.2 GeV in the second column and Q = 200 GeV
in the third column. The bands here correspond to a
theory parameter scan with 500 random points taken
from Tabs. II and III. We conclude from these plots that
rs = 2 has better convergence between different orders
than rs = 1. For all of the values of Q, we can see that in
the slope 1 case, the N2LL′ band lies near the outside of
the edge of the NLL′ band, while in the slope 2 plots, the
scan for N2LL′ is entirely contained within the scan for
NLL′. A similar picture can be seen for the transition
from N2LL′ to N3LL′. This leads us to the conclusion
that the resummed cross section prefers rs = 2 profiles
which we choose as our central value for the remainder
of the analysis. (In the thrust analysis of Ref. [19], the
profiles did not include an independent slope parameter,
but in the resummation region their profiles are closer to
taking rs = 2 than rs = 1.)

At the highest order, N3LL′ + O(α3
s), the choice of

rs = 1 or rs = 2 has very little impact on the result-
ing cross section, both for C-parameter and thrust. In-
deed, the difference between these two choices is smaller
than the remaining (small) perturbative uncertainty at
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FIG. 10. Total hadronic cross section obtained from integrating the resummed cross section. The top two panels show the
prediction for rs = 1 and rs = 2 for C-parameter, respectively. Likewise, the bottom two panels show the thrust results. Green
squares correspond to the prediction with log-resummation and the power correction in the MS scheme, whereas red triangles
have log-resummation and the power correction in the Rgap scheme. The blue points correspond to the fixed-order prediction,
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FIG. 11. Components of the C-parameter cross section with
resummation at N3LL′+O(α3

s)+Ω1(R,µ) with Ω1(R∆, µ∆) =
0.33 GeV and αs(mZ) = 0.1141.

this order. This is illustrated in Fig. 9, which shows
the complete N3LL′+O(α3

s) + Ω1(R,µ) distributions for

rs = 1 (blue) and rs = 2 (red) for C-parameter in the
left panel, and for thrust in the right panel. Here we use
Ω1(R∆, µ∆) = 0.33 GeV. Thus the choice of rs is essen-
tially irrelevant for our highest order predictions, but has
a bit of impact on conclusions drawn about the conver-
gence of the lower to highest orders. Another thing that
is clear from this figure is that the perturbative uncertain-
ties for the C-parameter cross section at Q = mZ , which
are on average ± 2.5% in the region 0.25 < C < 0.65,
are a bit larger than those for thrust where we have on
average ± 1.8% in the region 0.1 < τ < 0.3. This ± 1.8%,
obtained with the profile and variations discussed here,
agrees well with the ± 1.7% quoted in Ref. [19].

One can also look at the effect that the choice of
rs has on the total integral over the C-parameter and
thrust distributions at NkLL′+O(αks ) + Ω1(R,µ), which
should reproduce the total hadronic cross section. For
C-parameter the outcome is shown in the first row of
Fig. 10, where green squares and red triangles represent
resummed cross sections with power corrections in the
MS and Rgap schemes, respectively. In blue we display
the fixed-order prediction. Comparing the predictions
for rs = 1 (left panel) and rs = 2 (right panel), we ob-
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FIG. 12. Theory scan for cross-section uncertainties in C-parameter. The panels are (a) fixed order, (b) resummation with no

nonperturbative function, (c) resummation with a nonperturbative function using the MS scheme for Ω
C
1 without renormalon

subtraction, (d) resummation with a nonperturbative function using the Rgap scheme for ΩC1 with renormalon subtraction.

serve that the former achieves a better description of the
fixed-order prediction at N2LL′, in agreement with obser-
vations made in Ref. [29]. For the case of thrust (second
row of Fig. 10) similar conclusions as for C-parameter can
be drawn by observing the behavior of the total cross
section. Again, at the highest order the result is inde-
pendent of the choice of the slope within uncertainties
for both C and thrust. Since our desired fit to deter-
mine αs(mZ) and ΩC1 requires the best predictions for
the shape of the normalized cross section, we do not use
the better convergence for the normalization as a criteria
for using rs = 1. Our results for cross section shapes are
self-normalized using the central profile result.

In Fig. 11 we present a plot analogous to Fig. 5 but in-
cluding resummation at N3LL′+ O(α3

s) + Ω1(R,µ) with

rs = 2 (a similar plot for thrust can be found in Ref. [19]).
The suppression of the dashed blue nonsingular curve rel-
ative to the solid upper blue singular curve is essentially
the same as observed earlier in Fig. 5. The subtraction
components are a small part of the cross section in the re-
summation region, but have an impact at the level of pre-
cision obtained in our computation. Above the shoulder
region the singular and nonsingular terms appear with
opposite signs and largely cancel. This is clear from the
figure where the individual singular and nonsingular lines
are larger than the total cross section in this region. The
same cancellation occurs for the singular subtraction and
nonsingular subtraction terms. The black curve labeled
total in Fig. 11 shows the central value for our full predic-
tion. Note that the small dip in this black curve, visible
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at C ' 0.75, is what survives for the log-singular terms
in the shoulder after the convolution with FC .

C. Convergence and Uncertainties: Impact of
Resummation and Renormalon Subtractions

Results for the C-parameter cross sections at Q = mZ

are shown at various levels of theoretical sophistication
in Fig. 12. The simplest setup is the purely perturbative
fixed-order O(αks ) QCD prediction (i.e. no resummation,
no power corrections), shown in panel (a), which does
not make use of the new perturbative results in this pa-
per. Not unexpectedly, the most salient feature at fixed
order is the lack of overlap between the O(αs) (green),
O(α2

s) (blue), and O(α3
s) (red) results. This problem

is cured once the perturbative resummation is included
with NkLL′ +O(αks ) predictions shown in panel (b): the
NLL′ (green), N2LL′ (blue) and N3LL′ (red) bands now
nicely overlap. To achieve this convergence and overlap
with our setup it is important to normalize the cross sec-
tion bands with the integrated norm at a given order
using the default profiles. (The convergence for the nor-
malization in Fig. 10 was slower. Further discussion of
this can be found in Ref. [19].)

The panel (b) results neglect power corrections. In-
cluding them in the MS scheme, NkLL′+O(αks ) + Ω1, as
shown in panel (c), does not affect the convergence of the
series, but rather simply shifts the bands towards larger
C values. This was mentioned above in Eq. (3).

In panel (d) we show our results, which use the Rgap
scheme for the power correction, at NkLL′ + O(αks ) +
Ω1(R,µ). In this scheme a perturbative series is sub-
tracted from the partonic soft function to remove its
O(ΛQCD) renormalon. This subtraction entails a corre-
sponding scheme change for the parameter Ω1 which be-
comes a subtraction-scale dependent quantity. In general
the use of renormalon-free schemes stabilizes the pertur-
bative behavior of cross sections. The main feature visi-
ble in panel (d) is the noticeable reduction of the pertur-
bative uncertainty band at the two highest orders, with
the bands still essentially contained inside lower order
ones.

We can see the improvement in convergence numeri-
cally by comparing the average percent uncertainty be-
tween different orders at Q = mZ . If we first look
at the results without the renormalon subtraction, at
NkLL′ + O(αks ) + Ω1, we see that in the region of in-
terest for αs(mZ) fits (0.25 < C < 0.65), the NLL′

distribution has an average percent error of ± 11.7%,
the N2LL′ distribution has an average percent error of
± 7.0% and the highest order N3LL′ distribution has an
average percent error of only ± 4.3%. Once we imple-
ment the Rgap scheme to remove the renormalon, giving
NkLL′ + O(αks ) + Ω1(R,µ), we see that the NLL′ dis-
tribution has an average percent error of ± 11.8%, the
N2LL′ distribution has an average percent error of± 4.9%
and the most precise N3LL′ distribution has an average

percent error of only ± 2.5%. Although the renormalon
subtractions for C-parameter induce a trend towards the
lower edge of the perturbative band of the predictions
at one lower order, the improved convergence of the per-
turbative series makes the use of these more accurate
predictions desirable.

D. Impact of Hadron Mass Effects

In this section we discuss the impact of adding
hadron mass effects, which gives the orders denoted
NkLL′ +O(αks ) + Ω1(R,µ, r). Hadron masses induce an
additional anomalous dimension for Ω1, and an associ-
ated series of logarithms of the form ln(QC/ΛQCD) that
need to be resummed. They also impact the definition of
Ω1 and its RGE equations in the MS and Rgap schemes.
Since the overall effect of hadron masses on C-parameter
and thrust are rather small, they do not change the per-
turbative convergence discussed in the previous section.
Therefore we study these effects here making use of only
the highest order perturbative results at N3LL′+O(α3

s).
In Fig. 13 we show the effect of hadron mass running

on the cross section. We compare differential cross sec-
tions with and without hadron masses, at the same center
of mass energies. When the running effects from hadron
masses are turned off, the value of Ω1(R∆, µ∆) preferred
by the experimental data will attempt to average away
these effects by absorbing them into the value of the ini-
tial parameter. (The running of Ω1 with and without
hadron masses is shown below in Fig. 19.) Therefore,
the specific values used in Fig. 13 are obtained by fix-
ing αs(mZ) and then fitting for Ω1(R∆, µ∆) to minimize
the difference between the cross section with and with-
out hadron masses in the tail region. As the values for
αs(mZ) and Ω1 in the case of no hadron mass effects
come from a fit to data (from [19]), choosing Ω1(R∆, µ∆)
with the outlined procedure is similar to a full fit to data
and will give results that allow comparison between the
two cases. With hadron masses on we fix θ(R∆, µ∆) = 0,
so the effects observed in Fig. 13 are related to the ad-
ditional log resummation for Ω1. The effect is largest
at Q = 40 GeV where it varies between a − 1.25% and
+ 1.25% shift for C-parameter and between a − 1.5% and
+ 0.5% shift for thrust. For Q = mZ it amounts to a
1.0% shift for C-parameter and a shift of 0% to 1.3% for
thrust.

With hadron masses the additional hadronic param-
eter θ(R∆, µ∆) encodes the fact that the extra re-
summation takes place in r-space, and therefore in-
duces some dependence on the shape of the Ω1(R,µ, r)
parameter. In contrast the dominant hadronic pa-
rameter Ω1(R∆, µ∆) is the normalization of this r-
space hadronic function. In Fig. 14 we show the ef-
fect that varying −π/2 < θ(R∆, µ∆) < π/2 has on the
cross section for three center of mass energies, fixing
Ω1(R∆, µ∆) = 320 MeV for C-parameter and 300 MeV
for thrust. The sensitivity of ∆σ here is proportional



21

0.3 0.4 0.5 0.6

-1.0

-0.5

0.0

0.5

1.0

C

DΣ

Σ
@%D

Q = 91.2 GeV

Q = 200 GeV

Q = 40 GeV

0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325
-1.5

-1.0

-0.5

0.0

0.5

1.0

Τ

DΣ

Σ
@%D

Q = 91.2 GeV

Q = 200 GeV

Q = 40 GeV

FIG. 13. Effects of hadron masses on the differential cross section for C-parameter (left) and thrust (right). Curves correspond
to the percent difference between the cross-section with and without hadron mass effects, for three center of mass energies:
Q = 91.2 GeV (solid red) 200 GeV (dashed blue) and 40 GeV (dotted green). The cross section with hadron mass effects uses
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has Ω1(R∆, µ∆) = 0.33 GeV. We set αs(mZ) = 0.1141.
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FIG. 14. Effects of θ(R∆, µ∆) on the cross section for C-parameter (left) and thrust (right). The lines correspond to the largest
variation achievable by varying θ(R∆, µ∆) in both directions, (which happen for θ = 0.23π and θ = − 0.27π), with respect to
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200 GeV and 40 GeV, respectively. We use Ω1(R∆, µ∆) = 0.32 (0.30) GeV for C-parameter (thrust), and αs(mZ) = 0.1141.

to Ω1(R∆, µ∆). In these plots we pick the value of θ that
gives the largest deviation from the θ = 0 cross section
(these values are listed in the figure caption). This max-
imum deviation is only 1.5% for C-parameter and occurs
at Q = 40 GeV at larger C. For thrust, the largest devi-
ation also occurs for Q = 40 GeV and for higher values
of τ , and is <∼ 2.0% for τ ≤ 0.3. For Q = mZ the effect
is roughly ±1.0% for C-parameter, and around 1.0% for
thrust when τ < 0.25, growing to 2% by τ = 0.33.

We conclude that the effect of hadron masses on log
resummation should be included if one wishes to avoid
an additional ∼ 1.5% uncertainty on the cross section.
Furthermore one should consider fitting θ(R∆, µ∆) as an

additional parameter if one wants to avoid another ∼ 1%
uncertainty in the cross section that it induces. (Recall
that Fig. 14 shows the worst case scenario.)

X. CONCLUSIONS

We have provided a factorization formula for the
C-parameter distribution in e+e− annihilation and ana-
lyzed its utility in making precision cross-section predic-
tions, extending earlier work on thrust [19]. We have de-
termined or computed the ingredients needed to achieve
a summation of large logarithms at N3LL order for the
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singular terms in the dijet limit where C is small, pushing
beyond the classical resummed computations in Ref. [27]
by two additional orders. To achieve this goal, we demon-
strated that the anomalous dimensions, as well as the
hard and jet functions, are identical in the C-parameter
and thrust distributions to all orders in perturbation
theory. We then computed the only distinct piece, the
soft function, to one-loop order analytically, two-loop or-
der numerically, and with logarithmic accuracy at three-
loops using its anomalous dimension. (We also presented
a master formula for the one-loop soft function, valid for
any recoil-free dijet event shape in App. C.) Our factor-
ization formula also incorporates the previously known
O(α2

s) and O(α3
s) perturbative QCD corrections in fixed

order [3–8].

Using our factorization theorem and computation for
the soft function, we are able to analytically predict
the fixed-order log-singular terms of C-parameter up to
O(α3

s). These results are used to consistently incorporate
fixed-order results at the same order by subtracting them
from the numerical O(α3

s) results, to obtain the nonsin-
gular terms plotted in Figs. 2, 3, 4 and compared to the
singular cross section in Fig. 5.

The factorization formula we use incorporates a sys-
tematic description of nonperturbative power corrections
using a shape function FC , whose moments are given by
quantum field theory matrix elements. This nonpertura-
tive shape function describes the dynamics of soft particle
radiation at large angles. Although the shape function
of thrust and C-parameter are a priori unrelated, one
can show that, up to small deviations caused by hadron
masses, their respective first moments are proportional
to each other involving a simple calculable coefficient, as
shown in Eq. (2). Tests of this universality are very im-
portant, since the first moment of the shape function con-
stitutes the most important nonperturative power correc-
tion in the tail of the distribution, where one can write
down an OPE for the event-shape distributions. The
results in this paper allow for universality to be tested
with data accounting for a high degree of perturbative
precision, and incorporating hadron mass effects.

In order to reduce the sensitivity to an O(ΛQCD) renor-
malon present in the soft function, we switch to a short-
distance scheme for the leading power correction, which
translates into a more stable perturbative behavior. Us-
ing universality relations, it is possible (and desirable)
to use thrust gap subtractions in the C-parameter dis-
tribution, with the appropriate prefactor. Furthermore,
we introduce hadron mass running effects into this for-
malism, and show how one can consistently account for
Rgap and hadron mass running simultaneously.

We have used profile functions, which are C-dependent
renormalization scales, to both properly implement the
required conditions for the scales in different regions in
Eq. (71), including the resummation of large logarithms
in the nonperturbative and resummation regions, and to
smoothly carry out the transition between regions. There
are two significant differences for the C-parameter rela-

tive to thrust: the nonperturbative region is enlarged by
a factor 3π/2, and the slope of µS in the resummation
region is reduced by a factor of 6. In Sec. IX B we made
a numerical investigation of possible choices for the slope
of the soft function in the resummation region, and con-
cluded both for thrust and C-parameter that having a
slope that is twice the canonical value, rs = 2 rather than
rs = 1, is advantageous to have a better order-by-order
convergence. At the highest order we achieve, which is
N3LL′, we also observe that the choice of rs = 1 versus
rs = 2 becomes irrelevant.

Our most accurate theoretical description has a very
nice perturbative convergence, and achieves a perturba-
tive uncertainty of on average 2.5% in the tail of the
distribution for Q = mZ , see Fig. 12(d). We have also
shown that the effect of hadron mass corrections is at
the < 2% level (depending on Q, and differing somewhat
between C-parameter and thrust), see Figs. 13 and 14.
The theory developments made here are necessary for a
high-precision determination of the strong coupling con-
stant αs(mZ) by fits to experimental data. Moreover,
by simultaneously fitting to the leading power correction
Ω1, our formalism allows us to check for universality be-
tween thrust and C-parameter, exploiting the high level
of perturbative precision, and also accounting for hadron
mass effects. These results will be presented in a separate
paper [24].
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Appendix A: Formulae

In this appendix we collect all the remaining formu-
lae used in our analysis for the case of massless quarks.
Since we want to compare to experimental data, which
is normalized to the total number of events, we need to
calculate (1/σ)dσ/dC, our normalized cross section. To
do this, we can either self normalize our results by inte-
grating over C, or use the fixed-order result for the total
hadronic cross section, which, at three loops for massless
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quarks at µ = Q is (see Ref. [55] for further discussion),

Rhad = 1 + 0.3183099αs(Q) + 0.1427849α2
s(Q)

− 0.411757α3
s(Q) . (A1)

Throughout our analysis, we use mZ = 91.187 GeV
and all numerical results quoted below are for SU(3) color
with nf = 5 active light flavors, for simplicity.

Singular Cross Section Formula

For the singular part of the differential cross section given
in Eq. (29) we simplify the numerical evaluation using our
freedom to take µ = µJ . This means UτJ (s−s′, µJ , µJ) =
δ(s− s′) and we can write

1

σ0

∫
dk

dσ̂s
dC

(
C − k

Q

)
FC

(
k − 3π∆̄(R,µS)

)
=
Q

6
H(Q,µH)UH

(
Q,µH , µJ

)
×
∫

dk P
(
Q,QC/6− k/6, µJ

)
× e−3π δ(R,µs)

d
dk FC

(
k − 3π ∆̄(R,µS)

)
, (A2)

Here σ0 is the tree-level (Born) cross section for
e+e− → qq̄. Here we have combined the perturbative
corrections from the partonic soft function, jet function,
and soft evolution factor into a single function,

P (Q, k, µJ) =

∫
ds

∫
dk′Jτ (s, µJ)UτS (k′, µJ , µS)

× ŜC̃(k − k′ − s/Q, µS) . (A3)

The large logarithms of C/6 are summed up in the evolu-
tion factors UH and UτS . We can carry out the integrals
in P exactly and the results are enumerated below. The
shape function FC(k − 3π ∆̄) is discussed in Sec. VII, and
we have used integration by parts in Eq. (A2) to have the
derivative in the exponential act on FC , which is simpler
than acting the derivative on the perturbative soft func-
tion. For our numerical calculation, we expand H, Jτ ,
and ŜC̃ order-by-order as a series in αs(µH), αs(µJ), and
αs(µS) respectively, with no large logs. Additionally, we
expand exp(− 3π δ(R,µS)d/dk) (see Eq. (49)) as a series
in αs(µS), which must be done consistently to cancel the

renormalon present in ŜC̃ .

The hard function to O(α3
s) with nf = 5 is [19, 56–62],

H(Q,µH)

= 1 + αs(µH)
(
0.745808−1.27324LQ−0.848826L2

Q

)
+ α2

s(µH)
(

2.27587− 0.0251035LQ − 1.06592L2
Q

+ 0.735517L3
Q + 0.360253L4

Q

)
+ α3

s(µH)
(

0.00050393h3 + 2.78092LQ − 2.85654L2
Q

− 0.147051L3
Q + 0.865045L4

Q − 0.165638L5
Q

− 0.101931L6
Q

)
, (A4)

where LQ = ln µH
Q and h3 = 8998.080 from [61].

The resummation of large logs between µH and µJ is
given by UH(Q,µH , µJ), the solution of the RGE for the
hard function, which can be written as [10],

UH(Q,µH , µ) = e2K(ΓH ,γH ,µ,µH)

(
µ2
H

Q2

)ω(ΓH, µ,µH)

, (A5)

where ω and K are given in Eqs. (A19) and (A20) below.
In momentum space, we can use the results from

Ref. [43] to calculate the convolution of the plus-functions
in P to give the form,

P
(
Q, k, µJ

)
=

1

ξ
ES
(
ξ, µJ , µS

)
×

∞∑
n,m,k,l=−1
m+n+1≥k
k+1≥l

V mnk Jm

[
αs(µJ),

ξ Q

µ2
J

]
SC̃n

[
αs(µS),

ξ

µS

]

× V kl
[
− 2ω(ΓS , µJ , µS)

]
L−2ω(ΓS ,µJ ,µS)
l

(k
ξ

)
. (A6)

Here ξ is a dummy variable that does not affect the value
of the result. 6 ES(ξ, µJ , µS) is given by [63, 64],

ES(ξ, µJ , µS) = exp
[
2K(ΓS , γS , µJ , µS)

]
(A7)

×
( ξ

µS

)−2ω(ΓS ,µJ ,µS) exp
[
2γE ω(ΓS , µJ , µS)

]
Γ
[
1− 2ω(ΓS , µJ , µS)

] ,
and encodes part of the running between µS and µJ . The
rest of the running is included in the V coefficients and
the plus-functions, Ll.

The Jm and Sn in Eq. (A6) are the coefficients of the
momentum-space soft and jet functions, given by

Jτ (p−k, µJ) =
1

p−ξ

∞∑
m=−1

Jm

[
αs(µJ),

p−ξ

µ2
J

]
Lm
(k
ξ

)
,

ŜC̃(k, µS) =
1

ξ

∞∑
n=−1

SC̃n

[
αs(µS),

ξ

µS

]
Ln
(k
ξ

)
. (A8)

Here the C-parameter soft function coefficients are

SC̃−1[αs, x] = SC̃−1(αs) +

∞∑
n=0

Sn(αs)
lnn+1 x

n+ 1
,

SC̃n [αs, x] =

∞∑
k=0

(n+ k)!

n! k!
SC̃n+k(αs) lnk x . (A9)

6 When convolved with FC we use our freedom in choos-
ing ξ to simplify the final numerical integration, picking
ξ = QC/6− 3π ∆̄(R,µS).
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which for nf = 5 can be written as

SC̃−1(αs) = 1 + 1.0472αs + (1.75598 + 0.012666 sC̃2 )α2
s

+
(

2.59883 + 0.0132629 sC̃2 + 0.00100786 sC̃3

)
α3
s ,

SC̃0 (αs) = 1.22136α2
s + (2.63481− 0.0309077 sC̃2 )α3

s ,

SC̃1 (αs) = −1.69765αs − 7.45178α2
s

− (19.1773 + 0.021501 sC̃2 )α3
s ,

SC̃2 (αs) = 1.03573α2
s + 2.3245α3

s ,

SC̃3 (αs) = 1.44101α2
s + 10.299α3

s ,

SC̃4 (αs) = − 1.46525α3
s ,

SC̃5 (αs) = − 0.611585α3
s . (A10)

Note that sC̃2 and sC̃3 are the O(α2,3
s ) coefficients of the

non-logarithmic terms in the series expansion of the log-
arithm of the position space C-parameter soft function.
The coefficients for the jet function are

J−1[αs, x] =J−1(αs) +

∞∑
n=0

Jn(αs)
lnn+1 x

n+ 1
,

Jn[αs, x] =

∞∑
k=0

(n+ k)!

n! k!
Jn+k(αs) lnk x , (A11)

and are known up to O(α3
s) except for the constant j3

term [17, 65–69]. With nf = 5 we have

J−1(αs) = 1− 0.608949αs − 2.26795α2
s

+ (2.21087 + 0.00100786 j3)α3
s ,

J0(αs) = − 0.63662αs + 3.00401α2
s

+ 4.45566α3
s ,

J1(αs) = 0.848826αs − 0.441765α2
s − 11.905α3

s ,

J2(αs) = − 1.0695α2
s + 5.36297α3

s ,

J3(αs) = 0.360253α2
s + 0.169497α3

s ,

J4(αs) = − 0.469837α3
s ,

J5(αs) = 0.0764481α3
s. (A12)

The plus-distributions, denoted by L(x), are given by

Lan(x) =

[
θ(x) lnn x

x1−a

]
+

=
dn

dan
La(x) [n ≥ 0] , (A13)

La−1(x) = L−1(x) = δ(x), and for a > −1

La(x) =

[
θ(x)

x1−a

]
+

= lim
ε→0

d

dx

[
θ(x− ε) x

a − 1

a

]
. (A14)

In Eq. (A6) we also take advantage of the shorthand for the V coefficients presented in [43]:

V nk (a) =



a
dn

dbn
V (a, b)

a+ b

∣∣∣∣
b=0

, k = −1 ,

a

(
n

k

)
dn−k

dbn−k
V (a, b)

∣∣∣∣
b=0

+ δkn , 0 ≤ k ≤ n ,

a

n+ 1
, k = n+ 1 ,

(A15)

and the coefficients

V mnk =



dm

dam
dn

dbn
V (a, b)

a+ b

∣∣∣∣
a=b=0

, k = −1 ,

m∑
p=0

n∑
q=0

δp+q,k

(
m

p

)(
n

q

)
dm−p

dam−p
dn−q

dbn−q
V (a, b)

∣∣∣∣
a=b=0

, 0 ≤ k ≤ m+ n ,

1

m+ 1
+

1

n+ 1
, k = m+ n+ 1 ,

(A16)

for

V (a, b) =
Γ(a) Γ(b)

Γ(a+ b)
− 1

a
− 1

b
. (A17)

We also need the special cases

V −1
−1 (a) = 1 , V −1

0 (a) = a , V −1
k≥1(a) = 0 , V −1,n

k = V n,−1
k = δnk . (A18)

Evolution factors and Anomalous Dimensions

The running between scales is encoded in just a few functions. In Eqs. (A5), (A6), and (A7) we use,

ω(Γ, µ, µ0) = 2

∫ αs(µ)

αs(µ0)

dα

β(α)
Γ(α)
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= − Γ0

β0

{
lnκ+

αs(µ0)

4π

(Γ1

Γ0
− β1

β0

)
(κ− 1) +

1

2

α2
s(µ0)

(4π)2

(β2
1

β2
0

− β2

β0
+

Γ2

Γ0
− Γ1β1

Γ0β0

)
(κ2 − 1)

+
1

3

α3
s(µ0)

(4π)3

[
Γ3

Γ0
− β3

β0
+

Γ1

Γ0

(β2
1

β2
0

− β2

β0

)
− β1

β0

(β2
1

β2
0

− 2
β2

β0
+

Γ2

Γ0

)]
(κ3 − 1)

}
, (A19)

and

K(Γ, γ, µ, µ0)− ω
(γ

2
, µ, µ0

)
= 2

∫ αs(µ)

αs(µ0)

dα

β(α)
Γ(α)

∫ α

αs(µ0)

dα′

β(α′)

=
Γ0

2β2
0

{
4π

αs(µ0)

(
lnκ+

1

κ
− 1
)

+
(Γ1

Γ0
− β1

β0

)
(κ− 1− lnκ)− β1

2β0
ln2 κ+

αs(µ0)

4π

[(Γ1β1

Γ0β0
− β2

1

β2
0

)
(κ− 1− κ lnκ)

−B2 lnκ+
(Γ2

Γ0
− Γ1β1

Γ0β0
+B2

) (κ2−1)

2
+
(Γ2

Γ0
− Γ1β1

Γ0β0

)
(1−κ)

]
+
α2
s(µ0)

(4π)2

[[(Γ1

Γ0
− β1

β0

)
B2 +

B3

2

] (κ2−1)

2

+
(Γ3

Γ0
− Γ2β1

Γ0β0
+
B2Γ1

Γ0
+B3

)(κ3 − 1

3
− κ2 − 1

2

)
− β1

2β0

(Γ2

Γ0
− Γ1β1

Γ0β0
+B2

)(
κ2 lnκ− κ2 − 1

2

)
− B3

2
lnκ

−B2

(Γ1

Γ0
− β1

β0

)
(κ− 1)

]}
, (A20)

where here κ = αs(µ)/αs(µ0) requires the known 4-loop running couplings, and we have defined B2 ≡ β2
1/β

2
0 − β2/β0

and B3 ≡ −β3
1/β

3
0 + 2β1β2/β

2
0 − β3/β0.

These results are expressed in terms of the coefficients
of series expansions of the QCD β function β[αs], Γ[αs]
(which is given by a constant of proportionality times
the QCD cusp anomalous dimension), and of a non-cusp
anomalous dimension γ[αs]. These expansion coefficients
are defined by the equations,

β(αs) = − 2αs

∞∑
n=0

βn

(αs
4π

)n+1

, (A21)

Γ(αs) =

∞∑
n=0

Γn

(αs
4π

)n+1

, γ(αs) =

∞∑
n=0

γn

(αs
4π

)n+1

.

For nf = 5, the relevant coefficients are [69–74]

β0 = 23/3 , β1 = 116/3 , β2 = 180.907, (A22)

β3 = 4826.16,

Γcusp
0 = 16/3, Γcusp

1 = 36.8436, Γcusp
2 = 239.208 .

As was mentioned in the text, we use a Padé approxima-
tion for the unknown four-loop cusp anomalous dimen-
sion, assigning a large uncertainty to this estimate:

Γcusp
3 = (1± 2)

(Γcusp
2 )2

Γcusp
1

. (A23)

For the hard, jet, and soft functions, the anomalous di-
mensions are the same as in the thrust case and are given
by [28, 57, 59, 64, 69, 75–78]

ΓHn = −Γcusp
n , ΓJn = 2 Γcusp

n , ΓSn = −Γcusp
n ,

γH0 = − 8, γH1 = 1.14194, γH2 = − 249.388,

γJ0 = 8, γJ1 = − 77.3527, γJ2 = − 409.631,

γSn = − γHn − γJn . (A24)

For the 4-loop running of the strong coupling constant,
we use a form that agrees very well numerically with the
solution to the beta function. For nf = 5, the value of
the coupling is given by

1

αs(µ)
=

X

αs(mZ)
+ 0.401347248 lnX (A25)

+
αs(mZ)

X

[
0.01165228 (1−X) + 0.16107961 lnX

]
+
α2
s(mZ)

X2

[
0.1586117 (X2 − 1) + 0.0599722 (X

+ lnX −X2) + 0.0323244 {(1−X)2 − ln2X}
]
,

where we have used the values from Eq. (A22) for the βi
and X = 1 + αs(mZ) ln(µ/mZ)β0/(2π).

For the singular cross section we have implemented the
formulas described in this appendix into a Mathemat-
ica [79] code. Additionally, we have created an indepen-
dent Fortran [80] code based on a Fourier space imple-
mentation (the nonsingular distributions have also been
implemented into the two codes independently). These
two codes agree with each other at 10−6 or better.

Appendix B: Comparison to Parton Level Monte
Carlos

A useful way to validate our results is to compare the
SCET prediction with fixed scales µH = µJ = µS = Q to
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FIG. 15. Comparison of the fixed-order analytic SCET prediction for the O(α2
s) piece with the parton level MC EVENT2.

The decomposition in the three color structures C2
F , CFCA and CFnfTf is shown in panels (a), (b) and (c), respectively. The

factor α2
s/(2π)2 has been divided out. We use a log binning in the horizontal axis to emphasize the dijet region.

the fixed-order prediction, for small values of C. This also
constitutes an important test on the accuracy of parton
level MC’s such as EVENT2 and EERAD3.

At O(α2
s) we compare our runs to the EVENT2 parton

level MC, splitting the output in the various color struc-
tures. We used logarithmically-binned EVENT2 distri-
butions across the entire spectrum for this comparison.
Details on the run parameters (number of events and
cutoff parameter) have been given in Sec. V. Addition-
ally, Fig. 15 clearly shows that for all color structures the
agreement is excellent all the way to C ∼ 10−5. The very
large number of event used in our runs (3 × 1011) make
the error bars here essentially invisible. Also note that
the cross-section shoulder at C = 0.75 is all in the largest
C bin, and hence not visible in these plots.

AtO(α3
s) we compare to the EERAD3 parton level MC

output, again splitting the results in the various color
structures. Once again we use logarithmically binned
distributions for this exercise. The results are shown in
Fig. 16. The comparison looks very good for the numeri-
cally most relevant color structures (which also have the
biggest uncertainties), and quite good for other struc-
tures. Slight deviations are observed in some cases for
C < 10−3, presumably indicating systematic uncertain-
ties due the numerical infrared cutoff. The dominant
color structures do not have this problem and have larger
uncertainties, so one can still use the distribution even for
C ∼ 10−4 as long as all color structures are summed up.

In Fig. 17 we compare our numerical determination of

sC̃2 , that was described above in Sec. VI, to the alternate
method used in Ref. [47], and show that both procedures
yield very similar results. The result from Sec. VI is
shown as an orange line (whose width is its uncertainty).
The method of Ref. [47] gives the points. In [47] sτ2 is
computed from a relation very similar to Eq. (40), written
in the following form for C-parameter:

sC̃2 =
1

σ0

{
σ

(2)
had − Σ(2)

s (1)
∣∣∣
sC̃2 =0

(B1)

− lim
C→0

[
Σ(2)

ns (1)− Σ(2)
ns (C)

]}
≡ lim
C→0

sC̃2 (C) ,

where we have implicitly defined the function sC̃2 (C), and

used

Σ(2)
s,ns(C) =

∫ C

0

dC
dσ

(2)
s,ns

dC
, (B2)

Eq. (B1) can be broken down into various color fac-
tors. The limit in Eq. (B1) has to be taken numerically
from the output of EVENT2. This is best achieved if
events are distributed in logarithmic bins, such that the
C → 0 region is enhanced, as can be seen in Fig. 17.
The limit can be identified as the value at which the
log-binned distribution reaches a plateau, which in the
case of C-parameter happens for 10−4 <∼ C <∼ 10−3.

Fig. 17 shows that our determination of sC̃2 as described
in Sec. VI, represented by an orange line, agrees with the
plateau for the two nontrivial color structures.

Appendix C: Computation of 1-loop Soft Function

In this section we present a general computation of the
1-loop soft function for any event shape e which can be
expressed in the dijet limit as

e =
1

Q

∑
i

p⊥i fe(yi) , (C1)

where the sum is over all particles in the final state, pi is
the magnitude of the transverse momentum and yi is the
rapidity of the particle, both measured with respect to
the thrust axis. 7 For thrust one has fτ (y) = exp(−|y|),
for angularities one has fτa(y) = exp[−(1 − a)|y| ] and
for C-parameter one has fC(y) = 3/ cosh y and fC̃(y) =
1/(2 cosh y).

One needs to compute the four diagrams in Fig. 18
in order to determine the soft function. The two dia-
grams on the bottom are scaleless and vanish in dimen-
sional regularization. They actually convert the IR di-
vergences in the two diagrams on the top into UV diver-
gences. We take the space-time number of dimensions to

7 For perturbative computations partons are taken as massless and
hence rapidity y and pseudo-rapidity η coincide.
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FIG. 16. Comparison of the fixed-order analytic SCET prediction for the O(α3
s) piece with the parton level MC EERAD3. The

decomposition in the three color structures N2
C , 1 and N−2

C are shown in panels (a), (b) and (c), of the first row, respectively,
and NC nf , nf/NC and n2

f are shown in panels (d), (e) and (f), respectively, on the second row. The factor α3
s/(2π)3 has been

divided out. We use a log binning in the horizontal axis to emphasize the dijet region.
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FIG. 17. Comparison of the determination of the soft function non-logarithmic constants at O(α2
s) as explained in Sec. VI

(shown as horizontal lines), with a determination employing the method used in Ref. [47] (plateau at 10−4 <∼ C <∼ 10−3). The

function sC̃2 (C) is defined in Eq. (B1). The CFCA and CFnfTf color structures are shown in left and right panels, respectively.
The logarithmic horizontal axis emphasizes the C → 0 extrapolation. Error bars are included and the blue and red points
correspond to data from a different binning.

be d = 4− 2ε. A direct computation in momentum space
gives

S1−loop
e (`) = 4 g2

sCF

∫
d3−2ε~p

(2π)3−2ε2|~p |
δ[`− pT fe(y)]

p+p−
. (C2)

After integrating the angular variables, it is convenient
to make a change of variables from p± to (pT , y):

d3−2ε~p

(2π)3−2ε2|~p |
=

2

(4π)2−ε
p1−2ε
T

Γ(1− ε)
dpTdy . (C3)

Using Eq. (C3) in (C2) and imposing the on-shell condi-

tion p+p− = p2
T , where ~p 2 = p2

z + p2
T , we obtain

S1−loop
e (`) (C4)

=
2αs(µ)CF e

εγE

µπ Γ(1− ε)

∫
dpT dy

(pT
µ

)−1−2ε

δ[`− pT fe(y)]

=
2αs(µ)CF e

εγE

µπ Γ(1− ε)

( `
µ

)−1−2ε

Ie(ε) ,

where we have defined

Ie(ε) =

∫ ∞
−∞

dy [ fe(y) ]2ε . (C5)
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FIG. 18. Diagrams contributing to the soft function at one
loop.

Similarly in Fourier space one gets:

S̃1−loop
e (x) =

2αsCF
π

Γ(−2ε)

Γ(1− ε)
(i x µ)2εeεγE Ie(ε) . (C6)

For thrust and angularities one trivially obtains

Iτ (ε) =
1

ε
, Iτa(ε) =

1

1− a
1

ε
. (C7)

For C-parameter it is convenient to perform a change of
variables

y =
1

2
ln
(1 + x

1− x

)
, cosh y =

1√
1− x2

, (C8)

obtaining for the integral:

IC̃(ε) = 21−2ε

∫ 1

0

dx (1− x2)−1+ε =
1

2

Γ(ε)2

Γ(2ε)
. (C9)

Expanding in ε→ 0 and upon renormalization in MS we
find for the position space soft function:

S̃1−loop

C̃
= −αs(µ)

4π
CF

[π2

3
+ 8 ln2(ixµeγE )

]
, (C10)

S̃1−loop
τa = − 1

1− a
αs(µ)

4π
CF

[
π2 + 8 ln2(ixµeγE )

]
.

Writing the logarithm of the soft function in Fourier
space evaluated at the point x = − i exp(− γE)/µ in a
generic form as

ln S̃e = 2

∞∑
n=1

(αs(µ)

4π

)n
sen . (C11)

we obtain:

sC̃1 = − π2

6
CF , sτa1 = − 1

1− a
π2

2
CF . (C12)

Fourier transforming the result one obtains the renormal-
ized momentum space soft function:

S1−loop

C̃
=
αs(µ)

4π
CF

(
π2 δ(`)− 16

µ

[
ln(`/µ)

`/µ

]
+

)
, (C13)

S1−loop
τa =

1

1− a
αs(µ)

4π
CF

(
π2

3
δ(`)− 16

µ

[
ln(`/µ)

`/µ

]
+

)
.

Appendix D: Bi,Gij coefficients

The resummed cross section at N3LL′ can be used to
compute various fixed-order coefficients, as in Eqs. (78)
and (79). The results for coefficients up to O(α3

s) in
perturbation theory are summarized here.

The Bi coefficients read:

B
[0]
1 = CF

(
2π2

3
− 1

)
, (D1)

B
[0]
2 = C2

F

(
− 6 ζ3 + 1− 17π2

24
+

11π4

36

)
+ CACF

(
s

[CFCA]
2

4
+

283ζ3
18

− 73π4

360
+

85π2

24
+

493

324

)

+ CFnfTF

(
s

[nf ]
2

4
− 22ζ3

9
− 7π2

6
+

7

81

)
,

B
[0]
3 = C2

ACF

(
620179ζ3

1944
− 41π2ζ3

2
− 284ζ2

3

9
− 217ζ5

18

− 51082685

209952
+

1294933π2

34992
− 3641π4

7776
+

4471π6

102060

)
+ CAC

2
F

(
5π2s

[CFCA]
2

24
− s

[CFCA]
2

4
− 2273ζ5

9
+

2ζ2
3

3

+
248π2ζ3

9
− 89ζ3

27
− 14887π6

68040
+

23093π4

19440
+

172585π2

3888

− 185039

1296

)
+ CACFnfTF

(
−352ζ3

3
+

13π2ζ3
3

− 2ζ5
3

+
1700171

13122
− 103903π2

4374
+

227π4

4860

)
+ C3

F (− 167 ζ3

+
38π2ζ3

3
− 4ζ2

3

3
+ 22ζ5 −

4679

96
+

139π2

18
− 109π4

40

+
42757π6

136080

)
+ C2

FnfTF

(
5π2s

[nf ]
2

24
− s

[nf ]
2

4
+

368ζ5
9

− 94π2ζ3
9

+
4324ζ3

81
− 497π4

2430
− 35503π2

1944
+

112073

972

)
+ CFn

2
fT

2
F

(
808ζ3
243

− 190931

13122
+

257π2

81
+

52π4

1215

)
+
j3
4

+
sC̃3
8
,

B1 = CF

(
2π2

3
− 5

2

)
, (D2)
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B2 = C2
F

(
− 6 ζ3 +

41

8
− 41π2

24
+

11π4

36

)
+ CACF

(
s

[CFCA]
2

4
+

481ζ3
18

− 73π4

360
+

85π2

24
− 8977

648

)

+ CFnfTF

(
s

[nf ]
2

4
− 58ζ3

9
− 7π2

6
+

905

162

)
,

B3 = C2
ACF

(
915775ζ3

1944
− 41π2ζ3

2
− 284ζ2

3

9
+

113ζ5
18

− 95038955

209952
+

1353739π2

34992
− 3641π4

7776
+

4471π6

102060

)
+ CAC

2
F

(
5π2s

[CFCA]
2

24
− 5s

[CFCA]
2

8
− 3263ζ5

9
+

2ζ2
3

3

+
314π2ζ3

9
+

67ζ3
108

− 14887π6

68040
+

14503π4

9720
+

56039π2

1944

− 87719

1296

)
+ CACFnfTF

(
− 1952ζ3

9
+

13π2ζ3
3

− 22ζ5
3

+
3585851

13122
− 109249π2

4374
+

227π4

4860

)
+ C3

F (− 158 ζ3

+
38π2ζ3

3
− 4ζ2

3

3
+ 22 ζ5 −

5093

96
+

1517π2

144
− 191π4

60

+
42757π6

136080

)
+ C2

FnfTF

(
5π2s

[nf ]
2

24
− 5s

[nf ]
2

8
+

728ζ5
9

− 118π2ζ3
9

+
2839ζ3

81
− 497π4

2430
− 24973π2

1944
+

188173

1944

)
+ CFn

2
fT

2
F

(
4912ζ3

243
− 484475

13122
+

275π2

81
+

52π4

1215

)
+
j3
4

+
sC̃3
8
.

The results for the first few Gij coefficients read:

G12 =− 2CF , G11 = 3CF , (D3)

G23 =CF

(
4nfTF

3
− 11CA

3

)
,

G22 =CF

[
CA

(
π2

3
− 169

36

)
− 4

3
π2CF +

11nfTF
9

]
,

G21 =CF

[
CA

(
− 6 ζ3 +

57

4
+

11π2

9

)
+CF

(
− 4 ζ3 +

3

4
+ π2

)
+ nfTF

(
− 5− 4π2

9

)]
,

G34 =CF

(
− 847C2

A

108
+

154

27
CAnfTF −

28

27
n2
fT

2
F

)
,

G33 =CF

[
C2
A

(
11π2

9
− 3197

108

)
− 22π2

3
CACF

+ CAnfTF

(
512

27
− 4π2

9

)
+

64C2
F ζ3

3

+CFnfTF

(
2 +

8π2

3

)
− 68

27
n2
fT

2
F

]
,

G32 =CF

[
C2
A

(
11 ζ3 −

11323

648
+

497π2

54
− 11π4

90

)
+ CACF

(
− 110 ζ3 +

11

8
− 70π2

27
+

4π4

9

)
+ CAnfTF

(
4 ζ3 +

673

162
− 152π2

27

)
+ C2

F

(
8π4

45
− 48ζ3

)
+ CFnfTF

(
32 ζ3 +

43

6
+

8π2

27

)
+n2

fT
2
F

(
70

81
+

8π2

9

)]
,

G31 =C2
ACF

(
11s

[CFCA]
2

6
+ 10 ζ5 −

361ζ3
27

− 541π4

540
+

892π2

81

+
77099

486

)
+ CAC

2
F

(
452ζ3

9
+ 2π2ζ3 + 30 ζ5 +

23

2

+
161π2

72
− 49π4

135

)
+ CACFnfTF

(
− 2s

[CFCA]
2

3

+
11s

[nf ]
2

6
− 608ζ3

27
+

10π4

27
− 520π2

81
− 24844

243

)

+ C3
F

(
53 ζ3 −

44π2ζ3
3

+ 132ζ5 +
29

8
+

5π2

4
− 8π4

15

)
+ C2

FnfTF

(
− 208ζ3

9
− 77

4
− 31π2

18
+

8π4

135

)
+ CFn

2
fT

2
F

(
− 2s

[nf ]
2

3
+

176ζ3
27

+
64π2

81
+

3598

243

)
.

Note that the entire infinite series ofGij coefficients listed
in Table IV are determined by our resummation results.

Appendix E: R Evolution with and without Hadron
Mass Effects

The result for R-evolution in the case of no hadron
masses is given in Eq. (56). The resummed ω appearing
in this equation was given in App. A. The remaining
coefficients and variables that appear in this equation
are

S0 =
γR0
2β0

, S1 =
γR1

(2β0)2
− (b̂1 + b̂2)

γR0
2β0

,

S2 =
γR2

(2β0)3
− (b̂1 + b̂2)

γR1
(2β0)2

,

b̂1 =
β1

2β2
0

, b̂2 =
β2

1 − β0β2

4β4
0

, (E1)

b̂3 =
β3

1 − 2β0β1β2 + β2
0β3

8β6
0

,
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FIG. 19. Running of the short-distance power cor-
rection Ωh1 (R,R, h) with respect to the reference value
Ωh1 (R∆, R∆, 1). The scale R is set to the default profile, and
the scheme parameter h is set to the function displayed in
Eq. (F10). Red , blue and green correspond to center of mass
energies of 91.2 GeV, 40 GeV and 200 GeV, respectively. The
solid lines do not include hadron mass effects, whereas the
dashed ones do.

t1 = − 2π

β0αs(R)
, t0 = − 2π

β0αs(R∆)
.

The impact of R-evolution on the value of the hadronic
parameter Ω1(R,R) is shown in Fig. 19 (with and with-
out hadron mass effects). Here we have set µ = R and
used the default profile function for R(C). We actually
plot the hybrid scheme Ωh1 (R,R, h) which accounts for
a reasonable treatment of threshold effects at the shoul-
der C = 0.75, and which is discussed in detail below in
App. F. The effect of using the hybrid scheme rather
than the Rgap scheme is quite small in the region of this
figure, but does cause the bending over of the curves
that is visible at C = 0.6. Above the shoulder the hybrid
scheme uses the MS power correction, which has a flat
behavior.

When we introduce hadron mass effects, it is necessary
to extent these results to account for the value of r, the
transverse velocity. Due to the running in Eq. (66), the
scheme change result in Eq. (51) now becomes

gC(r) ΩC1 (R,µ, r) = gC(r) Ω1(µ, r)− δ(R,µ, r) , (E2)

where there is additional µ dependence from the hadron-
mass induced running. Our scheme for δ now becomes

δ(R,µ, r) =

[
αs(µ)

αs(R)

]γ̂1(r)

δ(R,µ) , (E3)

and the r dependence is encoded in the known one-loop
anomalous dimension [37]

γ̂1(r) =
2CA
β0

ln(1− r2) . (E4)

With this r-dependent scheme change, we can once again
derive the equations that govern the R evolution and µ
running for ΩC1 , which following [81] become

R
d

dR

{[
gC(r) ΩC1 (R,µ, r)

(
αs(µ)

)−γ̂1(r)
]
µ=R

}
(E5)

= −R
(
αs(R)

)−γ̂1(r)
∞∑
n=0

γRrn (r)

(
αs(R)

4π

)n+1

,

µ
d

dµ

{
gC(r) ΩC1 (R,µ, r)

(
αs(µ)

)−γ̂1(r)
}

= 2ReγE
(
αs(R)

)−γ̂1(r)
∞∑
n=0

Γcusp
n

(
αs(µ)

4π

)n+1

,

for

γRr0 (r) = γR0 , γRr1 (r) = γR1 + 2β0γ̂1(r)γR0 ,

γRr2 (r) = γR2 + 2β0γ̂1(r)(γR1 + 2β0γ
R
0 ) . (E6)

Solving this set of equations gives Eq. (67), with the Sri
given by

Sr0(r) = S0 , Sr1(r) = S1 +
γ̂1(r)γR0

2β0
, (E7)

Sr2(r) = S2 + (γR1 + 2β0γ
R
0 )

×
[
(1 + b̂1) b̂2 +

b̂22 + b̂3
2

]
γ̂1(r)

(2β0)2
.

Appendix F: Gap Scheme in the Fixed-Order Region

In the fixed-order (or far-tail) region there is no longer
a hierarchy between the hard, jet and soft scales, and
one sets them equal to reproduce the fixed-order QCD
predictions exactly. This is done through our profiles.
In this region the singular and non-singular terms are of
similar size, and hence the factorization of the cross sec-
tion in a hard factor and a convolution of jet and soft
functions is no longer relevant. The issue is further com-
plicated by the analytic structure of the shoulder region,
which is located in the fixed-order region and contains
the integrable singularity at C = 0.75 which has its own
logarithmic series (see Fig. 5 and accompanying discus-
sion there). Thus in the far-tail region C >∼ 0.75 the
structure of nonperturbative corrections is likely to differ
from that of the shape function FC , and thus is unknown
at this time. Nevertheless, we do expect a smearing by a
function whose width is ∼ ΛQCD, and hence our smear-
ing by FC is simply a proxy for a more detailed analysis
in this region. Since fits for αs can be carried out with
C < 0.75 the treatment of this region, and the discussion
below, are not relevant for predicting the shape in the fit
region. The region C ≥ 0.75 does contribute when com-
puting the total cross section from our resummed result,
and this motivates us to use a cross section formula that
still obtains realistic results in this region.
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Due to the shoulder at C = 0.75, the use of the in-
frared subtractions δ in this region can cause an unphys-
ical behavior of the cross section. The reason for this
is that these subtractions yield derivatives acting on the
partonic cross section. In the shoulder region with the
singular discontinuity starting atO(α2

s), these derivatives
can cause an artificially enhanced singular behavior if the
subtraction is not carefully defined in this region. If this
is not done, the convolution with the shape function FC
may be insufficient to achieve a smooth cross section near
C ' 0.75. In Ref. [27] it was shown that the singularities
at C = 0.75 can be cured by including soft gluon re-
summation which makes the cross section smooth. How-
ever, this treatment does not resolve the question of the
proper field theoretic nonperturbative function for this
region, nor any accompanying infrared subtractions due
to renormalons.

To deal with the region C >∼ 0.75 we take an alterna-
tive approach, which is to implement a smooth transition
between the Rgap scheme in the dijet region to MS in
the fixed-order region. This avoids any subtractions at
C = 0.75. To that end we define a new scheme which
depends on a continuous parameter h which takes values
between 0 and 1, and that smoothly switches off the gap
subtractions when we get near C = 0.75. We start by
rewriting Eq. (47) as

∆C̃ =
3π

2
[ ∆̄h(R,µ, h) + h δ(R,µ) ] , (F1)

This defines a hybrid short-distance scheme for Ω1 which
we call Ωh1 :

Ωh1 (R,µ, h) = Ω
C

1 − 3π h δ(R,µ) , (F2)

which becomes the MS scheme for h = 0 and the Rgap
scheme for h = 1. One can easily derive RGE equations
in µ and R, for ∆̄h, which we write in the following con-
venient form 8

R
d

dR
∆̄h(R,R, h) = −hRγR[αs(R)] , (F3)

µ
d

dµ
∆̄h(R,µ, h) = 2RheγEΓcusp[αs(µ)] ,

and a relation to switch from different h schemes:

∆̄h(R,µ, h1)− ∆̄h(R,µ, h2) = (h2 − h1) δ(R,µ) . (F4)

The solution to these three equations is rather simple:

∆̄h(R,µ, h) = ∆̄h(R∆, µ∆, h∆)− (h− h∆)δ(R,µ)

+ h∆ ∆diff(R∆, R, µ∆, µ) , (F5)

8 The right hand sides of the running equations for the power
correction Ωh1 (R,µS , h) are simply 3π times the right hand sides
of Eqs. (F3) and (F4).

where ∆diff has been defined in Eq. (56). We choose to
evolve first in R and µ in the h∆ scheme, where above
the peak region (see Eq. (76)) there is only a single evo-
lution since µS(C) = R(C). Close to the shoulder re-
gion C ∼ 0.75 we then smoothly transform from the h∆

scheme to the h scheme. This implements the transition
from the Rgap scheme with O(ΛQCD) renormalon sub-

traction to the MS scheme where this renormalon is not
subtracted. The procedure entails a residual dependence
on R in the region C >∼ 0.75 even once h = 0, which
comes from the fact that we are transforming from Rgap
to MS at the scale R > R∆. This residual dependence
leads to a somewhat smaller effect of the O(ΛQCD) renor-

malon even though one employs Ω1 in this region.
In the hybrid scheme described above the first moment

of the shape function reads∫
dk k FC(k) = Ωh1 (R∆, µ∆, h∆) − 3π ∆̄h(R∆, µ∆, h∆) .

(F6)
For the practical implementation we choose h∆ = 1,
and thus identify ∆h(R∆, µ∆, 1) = ∆(R∆, µ∆) as well
as Ωh1 (R∆, µ∆, 1) = Ω1(R∆, µ∆). In the numerical codes
this amounts to inserting a factor h in front of each δ and
substituting each ∆̄(R,µ) of Eq. (56) appearing in any of
the equations shown in the main text by ∆̄h(R,µ, h) of
Eq. (F5). Note again, that all of the changes induced by
the use of the hybrid scheme rather than the Rgap scheme
only influence the shape of the C-parameter cross section
for C >∼ 0.75.

One can also easily extend the hybrid scheme to ac-
count for hadron mass effects by defining

gC(r) ΩC,h1 (R,µ, h, r) = gC(r) Ω
C

1 (µ, r)− h δ(R,µ, r) ,
(F7)

and the evolution and scheme-transformation equations
simply read

R
d

dR

{[
gC(r)

(
αs(µ)

)−γ̂1(r)
ΩC,h1 (R,µ, h, r)

]
µ=R

}
(F8)

= −hR
(
αs(R)

)−γ̂1(r)
γRr [αs(R), r] ,

µ
d

dµ

{
gC(r)

(
αs(µ)

)−γ̂1(r)
ΩC,h1 (R,µ, h, r)

}
= 2hR eγE

(
αs(R)

)−γ̂1(r)
Γcusp[αs(µ)] ,

gC(r)
[

ΩC,h1 (R,µ, h1, r)− ΩC,h1 (R,µ, h2, r)
]

= (h2 − h1) δ(R,µ, r) .

The solution to these equations is again simple

gC(r) ΩC,h1 (R,µ, h, r) = (F9)

gC(r)

[
αs(µ)

αs(µ∆)

]γ̂1(r)

ΩC,h1 (R∆, µ∆, h∆, r)

− (h∆ − h) δ(R∆, µ∆, r) + h∆ ∆diff(R∆, R, µ∆, µ, r) .

For phenomenological analyses that consider C >∼ 0.75
or integrate over C to compute a normalization, we must
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FIG. 20. Convolution S = Ŝ ⊗ F combining the perturbative and nonperturbative C-parameter soft functions in the MS
scheme (left), Rgap with C-parameter subtractions (center), and Rgap with thrust subtractions (right). The results at 1-, 2-
and 3-loops are shown in green, blue, and red, respectively, whereas the tree level result is depicted as a gray dotted line. We
use µ = 1 GeV, R = 0.8 GeV, αs(mZ) = 0.1141, and a fixed generic shape function whose first moment is Ω1 = 0.33 GeV.

specify h = h(C). It must be a function of C which
smoothly interpolates between the values 1 and 0 as one
transitions from the resummation to the fixed order re-
gion near C ∼ 0.75. To achieve this we use the following
simple form:

h(C) =
1

2
− 1

π
arctan [ η (C − C0) ] , (F10)

C0 = 0.7 , η = 30 .

Appendix G: Rgap Scheme based on the
C-Parameter Soft Function

As an alternative to the Rgap scheme subtraction func-
tion used in this work and defined in Eq. (48) one may
employ the analogue relation based on the C-parameter
partonic soft function:

δC̃(R,µ) = ReγE
d

d ln(ix)

[
lnSpart

C̃
(x, µ)

]
x=(iReγE )−1 .

(G1)
In this scheme the analogue of Eq. (53) reads

SC(k, µ) =

∫
dk′ e− 6 δC̃

∂
∂k ŜC(k − k′, µ)FC(k′ − 6∆̄C̃) ,

(G2)

with

∆C̃ = ∆̄C̃(R,µ) + δC̃(R,µ) . (G3)

Here the subtraction function δC̃ can be written as

δC̃(R,µ) = ReγE
∞∑
i=1

αis(µ) δi
C̃

(R,µ) , (G4)

where the coefficients for five light flavors read

δ1
C̃

(R,µ) = − 1.69765LR ,

δ2
C̃

(R,µ) = 0.539295− 0.933259LR − 1.03573L2
R ,

δ3
C̃

(R,µ) = 0.493255 + 0.0309077 sC̃2 + 0.833905LR

− 1.55444L2
R − 0.842522L3

R , (G5)

for LR = ln(µ/R).
Fig. 20 shows the effect of the renormalon subtrac-

tions on the soft function SC(k, µ) from Eqs. (53) and
(G2) (we will refer to using Eq. (53) as thrust subtrac-
tions and to using Eq. (G2) as C-parameter subtrac-
tions), which are compared with the result in the MS
scheme with any subtractions. The key thing to con-
sider is the stability of the soft function when higher
orders in perturbation theory are included, illustrated
by the green, blue, and red curves at 1-, 2-, and 3-loop
orders. In the left most panel of Fig. 20 we show the
C-parameter soft function in the MS scheme. Here the
presence of the ΛQCD renormalon is apparent from the
shifting of the soft function to the right as we increase the
perturbative order. The MS result also exhibits a large
negative dip at small momentum, which makes predic-
tions for the cross section at small C inaccurate in this
scheme. With either the C-parameter subtractions (mid-
dle panel) or the thrust subtractions (rightmost panel)
one achieves significantly better convergence for the soft
function, and alleviates most of the negative dip. Mak-
ing an even closer comparison of the C-parameter and
thrust subtraction results, it becomes evident that the
thrust subtractions exhibit better convergence near the
peak (comparing the difference between the blue and red
lines in the two panels) and also more completely remove
the negative dip at small momenta. (Similar conclusions
hold for the thrust soft function, where again thrust sub-
tractions are preferred.) This improvement for the thrust
subtractions can be traced back to the fact that the sign
of the non-logarithmic 2-loop term in the C-parameter
subtractions in Eq. (G5) is positive, which is opposite to
the sign of the renormalon. In the resummation region
R(τ) = µS(τ), so LR → 0, and numerically the sub-
traction goes in the opposite direction to the renormalon
in this scheme at 2-loops. This term has an impact even
when the logarithmic terms are active in the small C non-
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perturbative region, which we can see by taking R = R0

and µS = µ0. For the thrust subtractions this gives
π/2{δ1, δ2, δ3} = {− 0.603,− 0.743,− 1.621}, whereas for
the C-parameter subtractions we have {δ1

C̃
, δ2
C̃
, δ3
C̃
} =

{− 0.767,− 0.094,− 0.861}. The small value for this
2-loop C-parameter subtraction coefficient is due to the
positive constant term.
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