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We reconsider the perturbative next-to-leading calculation of the single inclusive hadron produc-
tion in the framework of the hybrid formalism, applied to hadron production in proton-nucleus
collisions. Our analysis, performed in the wave function approach, differs from the previous works
in three points. First, we are careful to specify unambiguously the rapidity interval that has to
be included in the evolution of the leading-order eikonal scattering amplitude. This is important,
since varying this interval by a number of order unity changes the next-to-leading order correction
that the calculation is meant to determine. Second, we introduce the explicit requirement that fast
fluctuations in the projectile wave function which only exist for a short time are not resolved by
the target. This Ioffe time cutoff also strongly affects the next-to-leading order terms. Third, our
result does not employ the approximation of a large number of colors. Our final expressions are
unambiguous and do not coincide at next-to-leading order with the results available in the literature.

I. INTRODUCTION AND CONCLUSIONS

It has been suggested thirty years ago [1], that at high energies hadronic structure is considerably different from that
at lower energies as hadrons exhibit perturbative saturation. Observation of saturation is of course a very interesting
possibility, as it would open a door for exploring a qualitative new regime of QCD - the regime of dense saturated
states, which is nevertheless perturbative in the sense that the relevant coupling constant remains small.

There has been a lot of activity in the last 20 years to try to better understand this regime theoretically. With
the advent of the Relativistic Heavy Ion Collider and, later, the Large Hadron Collider, many attempts to describe
available data in the framework of saturation have also been made.

It is fair to say that at the moment we do not have a clear understanding, whether effects of saturation (or
Color Glass Condensate (CGC), as its weak coupling implementation [2–7]) have already been seen in the current
experiments, although some saturation-based calculations provide good description of data (e.g. [8–13]). One of
the major reasons for this, is that the calculational precision of the saturation based approaches is still far from
satisfactory. For example, only a small (although important) part of next-to-leading order corrections (the running
coupling effects) is presently included in numerical implementations of high-energy evolution [14] even if the full result
is already available [15–18]. Calculation of various observables, like inclusive hadroproduction [19], photoproduction
[20], etc. has also been mostly confined to leading order in the strong coupling constant αs.

There is therefore an urgent need to improve the accuracy of the CGC-based calculations. Efforts in this direction
have been made in recent years, with the calculation of NLO corrections to several observables, like deep inelastic
scattering [21, 22], or single hadroproduction cross section at forward rapidities [23, 24] in the so called ”hybrid”
formalism [25]. However, numerical studies have yet been performed only in the latter case, and indicate very strong
effects of the NLO corrections, with cross sections even becoming negative at moderate transverse momenta [26, 27].
The recent followup [28] to [27] underscores the problem even more, since a change which is supposed to affect the
result only at next-to-next-to-leading (NNLO) order, modifies the NLO results significantly. There is also an ongoing
discussion on the correct choice of the factorization scale for the high-energy evolution [29, 30], and on the eventual
relevance of additional collinear resummations at small x [31].

The purpose of this paper is to reanalyze the NLO calculation of inclusive hadron production using the wave
function approach employed in [23]. Such an analysis is necessary, since the calculations of [23] and [24] are not quite
complete. The most important element missing in [23, 24] is a treatment of the limitation on the phase space of
emissions due to finite life time of the low-x fluctuations, the so-called Ioffe time [32]. We rectify this deficiency of
the previous calculations and provide formulae which explicitly take into account this constraint.

We also address the question what is the rapidity to which the eikonal scattering amplitudes have to be evolved.
This point has not been addressed explicitly in [23], while [24] uses an heuristic argument based on the kinematics of
2→ 1 processes and [29] proposes a different solution.

The result of this work is a complete set of formulae for hadron production in the hybrid formalism, at NLO
accuracy, including all channels. We implement in our formulae the Ioffe time restriction which ensures that only
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fluctuations that live long enough are included in the NLO calculation. This Ioffe time provides a scale that allows
a clean separation between the collinear and soft divergences. As in previous calculations, collinear divergences are
absorbed in the parton densities of the projectile and the fragmentation functions of the final state partons into
hadrons, evolved according to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations [33] that
we also deduce in our setup.

The soft divergences are regulated by the Ioffe time. We show that the correct scaling of the Ioffe time under
Lorentz boost leads to the leading-order Balitsky-Kovchegov (BK) evolution [3, 5] of the eikonal scattering amplitude
on the target, with a well defined prescription for the scale up to which this scattering amplitude has to be evolved.
This scale differs from those suggested in [24] and [29]. Our conclusion is that the prescriptions adopted in [24, 29]
are not strictly consistent with the NLO accuracy of the rest of the calculation. We provide the corrected expressions
and discuss to what extent they differ from those in [24]. We also present the results beyond the limit of large number
of colors.

At the end of the day, our formulae are somewhat different from those given in [23] and [24] which were used as
the basis of numerical calculations of [26] and [27]. The differences may be significant in some kinematical regions.
Whether these differences can lead to stabilization of numerical results will have to be determined by numerical
calculations.

We note that the collinear factorization scheme that we use, inside which the parton densities and fragmentation
functions are defined, does not coincide with the standard MS one. But the relation between these functions in both
schemes amounts to a mild rescaling of factorization scales.

The outline of our paper is as follows: In Section II we discuss the basic setup of our calculation, explaining what is
the relevant rapidity interval for the evolution, and paying special attention to the question of the kinematic restriction
due to finite Ioffe time of the fluctuations. In Section III we present the results of the calculation and discuss the
difference between our results and those of [24]. In these two sections, for simplicity of presentation, we limit ourselves
to hadron production from a projectile quark. In Section IV we present the results of the full calculation, including
the gluon channel. The details of the calculation are given in the Appendices.

II. THE BASICS

We consider inclusive hadron production at forward rapidities in pA scattering. We use the ”hybrid” formalism [25]
as our calculational framework. This means that we treat the wave function of the projectile proton in the spirit of
collinear factorization, as an assembly of partons with zero intrinsic transverse momentum. Perturbative corrections
to this wave function are provided by the usual QCD perturbative splitting processes. On the other hand the target
is treated as distribution of strong color fields which during the scattering event transfer transverse momentum to the
propagating partonic configuration of the projectile.

For simplicity of presentation, in this and the next section we consider in detail only one channel for hadron
production: an incoming quark from the projectile wave function, which propagates through the target and fragments
into the observed hadron in the final state. The general discussion pertaining to all important aspects of the calculation
carries over almost verbatim to other production channels as well. Complete results for all production channels are
presented in Section IV.

A. The kinematics and the choice of frame

First, let us specify the kinematics of the process. We require the production of a quasi-on-shell parton with
momentum p, at a forward rapidity η (in the projectile-going diection) and with a sizable transverse momentum p⊥.
By definition, one has

η =
1

2
ln
p+

p−
= ln

√
2p+

|p⊥|
. (2.1)

This parton then fragments into a hadron of momentum ph. The fragmentation is treated as collinear, so that all
components of the momentum are reduced by the same factor ζ: p+

h = ζ p+ and ph⊥ = ζ p⊥. Hence, the rapidity η is
both the rapidity of the produced parton and of the hadron it fragments into. Let us define the fractions xp and xF
of the light-cone momentum P+

P of the projectile carried by the produced parton and hadron respectively, as

xp =
p+

P+
P

and xF =
p+
h

P+
P

. (2.2)
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Notice that the standard Feynman-x variable xF = xpζ. Since p+, p+
h and P+

P are scaled by the same factor under a
longitudinal boost, xp and xF are boost invariant.

Ignoring the masses of the target and projectile, in a frame where the projectile has large momentum P+
P , and the

target a large momentum P−T , one has

2P+
P P
−
T = s. (2.3)

Thus in the center of mass frame

P+
P, CM = P−T, CM =

√
s

2
, p+

CM = xp

√
s

2
, p+

h,CM = xF

√
s

2
. (2.4)

The rapidity of the produced parton and hadron in the center of mass frame is related to xp or xF as

ηCM = ln
xp
√
s

|p⊥|
= ln

xF
√
s

ζ |p⊥|
. (2.5)

As will be explained momentarily, we will find it convenient to work in the frame where most of the energy of the
process is carried by the target. We refer to it as PROJ (projectile frame). In this frame we have

P+
P, PROJ =

s

2P−T, PROJ
. (2.6)

The momenta P+
P, CM and P+

P, PROJ scale differently with total energy of the process.

P+
P, CM ∝ s1/2; P+

P, PROJ = const. (2.7)

We will be interested in deriving the evolution of production cross section with the total energy of the process.
While deriving the evolution we will find it convenient to think of the change in energy s→ se∆Y as due to the slight
boost of the projectile. In this case P+

P, PROJ ∝ e∆Y . Also, we should keep in mind that if we increase the energy

of the process (by boosting the projectile) but still measure particle production at fixed center of mass rapidity, the
value of xp has to be changed according to

xp ∝ s−1/2. (2.8)

Now, although the cross section can be calculated in any Lorentz frame, and the result should not depend on the
choice of frame, it is advantageous to perform the calculation in a frame where it is simplest. Clearly, if we choose
a frame in which the projectile moves very fast, this is far from optimal. In such a frame the wave function of the
projectile itself has many gluons, and one needs to calculate it with high precision (high order in perturbation theory)
in order to calculate the production probability correctly. On the other hand we would like to treat the parton that
produces the outgoing hadron as part of the projectile wave function. Thus it is most convenient to choose such a
frame in which the target moves fast and carries almost all the energy of the process, while the projectile moves fast
enough to be able to accommodate partons with momentum fraction xp but not so fast that it develops a large low
x tail. Since the observed hadron has large rapidity, the relevant values of xp are not small, and thus such a choice is
possible.

For the scattering of the leading parton on the target to be eikonal in our chosen frame we need

xpP
+
PROJ �M, (2.9)

where the scale M is of the order of the typical longitudinal recoil that the target can impart. This scale may slowly

depend on energy, and at high energy can be of order M ∼ Q2
s

ΛQCD
. At relevant energies this is of the order of the

typical hadronic scale, and we will treat it as such. Note that one cannot go to very large s at fixed particle rapidity.
This would take one outside of the validity of the hybrid approximation, where the projectile is allowed to emit an
extra gluon, but not too many gluons so that its wave function does not become dense. Otherwise one needs to
calculate higher order corrections to the projectile wave function and eventually resum those. Thus, condition (2.9)
fixes the region of validity of our setup.

Another auxiliary quantity we introduce is the initial energy s0. Our final results do not depend on it explicitly
but it turns out to be a useful concept. This energy is arbitrary, except it is required to be high enough, so that the
eikonal approach is valid at s > s0. Starting from this energy we can evolve the target according to the high-energy
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evolution. The energy s0 is achieved by boosting the projectile from its rest frame to rapidity YP , and the target from
its rest frame by rapidity Y 0

T , so that

s0 = 2P+
P,PROJP

−0
T ; P+

P,PROJ =
MP√

2
eYP ; P−0

T =
MT√

2
eY

0
T ; P−T =

MT√
2
eY

0
T+YT . (2.10)

Starting from this initial energy s0, the energy of the process is increased further by boosting the target.
Thus, in our setup the projectile wave function at any energy is evolved only to rapidity Yp = ln 1

xp
+ Y0, with Y0

being a fixed number of order one.
The target on the other hand is evolved by

YT = ln
s

s0
, (2.11)

where s is the total center-of-mass squared energy of the process. The initial condition for the evolution of the target
wave function has to be specified at Y 0

T .
At first sight this setup looks very different from the one in [24], where the interval of the target evolution is taken to

depend on the transverse momentum of the final state hadron, but similar to that in [29] where the evolution interval
does not depend on pT . However, the choice made in [29] (without explicit justification) is to evolve the target over
the full rapidity interval ln s

MPMT
, thus not allowing emission of extra gluons in the projectile wave function. Our

approach, on the other hand, evolves the target by p⊥-independent amount YT , while simultaneously allowing for
perturbative emission of gluons in a significant (albeit not logarithmically large) rapidity interval in the projectile
wave function. Thus our setup differs from that adopted in both works [24] and [29]. Nevertheless, as we will show
in subsection III.C, in a certain kinematic regime our evolution interval turns out to be effectively similar to the one
in [24, 34]. The different scales are illustrated in fig. 1.

projectile

target

produced hadron
η

ln s
MTMP

= Y

YP

ln s
s0
= YT

p−

M2
P

2P+
P

1/τ

P−
T

Y 0
T

FIG. 1: Illustration of the different rapidity and momentum scales in our setup.

With this partition of degrees of freedom between the projectile and the target, our setup is fixed. Any projectile
parton scatters on a member of the same target field ensemble. Averaging over this ensemble leads to the dipole
scattering matrix sYT (x, y), which at fixed energy of the process does not depend on the transverse momentum or
rapidity of the final state hadron.

Note that at this point we do not have to specify what is exactly the evolution equation that governs the evolution
of the target. This equation is self-consistently determined from the calculation itself. Unsurprisingly, we will find
that at the accuracy of our calculation the relevant evolution is the leading-order BK equation.

B. YT vs. Yg

Importantly, the above discussion does not uphold the prescription used in [24] and in current numerical implemen-
tations [26–28]. The procedure set out in [24] is to evolve the target to rapidity Yg = ln 1

xg
with xg = p⊥√

s
e−η. The

reason for choosing this particular value of Yg in [24] is based on the following kinematic argument. At leading order
the incoming projectile parton carries momentum (p+, 0, 0). The parton measured in the final state has the same +
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component of momentum, transverse momentum p⊥ and is on shell. This means that during the scattering it picks

up −-component of momentum p− =
p2⊥
2p+ = e−η p⊥√

2
from the target. If one assumes that this momentum has been

transferred to the projectile parton by a single gluon of the target, the gluon in question must have carried at least
this amount of p−, and therefore had to have the longitudinal momentum fraction of the target

xg =
p−

P−
= e−η

p⊥√
s
. (2.12)

On the other hand, the high-energy evolution (in the dilute regime) has the property that any hadronic wave function
is dominated by softest gluons. One thus may conclude that xg is the longitudinal momentum fraction of the softest
gluons in the target wave function, and thus the target has to be evolved to Yg.

On closer examination, however, it transpires that this argument does not hold water. It overlooks the fact that
the target is in fact dense. For the dense target, the projectile parton undergoes multiple scatterings, and therefore
picks up momentum p− not from a single target gluon, but from several. This means that xg is actually an upper
bound on the momentum fraction of the target gluons, and therefore Yg only gives a lower bound on the rapidity
up to which the target wave function has to be evolved. In fact, it is very natural that the total rapidity YT should
not depend on the transverse momentum of the produced particle rather than depend on it as in (2.12). Recall that
in the dense scattering regime, the transverse momentum of the scattered parton ”‘random walks”’ as the parton
propagates through the target. Thus the total transverse momentum is proportional to the square root of the number
of collisions with the target gluons, p2

⊥ ∝ Ng. On the other hand the transferred p− does not random walk, since
all the gluons in the target have p− of the same sign. Thus p− ∝ Ng, which is perfectly consistent with the relation
between p− and p⊥ that follows from the onshellness condition of the outgoing parton. Therefore, increasing p⊥ of
the observed parton (at fixed p+), while increasing the total p− acquired by the projectile parton, does not change the
fraction of longitudinal momentum of individual gluons in the target wave function that participate in the scattering,
and therefore does not affect the value of YT .

In the leading-logarithmic approximation it is not important what exactly is the value of the evolution parameter
for the target as long as it is of the order of total rapidity. However, since we are interested in the next-to-leading
perturbative corrections, this question becomes important, as changing the value of the evolution parameter affects
the result at NLO. It is thus important to use YT rather than Yg.

C. What scatters? The Ioffe time restriction

While in the hybrid approach one assumes that the projectile partons scatter eikonally on the target fields, clearly
this assumption can only be valid for partonic configurations of the projectile wave function which exist long enough
to traverse the longitudinal extent of the target [32].

Consider for example scattering of a projectile quark. The parton level production cross section at leading order is
[23, 24]

dσq

d2p⊥dη
=

1

(2π)2

∫
d2xd2yeip⊥(x−y)sYT (x, y), (2.13)

where sYT (x, y) is the fundamental dipole scattering amplitude at rapidity YT , defined in terms of the eikonal scattering

factors as s(x, y) = 1
Nc
tr [SF (x)S†F (y)], with SF (x) the Wilson line for propagation of a high-energy parton in the

fundamental representation of SU(Nc) at transverse position x.
At next-to-leading order the quark splits in the projectile wave function with probability of order αs into a quark-

gluon configuration. The wave function of the “dressed” quark state with transverse momentum n⊥ and + momentum
xBP

+ (xB refers to Bjorken x) to order g is

|(q)xBP
+, n⊥, α, s〉D =

∫
d2xein⊥x

{
Aq|(q)xBP

+, x, α, s〉

+g

∫
dLPS

2π

∫
y z

F(qg)(xBP
+, ξ, y − x, z − x)ss̄;j t

a
αβ |(q) p+ = (1− ξ)xBP+, y, β, s̄; (g) q+ = ξxBP

+, z, a, j〉
}
.(2.14)

Here s and s̄ are the quark spin indices; j - the gluon polarization index, α, β are fundamental and a are adjoint color
indices. We use the notation dLPS to denote the longitudinal phase space in + components for the splitting. This

corresponds to the + component of the parent parton for the real terms, dLPS = d
[
xpP

+

1−ξ

]
, and the + momentum

running in the loop for the virtual ones, dLPS = d [ξxpP
+], with ξ being the +-momentum fraction taken by
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the emitted gluon. The constant Aq differs from unity by an amount of order g2 and is needed to preserve the
normalization of the state at order αs. At this point we do not need to know explicitly the form of the function F(qg)

nor the normalization constant Aq.
The dressed quark now scatters on the target and produces final state particles. In the spirit of the hybrid

approximation, we treat the scattering of the qg configuration as a completely coherent process where each parton
picks an eikonal phase during the interaction with the target. However this can only apply to configurations that have
a coherence time (Ioffe time) greater than the propagation time through the target. The usual argument for splitting
of a parton with vanishing transverse momentum into two partons, with transverse momenta ±k⊥ and longitudinal
fractions ξ and 1− ξ gives

tc ∼
2ξ(1− ξ)p+

k2
⊥

=
2ξ(1− ξ)xBP+

k2
⊥

. (2.15)

Note that P+ ≡ P+
P, PROJ in this formula is the momentum of the projectile in the frame defined by eq. (2.11) rather

than in the center-of-mass frame. We will use this simplified notation throughout the rest of the paper.
Only the qg pairs that satisfy the relation

2(1− ξ)ξxBP+

k2
⊥

> τ , (2.16)

where τ is a fixed time scale determined by the longitudinal size of the target, scatter coherently. As we will see later,
the time τ actually stays constant through the evolution, it thus has to be identified with the size of the target at the
initial energy s0. This is approximately given by the inverse of P−0

T . Thus the parameter that enters our calculation
is in fact the initial energy

P+/τ = s0/2 (2.17)

and the Ioffe time restriction can be written as

(1− ξ)ξxB
k2
⊥

> s−1
0 . (2.18)

This point is discussed in detail in Appendix A.
The pairs that do not exist long enough are not resolved. Those pairs have large k⊥, and have a small transverse

size. The scattering and particle production from those two parton configurations must be indistinguishable from
that of a single parent quark. Thus only those quark-gluon components of the dressed quark wave function eq. (2.14)
that satisfy the condition eq. (2.18) scatter eikonally. For the rest of the components their scattering matrix should
be taken identical to that of a single bare quark.

Thus, for the purposes of the calculation of scattering cross section the dressed quark wave function should be taken
to be

|(q) xBP
+, 0, α, s〉D Ω =

∫
d2x

{
Aq|(q)xBP

+, x, α, s〉 (2.19)

+g

∫
Ω

dLPS

2π
d2y d2z F(qg)(xBP

+, ξ, y − x, z − x)ss̄;j t
a
αβ |(q) p+ = (1− ξ)xBP+, y, β, s̄; (g) q+ = ξxBP

+, z, a, j〉
}
,

where a quark with +-momentum p+ + q+ = xBP
+ and zero transverse momentum splits into a quark with p+ =

(1− ξ)xBP+ and p⊥ and a gluon with q+ = ξxBP
+ and q⊥. The normalization constant reads

Aq = 1− g2N
2
c − 1

4NcS
xBP

+

∫
Ω

dξ

∫
x x̄ y z

ein⊥(x−x̄)F(qg)(xBP
+, ξ, y − x, z − x)F ∗(qg)(xBP

+, ξ, y − x̄, z − x̄)(2.20)

= 1− g2N
2
c − 1

4NcS
xBP

+

∫
Ω

dξ

∫
x x̄ y z

F(qg)(xBP
+, ξ, y − x, z − x)F ∗(qg)(xBP

+, ξ, y − x̄, z − x̄) ,

where the summation over s̄ and j is understood in F 2
(qg). Here Ω is the part of the phase space for the splitting

defined by

Ω :
2(1− ξ)ξp+

k2
⊥

=
2(1− ξ)ξxBP+

k2
⊥

> τ. (2.21)
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The second equality in eq. (2.20) holds due to the explicit coordinate dependence of F(qg) which sets x equal to x̄,
eq.(2.29). Note that the normalization constant Aq is ultraviolet (UV) finite. The constant S is the total transverse
area. As we will see later it cancels against the integral over the coordinate z. The longitudinal momentum factor
xBP

+ in eq.(2.20) appears due to the normalization of the longitudinal momentum eigenstates.
An analogous formula holds for a quark with arbitrary transverse momentum.
The function F(qg) can be read off the known formulae, for example in [23], where to order g the single “dressed”

quark state was written as

δ|(q)p+ + q+, p⊥ + q⊥, α, s〉 → |(q) p+, p⊥, β, s̄; (g) q+, q⊥, a, j〉 taαβ (2.22)

× 1

2
√

2q+

1
(p⊥+q⊥)2

2(p++q+) −
p2⊥
2p+ −

q2⊥
2q+

{
δss̄δij

2p+ + q+

p+ + q+

[
pi⊥
p+
− qi⊥
q+

]
− iεijσ3

ss̄

q+

p+ + q+

[
pi⊥
p+
− qi⊥
q+

]}
.

It is convenient to define

l⊥ = p⊥ − (1− ξ)(q⊥ + p⊥) = ξp⊥ − (1− ξ)q⊥ , (2.23)

which is the transverse momentum of the daughter quark relative to the one of the parent quark.
The Ioffe time constraint for a quark state with an arbitrary initial transverse momentum then reads

l2⊥ < 2ξ(1− ξ)p
+ + q+

τ
. (2.24)

eq. (2.22) can be rewritten as

δ|(q) p+ + q+, p⊥ + q⊥, α, s〉 → |(q) p+, p⊥, β, s̄; (g) q+, q⊥, a, j〉 taαβ
× −1√

2ξ(p+ + q+)

1

l2⊥

{
δss̄δij(2− ξ)li⊥ − iεijσ3

ss̄ξl
i
⊥

}
. (2.25)

To Fourier transform F into coordinate space, it is convenient to perform the change of variables with unit Jacobian

l⊥ = ξp⊥ − (1− ξ)q⊥; m⊥ = ξq⊥ + (1 + ξ)p⊥ (2.26)

or

p⊥ = ξl⊥ + (1− ξ)m⊥; q⊥ = ξm⊥ − (1 + ξ)l⊥ . (2.27)

We then have

F(qg)(xBP
+, ξ, y − x, z − x)ss̄;j =

∫
d2p⊥
(2π)2

d2q⊥
(2π)2

F(qg)(xBP
+, ξ, p⊥, q⊥)e−ip⊥(y−x)−iq⊥(z−x)

= − 1√
2ξ(p+ + q+)

{
δss̄δij(2− ξ)− iεijσ3

ss̄ξ
}
δ2
[
(1− ξ)(y − x) + ξ(z − x)

]
×
∫
l2⊥<2ξ(1−ξ) p++q+

τ

d2l⊥
(2π)2

li⊥
l2⊥
e−il⊥[ξ(y−x)−(1+ξ)(z−x)] . (2.28)

We can get rid of x by realising the δ-function with the result

F(qg)(xBP
+, ξ, y − x, z − x)ss̄;j = − 1√

2ξxBP+

{
δss̄δij(2− ξ)− iεijσ3

ss̄ξ
}

× δ2
(
x− [(1− ξ)y + ξz]

)∫
l2⊥<2ξ(1−ξ) p++q+

τ

d2l⊥
(2π)2

li⊥
l2⊥
e−il⊥(y−z) (2.29)

=
−i√

2ξxBP+

{
δss̄δij(2− ξ)− iεijσ3

ss̄ξ
}
δ2
(
x− [(1− ξ)y + ξz]

)
Aiξ,xB (y − z),

where we have used p+ + q+ = xBP
+, and the modified Weizsäcker-Williams field is defined as

Aiξ,xB (y − z) ≡ −i
∫
l2⊥<2ξ(1−ξ) xBP

+

τ

d2l⊥
(2π)2

li⊥
l2⊥
e−il⊥(y−z)

= − 1

2π

(y − z)i
(y − z)2

[
1− J0

(
|y − z|

√
2ξ(1− ξ)xBP

+

τ

)]
. (2.30)
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For future use we also define

Aiξ(y − z) ≡ Aiξ, xp1−ξ
(y − z)

= − 1

2π

(y − z)i
(y − z)2

[
1− J0

(
|y − z|

√
2ξ
xpP+

τ

)]
. (2.31)

When we discard the Ioffe-time cut-off, or equivalently in the P+/τ → +∞ limit, both Aiξ,xB (y − z) and Aiξ(y − z)
reduce to the standard Weizsäcker-Williams field

Ai(y − z) = − 1

2π

(y − z)i
(y − z)2

. (2.32)

Using the result (2.29) we can write the normalization factor eq.(2.20) as

Aq = 1− g2N
2
c − 1

4Nc

∫ 1

0

dξ

2π

1 + (1− ξ)2

ξ

∫
z

Aiξ,xp(z)Aiξ,xp(z). (2.33)

Two comments are in order here. First, the function F(qg), in addition to transverse coordinate variables and the
momentum fraction ξ, also depends on the longitudinal momentum of the parent quark, and therefore on xB at fixed
P+. This dependence has to be kept in mind especially whenever xB has to be integrated over.

Second, note that we have now implemented the Ioffe time constraint on the phase space {k⊥, ξ} in the definition
of F(qg)(xBP

+, ξ, y − x, z − x) rather than in the integral over ξ as in eqs. (2.19,2.20). This is of course equivalent,
but is in fact mathematically more appropriate, since the energy fraction ξ in eq.(2.19) is integrated last. Thus,
in the following we will not denote the restricted phase space by Ω but will instead directly use the analog of the
Weiszacker-Williams field Aξ,xB , which explicitly depends on the energy fraction ξ due to implementation of the Ioffe
time constraint in the transverse phase space.

As noted above, neglecting the Ioffe time constraint on l⊥, one gets for Ai(y− z) the standard Weizsacker-Williams
field at point z. The only difference with the soft approximation then is in the “recoil” position of the emitter after
the emission, which does not remain at the same transverse coordinate. With the constraint, on the other hand, the
relative contribution of short distances in Ai(y − z) which is the reflection of the short Ioffe time of small dipoles, is
suppressed.

III. THE RESULTS: PRODUCTION FROM QUARKS.

The calculation of the production cross section from this starting point proceeds along the standard lines. We use
the approach developed in [23] and consider scattering of dressed parton states. Compared to the calculation of [23]
we now include virtual corrections, which were not important for the purposes of [23]. Although our technique is
slightly different than the straightforward summation of diagrams as in [24], we have checked that modulo the Ioffe
time constraint and the value of YT in the leading-order term, our results agree with those of [24].

We present the detailed calculation in the appendix for completeness. In the body of the paper we only present the
final result and discuss some of its features.

Our result for the inclusive hadroproduction of hadron H from an initial state quark via hadronization of the final
state quark in pA scattering, is

dσq→q→H

d2ph⊥dη
=

1

(2π)2

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

xF
ζ
fqµ2

(
xF
ζ

)∫
d2xd2y ei

ph⊥
ζ (x−y)sYT (x, y)

+

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

dσ̄q→q1

d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
(3.1)

with

dσ̄q→q1

d2p⊥dη
(p⊥, xp) =

dσ̄q→q,r1

d2p⊥dη
(p⊥, xp) +

dσ̄q→q,v1

d2p⊥dη
(p⊥, xp) (3.2)

where the real and the virtual contributions to the quark production cross section are given by
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dσ̄q→q,r1

d2p⊥dη
(p⊥, xp) =

g2

(2π)3
CF

∫ 1−xp

0

dξ
xp

1− ξ f
q
µ2

(
xp

1− ξ

) [
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)

×
[
Aiξ(y − z)Aiξ(ȳ − z)− Cµ2

(
ξ,

xp
1− ξ , z

)]{
s[y, ȳ] + (1− ξ)2 s

[
(1− ξ)y, (1− ξ)ȳ

]}
+

g2

(2π)3

∫ 1−xp

0

dξ
xp

1− ξ f
q
p⊥

(
xp

1− ξ

) [
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)

×Aiξ(y − z)Aiξ(ȳ − z)
{
− Nc

2

(
s
[
y − ξ(y − z), z

]
s[z, ȳ] + s

[
z, ȳ − ξ(ȳ − z)

]
s[y, z]

)
+

1

2Nc

(
s
[
y − ξ(y − z), ȳ

]
+ s
[
y, ȳ − ξ(ȳ − z)

])}
(3.3)

and

dσ̄q→q,v1

d2p⊥dη
(p⊥, xp) = − g2

(2π)3
CF xp f

q
µ2(xp)

∫ 1

0

dξ

[
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)s[y, ȳ]

×
[
Aiξ,xp(y − z)Aiξ,xp(y − z) +Aiξ,xp(ȳ − z)Aiξ,xp(ȳ − z)− 2Cµ2(ξ, xp, z)

]
+

g2

(2π)3
xpf

q
p⊥

(xp)

∫ 1

0

dξ

[
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)

×
{
Aiξ,xp(y − z)Aiξ,xp(y − z)

[
Nc
2
s
[
y + ξ(y − z), z + ξ(y − z)

]
s
[
z + ξ(y − z), ȳ

]
− 1

2Nc
s
[
y + ξ(y − z), ȳ

]]

+Aiξ,xp(ȳ − z)Aiξ,xp(ȳ − z)
[
Nc
2
s
[
z + ξ(ȳ − z), ȳ + ξ(ȳ − z)

]
s
[
y, z + ξ(ȳ − z)

]
− 1

2Nc
s
[
y, ȳ + ξ(ȳ − z)

]]}
. (3.4)

In the above, Dq
H,µ2 and fqµ2 are the quark fragmentation (FF) and proton quark distribution (PDF) functions

respectively defined below in (5.7). Both are calculated with a generic factorizations scale (resolution) µ. The natural
value of the factorization scale to use in the present problem is µ = |ph⊥|.

The function sYT (x, y) ≡ 1
Nc

Tr[SF(x)S†F(y)] is the eikonal dipole scattering amplitude on the heavy nuclear target.

The eikonal dipole amplitude in eq.(3.1) is evolved according to BK equation up to rapidity YT as explained above.
The ones appearing in the NLO expressions have also to be evolved up to the same rapidity YT but, for brevity,
hereafter we will only make the rapidity dependence explicit in the LO term.

The collinear subtraction term is defined as

C̃µ2(ξ, xB) ≡
∫
d2z Cµ2(ξ, xB , z) ≡

∫
d2z Aiξ,xB (z)Aiξ,xB (z) θ(z2µ2 − 1) . (3.5)

Note that the PDFs and FFs are defined in a given factorization scheme that, in our framework, does not coincide
with the standard MS one. But their relation, as discussed in detail in Appendix C, amounts to a mild rescaling of
factorization scales.

These expressions can be somewhat simplified. Before getting to that we discuss the region of applicability of these
formulae.

A. How much should we believe it?

Here is the run down on the approximations employed in our derivation.
1. The eikonal approximation for the partonic scattering matrix at initial energy. This approximation is tantamount
to neglecting power corrections of the type Q2

s/s0 and p2
⊥/s0 in the production cross section. We do not expect this

to be a major concern, since with a reasonable choice of s0 and at not astronomical transverse momenta, both ratios
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in question should be very small. Consistently, the rapidity evolution is also required to be accurate only up to such
power suppressed terms. The BK evolution for amplitude indeed arises when we omit such power corrections in the
derivation (see Appendix A). Equations (3.3,3.4) contain explicitly some such power suppressed terms. While formally
this is not a problem, within our accuracy we are able to discard these terms and thus simplify the evaluation of the
cross section. This will be done in the next subsection.
2. Collinear approximation for the projectile wave function. As usual, this approximation is expected to be good up
to power corrections of the type Λ2

QCD/p
2
⊥. Note that the O(αs) correction we have included seems to go beyond

the collinear approximation, as discussed in [23]. It includes the contribution from the partons in the projectile wave
function which have high transverse momentum, of the order of p⊥, and is not power suppressed. This contribution
is not part of the collinear DGLAP evolution, but is rather a genuine NLO fixed order correction to the cross section.
As discussed above, the Ioffe time constraint eliminates contribution of very high tranverse momentum partons, and
it remains to be understood how important is the remaining contribution from this kinematical region.
3. Use of the light cone PDF while not working in the infinite momentum frame. As we have discussed in detail,
we work in the frame where the projectile has a large but finite longitudinal momentum. We have nevertheless used
the quark distribution function fµ2(xp) in our formulae. Strictly speaking, our function fµ2(xp) also depends on the
momentum P+. If we had to take the dependence on P+ into account, this would complicate things considerably.
In particular it would affect the derivation of the evolution equation in Appendix A, since changing P+ through the
boost of the projectile would also change the distribution fµ2(xp). We have neglected such terms while deriving the
evolution equations eqs.(5.32,5.34) for the following reason. We do not expect fµ2(xp) to depend significantly on P+

as long as the value of xp is not too small, namely xp >
MP

P+ . For small values of x one indeed has to take into account
the P+ dependence, and in fact one expects fµ2(xp) to drop to zero quickly in this range. However for xp ∼ 1, all the
partons involved are moving very fast, and the correction due to finite P+ should again be a power correction in the
ratio MP

P+ . It is thus the same type of power correction as discussed above.
4. Leading order in αs BK evolution. This is probably the most important approximation of all and we expect it to
be the most important limiting factor of our results. The point here is the following. While writing our expressions
we have assumed that the dipole scattering amplitude is O(1), and under this assumption have calculated the order
O(αs) terms in the cross section. However, if we really want to know the production cross section to O(αs) we also
need to know the amplitude sYT with the accuracy O(αs). The question is how far in energy can we evolve the
amplitude from the initial s0 using the leading-order evolution and still correctly account for all O(αs) terms.

To answer this question imagine calculating higher order corrections without resumming them into the evolution
of sYT . The result will have the form

dσ

d2p⊥dη
= B00 + αsB10 + Σ∞n=1α

n
sY

n
T Bnn + αsΣ

∞
n=1α

n
sY

n
T Bn+1,n + α2

sB20 + ... (3.6)

For small YT this is a genuinely perturbative expansion. However when YT is large enough, so that YT ∼ 1/αs,
one needs to resum all terms where the power of YT is the same as the power of αs, namely all terms Bnn. This
resummation is equivalent to solving the leading-order evolution equation for sYT . Our calculation with leading-order
evolved sYT is equivalent to this resummation and the inclusion of the term B10. The problem is however, that for
these values of YT any one of the terms Bn+1,n is as large as B10 due to the enhancement by the right number of
factors of YT . Thus if we want to keep the accuracy O(αs) all the way up to rapidities YT ∼ 1/αs, we need also to
resum the terms Bn+1,n, which is equivalent to solving next-to-leading-order evolution for sYT . This sets the limit on
the applicability of the current calculation with the LO evolution. Within this range it still makes sense to resum Bnn
terms, as some of them may be parametrically larger than B10. For instance if we push up to rapidities YT ∼ 1/α

1/2
s ,

the terms B11 and B22 are at least as large as B10 and both are resummed in the LO evolution, while for YT ∼ 1/α
3/4
s

the terms B11, B22, B33 and B44 are all important and are all resummed. On the other hand all the Bn+1,n terms
are parametrically suppressed with respect to B10 and do not have to be resummed.

Also on the positive side, even for YT ∼ 1/αs we can modify the formalism by solving the evolution of sYT at NLO,
but still keeping only B10 as the only unenhanced contribution. This will indeed make the overall accuracy of the
result O(αs) in all of this larger rapidity range without ever needing to calculate B20 etc.

To summarize, even though we have calculated NLO terms in the production cross section, our result can be
considered as a complete NLO result only for rapidities YT � 1/αs. For larger rapidities, the accuracy of our
calculation is the same as of the leading order. To have NLO accuracy for all rapidities one needs to include NLO
terms also in the evolution of sYT [15].
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B. Discarding power corrections: The quark channel

As discussed in the previous section, our results only hold up to power corrections in powers of p2
⊥/s0 and Q2

s/s0.
We can thus simplify our final expression somewhat by discarding these terms. Our final expression for the production
cross section is given in terms of the real and virtual part of production cross section eqs.(3.3,3.4) where the dipole
amplitude sYT (x, y) is evolved to rapidity YT . We now add and subtract from eq.(3.2) the following expression, which
is obtained from the quark production amplitude by setting ξ = 0 everywhere except in Aξ and the explicit factor
1/ξ:

g2

(2π)3
Ncxp f

q
µ2(xp)

∫ 1

0

dξ

ξ

∫
y,ȳ,z

eip⊥(y−ȳ)

[
Aiξ(y − z)Aiξ(y − z) +Aiξ(ȳ − z)Aiξ(ȳ − z)− 2Aiξ(y − z)Aiξ(ȳ − z)

]
×
[
s(y, z)s(z, ȳ)− s(y, ȳ)

]
. (3.7)

This simple form follows if we take the same modified WW field in the real and virtual terms to be Aξ, and set ξ = 0
in all other entries. Now the term that contains the difference between the quark cross section and the expression
eq.(3.7) is finite at ξ → 0 even if we remove the Ioffe time cutoff in the WW field and take Aiξ(x) → Ai(x), where

Ai(x) is the standard WW field with unrestricted integral over the transverse momentum l⊥. The difference between
keeping Aiξ(x) and modifying it to Ai(x) is clearly a power correction in inverse powers of s0, and the same holds
for Cµ2 . We are therefore allowed to simplify this term by dropping these power corrections. On the other hand we
cannot simplify the stand alone term of the form eq.(3.7), and we leave it as is. The final result of this operation can
be written as

dσ̄q→q1

d2p⊥dη
(p⊥, xp) =

g2

(2π)3

∫ 1−xp

0

dξ

∫
y,ȳ,z

eip⊥(y−ȳ) 1 + (1− ξ)2

[ξ]+

[
(3.8)

xp
1− ξ f

q
µ2

(
xp

1− ξ

) {
CF

[
Ai(y − z)Ai(ȳ − z)−

(
Ai(z)Ai(z)

)
µ2

]{
s[y, ȳ] + (1− ξ)2 s

[
(1− ξ)y, (1− ξ)ȳ

]}
+Ai(y − z)Ai(ȳ − z)

{
− Nc

2

[
s
[
y − ξ(y − z), z

]
s[z, ȳ] + s

[
z, ȳ − ξ(ȳ − z)

]
s[y, z]

]
+

1

2Nc

[
s
[
y − ξ(y − z), ȳ

]
+ s
[
y, ȳ − ξ(ȳ − z)

]]}}]

− g2

(2π)3

∫ 1

0

dξ

∫
y,ȳ,z

eip⊥(y−ȳ) 1 + (1− ξ)2

[ξ]+

[

xp f
q
µ2(xp)

{
CF

[
Ai(y − z)Ai(y − z) +Ai(ȳ − z)Ai(ȳ − z)− 2

(
Ai(z)Ai(z)

)
µ2

]
s[y, ȳ]

−
{
Ai(y − z)Ai(y − z)

[
Nc
2
s
[
y + ξ(y − z), z + ξ(y − z)

]
s
[
z + ξ(y − z), ȳ

]
− 1

2Nc
s
[
y + ξ(y − z), ȳ

]]
+Ai(ȳ − z)Ai(ȳ − z)

[
Nc
2
s
[
z + ξ(ȳ − z), ȳ + ξ(ȳ − z)

]
s
[
y, z + ξ(ȳ − z)

]
− 1

2Nc
s
[
y, ȳ + ξ(ȳ − z)

]]}}]

+
g2

(2π)3
Ncxp f

q
µ2(xp)

∫ 1

0

dξ

ξ

∫
y,ȳ,z

eip⊥(y−ȳ)[Aiξ(y − z)−Aiξ(ȳ − z)][Aiξ(y − z)−Aiξ(ȳ − z)]
[
s(y, z)s(z, ȳ)− s(y, ȳ)

]
where, as usual, the + prescription is defined so that for any smooth function F (ξ),∫ a

0

dξF (ξ)
1

[ξ]+
≡
∫ a

0

dξ
F (ξ)

ξ
−
∫ 1

0

dξ
F (0)

ξ
(3.9)

and (
Ai(z)Ai(z)

)
µ2
≡ Ai(z)Ai(z)θ(z2µ2 − 1). (3.10)



12

C. Discussion.

The last term in eq.(3.8) looks somewhat similar to an extra contribution to the evolution of the leading-order term.
It would be equivalent to extra evolution if the Ioffe time modified WW field Aiξ could be substituted by Ai. This
substitution is of course not possible, since the Ioffe time regulates the pole at ξ = 0 in this term. Nevertheless let us
try to interpret this term in the language of additional evolution. To do that we interchange the order of integration
over ξ and the momentum in the Fourier transform of the WW field, similarly to eqs.(5.35,5.38). Performing, in the
last term in eq.(3.8), the integral over rapidity first we can write it in terms of the Fourier transform of the derivative
of the dipole cross section ∫

d2l⊥

∫
d2m⊥ ln

(
1

ξmin

)
d

dY
s(l⊥ + p⊥,m⊥ − p⊥) (3.11)

with

ξmin = max

{
l2⊥
xps0

,
m2
⊥

xps0

}
. (3.12)

If ξmin did not depend on the momentum l⊥ and m⊥, this would be equivalent to extra evolution of the leading term
by an additional rapidity interval ∆Y = ln 1

ξmin
. In this case we could forget about this term, and instead evolve s

in the leading-order term to YT + ln 1
ξmin

. However ξmin itself depends on the momentum l⊥ (or m⊥). Note that

momentum l⊥ is the transverse momentum of the gluon in the projectile wave function. Since this extra emitted
gluon is not present in the leading-order term at all, it is impossible to ascribe the contribution eq.(3.11) to extra
evolution. As discussed in [23], there are two distinct regions of l⊥ that contribute to the production, l⊥ ∼ Qs and
l⊥ ∼ p⊥. Thus it is important to keep the full dependence of l⊥ in the calculation.

Nevertheless, it may be instructive to think of this term as extending the evolution interval of the leading-order
term as this makes it easier to compare our final expression with those of [24] and [29]. The expression in [24] does
not contain the last term in eq.(3.8), but instead evolves the leading-order amplitude to rapidity Yg = ln 1

xg
. On the

other hand [29] argues that the leading term instead has to be evolved to YM = ln s
M2 with M2 being typical hadronic

scale. Our expression, if interpreted in terms of the evolution of the leading term, means that the correct interval of
the evolution depends on the transverse momentum of the gluon, and is given by

Yl⊥ = YT + ln
xps0

l2⊥
= ln

1

xg
+ ln

p2
⊥
l2⊥

. (3.13)

Thus the correct evolution interval is neither the one suggested in [24] nor in [29].
Note that for the contribution of high transverse momentum gluons l⊥ ∼ p⊥, and thus ln 1

xg
is indeed a reasonable

approximation to Yl⊥ . These high transverse momentum gluons contribute to the “inelastic partonic scattering” in
the language of [23]. However the “elastic contribution” that is driven by gluons with l⊥ ∼ Qs corresponds to a
significantly higher interval of rapidity evolution. Our results show that for p⊥ ∼ Qs the correct interval of rapidity
evolution is larger than the one suggested in [24]. For large transverse momentum, p⊥ � Qs, when the “inelastic”
contribution becomes significant, the difference between our results and those of [24] becomes less pronounced. One
should also keep in mind that the hybrid approach per se is only viable as long as p2

⊥ � s0.
We stress, that thinking in terms of the evolution of the leading-order term is only mnemonic, since the “evolution

interval” depends on momentum l⊥, which itself does not characterize any of the kinematic variables in the leading-
order expression.

Finally we wish to comment on the choice of the initial scale s0. As explained above, our results are formally
independent of the value of s0

1, in the sense that changing s0 and simultaneously changing the initial dipole amplitude
profile ss0(x, y) (evolving it via BK equation) leads to the same result for particle production. Thus for numerical
implementation it makes sense to choose such s0 for which the dipole amplitude ss0(x, y) is constrained the best by
fits to other data, e.g. DIS. On the other hand, dropping power-suppressed terms, as we did above, is bound to result
in some sensitivity to the value of s0. It would therefore be prudent to perform calculations in some range of s0 to
make sure that the results are stable with respect to this variation.

1 The scale s0 plays the role similar to the rapidity factorization scale in [29]. It regulates the soft divergence that is the source of
high-energy rapidity evolution. A physical observable, like inclusive gluon production cross section, should indeed be independent of
this factorization scale.
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IV. THE RESULTS: ALL CHANNELS.

The calculation for the contribution from all channels is presented in Appendix B. The final result is

dσH

d2ph⊥dη
=

1

(2π)2

∑
q

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

xF
ζ
fqµ2

(
xF
ζ

)∫
yȳ

ei
ph⊥
ζ (y−ȳ)sYT [y, ȳ] +

(
q → q̄, ph⊥ → −ph⊥

)
+

1

(2π)2

∫ 1

xF

dζ

ζ2
Dg
H,µ2(ζ)

xF
ζ
fgµ2

(
xF
ζ

)∫
yȳ

ei
ph⊥
ζ (y−ȳ)sA,YT [y, ȳ]

+
∑
q

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

dσ̄q

d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
+
(
q → q̄, ph⊥ → −ph⊥

)
+

∫ 1

xF

dζ

ζ2
Dg
H,µ2(ζ)

dσ̄g

d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
(4.1)

where summation over all quark flavors is assumed. The adjoint dipole scattering amplitude sA(x, y) is

sA[x, y] =
1

N2
c − 1

tr
[
SA(x)S†A(y)

]
. (4.2)

In the following we do not write out explicitly the antiquark contribution. As indicated in eq.(4.1) it is obtained from
the quark contribution by substituting the antiquark PDFs and FFs for the quark ones and flipping the sign of the
transverse momentum ph⊥ → −ph⊥ in all the relavnt expressions (i.e. the leading order cross section and eqs. (4.4),
(4.5) and (4.6)).

The quark production cross section is

dσ̄q

d2p⊥dη
=
dσ̄q→q,r1

d2p⊥dη
+
dσ̄q→q,v1

d2p⊥dη
+
dσ̄g→q,r1

d2p⊥dη
(4.3)

with

dσ̄q→q,r1

d2p⊥dη
=

g2

(2π)3
CF

∫ 1−xp

0

dξ
xp

1− ξ f
q
µ2

(
xp

1− ξ

) [
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)

×
[
Ai
ξ,

xp
1−ξ

(y − z)Ai
ξ,

xp
1−ξ

(ȳ − z)− Cµ2

(
ξ,

xp
1− ξ , z

)]{
s[y, ȳ] + (1− ξ)2 s

[
(1− ξ)y, (1− ξ)ȳ

]}
+

g2

(2π)3

∫ 1−xp

0

dξ
xp

1− ξ f
D,q
µ2

(
xp

1− ξ

) [
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)

×Ai
ξ,

xp
1−ξ

(y − z)Ai
ξ,

xp
1−ξ

(ȳ − z)
{
− Nc

2

(
s
[
y − ξ(y − z), z

]
s[z, ȳ] + s

[
z, ȳ − ξ(ȳ − z)

]
s[y, z]

)
+

1

2Nc

(
s
[
y − ξ(y − z), ȳ

]
+ s
[
y, ȳ − ξ(ȳ − z)

])}
, (4.4)
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dσ̄q→q,v1

d2p⊥dη
= − g2

(2π)3
CF xp f

q
µ2(xp)

∫ 1

0

dξ

[
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)s[y, ȳ]

×
{
Aiξ,xp(y − z)Aiξ,xp(y − z) +Aiξ,xp(ȳ − z)Aiξ,xp(ȳ − z)− 2Cµ2(ξ, xp, z)

}
+

g2

(2π)3
CF xp f

D,q
µ2 (xp)

∫ 1

0

dξ

[
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)

×
{
Aiξ,xp(y − z)Aiξ,xp(y − z)

[
Nc
2
s
[
y + ξ(y − z), z + ξ(y − z)

]
s
[
z + ξ(y − z), ȳ

]
− 1

2Nc
s
[
y + ξ(y − z), ȳ

]]

+Aiξ,xp(ȳ − z)Aiξ,xp(ȳ − z)
[
Nc
2
s
[
z + ξ(ȳ − z), ȳ + ξ(ȳ − z)

]
s
[
y, z + ξ(ȳ − z)

]
− 1

2Nc
s
[
y, ȳ + ξ(ȳ − z)

]]}
, (4.5)

dσ̄g→q,r1

d2p⊥dη
=

1

2

g2

(2π)3

∫ 1−xp

0

dξ
xp

1− ξ f
g
µ2

(
xp

1− ξ

)[
ξ2 + (1− ξ)2

] ∫
yȳz

eip⊥(y−ȳ)

×
{[
Ai
ξ,

xp
1−ξ

(y − z)Ai
ξ,

xp
1−ξ

(ȳ − z)− Cµ2

(
ξ,

xp
1− ξ , z

)][
s[y, ȳ] + (1− ξ)2sA

[
(1− ξ)y, (1− ξ)ȳ

]]
− N2

c

(N2
c − 1)

Ai
ξ,

xp
1−ξ

(y − z)Ai
ξ,

xp
1−ξ

(ȳ − z)
[
s
[
y, (1− ξ)ȳ + ξz

]
s
[
(1− ξ)ȳ + ξz, z

]
− 1

N2
c

s[y, z]

]
− N2

c

(N2
c − 1)

Ai
ξ,

xp
1−ξ

(y − z)Ai
ξ,

xp
1−ξ

(ȳ − z)
[
s
[
z, (1− ξ)y + ξz

]
s
[
(1− ξ)y + ξz, ȳ

]
− 1

N2
c

s[z, ȳ]

]}
, (4.6)

The gluon production cross section is

dσ̄g

d2p⊥dη
=
dσ̄q→g,r1

d2p⊥dη
+
dσ̄g→g,r1

d2p⊥dη
+
dσ̄g→g,v1

d2p⊥dη
+
dσ̄g→q,v1

d2p⊥dη
+
dσ̄g→q̄,v1

d2p⊥dη
(4.7)

with

dσ̄q→g,r1

d2p⊥dη
=

g2

(2π)3

∫ 1

xp

dξ
xp
ξ
fqµ2

(
xp
ξ

)[
1 + (1− ξ)2

ξ

] ∫
zz̄y

eip⊥(z−z̄)

×
[
Ai
ξ,
xp
ξ

(z − y)Ai
ξ,
xp
ξ

(z̄ − y)− Cµ2

(
ξ,
xp
ξ
, y

)]{
CF sA[z, z̄] + CF ξ

2 s
[
ξz, ξz̄

]}
+

g2

(2π)3

∫ 1

xp

dξ
xp
ξ
fqµ2

(
xp
ξ

)[
1 + (1− ξ)2

ξ

] ∫
zz̄y

eip⊥(z−z̄)

×Ai
ξ,
xp
ξ

(z − y)Ai
ξ,
xp
ξ

(z̄ − y)

{
− Nc

2

(
s
[
z, (1− ξ)y + ξz̄

]
s[y, z] + s[z̄, y] s

[
(1− ξ)y + ξz, z̄

])
+

1

2Nc

(
s
[
y, (1− ξ)y + ξz̄

]
+ s
[
(1− ξ)y + ξz, y

])}
, (4.8)
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dσ̄g→g,r1

d2p⊥dη
=

g2

(2π)3
2CA

∫ 1−xp

0

dξ
xp

1− ξ f
g
µ2

(
xp

1− ξ

) [
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
] ∫

yȳz

eip⊥(y−ȳ)

×
[
Ai
ξ,

xp
1−ξ

(y − z)Ai
ξ,

xp
1−ξ

(ȳ − z)− Cµ2

(
ξ,

xp
1− ξ , z

)]{
sA[y, ȳ] + (1− ξ)2 sA

[
(1− ξ)y, (1− ξ)ȳ

]}
− g2

(2π)3

∫ 1−xp

0

dξ
xp

1− ξ f
g
µ2

(
xp

1− ξ

) [
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]

×
∫
yȳz

eip⊥(y−ȳ)Ai
ξ,

xp
1−ξ

(y − z)Ai
ξ,

xp
1−ξ

(ȳ − z) N3
c

N2
c − 1

{
s[y, z] s

[
(1− ξ)ȳ + ξz, y

]
s
[
z, (1− ξ)ȳ + ξz

]
+s[z, y] s

[
y, (1− ξ)ȳ + ξz

]
s
[
(1− ξ)ȳ + ξz, z

]
+s
[
ȳ, (1− ξ)y + ξz

]
s
[
(1− ξ)y + ξz, z

]
s[z, ȳ]

+s
[
(1− ξ)y + ξz, ȳ

]
s
[
z, (1− ξ)y + ξz

]
s[ȳ, z]− 1

N2
c

Xyȳz

]}
, (4.9)

dσ̄g→g,v1

d2p⊥dη
= − g2

(2π)3
CA xp f

g
µ2(xp)

∫ 1

0

dξ

[
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
] ∫

yȳz

eip⊥(y−ȳ)sA[y, ȳ]

×
{
Aiξ,xp(y − z)Aiξ,xp(y − z) +Aiξ,xp(ȳ − z)Aiξ,xp(ȳ − z)− 2Cµ2(ξ, xp, z)

}
+

g2

(2π)3
xp f

g
µ2(xp)

∫ 1

0

dξ

[
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
] ∫

yȳz

eip⊥(y−ȳ)

×
{
Aiξ,xp(y − z)Aiξ,xp(y − z)

[
− Nc

2(N2
c − 1)

X
′
yȳz

+
N3
c

2(N2
c − 1)

(
s
[
y + ξ(y − z), z + ξ(y − z)

]
s
[
z + ξ(y − z), ȳ

]
s
[
ȳ, y + ξ(y − z)

]
+s
[
z + ξ(y − z), y + ξ(y − z)

]
s
[
ȳ, z + ξ(y − z)

]
s
[
y + ξ(y − z), ȳ

])]
+Aiξ,xp(ȳ − z)Aiξ,xp(ȳ − z)

[
− Nc

2(N2
c − 1)

X
′′
yȳz

+
N3
c

2(N2
c − 1)

(
s
[
ȳ + ξ(ȳ − z), z + ξ(ȳ − z)

]
s
[
z + ξ(ȳ − z), y

]
s
[
y, ȳ + ξ(ȳ − z)

]
+s
[
z + ξ(ȳ − z), ȳ + ξ(ȳ − z)

]
s
[
y, z + ξ(ȳ − z)

]
s
[
ȳ + ξ(ȳ − z), y

])]}
, (4.10)

dσ̄g→q,v1

d2p⊥dη
= −1

2

g2

(2π)3
xp f

g
µ2(xp)

∫ 1

0

dξ
[
ξ2 + (1− ξ)2

] ∫
yȳz

eip⊥(y−ȳ)

×
{[
Aiξ,xp(y − z)Aiξ,xp(y − z) +Aiξ,xp(ȳ − z)Aiξ,xp(ȳ − z)− 2Cµ2(ξ, xp, z)

]
sA[y, ȳ]

−Aiξ,xp(y − z)Aiξ,xp(y − z)
[

N2
c

N2
c − 1

s
[
y + ξ(y − z), ȳ

]
s
[
ȳ, z + ξ(y − z)

]
− 1

N2
c − 1

s
[
y + ξ(y − z), z + ξ(y − z)

]]
−Aiξ,xp(ȳ − z)Aiξ;xp(ȳ − z)

[
N2
c

N2
c − 1

s
[
ȳ + ξ(ȳ − z), y

]
s
[
y, z + ξ(ȳ − z)

]
− 1

N2
c − 1

s
[
ȳ + ξ(ȳ − z), z + ξ(ȳ − z)

]]}
. (4.11)

Here the various combinations of six point functions are

X[x, y, z, x̄, ȳ, z̄] =
1

Nc
tr
[
SF (x)SF †(y)SF (z)SF †(x̄)SF (ȳ)SF †(z̄)

]
, (4.12)
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Xyȳz = X
[
z, y, (1− ξ)ȳ + ξz, z, y, (1− ξ)ȳ + ξz

]
+X

[
z, (1− ξ)ȳ + ξz, y, z, (1− ξ)ȳ + ξz, y

]
+X

[
(1− ξ)y + ξz, z, ȳ, (1− ξ)y + ξz, z, ȳ

]
+X

[
(1− ξ)y + ξz, ȳ, z̄, (1− ξ)y + ξz, ȳ, z

]
, (4.13)

X
′
yȳz = X

[
z − ξ(y − z), y − ξ(y − z), ȳ, z − ξ(y − z), y − ξ(y − z), ȳ

]
+X

[
y − ξ(y − z), z − ξ(y − z), ȳ, y − ξ(y − z), z − ξ(y − z), ȳ

]
, (4.14)

X
′′
yȳz = X

[
z − ξ(ȳ − z), ȳ − ξ(ȳ − z), y, z − ξ(ȳ − z), ȳ − ξ(ȳ − z), y

]
+X

[
ȳ − ξ(ȳ − z), z − ξ(ȳ − z), y, ȳ − ξ(ȳ − z), z − ξ(ȳ − z), y

]
. (4.15)

A. Discarding power corrections: The gluon channel

As for the quark channel, we can get rid of the power corrections eliminating the Ioffe time regulator in all terms

which stay finite in the limit ξ → 0. This can be done in
dσ̄g→q,r1

d2p⊥dη
,
dσ̄g→q,v1

d2p⊥dη
and

dσ̄q→g,r1

d2p⊥dη
. Two gluon production terms

are divergent, and we have to keep the ξ dependence in the Ioffe time regulator in those. However we can take the
same route as in the previous section, adding and subtracting the expressions corresponding to the small ξ limit in
the integrand. For small ξ we have

dσ̄g→g,r1

d2p⊥dη
→ g2

(2π)3
4CA xp f

g
µ2(xp)

∫ 1

0

dξ

ξ

∫
yȳz

eip⊥(y−ȳ)

[
Aiξ(y − z)Aiξ(ȳ − z)− Cµ2(ξ, xp, z)

]
sA[y, ȳ]

− g2

(2π)3

2N3
c

N2
c − 1

xp f
g
µ2(xp)

∫ 1

0

dξ

ξ

∫
yȳz

eip⊥(y−ȳ)Aiξ(y − z)Aiξ(ȳ − z) (4.16)

×
{
s[y, z] s[ȳ, y] s[z, ȳ] + s[z, y] s[y, ȳ] s[ȳ, z]− 1

N2
c

X
A

yȳz

}
,

dσ̄g→g,v1

d2p⊥dη
→ − 2g2

(2π)3
CA xp f

g
µ2(xp)

∫ 1

0

dξ

ξ

∫
yȳz

eip⊥(y−ȳ)sA[y, ȳ]

×
{
Aiξ(y − z)Aiξ(y − z) +Aiξ(ȳ − z)Aiξ(ȳ − z)− 2Cµ2(ξ, xp, z)

}
+

g2

(2π)3

N3
c

(N2
c − 1)

xp f
g
µ2(xp)

∫ 1

0

dξ

ξ

∫
yȳz

eip⊥(y−ȳ)

×
[
Aiξ(y − z)Aiξ(y − z) +Aiξ(ȳ − z)Aiξ(ȳ − z)

]
×
[
s[y, z]s[z, ȳ]s[ȳ, y] + s[z, y]s[ȳ, z]s[y, ȳ]− 1

N2
c

X
A

yȳz

]
(4.17)

where

X
A

yȳz = X[z, y, ȳ, z, y, ȳ] +X[y, z, ȳ, y, z, ȳ] . (4.18)

Thus

dσ̄g→g,r1

d2p⊥dη
+
dσ̄g→g,v1

d2p⊥dη
→ − g2

(2π)3
xp f

g
µ2(xp)

∫ 1

0

dξ

ξ

∫
yȳz

eip⊥(y−ȳ)

[
Aiξ(y − z)−Aiξ(ȳ − z)

]2

×
[

2CA sA[y, ȳ]− N3
c

N2
c − 1

{
s[y, z] s[ȳ, y] s[z, ȳ] + s[z, y] s[y, ȳ] s[ȳ, z]− 1

N2
c

X
A

yȳz

}]
. (4.19)

Adding and subtracting this term from the gluon production amplitude, the final expression for hadron production
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can be written as

dσH

d2ph⊥dη
=

1

(2π)2

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

xF
ζ
fqµ2

(
xF
ζ

)∫
yȳ

ei
ph⊥
ζ (y−ȳ)sYT [y, ȳ] +

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

dσ̄q

d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
+

1

(2π)2

∫ 1

xF

dζ

ζ2
Dg
H,µ2(ζ)

xF
ζ
fgµ2

(
xF
ζ

)∫
yȳ

ei
ph⊥
ζ (y−ȳ)sA,YT [y, ȳ] +

∫ 1

xF

dζ

ζ2
Dg
H,µ2(ζ)

dσ̄g

d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
+
(
q → q̄; ph⊥ → −ph⊥

)
(4.20)

where the quark production cross section is

dσ̄q1
d2p⊥dη

(p⊥, xp) =
g2

(2π)3

∫
y,ȳ,z

eip⊥(y−ȳ)

{∫ 1−xp

0

dξ
xp

1− ξ f
q
µ2

(
xp

1− ξ

)[
1 + (1− ξ)2

[ξ]+
(4.21)

×
(
CF

[
Ai(y − z)Ai(ȳ − z)−

(
Ai(z)Ai(z)

)
µ2

]{
s[y, ȳ] + (1− ξ)2 s

[
(1− ξ)y, (1− ξ)ȳ

]}
−Nc

2
Ai(y − z)Ai(ȳ − z)

{[
s
[
y − ξ(y − z), z

]
s[z, ȳ] + s

[
z, ȳ − ξ(ȳ − z)

]
s[y, z]

]
− 1

N2
c

[
s
[
y − ξ(y − z), ȳ

]
+ s
[
y, ȳ − ξ(ȳ − z)

]]})

+
1

2

[
ξ2 + (1− ξ)2

]([
Ai(y − z)Ai(ȳ − z)−

(
Ai(z)Ai(z)

)
µ2

][
s[y, ȳ] + (1− ξ)2sA

[
(1− ξ)y, (1− ξ)ȳ

]]
− N2

c

(N2
c − 1)

Ai(y − z)Ai(ȳ − z)
[
s
[
y, (1− ξ)ȳ + ξz

]
s
[
(1− ξ)ȳ + ξz, z

]
− 1

N2
c

s[y, z]

]
− N2

c

(N2
c − 1)

Ai(y − z)Ai(ȳ − z)
[
s
[
z, (1− ξ)y + ξz

]
s
[
(1− ξ)y + ξz, ȳ

]
− 1

N2
c

s[z, ȳ]

])]

− xpfqµ2(xp)

∫ 1

0

dξ

[
1 + (1− ξ)2

[ξ]+

(
CF

[
Ai(y − z)Ai(y − z) +Ai(ȳ − z)Ai(ȳ − z)− 2

(
Ai(z)Ai(z)

)
µ2

]
s[y, ȳ]

− Nc
2
Ai(y − z)Ai(y − z)

[
s
[
y + ξ(y − z), z + ξ(y − z)

]
s
[
z + ξ(y − z), ȳ

]
− 1

N2
c

s
[
y + ξ(y − z), ȳ

]]
−Nc

2
Ai(ȳ − z)Ai(ȳ − z)

[
s
[
z + ξ(ȳ − z), ȳ + ξ(ȳ − z)

]
s
[
y, z + ξ(ȳ − z)

]
− 1

N2
c

s
[
y, ȳ + ξ(ȳ − z)

]])

+
1

2

[
ξ2 + (1− ξ)2

]([
Ai(y − z)Ai(y − z) +Ai(ȳ − z)Ai(ȳ − z)− 2

(
Ai(z)Ai(z)

)
µ2

]
sA[y, ȳ]

− N2
c

N2
c − 1

Ai(y − z)Ai(y − z)
[
s
[
y + ξ(y − z), ȳ

]
s
[
ȳ, z + ξ(y − z)

]
− 1

N2
c

s
[
y + ξ(y − z), z + ξ(y − z)

]]
− N2

c

N2
c − 1

Ai(ȳ − z)Ai(ȳ − z)
[
s
[
ȳ + ξ(ȳ − z), y

]
s
[
y, z + ξ(ȳ − z)

]
− 1

N2
c

s
[
ȳ + ξ(ȳ − z), z + ξ(ȳ − z)

]])]}

+
g2

(2π)3
Ncxpf

q
µ2(xp)

∫ 1

0

dξ

ξ

∫
y,ȳ,z

eip⊥(y−ȳ)[Aiξ(y − z)−Aiξ(ȳ − z)][Aiξ(y − z)−Aiξ(ȳ − z)]
[
s(y, z)s(z, ȳ)− s(y, ȳ)

]
,
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and the gluon production cross section is

dσ̄g1
d2p⊥dη

=
g2

(2π)3

∫
yȳz

eip⊥(y−ȳ)

{∫ 1−xp

0

dξ
xp

1− ξ f
g
µ2

(
xp

1− ξ

)[ (
1− ξ
[ξ]+

+
ξ

1− ξ + ξ(1− ξ)
)

(4.22)

×
(

2CA

[
Ai(y − z)Ai(ȳ − z)−

(
Ai(z)Ai(z)

)
µ2

]{
sA[y, ȳ] + (1− ξ)2 sA

[
(1− ξ)y, (1− ξ)ȳ

]}
− N3

c

N2
c − 1

Ai(y − z)Ai(ȳ − z)
{
s[y, z] s

[
(1− ξ)ȳ + ξz, y

]
s
[
z, (1− ξ)ȳ + ξz

]
+s[z, y] s

[
y, (1− ξ)ȳ + ξz

]
s
[
(1− ξ)ȳ + ξz, z

]
+s
[
ȳ, (1− ξ)y + ξz

]
s
[
(1− ξ)y + ξz, z

]
s[z, ȳ]

+s
[
(1− ξ)y + ξz, ȳ

]
s
[
z, (1− ξ)y + ξz

]
s[ȳ, z]− 1

N2
c

Xyȳz

})

+
1 + ξ2

1− ξ

(
CF

[
Ai(y − z)Ai(ȳ − z)−

(
Ai(z)Ai(z)

)
µ2

]{
sA[y, ȳ] + (1− ξ)2 s

[
(1− ξ)y, (1− ξ)ȳ

]}
−Nc

2
Ai(y − z)Ai(ȳ − z)

{
s
[
y, (1− ξ)ȳ + ξz

]
s[z, y] + s[ȳ, z] s

[
(1− ξ)y + ξz, ȳ

]
− 1

N2
c

(
s
[
z, (1− ξ)ȳ + ξz

]
+ s
[
(1− ξ)y + ξz, z

])})]

−xpfgµ2(xp)

∫ 1

0

dξ

(
1− ξ
[ξ]+

+
ξ

[1− ξ]+
+ ξ(1− ξ)

)[
×CA

[
Ai(y − z)Ai(y − z) +Ai(ȳ − z)Ai(ȳ − z)− 2

(
Ai(z)Ai(z)

)
µ2

]
sA[y, ȳ]

+
N3
c

2(N2
c − 1)

Ai(y − z)Ai(y − z)
{

1

N2
c

X
′
yȳz

−
(
s
[
y + ξ(y − z), z + ξ(y − z)

]
s
[
z + ξ(y − z), ȳ

]
s
[
ȳ, y + ξ(y − z)

]
+s
[
z + ξ(y − z), y + ξ(y − z)

]
s
[
ȳ, z + ξ(y − z)

]
s
[
y + ξ(y − z), ȳ

])}
+

N3
c

2(N2
c − 1)

Ai(ȳ − z)Ai(ȳ − z)
{

1

N2
c

X
′′
yȳz

−
(
s
[
ȳ + ξ(ȳ − z), z + ξ(ȳ − z)

]
s
[
z + ξ(ȳ − z), y

]
s
[
y, ȳ + ξ(ȳ − z)

]
+s
[
z + ξ(ȳ − z), ȳ + ξ(ȳ − z)

]
s
[
y, z + ξ(ȳ − z)

]
s
[
ȳ + ξ(ȳ − z), y

])}]}

+
g2

(2π)3
xpf

g
µ2(xp)

∫ 1

0

dξ

ξ

∫
yȳz

eip⊥(y−ȳ)[Aiξ(y − z)−Aiξ(ȳ − z)]2

×
[

N3
c

N2
c − 1

{
s[y, z] s[ȳ, y] s[z, ȳ] + s[z, y] s[y, ȳ] s[ȳ, z]− 1

N2
c

X
A

yȳz

}
− 2CAsA[y, ȳ]

]
.

This is the final result of this paper. All the discussion of the previous section applies to this result in the same
measure. In particular the last term in eq.(4.22) should not be mistaken for an additional evolution of the adjoint
dipole, since the “effective evolution interval” then depends on the momentum of the extra emitted gluon. This term
does not appear in [24, 29].

As stated before, in all the above formulae the PDFs and FFs are defined in the somewhat unconventional scheme,
defined explicitly by the subtraction in eqs. (5.22) and (5.29). For numerical implementations it is convenient to

use the standard MS scheme instead. The conversion between the two schemes is given by fµ2 = fMS
1.26µ2 . This is
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discussed in detail in Appendix C.
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V. APPENDIX A: THE DERIVATION. QUARK TO QUARK TO HADRON CHANNEL.

In this Appendix we describe in detail the derivation for hadron production cross section for the simplest channel,
where the projectile quark produces an outgoing quark, which subsequently fragments into the hadron. In this setup
we show how the Balitsky-Kovchegov evolution equation arises as the appropriate tool to evolve the leading-order
amplitude. In Appendix B we complete the derivation for all the other production channels.

A. Eikonal production.

The standard eikonal paradigm for propagation of the initial dressed quark with vanishing transverse momentum
through the target leads to the final state

|out, α, s〉 =

∫
x

[
AqSFαβ(x)|(q) xBP

+, x, β, s〉 (5.1)

+g

∫
Ω

dLPS

2π

∫
yz

F(qg)(xBP
+, ξ, y − x, z − x)ss̄,i t

a
αβ S

F
βγ(y)SAab(z) |(q) p+, y, γ, s̄; (g) q+, z, b, i〉

]
=

∫
x

{
SFαβ(x)|(q) xBP

+, x, β, s〉D

+g

∫
Ω

dLPS

2π

∫
yz

F(qg)(xBP
+, ξ, y − x, z − x)s,s̄,i

[
taαβS

F
βγ(y)SAab(z)− SFαβ(x)tbβγ

]
|(q) p+, y, γ, s̄; (g) q+, z, b, i〉

}
,

where p+ = (1−ξ)xBP+, q+ = ξxBP
+ and SF (x) is a unitary matrix in the fundamental representation - the eikonal

scattering matrix of a projectile quark in the color field of the target, and Ω is the phase space for the splitting
defined in eq. (2.21). As explained in Section III, dLPS stands for the phase space in + components for the splitting,

corresponding to the + component of the parent parton for the real terms, dLPS = d
[
xpP

+

1−ξ

]
, and the + momentum

running in the loop for the virtual ones, dLPS = d [ξxpP
+], with ξ the +-momentum fraction taken by the emitted

gluon. After this point, we will use the explicit expressions for dLPS.
It is convenient to rearrange this expression in terms of the dressed quark states. The single dressed quark state is

defined in eq.(2.19), and so the first term in rhs of eq.(5.1) is already in the correct form. However the second term
needs some work. The dressed quark-gluon state is different from the bare quark-gluon state at order g. In particular
it has an admixture of a single bare quark state. This is easy to see, since it has to be orthogonal to the single dressed
quark state, but without such a term it is not. To order g the requirement of orthogonality is satisfied by

|(q) (1− ξ)xBP+, y, α, s; (g) ξxBP
+, z, a, i〉D = |(q) (1− ξ)xBP+, y, γ, s̄; (g) ξxBP

+, z, b, i〉

−g
∫
x

F(qg)(xBP
+, ξ, y − x, z − x)s,s̄,i t

a
αβ |(q)xBP

+, x, β, s̄〉 . (5.2)
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Thus in terms of the dressed states we have

|out, α, s〉 =

∫
x

{
SFαβ(x)|(q) xBP

+, x, β, s〉D (5.3)

+
g2

2π

∫
Ω

d
[
ξxpP

+
] ∫

x′yz

F(qg)(xBP
+, ξ, y − x, z − x)s,s̄,i

[
taαβS

F
βγ(y)SAab(z)− SFαβ(x)tbβγ

]
×F ∗(qg)(xBP

+, ξ, y − x′, z − x′)s̄,¯̄s,i tbγδ |(q)xBP
+, x′, δ, ¯̄s〉D

+
g

2π

∫
Ω

d

[
xpP

+

1− ξ

] ∫
yz

F(qg)(xBP
+, ξ, y − x, z − x)s,s̄,i

[
taαβS

F
βγ(y)SAab(z)− SFαβ(x)tbβγ

]
× |(q) (1− ξ)xBP+, y, γ, s̄; (g) ξxBP

+, z, b, i〉D
}
.

The integration over x′ identifies x′ with x by realizing one of the δ-functions. We can thus write

|out, α, s〉 =

∫
x

{
SFαβ(x) |(q) xBP

+, x, β, s〉D (5.4)

+
g2

2π

∫
Ω

d
[
ξxpP

+
] ∫

yz

[
taαβS

F
βγ(y)SAab(z)− SFαβ(x)tbβγ

]
F̄ 2

(qg)(xBP
+, ξ, y − x, z − x) tbγδ |(q) xBP

+, x, δ, s〉D

+
g

2π

∫
Ω

d

[
xpP

+

1− ξ

] ∫
yz

F(qg)(xBP
+, ξ, y − x, z − x)s,s̄,i

[
taαβS

F
βγ(y)SAab(z)− SFαβ(x)tbβγ

]
×|(q) (1− ξ)xBP+, y, γ, s̄; (g) ξxBP

+, z, b, i〉D
}

where

F̄ 2
(qg)(xBP

+, ξ, y − x, z − x) = − 1

xBP+

1 + (1− ξ)2

ξ
δ2
(
x− [(1− ξ)y + ξz]

)
Aiξ,xB (y − z)Aiξ,xB (y − z) . (5.5)

As usual, in order to calculate production of hadrons rather than partons we need to introduce particle distribution
functions for the incoming proton as well as fragmentation functions for the final state partons. Denoting the quark
distribution function in the proton by fqµ2(xp), and the quark fragmentation function to hadron H by Dq

H,µ2(ζ), we

have for the hadronic level production cross section at leading order2

dσH

d2ph⊥dη
=

∫ 1

xF

dζ

ζ2

xF
ζ
fqµ2

(
xF
ζ

)
Dq
H,µ2(ζ)

dσq→q

d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
(5.6)

=
1

(2π)2

∫ 1

xF

dζ

ζ2

xF
ζ
fqµ2

(
xF
ζ

)
Dq
H,µ2(ζ)

∫
d2xd2y ei

ph⊥
ζ (x−y) sYT (x, y) ,

where sYT (x, y) is the eikonal dipole s-matrix evolved to rapidity YT .
The operator definitions of the distribution and fragmentation functions, which we will find useful in the following,

is3

fqµ2(x) = P+

∫
k2⊥<µ

2

d2k⊥〈P |q†(k⊥, x)q(k⊥, x)|P 〉; Dq
H,µ2(ζ) =

∫
k2⊥<µ

2

d2k⊥〈q(p)|H†(k⊥, ζp)H(k⊥, ζp)|q(p)〉 (5.7)

Here |P 〉 is the wave function of the proton while H is the operator annihilating the appropriate hadron4, and the
momentum k⊥ is perpendicular to the momentum of the outgoing quark p.

2 As mentioned in the body of the text, our PDFs and FFs are defined in a given factorization scheme that does not coincide with the
standard MS one. But their relation, discussed in detail in Appendix C, amounts to a mild rescaling of factorization scales.

3 The operators q(k⊥, x) and q†(k⊥, x) are bare quark creation and annihilation operators normalized in such a way that their commutator
is proportional to δ(2)(k⊥)δ(k+).

4 Fragmentation functions are defined as matrix elements in a state with one parton, e.g. eq. (12.35) in [35]. There they are defined as a
square of an amplitude to find a hadron in a parton. Our definition is slightly different, since we use the expectation value of the hadron
number operator. The two definitions can differ only if one parton has an overlap with a two-hadron state, which is not a physically
realizable situation. In practice one of course never defines the hadron annihilation operator H, however we find it more convenient to
use the notations of eq.(5.7).
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In the following, using these operator definitions of PDFs and FFs, and the wave functions of dressed partons
computed to next-to-leading order, we show that they evolve according to the standard DGLAP equations. We also
show that all collinear divergences encountered in the calculation of the single particle spectra are absorbed into this
DGLAP evolution of the PDF’s and FF’s. In other words, when expressed in terms of the evolved PDF’s and FF’s,
the produced particle spectrum is free of collinear divergences. This is done in the present Appendix for the quark
contribution and in the following one for all other channels. This part of the calculation is the exact equivalent of
that in [24], albeit our notations are somewhat different.

Let us first set aside fragmentation and consider quark production at NLO. The quark production cross section
is given by the expectation value of the dressed quark number in the outgoing state, multiplied by the number of
dressed quarks in the incoming wave function. For the quark production we find

dσq

d2p⊥dη
=

1

(2π)2
xp f

D
µ2(xp)

∫
d2xd2yeip⊥(x−y)sYT (x, y) +

dσq1
d2p⊥dη

(5.8)

where fD is the number of dressed quarks in the projectile wave function, or equivalently the leading-order quark
distribution function, and

dσq1
d2p⊥dη

=
dσq→q,r1

d2p⊥dη
+
dσq→q,v1

d2p⊥dη
. (5.9)

The real contribution to the cross section is

dσq→q,r1

d2p⊥dη
=

g2

(2π)3

∫
dxB
xBP+

xpP
+ fqµ2(xB)

∫
d

[
xpP

+

1− ξ

]
δ

(
xBP

+ − xpP
+

1− ξ

)[
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)

×Aiξ,xB (y − z)Aiξ,xB (ȳ − z)
{
CF s[y, ȳ] + CF s

[
(1− ξ)y + ξz, (1− ξ)ȳ + ξz

]
−Nc

2

(
s
[
y − ξ(y − z), z

]
s[z, ȳ] + s

[
z, ȳ − ξ(ȳ − z)

]
s[y, z]

)
+

1

2Nc

(
s
[
y − ξ(y − z), ȳ

]
+ s
[
y, ȳ − ξ(ȳ − z)

])}
. (5.10)

Note that one can perform a change of variables in the second term by first changing (1 − ξ)y + ξz → y′ and
(1− ξ)ȳ + ξz → ȳ′ and then rescaling y′ 7→ (1− ξ)y, ȳ′ 7→ (1− ξ)ȳ and z 7→ (1− ξ)z to write the real contribution to
the quark production in q 7→ qg as

dσq→q,r1

d2p⊥dη
=

g2

(2π)3

∫ 1

0

dxB fqµ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

) [
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)

×Aiξ,xB (y − z)Aiξ,xB (ȳ − z)
{
CF s[y, ȳ] + (1− ξ)2 CF s

[
(1− ξ)y, (1− ξ)ȳ

]
−Nc

2

(
s
[
y − ξ(y − z), z

]
s[z, ȳ] + s

[
z, ȳ − ξ(ȳ − z)

]
s[y, z]

)
+

1

2Nc

(
s
[
y − ξ(y − z), ȳ

]
+ s
[
y, ȳ − ξ(ȳ − z)

])}
. (5.11)

The virtual part of the cross section is

dσq→q,v1

d2p⊥dη
=

g2

(2π)3

∫
dxB
xBP+

xpP
+ fqµ2(xB) δ

(
xBP

+ − xpP+
) ∫

d
[
ξxpP

+
] [1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)

×
{
Aiξ,xB (y − z)Aiξ,xB (y − z)

[
− CF s[y, ȳ] +

Nc
2
s
[
y + ξ(y − z), z + ξ(y − z)

]
s
[
z + ξ(y − z), ȳ

]
− 1

2Nc
s
[
y + ξ(y − z), ȳ

]]

+Aiξ,xB (ȳ − z)Aiξ,xB (ȳ − z)
[
− CF s[y, ȳ] +

Nc
2
s
[
z + ξ(ȳ − z), ȳ + ξ(ȳ − z)

]
s
[
y, z + ξ(ȳ − z)

]
− 1

2Nc
s
[
y, ȳ + ξ(ȳ − z)

]]}
, (5.12)
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which can be simplified to

dσq→q,v1

d2p⊥dη
=

g2

(2π)3

∫ 1

0

dxB xp f
q
µ2(xB) δ (xB − xp)

∫ 1

0

dξ

[
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)

×
{
Aiξ,xB (y − z)Aiξ,xB (y − z)

[
− CF s[y, ȳ] +

Nc
2
s
[
y + ξ(y − z), z + ξ(y − z)

]
s
[
z + ξ(y − z), ȳ

]
− 1

2Nc
s
[
y + ξ(y − z), ȳ

]]

+Aiξ,xB (ȳ − z)Aiξ,xB (ȳ − z)
[
− CF s[y, ȳ] +

Nc
2
s
[
z + ξ(ȳ − z), ȳ + ξ(ȳ − z)

]
s
[
y, z + ξ(ȳ − z)

]
− 1

2Nc
s
[
y, ȳ + ξ(ȳ − z)

]]}
. (5.13)

Here we have taken the initial quark to have zero transverse momentum (integrated over x and x̄) and have averaged
over the spin and color in the initial state. In the order αs term, there is no difference between the dressed and bare
quark distribution and we use fqµ2(xB) for both.

B. Collinear pieces

The expressions in eqs.(5.11,5.12) contain collinear divergences. Those come from the infrared region of integration
over the coordinate z. We assume that the dipole scattering matrix vanishes when the size of the dipole is larger than
the inverse saturation momentum5, in other words s(x, z)x−z→∞ = 0. This behavior cuts off the large z integration
region except in three terms in eqs.(5.11,5.12). The two divergent terms in the real part of the cross section and the
divergent term in the virtual part are

Ir1 =
g2

(2π)3
CF

∫ 1

0

dxB fD,qµ2 (xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

) [
1 + (1− ξ)2

ξ

]
C̃µ2(ξ, xB)

×
∫
yȳ

eip⊥(y−ȳ)s[y, ȳ] , (5.14)

Ir2 =
g2

(2π)3
CF

∫ 1

0

dxB fD,qµ2 (xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

) [
1 + (1− ξ)2

ξ

]
(1− ξ)2C̃µ2(ξ, xB)

×
∫
yȳ

eip⊥(y−ȳ)s
[
(1− ξ)y, (1− ξ)ȳ

]
,

Iv = −2
g2

(2π)3
CF

∫ 1

0

dxB fD,qµ2 (xB) xp δ (xB − xp)
∫ 1

0

dξ

[
1 + (1− ξ)2

ξ

]
C̃µ2(ξ, xB)

×
∫
yȳ

eip⊥(y−ȳ)s[y, ȳ] .

where the integral over z up to “factorization scale” µ is defined in eq.(3.5).
By separating these divergent pieces, we can write the real contribution to the quark production as

dσq→q,r1

d2p⊥dη
=
dσ̄q→q,r1

d2p⊥dη
+ Ir1 + Ir2 (5.15)

5 This assumption is only used for convenience to make the presentation simpler. One can identify the collinear divergences without
assuming translational invariance or certain behaviour of the dipole scattering matrices s at large arguments. This can be achieved by
making a change of variable, so that z appears in the phases of all terms but the collinearly divergent ones. In the former, the |z| → ∞
region is suppressed due to large oscillating factors, and no additional assumption is required.
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where the collinear finite part reads

dσ̄q→q,r1

d2p⊥dη
=

g2

(2π)3
CF

∫ 1

0

dxB fD,qµ2 (xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

) [
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)

×
[
Aiξ,xB (y − z)Aiξ,xB (ȳ − z)− Cµ2(ξ, xB , z)

]{
s[y, ȳ] + (1− ξ)2 s

[
(1− ξ)y, (1− ξ)ȳ

]}
+

g2

(2π)3

∫ 1

0

dxB fD,qµ2 (xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

) [
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)

×Aiξ,xB (y − z)Aiξ,xB (ȳ − z)
{
− Nc

2

(
s
[
y − ξ(y − z), z

]
s[z, ȳ] + s

[
z, ȳ − ξ(ȳ − z)

]
s[y, z]

)
+

1

2Nc

(
s
[
y − ξ(y − z), ȳ

]
+ s
[
y, ȳ − ξ(ȳ − z)

])}
. (5.16)

A similar decomposition for the virtual part reads

dσq→q,v1

d2p⊥dη
=
dσ̄q→q,v1

d2p⊥dη
+ Iv (5.17)

where the collinear finite part of the cross section is

dσ̄q→q,v1

d2p⊥dη
= − g2

(2π)3
CF

∫ 1

0

dxB fD,qµ2 (xB) xp δ (xB − xp)
∫ 1

0

dξ

[
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)s[y, ȳ]

×
{
Aiξ,xB (y − z)Aiξ,xB (y − z) +Aiξ,xB (ȳ − z)Aiξ,xB (ȳ − z)− 2Cµ2(ξ, xB , z)

}
+

g2

(2π)3
CF

∫ 1

0

dxB fD,qµ2 (xB) xp δ (xB − xp)
∫ 1

0

dξ

[
1 + (1− ξ)2

ξ

] ∫
yȳz

eip⊥(y−ȳ)

×
{
Aiξ,xB (y − z)Aiξ,xB (y − z)

[
Nc
2
s
[
y + ξ(y − z), z + ξ(y − z)

]
s
[
z + ξ(y − z), ȳ

]
− 1

2Nc
s
[
y + ξ(y − z), ȳ

]]

+Aiξ,xB (ȳ − z)Aiξ,xB (ȳ − z)
[
Nc
2
s
[
z + ξ(ȳ − z), ȳ + ξ(ȳ − z)

]
s
[
y, z + ξ(ȳ − z)

]
− 1

2Nc
s
[
y, ȳ + ξ(ȳ − z)

]]}
. (5.18)

The collinear divergences of eq.(5.14) can be absorbed into NLO corrections to the quark PDF and the quark
fragmentation functions.

Recall that the function fD that appears in the leading-order term is the number of “dressed quarks” in the proton,
or equivalently, the leading-order quark distribution. Part of the O(αs) terms complete it to the NLO PDF of bare
quarks, the quantity that is familiar from DIS etc. It is straightforward to relate the two, since we simply have to
calculate the number of bare quarks in the O(αs) part of the wave function of the incoming proton.

In the collinear approximation (that is assuming that all incoming dressed quarks have zero transverse momentum)
we have the dressed quark distribution

fDµ2(xp) ≡ P+

∫
k⊥

〈P |D†(xp, k⊥)D(xp, k⊥)|P 〉 . (5.19)

Here D(xp, k⊥) is the annihilation operator for the dressed quark. The simple probabilistic interpretation allows us
to write the bare quark PDF defined in (5.7) in terms of the dressed quark PDF in the following way.

fqµ2(xp) =
P+

2π

∫
d

[
xpP

+

1− ξ

] ∫
l⊥

〈P |D†
(

xp
1− ξ , l⊥

)
D

(
xp

1− ξ , l⊥
)
|P 〉

∫
k⊥

D〈 xp1−ξ , l⊥|q†(xp, k⊥)q(xp, k⊥)| xp1−ξ , l⊥〉D
D〈 xp1−ξ , l⊥|

xp
1−ξ , l⊥〉D

=
xpP

+

2π

∫
dξ

(1− ξ)2
fDµ2

(
xp

1− ξ

)∫
k⊥

D〈 xp1−ξ , 0|q†(xp, k⊥)q(xp, k⊥)| xp1−ξ , 0〉D
D〈 xp1−ξ , 0|

xp
1−ξ , 0〉D

. (5.20)
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With the explicit form of the dressed quark wave function (2.14) we find

fqµ2(xp) = fDµ2(xp) +
g2CF

2π

∫ 1−xp

0

dξ

1− ξ f
D
µ2

(
xp

1− ξ

)
1 + (1− ξ)2

ξ
C̃µ2

(
ξ,

xp
1− ξ

)
− g2CF

2π
fDµ2(xp)

∫ 1

0

dξ
1 + (1− ξ)2

ξ
C̃µ2 (ξ, xp) (5.21)

where Aiξ(y−z) is defined in eq.(2.31) and the second term is due to the virtual correction to the quark wave function

eq.(2.33). Writing the last two terms together we get the usual + prescription for the splitting function, so the

expression now contains no soft singularity and we can remove the regulator in the C̃µ2 , giving

fqµ2(xp) = fDµ2(xp) +
g2CF

2π

∫ 1−xp

0

dξ

1− ξ f
D
µ2

(
xp

1− ξ

)[
1 + (1− ξ)2

ξ

]
+

∫
z

(
Ai(z)Ai(z)

)
µ2
. (5.22)

The last two terms in eq.(5.21) are equal to Ir1 and half of Iv in eq.(5.14). Thus we have

dσq

d2p⊥dη
=

1

(2π)2
xp f

q
µ2(xp)

∫
d2xd2yeip⊥(x−y)sYT (x, y) +

dσ̄q→q,r1

d2p⊥dη
+
dσ̄q→q,v1

d2p⊥dη
+ Ir2 +

1

2
Iv . (5.23)

C. Fragmentation.

The other collinearly divergent term in eq.(5.11) has a similar effect on the fragmentation function. Recall that
we are interested in calculation of hadron production rather than quark production. On the other hand, eq. (5.11)
gives the production cross section of dressed quarks. To convert it into the hadron production cross section we have
to multiply it by the fragmentation function of a dressed quark. The difference between the dressed and bare quark
fragmentation is only important in the leading-order term. For hadron production from the final state quark we have

dσH

d2ph⊥dη
=

∫ 1

xF

dζ

ζ2
DD,q
H,µ2(ζ)

xF
ζ
fDµ2

(
xF
ζ

)∫
d2xd2y ei

ph⊥
ζ (x−y)sYT (x, y)

+

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

dσq1
d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
. (5.24)

In order to write this in terms of the standard bare quark fragmentation function we need to do a little calculation.
The dressed and bare quark fragmentation functions are defined as

Dq
H,µ2(ζ) =

∫
k2⊥<µ

2

d2k⊥〈q(p)|H†(k⊥, ζp)H(k⊥, ζp)|q(p)〉 , (5.25)

DD,q
H,µ2(ζ) =

∫
k2⊥<µ

2

d2k⊥ D〈q(p)|H†(k⊥, ζp)H(k⊥, ζp)|q(p)〉D . (5.26)

To relate the two we write in the collinear approximation

DD,q
H,µ2(ζ) =

∫
dξ

∫
k2⊥<µ

2

d2k⊥ 〈q|H†(k⊥,
ζ

1− ξ )H(k⊥,
ζ

1− ξ )|q〉

×
∫
l2⊥<µ

2

d2l⊥ D〈q|q†(l⊥, (1− ξ)P+)q(l⊥, (1− ξ)P+)|q〉D

+

∫
dξ

∫
k2⊥<µ

2

d2k⊥ 〈g|H†(k⊥,
ζ

ξ
)H(k⊥,

ζ

ξ
)|g〉 ×

∫
l2⊥<µ

2

d2l⊥ D〈q|g†(l⊥, ξP+)g(l⊥, ξP
+)|q〉D (5.27)

where the last term accounts for the fragmentation of the gluon component of the dressed quark state.
Given the explicit wave function of the dressed quark we find
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DD,q
H,µ2(ζ) = Dq

H,µ2(ζ) +
g2

2π
CFD

q
H,µ2(ζ)

∫ 1

0

dξ
1 + (1− ξ)2

ξ
C̃µ2

(
ξ,
xF
ζ

)
− g2

2π
CF

∫ 1−ζ

0

dξ

1− ξD
q
H,µ2

(
ζ

1− ξ

)
1 + (1− ξ)2

ξ
C̃µ2

(
ξ,
xF
ζ

)
− g2

2π
CF

∫ 1

ζ

dξ

ξ
Dg
H,µ2

(
ζ

ξ

)
1 + (1− ξ)2

ξ
C̃µ2

(
ξ,
xF
ζ

)
. (5.28)

Again, as we did when going from eq. (5.21) to eq. (5.22), we can write

DD,q
H,µ2(ζ) = Dq

H,µ2(ζ) − g2

2π
CF

∫ 1−ζ

0

dξ

1− ξD
q
H,µ2

(
ζ

1− ξ

)[
1 + (1− ξ)2

ξ

]
+

∫
z

(
Ai(z)Ai(z)

)
µ2

− g2

2π
CF

∫ 1

ζ

dξ

ξ
Dg
H,µ2

(
ζ

ξ

)
1 + (1− ξ)2

ξ

∫
z

(
Ai(z)Ai(z)

)
µ2
. (5.29)

Here the last term corresponds to the fragmentation of the gluon component of the dressed quark. This term pairs
up with the collinear divergent piece in the production cross section from the final state gluon, and we will postpone
its discussion for later.

Note that the Weiszacker-Williams field in eq.(5.28) is defined with the constraint corresponding to the longitudinal
momentum of the incoming quark xp = xF

ζ . This is because the total momentum of the dressed quark which fragments

does not depend on the fraction of momentum carried by the “soft” gluon.
Using eq.(5.28) in eq.(5.24) we find that all remaining collinear divergences combine into the quark fragmentation

function with the final result:

dσH

d2ph⊥dη
=

1

(2π)2

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

∫ 1

0

dxB δ

(
xB −

xF
ζ

)
xF
ζ
fqµ2(xB)

∫
yȳ

ei
ph⊥
ζ (y−ȳ)sYT [y, ȳ]

+

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

dσ̄q

d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
. (5.30)

Collecting all the collinear divergent pieces into the bare quark PDF and fragmentation function leads to the
expressions eqs.(3.3,3.4).

D. Evolution.

Now we have to understand how evolution figures into this. All the expressions so far contain dipole scattering
amplitude. The way we set up the calculation, this amplitude depends on rapidity. It is evolved up to rapidity YT
starting with an initial condition provided at Y 0

T . So far we have not specified what is the evolution equation that
governs this evolution. The consistency of the calculation presented above determines this equation.

There are several equivalent ways of deriving the evolution equation. A simple physical way to do this, is to require
that the increase in total energy of the collision can be either encoded in the increase of P+

P or in the additional boost
of the target with the same effect. Let us consider the production at fixed xp but at higher energy (note that this
means that we are also increasing the rapidity of the observed hadron in the center of mass frame), such that

P+ → P+e∆ ≈ P+(1 + ∆) . (5.31)

This must be equivalent to evolving the s-matrix without changing P+. This requirement leads to the equation

∂

∂ lnP+

dσ

d2p⊥dη
=
dsYT
dYT

δ

δsYT

dσ

d2p⊥dη
. (5.32)

Note, that while writing eq.(5.32) we have assumed that the parameter τ does not depend on the rapidity of the
target. This is something worth clarifying, especially since our interpretation of the parameter τ was the thickness of
the target. One would naively expect that if the target is boosted, the time τ should experience Lorentz contraction.
Indeed, since the cross section depends only on the combination P+/τ , it is obvious that

dσ

d2p⊥dη
(P+e∆, τ) =

dσ

d2p⊥dη
(P+, τe−∆) . (5.33)
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Increasing P+ increases the number of quark-gluon pairs that live long enough to scatter coherently off a fixed target
(time dilation of the projectile). Alternatively, decreasing the thickness of the target (Lorentz contraction of the
target) increases the time resolution, and therefore now more quark-gluon pairs are resolved in the wave function of
a fixed projectile. The two descriptions are indeed equivalent.

However what we mean by evolution of the target is the effective change in the scattering matrix on the target,
which, without any functional change in the expression for σ, completely accounts for the change of the cross section
with energy. This means that we want to keep “parameter” τ fixed through the evolution. This is yet the third
description of the evolution consistent with the idea, that when one boosts the target wave function, effectively its
thickness remains unchanged due to emission of softer gluons. However this emission of softer gluons modified the
dipole scattering amplitude on the target. Thus we can either think of a projectile dipole accompanied by fast
fluctuations in its wave function, in which case the cross section grows because the faster moving target resolves more
fluctuations, or alternatively think about a “bare” dipole, whose scattering amplitude changes due to emission of
extra soft gluons in the target wave function.

The corollary of this discussion, is that the constant (rapidity independent) parameter τ has to be interpreted as
the thickness of the target at initial rapidity Y 0

T , since it does not depend on the total energy. This naturally gives

τ−1 = P−0
T , and therefore P+/τ = s0/2 as used in the text.

With this interpretation of the cutoff parameter in hand, we can derive the evolution from a different point of view.
The result for our calculation of the cross section should not depend on our choice of s0. After all our choice of s0

was arbitrary except for the requirement that it should be large enough so that eikonal approximation is valid. If we
start with a higher s0, the scattering amplitude would have to be evolved over a smaller range of rapidities. The final
result should not care which s0 we choose if we evolve the dipole cross section appropriately.

The dependence on s0 enters explicitly through the cutoff on the phase space and through the dependence of
the scattering amplitude on the amount of evolution YT . The evolution therefore has to be such that the following
equation is satisfied

s0
d

ds0

[
dσ

d2p⊥dη

]
=

[
s0

∂

∂s0
− dsYT
dYT

δ

δsYT

]
dσ

d2p⊥dη
= 0 , (5.34)

which is equivalent to eq. (5.32).
We can now derive the evolution equation satisfied by the dipole amplitude. The only dependence on P+ in the

production cross section is in integration limit in the next-to-leading-order term. We can change integration limits,
by integrating over ξ first, and over the transverse momenta l⊥ and m⊥ later. The production cross section can then
be written in the form ∫

d2l⊥d
2m⊥

∫
ξ>ξmin

dξ

ξ
ΣiΦi(ξ, l⊥,m⊥), (5.35)

where the i-th term in the expression for the production cross section is represented by some regular function
Φi(ξ, l⊥,m⊥). Here

ξmin,r = max

{
l2⊥
xps0

,
m2
⊥

xps0

}
(5.36)

for the real part of the cross section, and

ξmin,v(1− ξmin,v) = max

{
l2⊥
xps0

,
m2
⊥

xps0

}
(5.37)

for the virtual part. The momenta l⊥ and m⊥ are the momenta in the Fourier transforms of the two factors of Ai
present in every term. Differentiating with respect to ln s0 sets ξ at the lower limit of the integration and gets rid of
the explicit factor 1/ξ. We then have

s0
∂

∂s0

dσ

d2p⊥dη
=

∫
d2l⊥d

2m⊥ΣiΦi(ξmin,i, l⊥,m⊥) . (5.38)

Note that the minimal value ξmin � 1, since the relevant momentum in the Weiszacker-Williams field is either p⊥ or
Qs, and both must be much smaller than the initial energy s0 in order for our initial eikonal approximation to hold.
Since Φi(ξ, l,m) is a regular function of ξ, we can set ξmin = 0 in eq.(5.38) up to corrections of order p2

⊥/s0 or Q2
s/s0.

This simplifies the expressions in eq.(5.38) considerably. The real and virtual contributions then combine into

s0
∂

∂s0

[
dσ

d2p⊥dη

]
= −αsNc

π
xpf

q
µ2(xp)

∫
y,ȳ,z

1

(2π)3
eip⊥(y−ȳ) (y − ȳ)2

(y − z)2(ȳ − z)2

[
s(y, ȳ)− s(y, z)s(z, ȳ)

]
. (5.39)
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This, by virtue of eq. (5.8) and eq.(5.34) means that the dipole amplitude evolves according to the BK equation.
Note that in this derivation we have assumed that the number of dressed quarks in the proton fDµ2(xp) does not have

significant dependence on s0 and therefore its derivative with respect to s0 can be neglected. This point is discussed
in more detail in Section III.

VI. APPENDIX B: THE DERIVATION. OTHER CHANNELS.

In this appendix we provide the derivation for the cross section for all other channels. First we derive expressions
for the partonic level cross sections, explicitly separating collinearly divergent terms. Then we show that these per-
turbative collinear divergent terms combine into final results in terms of partonic PDF’s and fragmentation functions.

A. Quark to gluon channel.

Production cross section of the final state gluon from initial state quark is given by

dσq→g,r1

d2p⊥dη
=

g2

(2π)3

∫
dxB
xBP+

xpP
+ fqµ2(xB)

∫
d

[
xpP

+

ξ

]
δ

(
xBP

+ − xpP
+

ξ

)[
1 + (1− ξ)2

ξ

] ∫
zz̄y

eip⊥(z−z̄)

×Aiξ,xB (z − y)Aiξ,xB (z̄ − y)

{
CF sA[z, z̄] + CF s

[
(1− ξ)y + ξz, (1− ξ)y + ξz̄

]
−Nc

2

(
s
[
z, (1− ξ)y + ξz̄

]
s[y, z] + sA[z̄, y] s

[
(1− ξ)y + ξz, z̄

])
+

1

2Nc

(
s
[
y, (1− ξ)y + ξz̄

]
+ s
[
(1− ξ)y + ξz, y

])}
(6.1)

where the adjoint dipole scattering amplitude is defined in eq.(4.2) Naturally there is no virtual contribution in this
channel. Performing in the second term change of variables (1 − ξ)y + ξz 7→ z′ and (1 − ξ)y + ξz̄ 7→ z̄′ and then
rescaling z′ 7→ ξz, z̄′ 7→ ξz̄ and y 7→ ξy this can be written as

dσq→g,r1

d2p⊥dη
=

g2

(2π)3

∫ 1

0

dxB fqµ2(xB)

∫ 1

xp

dξ
xp
ξ
δ

(
xB −

xp
ξ

)[
1 + (1− ξ)2

ξ

] ∫
zz̄y

eip⊥(z−z̄)

×Aiξ,xB (z − y)Aiξ,xB (z̄ − y)

{
CF sA[z, z̄] + CF ξ

2 s
[
ξz, ξz̄

]
−Nc

2

(
s
[
z, (1− ξ)y + ξz̄

]
s[y, z] + s[z̄, y] s

[
(1− ξ)y + ξz, z̄

])
+

1

2Nc

(
s
[
y, (1− ξ)y + ξz̄

]
+ s
[
(1− ξ)y + ξz, y

])}
. (6.2)

Separating the collinearly divergent pieces this can be written as

dσq→g,r1

d2p⊥dη
=
dσ̄q→g,r1

d2p⊥dη
+

g2

(2π)3
CF

∫ 1

0

dxB fqµ2(xB)

∫ 1

xp

dξ
xp
ξ
δ

(
xB −

xp
ξ

)[
1 + (1− ξ)2

ξ

]
×C̃µ2(ξ, xB)

∫
zz̄

eip⊥(z−z̄)sA[z, z̄]

+
g2

(2π)3
CF

∫ 1

0

dxB fqp⊥(xB)

∫ 1

xp

dξ
xp
ξ
δ

(
xB −

xp
ξ

)[
1 + (1− ξ)2

ξ

]
ξ2

×C̃µ2(ξ, xB)

∫
zz̄

eip⊥(z−z̄)s[ξz, ξz̄], (6.3)
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with the collinearly finite part

dσ̄q→g,r1

d2p⊥dη
=

g2

(2π)3

∫ 1

0

dxB fqµ2(xB)

∫ 1

xp

dξ
xp
ξ
δ

(
xB −

xp
ξ

)[
1 + (1− ξ)2

ξ

] ∫
zz̄y

eip⊥(z−z̄)

×
[
Aiξ,xB (z − y)Aiξ,xB (z̄ − y)− Cµ2(ξ, xB , y)

]{
CF sA[z, z̄] + CF ξ

2 s
[
ξz, ξz̄

]}
+

g2

(2π)3

∫ 1

0

dxB fqµ2(xB)

∫ 1

xp

dξ
xp
ξ
δ

(
xB −

xp
ξ

)[
1 + (1− ξ)2

ξ

] ∫
zz̄y

eip⊥(z−z̄)

×Aiξ,xB (z − y)Aiξ,xB (z̄ − y)

{
− Nc

2

(
s
[
z, (1− ξ)y + ξz̄

]
s[y, z] + s[z̄, y] s

[
(1− ξ)y + ξz, z̄

])
+

1

2Nc

(
s
[
y, (1− ξ)y + ξz̄

]
+ s
[
(1− ξ)y + ξz, y

])}
. (6.4)

The first and second collinearly divergent terms in eq.(6.3) combine into a part of the NLO corrections to the gluon
PDF and quark fragmentation functions respectively, as we will see later.

B. Gluon to gluon channel.

We next discuss hadron production from the projectile gluon. Just like in the quark case, we first consider the
production on partonic level and take care of fragmentation later. At leading order the projectile gluon scatters
elastically producing a gluon in the final state. The cross section for this process is

dσg

d2p⊥dη
=

1

(2π)2
xp f

D,g
µ2 (xp)

∫
y,ȳ

eip⊥(y−ȳ)sA,YT [y, ȳ], (6.5)

where fD,gµ2 (xp) is the dressed gluon distribution function.

At next-to-leading order the gluon in the projectile wave function splits into a gluon-gluon configuration and also
into a quark-antiquark configuration. Thus, the ”dressed” gluon state has both a two gluon state component and a
quark-antiquark state component.

|(g) xBP
+, x, a, k〉D =

∫
d2x eik⊥x

{
Ag|(g) xBP

+, x, a, k〉 (6.6)

+g

∫
Ω

dLPS

2π

∫
yz

F(gg)(xBP
+, ξ, y − x, z − x)ijk if

abc |(g) p+ = (1− ξ)xBP+, y, b, i; (g) q+ = ξxBP
+, z, c, j〉

+g

∫
Ω

dLPS

2π

∫
yz

F(qq̄)(xBP
+, ξ, y − x, z − x)ss′,k t

a
αβ |(q) p+ = (1− ξ)xBP+, y, α, s; (q̄) q+ = ξxBP

+, z, β, s′〉
}
,

where the measure dLPS stands for the longitudinal phase and it is defined as in the case of quark production. The
normalization constant Ag is

Ag = 1 − g2CA
2S

xBP
+

∫
Ω

dξ d2x d2x̄ d2y d2zF(gg)(xBP
+, ξ, x, y, z)F ∗(gg)(xBP

+, ξ, x̄, y, z)

− g2CF
2S

xBP
+

∫
Ω

dξ d2x d2x̄ d2y d2zF(qq̄)(xBP
+, ξ, x, y, z)F ∗(qq̄)(xBP

+, ξ, x̄, y, z) . (6.7)

The two gluon state and quark-antiquark state are orthogonal to each other, and the virtual corrections (normal-
ization factors ) to the ”bare” gluon state due to these orthogonal states are additive. Thus, we can consider gg
component and qq̄ components of the ”dressed” gluon state separately.

The two gluon component of the ”dressed” gluon state with color a, transverse index k and vanishing transverse
momentum component after passing through the target is given by
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|out, a, k〉 =

∫
x

{
SabA (x)|(g) xBP

+, x, b, k〉D

+
g2

2π

∫
Ω

d
[
ξxpP

+
] ∫

yz

[
ifabc ScdA (y)SbeA (z)− if bed SabA (x)

]
F̄ 2

(gg)(xBP
+, ξ, y − x, z − x) if lde |(g) xBP

+, x, l, k〉D

+
g

2π

∫
Ω

d

[
xpP

+

1− ξ

] ∫
yz

F(gg)(xBP
+, ξ, y − x, z − x)ijk

[
ifabc ScdA (y)SbeA (z)− if bed SabA (x)

]
× |(g) (1− ξ)xBP+, y, d, j; (g) ξxBP

+, z, e, i〉D
}
. (6.8)

The function F(gg)(xBP
+, ξ, y − x, z − x)ijk can be read off, for example from [23]

F(gg)(xBP
+, ξ, y − x, z − x)ijk =

−i√
2ξ(1− ξ)xBP+

{
(1− ξ)δimδjk + ξδjmδik − ξ(1− ξ)δkmδij

}
×δ(2)

[
(1− ξ)y + ξz − x

]
Amξ,xB (y − z) (6.9)

and similarly

F̄ 2
(gg)(xBP

+, ξ, y − x, z − x) =
1

2xBP+

[
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]
δ(2)
[
(1− ξ)y + ξz − x

]
× Aiξ,xB (y − z)Aiξ,xB (y − z) . (6.10)

1. The real contribution

The real contribution to gluon production cross section is

dσg→g,r1

d2p⊥dη
=

4g2

(2π)3

∫
dxB xpP

+ fgµ2(xB)

∫
d

[
xpP

+

1− ξ

]
δ

(
xBP

+ − xpP
+

1− ξ

)∫
xx̄,yȳ,z

eip⊥(y−ȳ)

× 1

2(N2
c − 1)

tr

[
F(gg)(xBP

+, ξ, y − x, z − x)ijkF
∗
(gg)(xBP

+, ξ, ȳ − x̄, z − x̄)ijk

]
×
[
ifabcScdA (y)SbeA (z)− if bedSabA (x)

][
− ifab̄c̄S c̄dA (ȳ)S b̄eA (z) + if b̄edSab̄A (x̄)

]
. (6.11)

Noting that the SU(Nc) generator in adjoint representation T abc = −ifabc, and using color algebra to write the result
in terms of fundamental traces, we obtain

dσg→g,r1

d2p⊥dη
=

g2

(2π)3
2CA

∫ 1

0

dxB f
g
µ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

) [
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]

×
∫
yȳz

eip⊥(y−ȳ)Aiξ,xB (y − z)Aiξ,xB (ȳ − z)
{
sA[y, ȳ] + sA

[
(1− ξ)y + ξz, (1− ξ)ȳ + ξz

]
− N2

c

2(N2
c − 1)

[
s[y, z] s

[
(1− ξ)ȳ + ξz, y

]
s
[
z, (1− ξ)ȳ + ξz

]
+s[z, y] s

[
y, (1− ξ)ȳ + ξz

]
s
[
(1− ξ)ȳ + ξz, z

]
+s
[
ȳ, (1− ξ)y + ξz

]
s
[
(1− ξ)y + ξz, z

]
s[z, ȳ]

+s
[
(1− ξ)y + ξz, ȳ

]
s
[
z, (1− ξ)y + ξz

]
s[ȳ, z]− 1

N2
c

Xyȳz

]}
, (6.12)

where the definitions of X[x, y, z, x̄, ȳ, ȳ] and Xyȳz are given in eqs.(4.12) and (4.13) respectively.
By performing the same change of variables in the second adjoint dipole and rescaling the variables exactly in the
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same way as in the case of the quark production in q 7→ qg, we finally obtain

dσg→g,r1

d2p⊥dη
=

g2

(2π)3
2CA

∫ 1

0

dxB f
g
µ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

) [
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]

×
∫
yȳz

eip⊥(y−ȳ)Aiξ,xB (y − z)Aiξ,xB (ȳ − z)
{
sA[y, ȳ] + (1− ξ)2 sA

[
(1− ξ)y, (1− ξ)ȳ

]
− N2

c

2(N2
c − 1)

[
s[y, z] s

[
(1− ξ)ȳ + ξz, y

]
s
[
z, (1− ξ)ȳ + ξz

]
+s[z, y] s

[
y, (1− ξ)ȳ + ξz

]
s
[
(1− ξ)ȳ + ξz, z

]
+s
[
ȳ, (1− ξ)y + ξz

]
s
[
(1− ξ)y + ξz, z

]
s[z, ȳ]

+s
[
(1− ξ)y + ξz, ȳ

]
s
[
z, (1− ξ)y + ξz

]
s[ȳ, z]− 1

N2
c

Xyȳz

]}
. (6.13)

Separating the collinearly divergent terms we obtain

dσg→g,r1

d2p⊥dη
=
dσ̄g→g,r1

d2p⊥dη
+

g2

(2π)3
2CA

∫ 1

0

dxB f
g
µ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

) [
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]

×C̃µ2(ξ, xB)

∫
yȳ

eip⊥(y−ȳ)sA[y, ȳ]

+
g2

(2π)3
2CA

∫ 1

0

dxB f
g
µ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

) [
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]

×(1− ξ)2C̃µ2(ξ, xB)

∫
yȳ

eip⊥(y−ȳ) sA

[
(1− ξ)y, (1− ξ)ȳ

]
, (6.14)

where the collinearly finite part of the cross section is

dσ̄g→g,r1

d2p⊥dη
=

g2

(2π)3
2CA

∫ 1

0

dxB f
g
µ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

) [
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
] ∫

yȳz

eip⊥(y−ȳ)

×
[
Aiξ,xB (y − z)Aiξ,xB (ȳ − z)− Cµ2(ξ, xB , z)

]{
sA[y, ȳ] + (1− ξ)2 sA

[
(1− ξ)y, (1− ξ)ȳ

]}
− g2

(2π)3

∫ 1

0

dxB f
g
µ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

) [
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]

×
∫
yȳz

eip⊥(y−ȳ)Aiξ,xB (y − z)Aiξ,xB (ȳ − z) N3
c

N2
c − 1

{
s[y, z] s

[
(1− ξ)ȳ + ξz, y

]
s
[
z, (1− ξ)ȳ + ξz

]
+s[z, y] s

[
y, (1− ξ)ȳ + ξz

]
s
[
(1− ξ)ȳ + ξz, z

]
+s
[
ȳ, (1− ξ)y + ξz

]
s
[
(1− ξ)y + ξz, z

]
s[z, ȳ]

+s
[
(1− ξ)y + ξz, ȳ

]
s
[
z, (1− ξ)y + ξz

]
s[ȳ, z]− 1

N2
c

Xyȳz

]}
. (6.15)

2. The virtual contribution.

The virtual contribution to gluon production cross section in g → gg, can be written as

dσg→g,v1

d2p⊥dη
=

2g2

(2π)3

∫
dxB f

g
µ2(xB)xpP

+ δ
(
xBP

+ − xpP+
) ∫

d
[
ξxpP

+
] ∫

xx̄yz

eip⊥(x−x̄)F̄ 2
(gg)(xBP

+, ξ, y − x, z − x)

× 1

N2
c − 1

Sab̄A (x̄)

[
ifabcScdA (y)SbeA (z)− if bedSabA (x)

]
if b̄de + c.c. . (6.16)

By using the explicit expression for F̄ 2
(gg)(xBP

+, ξ, y − x, z − x) eq.(6.16), changing variables y → y + ξ(y − z) and

z → z + ξ(y − z) and writing the octet dipole in terms of fundamental traces, we obtain
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dσg→g,v1

d2p⊥dη
=

g2

(2π)3

∫ 1

0

dxB f
g
µ2(xB)xp δ(xB − xp)

∫ 1

0

dξ

[
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
] ∫

yȳz

eip⊥(y−ȳ)

×
{
Aiξ,xB (y − z)Aiξ,xB (y − z)

[
−Nc sA[y, ȳ]− Nc

2(N2
c − 1)

X
′
yȳz

+
N3
c

2(N2
c − 1)

(
s
[
y + ξ(y − z), z + ξ(y − z)

]
s
[
z + ξ(y − z), ȳ

]
s
[
ȳ, y + ξ(y − z)

]
+s
[
z + ξ(y − z), y + ξ(y − z)

]
s
[
ȳ, z + ξ(y − z)

]
s
[
y + ξ(y − z), ȳ

])]
+Aiξ,xB (ȳ − z)Aiξ,xB (ȳ − z)

[
−Nc sA[y, ȳ]− Nc

2(N2
c − 1)

X
′′
yȳz

+
N3
c

2(N2
c − 1)

(
s
[
ȳ + ξ(ȳ − z), z + ξ(ȳ − z)

]
s
[
z + ξ(ȳ − z), y

]
s
[
y, ȳ + ξ(ȳ − z)

]
+s
[
z + ξ(ȳ − z), ȳ + ξ(ȳ − z)

]
s
[
y, z + ξ(ȳ − z)

]
s
[
ȳ + ξ(ȳ − z), y

])]}
, (6.17)

where the definitions of 6-point function, X
′
yȳz and X

′′
yȳz are given in eqs. (4.12), (4.14) and (4.15) respectively.

Separating the collinearly divergent piece, we obtain

dσg→g,v1

d2p⊥dη
=
dσ̄g→g,v1

d2p⊥dη
− g2

(2π)3
2CA

∫ 1

0

dxB f
g
µ2(xB)xp δ(xB − xp)

∫ 1

0

dξ

[
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]

×C̃µ2(ξ, xB)

∫
yȳ

eip⊥(y−ȳ)sA[y, ȳ], (6.18)

with the collinear finite piece

dσ̄g→g,v1

d2p⊥dη
= − g2

(2π)3
CA

∫ 1

0

dxB f
g
µ2(xB)xp δ(xB − xp)

∫ 1

0

dξ

[
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
] ∫

yȳz

eip⊥(y−ȳ)sA[y, ȳ]

×
{
Aiξ,xB (y − z)Aiξ,xB (y − z) +Aiξ,xB (ȳ − z)Aiξ,xB (ȳ − z)− 2Cµ2(ξ, xB , z)

}
+

g2

(2π)3

∫ 1

0

dxB f
g
µ2(xB)xp δ(xB − xp)

∫ 1

0

dξ

[
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
] ∫

yȳz

eip⊥(y−ȳ)

×
{
Aiξ,xB (y − z)Aiξ,xB (y − z)

[
− Nc

2(N2
c − 1)

X
′
yȳz

+
N3
c

2(N2
c − 1)

(
s
[
y + ξ(y − z), z + ξ(y − z)

]
s
[
z + ξ(y − z), ȳ

]
s
[
ȳ, y + ξ(y − z)

]
+s
[
z + ξ(y − z), y + ξ(y − z)

]
s
[
ȳ, z + ξ(y − z)

]
s
[
y + ξ(y − z), ȳ

])]
+Aiξ,xB (ȳ − z)Aiξ,xB (ȳ − z)

[
− Nc

2(N2
c − 1)

X
′′
yȳz

+
N3
c

2(N2
c − 1)

(
s
[
ȳ + ξ(ȳ − z), z + ξ(ȳ − z)

]
s
[
z + ξ(ȳ − z), y

]
s
[
y, ȳ + ξ(ȳ − z)

]
+s
[
z + ξ(ȳ − z), ȳ + ξ(ȳ − z)

]
s
[
y, z + ξ(ȳ − z)

]
s
[
ȳ + ξ(ȳ − z), y

])]}
. (6.19)
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C. Gluon to quark channel.

The quark-antiquark component of the ”dressed” gluon state with color a, transverse index k and vanishing trans-
verse momentum component reads after passing through the target

|out, a, k〉 =

∫
x

{
SabA (x)|(g) xBP

+, x, b, k〉D

+
g2

2π

∫
Ω

d
[
ξxpP

+
] ∫

yz

{[
S†F (z)taSF (y)

]
δγ
− SabA (x)taδγ

}
F̄ 2

(qq̄)(xBP
+, ξ, y − x, z − x) tb̄γδ |(g) xBP

+, x, b̄, k〉D

+
g

2π

∫
Ω

d

[
xpP

+

1− ξ

] ∫
yz

F(qq̄)(xBP
+, ξ, y − x, z − x)ss′,j

{[
S†F (z)taSF (y)

]
δγ
− SabA (x)taδγ

}
× |(q) (1− ξ)xBP+, y, γ, s; (q̄) ξxBP

+, z, δ, s′〉D
}
. (6.20)

The function F(qq̄)(xBP
+, ξ, y − x, z − x)ss′,j can be read off from [23] and its explicit form reads

F(qq̄)(xBP
+, ξ, y − x, z − x)ss′,j =

−i√
2xBP+

[
− (2ξ − 1)δijδ−s′,s + iεijσ3

−s′,s

]
× δ(2)

[
(1− ξ)y + ξz − x

]
Aiξ,xB (y − z) , (6.21)

and similarly

F̄ 2
(qq̄)(xBP

+, ξ, y − x, z − x) =
1

xBP+

[
ξ2 + (1− ξ)2

]
δ(2)
[
(1− ξ)y + ξz − x

]
Aiξ,xB (y − z)Aiξ,xB (y − z) . (6.22)

The qq̄ component of the ”dressed” gluon state contributes to quark, antiquark and gluon production. At the level
of the cross section the real term corresponds to the quark (and antiquark) production cross section, while the virtual
term corresponds to the quark loop contribution to gluon production.

1. The real contribution.

The real contribution to the quark production cross section reads

dσg→q,r1

d2p⊥dη
=

g2

(2π)3

∫
dxB f

g
µ2(xB)xpP

+

∫
d

[
xpP

+

1− ξ

]
δ

[
xBP

+ − xpP
+

1− ξ

] ∫
xx̄yȳz

eip⊥(y−ȳ)

× 1

2(N2
c − 1)

tr

[
F(qq̄)(xBP

+, ξ, y − x, z − x)jF
∗
(qq̄)(xBP

+, ξ, ȳ − x̄, z − x̄)j

]
×
{[
S†F (z)taSF (y)

]
δγ
− SabA (x)tbδγ

}{[
S†F (ȳ)taSF (z)

]
γδ
− Sab̄A (x̄)tb̄γδ

}
. (6.23)

We now use the explicit form of the function F(qq̄)(xBP
+, ξ, y − x, z − x)ss′,j given in eq.(6.21), use color algebra to

express adjoint matrices in terms of fundamental ones, and perform the same change of variables as in the previous
cases to obtain

dσg→q,r1

d2p⊥dη
=

1

2

g2

(2π)3

∫ 1

0

dxB f
g
µ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

)[
ξ2 + (1− ξ)2

] ∫
yȳz

eip⊥(y−ȳ)

×Aiξ,xB (y − z)Aiξ,xB (ȳ − z)
{
s[y, ȳ] + (1− ξ)2 sA

[
(1− ξ)y, (1− ξ)ȳ

]
− N2

c

(N2
c − 1)

[
s
[
y, (1− ξ)ȳ + ξz

]
s
[
(1− ξ)ȳ + ξz, z

]
− 1

N2
c

s[y, z]

]
− N2

c

(N2
c − 1)

[
s
[
z, (1− ξ)y + ξz

]
s
[
(1− ξ)y + ξz, ȳ

]
− 1

N2
c

s[z, ȳ]

]}
. (6.24)
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Separating the collinearly divergent pieces this becomes

dσg→q,r1

d2p⊥dη
=
dσ̄g→qq̄,r1

d2p⊥dη
+

1

2

g2

(2π)3

∫ 1

0

dxB f
g
µ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

)[
ξ2 + (1− ξ)2

]
×C̃µ2(ξ, xB)

∫
yȳ

eip⊥(y−ȳ)s[y, ȳ]

+
1

2

g2

(2π)3

∫ 1

0

dxB f
g
µ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

)[
ξ2 + (1− ξ)2

]
(1− ξ)2

×C̃µ2(ξ, xB)

∫
yȳ

eip⊥(y−ȳ)sA
[
(1− ξ)y, (1− ξ)ȳ

]
, (6.25)

with the collinear finite part

dσ̄g→q,r1

d2p⊥dη
=

1

2

g2

(2π)3

∫ 1

0

dxB f
g
µ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

)[
ξ2 + (1− ξ)2

] ∫
yȳz

eip⊥(y−ȳ)

×
{[
Aiξ,xB (y − z)Aiξ,xB (ȳ − z)− Cµ2(ξ, xB , z)

][
s[y, ȳ] + (1− ξ)2sA

[
(1− ξ)y, (1− ξ)ȳ

]]
− N2

c

(N2
c − 1)

Aiξ,xB (y − z)Aiξ,xB (ȳ − z)
[
s
[
y, (1− ξ)ȳ + ξz

]
s
[
(1− ξ)ȳ + ξz, z

]
− 1

N2
c

s[y, z]

]
− N2

c

(N2
c − 1)

Aiξ,xB (y − z)Aiξ,xB (ȳ − z)
[
s
[
z, (1− ξ)y + ξz

]
s
[
(1− ξ)y + ξz, ȳ

]
− 1

N2
c

s[z, ȳ]

]}
. (6.26)

2. The virtual contribution.

The virtual term in the cross section corresponds to the quark loop contribution to gluon production and it reads

dσg→q,v1

d2p⊥dη
=

g2

(2π)3

∫
dxB f

g
µ2(xB)xpP

+ δ
(
xBP

+ − xpP+
) ∫

d
[
ξxpP

+
] ∫

xx̄yz

eip⊥(x−x̄)F̄ 2
(qq̄)(xBP

+, ξ, y − x, z − x)

× 1

N2
c − 1

{
Sab̄A (x̄)

[
S†F (z)taSF (y)

]
δγ
− SabA (x)tbδγ

}
tb̄δγ + c.c. . (6.27)

Using the explicit expression for F̄ 2
(qq̄)(ξ, xB , y − x, z − x), shifting the variables y → y + ξ(y − z) and z → z +

ξ(y−z), writing the crossed terms in fundamental representation and separating the collinear divergences, the virtual
contribution becomes

dσg→q,v1

d2p⊥dη
=
dσ̄g,virtual

1

d2p⊥dη
− g2

(2π)3

∫ 1

0

dxB f
g
µ2(xB)xpδ(xB − xp)

∫ 1

0

dξ
[
ξ2 + (1− ξ)2

]
×C̃µ2(ξ, xB)

∫
yȳ

eip⊥(y−ȳ)sA[y, ȳ], (6.28)

where the finite part is

dσ̄g→q,v1

d2p⊥dη
= −1

2

g2

(2π)3

∫ 1

0

dxB f
g
µ2(xB)xp δ (xB − xp)

∫ 1

0

dξ
[
ξ2 + (1− ξ)2

] ∫
yȳz

eip⊥(y−ȳ)

×
{[
Aiξ,xB (y − z)Aiξ,xB (y − z) +Aiξ,xB (ȳ − z)Aiξ,xB (ȳ − z)− 2Cµ2(ξ, xB , z)

]
sA[y, ȳ]

−Aiξ,xB (y − z)Aiξ,xB (y − z)
[

N2
c

N2
c − 1

s
[
y + ξ(y − z), ȳ

]
s
[
ȳ, z + ξ(y − z)

]
− 1

N2
c − 1

s
[
y + ξ(y − z), z + ξ(y − z)

]]
−Aiξ,xB (ȳ − z)Aiξ,xB (ȳ − z)

[
N2
c

N2
c − 1

s
[
ȳ + ξ(ȳ − z), y

]
s
[
y, z + ξ(ȳ − z)

]
− 1

N2
c − 1

s
[
ȳ + ξ(ȳ − z), z + ξ(ȳ − z)

]]}
. (6.29)
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D. PDF’s and Fragmentation functions.

Here we present the relation between the PDF’s and fragmentation functions of ”‘dressed”’ and ”‘bare”’ quarks
and gluons. The derivation follows the same route as the one that leads to eq.(5.21) and eq.(5.28).

The NLO expression for the quark PDF which solves the DGLAP equations is:

fqµ2(xp) = fD,qµ2 (xp) +
g2

2π
CF

∫ 1−xp

0

dξ

1− ξ f
D,q
µ2

(
xp

1− ξ

)[
1 + (1− ξ)2

ξ

]
C̃µ2

(
ξ,

xp
1− ξ

)
− g2

2π
CF f

D,q
µ2 (xp)

∫ 1

0

dξ

[
1 + (1− ξ)2

ξ

]
C̃µ2(ξ, xp)

+
g2

2π

1

2

∫ 1−xp

0

dξ

1− ξ f
D,g
µ2

(
xp

1− ξ

)[
ξ2 + (1− ξ)2

]
C̃µ2

(
ξ,

xp
1− ξ

)
. (6.30)

As we have shown in the previous section, this relation arises when using the operator definition of the dressed and
bare parton distribution functions. This is identical to the standard perturbative relation when fD,q is understood
as the leading-order PDF. The only subtlety here is that the collinearly divergent integral Cµ2 in eq.(6.30) depends
on the momentum fraction ξ through the Ioffe time cutoff. This dependence is very weak, and shows up only as a
power correction of the type p2/s0 to the logarithmically divergent integral. Therefore, as we did when going from
eq. (5.21) to eq. (5.22), we can write

fqµ2(xp) = fD,qµ2 (xp) +
g2

2π
CF

∫ 1−xp

0

dξ

1− ξ f
D,q
µ2

(
xp

1− ξ

)[
1 + (1− ξ)2

ξ

]
+

∫
z

(
Ai(z)Ai(z)

)
µ2

+
g2

2π

1

2

∫ 1−xp

0

dξ

1− ξ f
D,g
µ2

(
xp

1− ξ

)[
ξ2 + (1− ξ)2

] ∫
z

(
Ai(z)Ai(z)

)
µ2
. (6.31)

The analogous expression for the gluon PDF is given by

fgµ2(xp) = fD,gµ2 (xp) +
g2

2π
2CA

∫ 1−xp

0

dξ

1− ξ f
D,g
µ2

(
xp

1− ξ

)[
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]
C̃µ2

(
ξ,

xp
1− ξ

)
− g2

2π
CA f

D,g
µ2 (xp)

∫ 1

0

dξ

[
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]
C̃µ2(ξ, xp)

− g2

2π
Nf

1

2
fD,gµ2 (xp)

∫ 1

0

dξ
[
ξ2 + (1− ξ)2

]
C̃µ2(ξ, xp)

+
g2

2π
CF

∫ 1

xp

dξ

ξ

[
fD,qµ2

(
xp
ξ

)
+ fD,q̄µ2

(
xp
ξ

)]
1 + (1− ξ)2

ξ
C̃µ2(ξ, xp) (6.32)

that, again, can be written as

fgµ2(xp) = fD,gµ2 (xp) +
g2

2π
2CA

∫ 1−xp

0

dξ

1− ξ f
D,g
µ2

(
xp

1− ξ

)[(
1− ξ
ξ

+
1

2
ξ(1− ξ)

)
+

+
ξ

1− ξ +
1

2
ξ(1− ξ)

] ∫
z

(
Ai(z)Ai(z)

)
µ2

− g2

2π
Nf

1

2
fD,gµ2 (xp)

∫ 1

0

dξ
[
ξ2 + (1− ξ)2

] ∫
z

(
Ai(z)Ai(z)

)
µ2

+
g2

2π
CF

∫ 1

xp

dξ

ξ

[
fD,qµ2

(
xp
ξ

)
+ fD,q̄µ2

(
xp
ξ

)]
1 + (1− ξ)2

ξ

∫
z

(
Ai(z)Ai(z)

)
µ2
. (6.33)

The analysis analogous to that preceding eq.(5.28) leads to the following NLO relation between the dressed and
bare quark and gluon fragmentation functions:

DD,q
H,µ2(ζ) = Dq

H,µ2(ζ) +
g2

2π
CFD

q
H,µ2(ζ)

∫ 1

0

dξ
1 + (1− ξ)2

ξ
C̃µ2

(
ξ,
xp
ζ

)
− g2

2π
CF

∫ 1−ζ

0

dξ

1− ξD
q
H,µ2

(
ζ

1− ξ

)
1 + (1− ξ)2

ξ
C̃µ2

(
ξ,
xp
ζ

)
− g2

2π
CF

∫ 1

ζ

dξ

ξ
Dg
H,µ2

(
ζ

ξ

)
1 + (1− ξ)2

ξ
C̃µ2

(
ξ,
xp
ζ

)
, (6.34)
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DD,q
H,µ2(ζ) = Dq

H,µ2(ζ) − g2

2π
CF

∫ 1−ζ

0

dξ

1− ξD
q
H,µ2

(
ζ

1− ξ

)[
1 + (1− ξ)2

ξ

]
+

∫
z

(
Ai(z)Ai(z)

)
µ2

− g2

2π
CF

∫ 1

ζ

dξ

ξ
Dg
H,µ2

(
ζ

ξ

)
1 + (1− ξ)2

ξ

∫
z

(
Ai(z)Ai(z)

)
µ2
, (6.35)

DD,g
H,µ2(ζ) = Dg

H,µ2(ζ) +
g2

2π
CAD

g
H,µ2(ζ)

∫ 1

0

dξ

[
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]
C̃µ2

(
ξ,
xp
ζ

)
− g2

2π
2CA

∫ 1−ζ

0

dξ

1− ξD
g
H,µ2

(
ζ

1− ξ

)[
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]
C̃µ2

(
ξ,
xp
ζ

)
+
g2

2π
Nf

1

2
Dg
H,µ2(ζ)

∫ 1

0

dξ
[
ξ2 + (1− ξ)2

]
C̃µ2

(
ξ,
xp
ζ

)
(6.36)

− g2

2π

1

2

∫ 1−ζ

0

dξ

1− ξ

[
Dq
H,µ2

(
ζ

1− ξ

)
+Dq̄

H,µ2

(
ζ

1− ξ

)][
ξ2 + (1− ξ)2

]
C̃µ2

(
ξ,
xp
ζ

)
,

DD,g
H,µ2(ζ) = Dg

H,µ2(ζ) − g2

2π
2CA

∫ 1−ζ

0

dξ

1− ξD
g
H,µ2

(
ζ

1− ξ

)[(
1− ξ
ξ

+
1

2
ξ(1− ξ)

)
+

+
ξ

1− ξ +
1

2
ξ(1− ξ)

] ∫
z

(
Ai(z)Ai(z)

)
µ2

+
g2

2π
Nf

1

2
Dg
H,µ2(ζ)

∫ 1

0

dξ
[
ξ2 + (1− ξ)2

] ∫
z

(
Ai(z)Ai(z)

)
µ2

(6.37)

− g2

2π

1

2

∫ 1−ζ

0

dξ

1− ξ

[
Dq
H,µ2

(
ζ

1− ξ

)
+Dq̄

H,µ2

(
ζ

1− ξ

)][
ξ2 + (1− ξ)2

] ∫
z

(
Ai(z)Ai(z)

)
µ2
.

E. Including PDFs

1. Quark production

The leading-order quark production cross section reads

dσq

d2p⊥dη
=

1

(2π)2

∫
dxB xpδ(xB − xp) fD,qµ2 (xB)

∫
y,ȳ

eip⊥(y−ȳ)sYT [y, ȳ] . (6.38)

Combining this with the second term in eq.(5.15), half of the second term in eq.(5.17) and the second term in eq.(6.25)

turns the dressed quark PDF fD,qµ2 (xp) into the standard quark PDF fqµ2(xp) in eq.(6.38). Thus, the quark production

cross section at NLO is

dσq

d2p⊥dη
=

1

(2π)2

∫ 1

0

dxB xpδ(xB − xp) fqµ2(xB)

∫
y,ȳ

eip⊥(y−ȳ)sYT [y, ȳ] +
dσ̄q

d2p⊥dη

+
g2

(2π)3
CF

∫ 1

0

dxB fqµ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

) [
1 + (1− ξ)2

ξ

]
(1− ξ)2

×C̃µ2(ξ, xB)

∫
yȳ

eip⊥(y−ȳ)s
[
(1− ξ)y, (1− ξ)ȳ

]
− g2

(2π)3
CF

∫ 1

0

dxB fqµ2(xB) xp δ (xB − xp)
∫ 1

0

dξ

[
1 + (1− ξ)2

ξ

]
×C̃µ2(ξ, xB)

∫
yȳ

eip⊥(y−ȳ)s[y, ȳ]

+
1

2

g2

(2π)3

∫ 1

0

dxB f
g
µ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

)[
ξ2 + (1− ξ)2

]
(1− ξ)2

×C̃µ2(ξ, xB)

∫
yȳ

eip⊥(y−ȳ)sA
[
(1− ξ)y, (1− ξ)ȳ

]
, (6.39)
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where

dσ̄q

d2p⊥dη
=
dσ̄q→q,r1

d2p⊥dη
+
dσ̄q→q,v1

d2p⊥dη
+
dσ̄g→q,r1

d2p⊥dη
(6.40)

defined above.

2. Gluon production

Similarly, the leading-order gluon production cross section is

dσg

d2p⊥dη
=

1

(2π)2

∫ 1

0

dxB xpδ(xB − xp) fD,gµ2 (xB)

∫
y,ȳ

eip⊥(y−ȳ)sA,YT [y, ȳ] . (6.41)

Combining this with the second term in eq. (6.3), second term in eq.(6.14), half of the second term in eq.(6.18) and

half of the second term in eq. (6.28) turns the dressed gluon PDF fD,gµ2 (xB) into the standard gluon PDF fgµ2(xB).

Thus, at next-to-leading-order we have

dσg

d2p⊥dη
=

1

(2π)2

∫ 1

0

dxB xpδ(xB − xp) fgµ2(xB)

∫
y,ȳ

eip⊥(y−ȳ)sA,YT [y, ȳ] +
dσ̄g

d2p⊥dη

+
g2

(2π)3
CF

∫ 1

0

dxB fqµ2(xB)

∫ 1

xp

dξ
xp
ξ
δ

(
xB −

xp
ξ

)[
1 + (1− ξ)2

ξ

]
ξ2C̃µ2(ξ, xB)

×
∫
yȳ

eip⊥(y−ȳ)s[ξy, ξȳ]

+
g2

(2π)3
2CA

∫ 1

0

dxB f
g
µ2(xB)

∫ 1−xp

0

dξ
xp

1− ξ δ
(
xB −

xp
1− ξ

) [
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]
(1− ξ)2

×C̃µ2(ξ, xB)

∫
yȳ

eip⊥(y−ȳ) sA

[
(1− ξ)y, (1− ξ)ȳ

]
− g2

(2π)3
CA

∫ 1

0

dxB f
g
µ2(xB)xp δ(xB − xp)

∫ 1

0

dξ

[
1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]
C̃µ2(ξ, xB)

×
∫
yȳ

eip⊥(y−ȳ)sA[y, ȳ]

−1

2

g2

(2π)3

∫ 1

0

dxB f
g
µ2(xB)xpδ(xB − xp)

∫ 1

0

dξ
[
ξ2 + (1− ξ)2

]
C̃µ2(ξ, xB)

×
∫
yȳ

eip⊥(y−ȳ)sA[y, ȳ], (6.42)

where

dσ̄g

d2p⊥dη
=
dσ̄q→g,r1

d2p⊥dη
+
dσ̄g→g,r1

d2p⊥dη
+
dσ̄g→g,v1

d2p⊥dη
+
dσ̄g→q,v1

d2p⊥dη
+
dσ̄g→q̄,v1

d2p⊥dη
. (6.43)

F. Fragmentation

The hadron production cross section from the final state quark is

dσHq
d2ph⊥dη

=
1

(2π)2

∫ 1

xF

dζ

ζ2
DD,q
H,µ2(ζ)

∫ 1

0

dxB
xF
ζ
δ

(
xB −

xF
ζ

)
fD,qµ2 (xB)

∫
yȳ

ei
ph⊥
ζ (y−ȳ)sYT [y, ȳ]

+

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

dσq1
d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
. (6.44)
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Using eq.(6.34), this becomes

dσHq
d2ph⊥dη

=
1

(2π)2

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

∫ 1

0

dxB δ

(
xB −

xF
ζ

)
xF
ζ
fqµ2(xB)

∫
yȳ

ei
ph⊥
ζ (y−ȳ)sYT [y, ȳ]

+

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

dσ̄q

d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
− g2

(2π)3
CF

∫ 1

xF

dζ

ζ2

∫ 1

0

dxB

∫ 1

ζ

dξ

ξ
Dg
H,µ2

(
ζ

ξ

)
xF
ζ
δ

(
xB −

ζ

ξ

) [
1 + (1− ξ)2

ξ

]
fqµ2(xB)

×C̃µ2(ξ, xB)

∫
yȳ

ei
ph⊥
ζ (y−ȳ)s[y, ȳ]

+
g2

(2π)3

1

2

∫ 1

xF

dζ

ζ2

∫ 1

0

dxB D
q
H(ζ) fgµ2(xB)

∫ 1− xFζ

0

dξ
xF

ζ(1− ξ) δ
(
xB −

xF
ζ(1− ξ)

) [
ξ2 + (1− ξ)2

]
(1− ξ)2

×C̃µ2(ξ, xB)

∫
yȳ

ei
ph⊥
ζ (y−ȳ)sA[(1− ξ)y, (1− ξ)ȳ] . (6.45)

The hadron production cross section from the final state gluon is

dσHg
d2ph⊥dη

=
1

(2π)2

∫ 1

xF

dζ

ζ2
DD,g
H,µ2(ζ)

∫ 1

0

dxB
xF
ζ
δ

(
xB −

xF
ζ

)
fD,gµ2 (xB)

∫
yȳ

ei
ph⊥
ζ (y−ȳ)sA,YT [y, ȳ]

+

∫ 1

xF

dζ

ζ2
Dg
H,µ2(ζ)

dσg1
d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
. (6.46)

Using eq.(6.36), we have

dσHg
d2ph⊥dη

=
1

(2π)2

∫ 1

xF

dζ

ζ2
Dg
H,µ2(ζ)

∫ 1

0

dxB
xF
ζ
δ

(
xB −

xF
ζ

)
fgµ2(xB)

∫
yȳ

ei
ph⊥
ζ (y−ȳ)sA,YT [y, ȳ]

+

∫ 1

xF

dζ

ζ2
Dg
H,µ2(ζ)

dσ̄g

d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
− g2

(2π)3

1

2

∫ 1

xF

dζ

ζ2

∫ 1−ζ

0

dξ

1− ξ D
q
H,µ2

(
ζ

1− ξ

)∫ 1

0

dxB

[
ξ2 + (1− ξ)2

]xF
ζ
δ

(
xB −

xF
ζ

)
fgµ2(xB)

×C̃µ2(ξ, xB)

∫
yȳ

ei
ph⊥
ζ (y−ȳ)sA[y, ȳ]

+
g2

(2π)3
CF

∫ 1

xF

dζ

ζ2
Dg
H,µ2(ζ)

∫ 1

0

dxB f
q
µ2(xB)

∫ 1

xF
ζ

dξ
xF
ζξ

δ

(
xB −

xF
ξζ

)[
1 + (1− ξ)2

ξ

]
ξ2

×C̃µ2(ξ, xB)

∫
yȳ

ei
ph⊥
ζ (y−ȳ)s[ξy, ξȳ] . (6.47)

The remaining collinear divergent terms cancel between eq.(6.45) and eq.(6.47). The final formula reads

dσH

d2ph⊥dη
=

1

(2π)2

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

xF
ζ
fqµ2

(
xF
ζ

)∫
yȳ

ei
ph⊥
ζ (y−ȳ)sYT [y, ȳ] +

∫ 1

xF

dζ

ζ2
Dq
H,µ2(ζ)

dσ̄q

d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
+

1

(2π)2

∫ 1

xF

dζ

ζ2
Dg
H,µ2(ζ)

xF
ζ
fgµ2

(
xF
ζ

) ∫
yȳ

ei
ph⊥
ζ (y−ȳ)sA,YT [y, ȳ] +

∫ 1

xF

dζ

ζ2
Dg
H,µ2(ζ)

dσ̄g

d2p⊥dη

(
ph⊥
ζ
,
xF
ζ

)
.(6.48)

In the final account we have to add the contribution from antiquark production, and also in principle the initial
state antiquark, although it is small for forward hadron production. This final expression is given in the body of the
paper.

VII. APPENDIX C: RELATING OUR COLLINEAR FACTORISATION SCHEME TO MS.

Most of the sets of PDFs and FFs are available only in the MS factorization scheme, which is defined within
dimensional regularization. In order to be able to use our results in practical studies, we have first to establish the
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dictionary between the MS scheme and the factorization scheme used in the rest of the present paper. This is the
purpose of this appendix.

A. Isolating the collinear contributions in D dimensions

The simplest way to proceed is to revisit parts of the calculation, this time using dimensional regularization, allowing
to choose either factorization scheme. We focus on the quark-to-quark channel only, because the other channels work
in an analogous way. In this channel, in order to obtain the NLO real corrections, we need first to calculate the
q → q+g scattering amplitude in the presence of the target background field. It is convenient to do this calculation in
Light-Front perturbation theory, in a very similar way as already explained in this paper, but with a few differences:

• we now perform the calculation in D dimensions all the way, in order to allow for the MS factorization scheme;

• we now call y the transverse position of the quark when it crosses the target and z the one of the radiated
gluon, if radiated in the initial state (and in the complex conjugate amplitude we call ȳ and z̄ the corresponding
positions);

• for simplicity, we do not introduce the Ioffe time cut-off, since the soft divergences will not play any role in the
present discussion.

In this way, we find that the amplitude A to produce a quark with momentum (p+, p⊥) and color β and a gluon with
momentum (q+, q⊥) and color a by scattering a collinear quark of momentum xBP

+ and color α on the target reads

A(q → q + g) ∝ g (µDR)
2−D2

{
− i
∫
dD−2y eiy·p⊥

∫
dD−2z eiz·q⊥Aj(z − y) SAab(z)S

F
βγ(y)tbγα

+
xBP

+

p+

∫
dD−2y eiy·(p⊥+q⊥)

[
qj⊥− q+

p+ p
j
⊥

]
[
q⊥− q+

p+ p⊥

]2 taβγS
F
γα(y)

}
, (7.1)

up to a factor dependent of the light-cone momenta and helicities of the partons only. The two terms correspond to
the radiation of the gluon before or after crossing the target respectively. µDR is the scale used to keep the coupling
dimensionless in dimensional regularization. The D-dimensional Weizsäcker-Williams field is defined as

Ai(r) ≡ −i
∫

dD−2l⊥
(2π)D−2

li⊥
l2⊥

e−il⊥·r = −π
2−D2

2π
Γ

(
D

2
−1

)
ri

(r2)
D
2 −1

. (7.2)

Using the Fourier transform of Eq. (7.2), with r = z − y and l⊥ = q⊥ − (q+/p+)p⊥, we can rewrite Eq. (7.1) as

A(q → q + g) ∝ ig (µDR)
2−D2

∫
dD−2y

∫
dD−2zAj(z − y)

{
− eiy·p⊥ eiz·q⊥ SAab(z)S

F
βγ(y)tbγα

+
xBP

+

p+
e
i
xBP

+

p+
p⊥·y e

iz·
(
q⊥− q

+

p+
p⊥

)
taβγS

F
γα(y)

}
. (7.3)

The next step is to take the modulus square of Eq. (7.3), sum over the gluon momentum, and perform the usual
sums or averages over helicities and color indices, in order to get the NLO real correction to the single inclusive
q → q partonic cross section. Integrating over q⊥ forces z = z̄. In the interference contribution, there is a leftover
z-dependent phase, which make this term collinear safe. On the other hand, in the square of each of the two terms
from Eq. (7.3), the z-dependence factors out after integrating over q⊥. These two squared contributions then include
a collinear sensitive factor Icoll

yȳ , defined as

Icoll
yȳ ≡

(
µ2
DR

)2−D2 ∫ dD−2z Ai(y−z) Ai(ȳ−z) . (7.4)

Morevover, after summation/averaging over helicities, the overall factor not explicitly written in (7.1) provides the
q → q DGLAP splitting function without plus-prescription.

Concerning the NLO virtual correction for the q → q channel, there are two types of contributions at the amplitude
level: the ones with a gluon loop across the target and the quark wave-function renormalization terms (both for the
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initial and final states). The former contributions are collinear safe and the later collinear sensitive. Each of them is
UV divergent, but these UV divergences cancel in the sum of the virtual contributions at the amplitude level.

In order to isolate the full collinear sensitive piece of the NLO correction to the single inclusive q → q cross section
without spoiling the cancelation of UV divergences, it is convenient to use the following trick. We can promote the
unregularized DGLAP spliting function to the regularized one (with plus prescription) in the squared contributions
to the NLO real correction, and subtract the appropriate quantity to the NLO virtual correction to keep the full
NLO correction the same. One has to leave the unregularized DGLAP spliting function untouched in the interference
contribution, because regularizing it would induce a spurious collinear sensitivity in that term.

In that way, one obtains a strict separation between NLO terms which are collinear and UV safe but low-x sensitive
(the interference part of the real correction and the virtual correction after subtraction), and NLO terms which are
low-x and UV safe but collinear sensitive (the squared contributions to the real correction with plus prescription).

In order to discuss factorization scheme issues, only the latter terms are relevant. Writing them together with the
LO contribution and convoluting with the PDFs and FFs, one gets

dσp→H

d2ph⊥dη

∣∣∣∣
q→q,LO + coll NLO

= lim
D→4

1

(2π)D−2

∫
dD−2y

∫
dD−2ȳ s

[
y, ȳ
] ∫ 1

0

dζ

ζD−2
D0,q
H (ζ)

∫ 1

0

dxB f0,q(xB)

×
{
xF
ζ
δ

(
xB−

xF
ζ

)
ei(y−ȳ)ph⊥/ζ +

g2

(2π)
Icoll
yȳ

∫ 1

0

dξ
xF

ζ(1−ξ) δ
(
xB−

xF
ζ(1−ξ)

)
Pqq(1−ξ;D)

×
[
ei(y−ȳ)ph⊥/ζ +

1

(1−ξ)2
ei(y−ȳ)ph⊥xB/xF

]}
, (7.5)

with the D-dimensional q → q DGLAP splitting function

Pqq(x;D) ≡ CF
[

1 + x2

1− x +
(D−4)

2
(1− x)

]
+

. (7.6)

In Eq. (7.5), the two terms in the square bracket are associated with initial state and final state gluon radiation
respectively.

The explicit calculation of the integral Icoll
yȳ can be done for example by introducing the momentum space repre-

sentation of the Weizsäcker-Williams fields and gives (with D = 4− 2ε)

Icoll
yȳ =

1

4π
Γ

(
D

2
−2

)[
π µ2

DR (y−ȳ)2
]2−D2

= − 1

4π

[
Sε
ε

+ log

(
µ2
DR

(y−ȳ)2

4

)
− 2Ψ(1) +O(ε)

]
, (7.7)

where Sε is the usual factor taking care of the universal constants in the MS renormalization scheme:

Sε ≡
(4π)ε

Γ(1−ε) = ε

[
1

ε
+ Ψ(1) + ln 4π +O(ε)

]
. (7.8)

Remember that the ε→ 0 pole in Icoll
yȳ is a collinear pole, not an UV one.

B. Generic collinear factorization scheme in D dimensions

The next step is to reabsorb the collinear divergences by a redefinition of the PDFs and FFs. However, there is
some freedom in this process, so that the renormalized distributions are scheme-dependent. In a generic collinear
factorization scheme ”S”, the relations between the bare and dressed PDFs and FFs read

fqS(xB ;µ2
DR, · · · ) ≡ fD(xB) +

g2

(2π)
C̃S(· · · )

∫ 1−xB

0

dξ

(1−ξ) Pqq(1−ξ;D) fD
(

xB
(1−ξ)

)
+q ← g channel +O(g4) (7.9)

and

Dq
H,S(ζ;µ2

DR, · · · ) ≡ DD,q
H (ζ) +

g2

(2π)
C̃S(· · · )

∫ 1−ζ

0

dξ

(1−ξ)5−D Pqq(1−ξ;D) DD,q
H

(
ζ

(1−ξ)

)
+g ← q channel +O(g4) . (7.10)
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In these two relations, C̃S(· · · ) plays the role of a counter-term for collinear divergence. Hence, it must include a

collinear single pole for ε→ 0. Apart from that, C̃S(· · · ) is quite arbitrary, and the choice of a precise C̃S(· · · ) defines

a collinear factorization scheme ”S”. C̃S(· · · ) can depend on some parameters, hence the ”· · · ”.Since the relations
(7.9) and (7.10) are written in D dimensions, the renormalized distributions fqS and Dq

H,S a priori depend on the scale

µDR (and on D). They also depend on the parameters present in the definition of C̃S , if any.
One then gets for the cross section

dσp→H

d2ph⊥dη

∣∣∣∣
q→q,LO + coll NLO

=
1

(2π)2

∫
d2y

∫
d2ȳ s

[
y, ȳ
] ∫ 1

0

dζ

ζ2
Dq
H,S(ζ;µ2

DR, · · · )

×
∫ 1

0

dxB fqS(xB ;µ2
DR, · · · )

{
xF
ζ
δ

(
xB−

xF
ζ

)
ei(y−ȳ)ph⊥/ζ

+
g2

(2π)

[
lim
D→4

[
Icoll
yȳ − C̃S(· · · )

]] ∫ 1

0

dξ
xF

ζ(1−ξ) δ
(
xB−

xF
ζ(1−ξ)

)
Pqq(1−ξ)

×
(
ei(y−ȳ)ph⊥/ζ +

1

(1−ξ)2
ei(y−ȳ)ph⊥xB/xF

)}
, (7.11)

where Pqq(x) ≡ Pqq(x, 4) is the usual 4-dimensional splitting function.
The q → q NLO terms not included explicitly in eq. (7.11) are collinear finite, as already discussed. They contain

UV divergences, but these divergences cancel between the virtual terms with one and more than one dipole scattering
amplitude.

Now, all what is left to do is to discuss possible choices of collinear factorization schemes, or equivalently choices
for the counter-term C̃S(· · · ).

C. Generalization of our scheme with cut-off in position space

In order to discuss our scheme in this setup, one has to find a D-dimensional generalization of our counter-term C̃.
By comparison with eq. (7.4), it is clear that one should take

C̃X(µ2
CO) ≡

(
µ2
DR

)2−D2 ∫ dD−2r Ai(r) Ai(r) θ(µ2
CO r

2 − 1) . (7.12)

We call this scheme X, because it involves a cut-off µCO in position space. This cut-off has nothing to do with
dimensional regularization, so that the scales µCO and µDR have to be independent. In this case, µCO plays the role
of an external parameter in the definition of C̃X . Using this scheme ”X” both for the PDFs and FFs, one expects a
priori renormalized PDFs and FFs which depends on both µCO and µDR.

Plugging the expression (7.2) into the definition (7.12), it is straightforward to get

C̃X(µ2
CO) = − 1

4π

Γ
(
D
2 −1

)(
2−D

2

) (
π µ2

DR

µ2
CO

)2−D2
= − 1

4π

[
Sε
ε

+ log

(
µ2
DR

4µ2
CO

)
− 2Ψ(1) +O(ε)

]
. (7.13)

The collinear pole at ε→ 0 indeed cancel between C̃X(µ2
CO) and Icoll

yȳ so that

lim
D→4

[
Icoll
yȳ − C̃X(· · · )

]
= − 1

4π
log
(
µ2
CO (y−ȳ)2

)
. (7.14)

It is important to note that the scale µDR drops in this difference. It comes from the fact that it was not really
necessary to go to dimensional regularization to define the scheme ”X”. An important consequence is that the
renormalized PDFs and FFs in the scheme ”X” should not depend on µ2

DR, after all, but only on the parameter µ2
CO.
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Hence, one has

dσp→H

d2ph⊥dη

∣∣∣∣
q→q,LO + coll NLO

=
1

(2π)2

∫
d2y

∫
d2ȳ s

[
y, ȳ
] ∫ 1

0

dζ

ζ2
Dq
H,X(ζ;µ2

CO)

×
∫ 1

0

dxB fqX(xB ;µ2
CO)

{
xF
ζ
δ

(
xB−

xF
ζ

)
ei(y−ȳ)ph⊥/ζ

− g2

2(2π)2
log
(
µ2
CO (y−ȳ)2

) ∫ 1

0

dξ
xF

ζ(1−ξ) δ
(
xB−

xF
ζ(1−ξ)

)
Pqq(1−ξ)

×
(
ei(y−ȳ)ph⊥/ζ +

1

(1−ξ)2
ei(y−ȳ)ph⊥xB/xF

)}
. (7.15)

That expression (together with the other channels) is independent of the value of µCO (up to NNLO contributions)
if the PDFs and FFs to satisfy the DGLAP equations with respect to µ2

CO. In that case, one is even free to evolve
the PDFs and FFs independently, to two different factorization scales µF and µfrag, and get

dσp→H

d2ph⊥dη

∣∣∣∣
q→q,LO + coll NLO

=
1

(2π)2

∫
d2y

∫
d2ȳ s

[
y, ȳ
] ∫ 1

0

dζ

ζ2
Dq
H,X(ζ;µ2

frag)

×
∫ 1

0

dxB fqX(xB ;µ2
F )

{
xF
ζ
δ

(
xB−

xF
ζ

)
ei(y−ȳ)ph⊥/ζ

− g2

2(2π)2
log
(
µ2
F (y−ȳ)2

)
ei(y−ȳ)ph⊥/ζ

∫ 1

0

dξ
xF

ζ(1−ξ) δ
(
xB−

xF
ζ(1−ξ)

)
Pqq(1−ξ)

− g2

2(2π)2
log
(
µ2

frag (y−ȳ)2
)
ei(y−ȳ)ph⊥xB/xF

∫ 1

0

dξ
xF

ζ(1−ξ)3
δ

(
xB−

xF
ζ(1−ξ)

)
Pqq(1−ξ)

}
. (7.16)

That expression is indeed independent, up to NNLO terms, on the values of µF and of µfrag separately, thanks to the
initial state and final state DGLAP equations.

D. MS scheme

The most commonly used factorization scheme for the PDFs and FFs is the MS scheme. In that case, the
counterterm C̃MS is taken to cancel only the collinear pole of Icoll

yȳ and the universal constants:

C̃MS ≡ −
1

4π

Sε
ε
. (7.17)

Hence, one has

lim
D→4

[
Icoll
yȳ − C̃MS

]
= − 1

4π

[
log

(
µ2
DR

(y−ȳ)2

4

)
− 2Ψ(1)

]
. (7.18)

It is necessary to go to dimensional regularization to define this scheme, and indeed the scale µDR stays in the
difference (7.18). In the MS scheme, the equation (7.11) then reads

dσp→H

d2ph⊥dη

∣∣∣∣
q→q,LO + coll NLO

=
1

(2π)2

∫
d2y

∫
d2ȳ s

[
y, ȳ
] ∫ 1

0

dζ

ζ2
Dq

H,MS
(ζ;µ2

DR)

×
∫ 1

0

dxB fq
MS

(xB ;µ2
DR)

{
xF
ζ
δ

(
xB−

xF
ζ

)
ei(y−ȳ)ph⊥/ζ

− g2

2(2π)2

[
log

(
µ2
DR

(y−ȳ)2

4

)
− 2Ψ(1)

] ∫ 1

0

dξ
xF

ζ(1−ξ) δ
(
xB−

xF
ζ(1−ξ)

)
Pqq(1−ξ)

×
(
ei(y−ȳ)ph⊥/ζ +

1

(1−ξ)2
ei(y−ȳ)ph⊥xB/xF

)}
. (7.19)
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It is now µ2
DR which plays the role of evolution variable for the DGLAP evolution of the PDFs and FFs. Using the

DGLAP equations to evolve the PDFs and FFs to the scales µF and µfrag respectively, one gets

dσp→H

d2ph⊥dη

∣∣∣∣
q→q,LO + coll NLO

=
1

(2π)2

∫
d2y

∫
d2ȳ s

[
y, ȳ
] ∫ 1

0

dζ

ζ2
Dq

H,MS
(ζ;µ2

frag)

×
∫ 1

0

dxB fq
MS

(xB ;µ2
F )

{
xF
ζ
δ

(
xB−

xF
ζ

)
ei(y−ȳ)ph⊥/ζ

− g2

2(2π)2

[
log

(
µ2
F

(y−ȳ)2

4

)
− 2Ψ(1)

]
ei(y−ȳ)ph⊥/ζ

∫ 1

0

dξ
xF

ζ(1−ξ) δ
(
xB−

xF
ζ(1−ξ)

)
Pqq(1−ξ) (7.20)

− g2

2(2π)2

[
log

(
µ2

frag

(y−ȳ)2

4

)
− 2Ψ(1)

]
ei(y−ȳ)ph⊥xB/xF

∫ 1

0

dξ
xF

ζ(1−ξ)3
δ

(
xB−

xF
ζ(1−ξ)

)
Pqq(1−ξ)

}
.

E. Matching of the factorization schemes

The renormalized PDFs and FFs are scheme dependent, as well as the NLO ”coefficient functions”, but observables
like the single inclusive cross section should be scheme independent (up to higher orders in g2 than the one of interest).
Hence, one can understand the translation from one scheme to another by comparing eqs. (7.16) and (7.20)6. It is clear
that, up to NNLO correction, it is consistent to assume that the PDFs and FFs in the two schemes are functionally
related to each other by a mere rescaling of their evolution variable, as

fqX(xB ;µ2
F ) = fq

MS
(xB ;R2 µ2

F ), (7.21)

Dq
H,X(ζ;µ2

frag) = Dq

H,MS
(ζ;R2 µ2

frag) . (7.22)

One can use these relations to rewrite eq. (7.16) with MS-scheme PDFs and FFs, and then run the DGLAP equations
to remove the rescaling factor R from the PDFs and FFs. As a result, one gets

dσp→H

d2ph⊥dη

∣∣∣∣
q→q,LO + coll NLO

=
1

(2π)2

∫
d2y

∫
d2ȳ s

[
y, ȳ
] ∫ 1

0

dζ

ζ2
Dq

H,MS
(ζ;µ2

frag)

×
∫ 1

0

dxB fq
MS

(xB ;µ2
F )

{
xF
ζ
δ

(
xB−

xF
ζ

)
ei(y−ȳ)ph⊥/ζ

− g2

2(2π)2
log

(
µ2
F (y−ȳ)2

R2

)
ei(y−ȳ)ph⊥/ζ

∫ 1

0

dξ
xF

ζ(1−ξ) δ
(
xB−

xF
ζ(1−ξ)

)
Pqq(1−ξ) (7.23)

− g2

2(2π)2
log

(
µ2

frag (y−ȳ)2

R2

)
ei(y−ȳ)ph⊥xB/xF

∫ 1

0

dξ
xF

ζ(1−ξ)3
δ

(
xB−

xF
ζ(1−ξ)

)
Pqq(1−ξ)

}
.

Due to the scheme-independence of the cross section, the expression (7.23) has to be identical to the one orginally
obtained in the MS scheme, eq. (7.20). This allows us to determine the correct rescaling factor R to be

R = 2 eΨ(1) ' 1.1229 . (7.24)

With this value, the functional relations (7.21) and (7.22) provide the correct correspondence between the renormalized
distributions in the MS scheme and in the ”X” scheme.

The relations (7.21) and (7.22) generalize to the gluon distributions, all with the same rescaling factor R given in
eq. (7.24).
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