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Search for Lorentz violation in short-range gravity
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A search for sidereal variations in the force between two planar tungsten oscillators separated by
about 80 µm sets the first experimental limits on Lorentz violation involving quadratic couplings of
the Riemann curvature, consistent with no effect at the level of 10−7 m2.

Local Lorentz invariance is a foundational component
of General Relativity (GR), which currently remains our
most successful theory of gravity. However, GR is formu-
lated as a classical theory, and merging it with quantum
physics in a consistent manner may well demand changes
in its foundational structure. Even if local Lorentz invari-
ance is exact in the underlying theory of quantum gravity,
spontaneous breaking of this symmetry may occur, lead-
ing to tiny observable effects [1]. Experimental studies
of Lorentz invariance are therefore valuable as probes of
the foundations of GR.
Short-range experiments are uniquely sensitive probes

of gravity at scales below about a millimeter and hence
offer interesting opportunities to search for new physics
beyond GR [2]. The essence of short-range experiments
is to measure the force between two masses separated
by a small distance. To attain sensitivity at short range
without being overwhelmed by Newton forces at larger
scales, the test masses are typically scaled to that range.
Experiments of this type are well suited, for example, to
searching for deviations from the gravitational inverse-
square law.
To date, most studies of local Lorentz invariance in

gravity are restricted to matter-gravity couplings [3, 4].
However, recent theoretical work [5] using effective grav-
itational field theory [6] shows that quadratic curvature
couplings involving Lorentz violation lead to interesting
new effects in short-range experiments that could have
escaped detection in conventional studies to date. The
Poisson equation for the Newton gravitational potential
U(r) generated by a source of mass density ρ(r) acquires
an extra perturbative term with four spatial derivatives,

−~∇2U = 4πGNρ+ (keff)jklm∂j∂k∂l∂mU, (1)

where (keff)jklm are effective coefficients with dimensions
of squared length that can be taken as constant on the
scale of the solar system [7]. The extra term violates
rotation symmetry and hence Lorentz invariance. It is
the general leading-order term in a natural perturbative
expansion because a term with three derivatives is ex-
cluded by Newton’s third law [5]. The presence of four
derivatives implies corrections to the Newton force that
are inverse quartic and hence appear only at short range.
The rotation violation implies effects in the laboratory
depending on orientation and also on sidereal time due
to the rotation of the Earth, thereby ensuring that the
resulting experimental signals are distinct from those as-
sociated with conventional Yukawa or inverse-power cor-
rections. The extra term offers a general description of
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FIG. 1: Schematic of the Indiana short-range experiment.

dominant noncentral short-range corrections to Newton
gravity arising from an underlying unified theory.

Here, we present new data acquired in March 2012
from a short-range experiment [8–10] located in Bloom-
ington, IN. We use these data to search for sidereal vari-
ations involving noncentral inverse-quartic corrections to
Newton’s law, obtaining first constraints on quadratic
Lorentz-violating curvature couplings at the level of 10−7

m2. We also extend the analysis to incorporate the 2002
dataset obtained with the apparatus located in Boulder,
CO [9]. Note that existing searches for pure-gravity lo-
cal Lorentz violation within this framework have been
restricted to the context of a Lorentz-violating inverse-
square law [11–18]. A few other short-range experiments
[19–22] may have potential sensitivity to the modifica-
tions (1), while some experiments optimized for nonper-
turbative corrections to Newton’s law could conceivably
be adjusted to study perturbative effects [23–26]. Note
also that constraints on forces with various inverse-power
laws have appeared in the literature [27], but only in the
context of Lorentz-invariant effects.

The design and operation of the experiment is de-
scribed elsewhere [8–10]. Here, we summarize briefly the
basic features. Each of the two test masses is a planar
tungsten oscillator of approximate thickness 250 µm, sep-
arated by a gap of about 80 µm, arranged as shown in
Fig. 1. A stiff conducting shield is placed between them
to suppress electrostatic and acoustic backgrounds. The
planar geometry concentrates as much mass as possible
at the scale of interest while being nominally null with
respect to inverse-square forces, thereby suppressing the
Newton background relative to new short-range effects.
The force-sensitive ‘detector’ mass is driven by the force-
generating ‘source’ mass at a resonance near 1 kHz. Vi-
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bration isolation is a key requirement for this setup, and
operation at 1 kHz is chosen because at this frequency
a comparatively simple passive vibration-isolation sys-
tem can be used. The entire apparatus is enclosed in a
vacuum chamber and operated at 10−7 torr to minimize
the acoustic coupling. Detector oscillations are read out
via capacitive transducer probes coupled to a sensitive
differential amplifier, with the signal fed to a lock-in am-
plifier referenced by the same waveform used to drive the
source mass. This design has proved effective in suppress-
ing all background forces to the extent that only thermal
noise is observed, arising from dissipation in the detector
mass. The output of the lock-in amplifier constitutes the
raw data. These data are converted to force readings by
comparison with the detector thermal noise, the scale of
which is determined using the equipartition theorem [8].
Following data collection in 2002, this experiment set the
strongest limits on unobserved forces of nature between
10 and 100 µm [9]. The apparatus has since been opti-
mized to explore gaps below 50 µm, and operation at the
thermal noise limit has recently been demonstrated [10].
Measuring the coefficients (keff)jklm in Eq. (1) is the

goal of the present analysis. The coefficients are to-
tally symmetric, implying 15 independent observables
for Lorentz violation. Following standard convention,
we extract values of these observables in the canonical
Sun-centered frame [3, 28], with Z axis along the di-
rection of the Earth’s rotation and X axis pointing to-
wards the vernal equinox. As the Earth rotates, the co-
efficients measured in the laboratory vary with sidereal
time T . The Earth’s boost β⊕ ≃ 10−4 can be neglected
here. The transformation from the Sun-centered frame
(X,Y, Z) to the laboratory frame (x, y, z) therefore in-
volves a time-dependent rotationRjJ (T ) [5] that depends
on the Earth’s sidereal frequency ω⊕ ≃ 2π/(23 h 56 min)
and the colatitude χ of the laboratory, which is 0.887 in
Bloomington and 0.872 in Boulder. The laboratory coef-
ficients (keff)jklm(T ) are thus related to the coefficients

(keff)JKLM in the Sun-centered frame by

(keff)jklm(T ) = RjJRkKRlLRmM (keff)JKLM . (2)

The cartesian components gj(r, T ) of the modified
gravitational acceleration at position r and at sidereal
time T contain the conventional Newton acceleration
along with an inverse-quartic correction term,

gj(r, T ) = −GN

∫
d3r′ρ(r′)

(
R̂j

|r − r′|2
+

kj(R̂, T )

|r − r′|4

)
.

(3)

Here, R̂ = (r − r
′)/|r − r

′|, while

kj(R̂, T ) = 105

2
(keff)klmnR̂

jR̂kR̂lR̂mR̂n

−45(keff)klmmR̂jR̂kR̂l + 9

2
(keff)klklR̂

j

−30(keff)jklmR̂kR̂lR̂m + 18(keff)jkllR̂
k (4)

controls the inverse-quartic force correction, which varies
with direction R̂ and sidereal time T . Note that the T

dependence is oscillatory and includes components up to
the fourth harmonic of ω⊕.
The detector is a constrained mechanical oscillator

with distributed mass. The modal amplitude at any
point in the detector mass is strongly dominated by ver-
tical motion. This is particularly true near the thermal
noise limit, where the amplitudes are of order 1 pm [10].
The experiment is thus sensitive predominantly to the z
component Fp of the effective force at the location of the
capacitive probe, which can be written as

Fp(T ) =
1

d

∫

D

d3r ξ(r)F z(r, T ). (5)

Here, ξ(r) is the detector mode-shape function, which
is the amplitude of the displacement of the detector at
point r when undergoing free oscillations in the relevant
mode of interest, and the displacement d is the oscillation
amplitude of the detector at the location of the probe.
These quantities are derived from a finite-element model
of the detector mass and have the same arbitrary nor-
malization. The integration is taken over the volume D
of the detector over which the force is applied.
For the purposes of the present analysis, Eq. (5) is

evaluated by Monte-Carlo integration, using the z com-
ponent F z(r) of the force (3) expressed in terms of the
coefficients (keff)JKLM in the Sun-centered frame along
with the geometrical parameters listed in Table II of Ref.
[8]. Note that the source amplitude for the 2012 dataset
was 22.2±3.2 µm and the average gap was 77.5±20 µm.
The experiment is performed on resonance, so the Monte-
Carlo algorithm computes the Fourier amplitude of Eq.
(5) averaged over a complete cycle of the source-mass os-
cillation, taking into account the measured source-mass
curvature and mode shape. The result can be expressed
as a Fourier series in the sidereal time T ,

Fp(T ) =
1

2
C0 +

4∑

m=1

Smω sin(mω⊕T ) + Cmω cos(mω⊕T ).

(6)
The Fourier amplitudes in this expression are linear com-
binations of the coefficients (keff)JKLM . Their weights
are functions of the source and detector mass geometry
and the laboratory colatitude. Using approximately 500
million random pairs of points for each test mass suf-
fices to resolve all harmonics. Systematic errors from the
dimensions and positions of the test masses [8] can be
determined at this stage, by computing the mean and
standard deviation of a population of Fourier amplitudes
generated with a spread of geometries based on metrol-
ogy errors. For the 2002 data, the systematic error on
the weights ranges from about 10% to 75%. For the 2012
data, it ranges from 15% to 50% on the most resolvable
terms, while a few poorly resolved ones have systematic
errors in excess of 100%. Most of the systematic error is
due to the uncertainty in the average gap, with a smaller
contribution from the source amplitude.
All 15 independent components of (keff)JKLM appear

in the Fourier series (6), although no single amplitude
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FIG. 2: Data from the Indiana short-range experiment.

contains all of them. The transformation (2) predicts
some simple relations among the amplitudes, each of
which is satisfied by the results of the numerical integra-
tion. Performing the numerical integration for a hypo-
thetical geometry with an average gap an order of mag-
nitude larger than the largest dimension of either mass
produces a result agreeing to within a few percent with
the analytical expression for point masses of the same
mass and separation. This limiting case confirms that
some contributions from (keff)JKLM are resolvable only
due to the planar geometry.

Figure 2 displays the force data acquired during the
runs in 2012 and in 2002 as a function of the sidereal
time T measured in seconds from T = 0, which is taken
to be the 2000 vernal equinox. The force data were col-
lected at a 1 Hz rate in 14.4-minute sets (2012 run) and in
12-minute sets (2002 run), with comparable intervals be-
tween each set during which diagnostic data were taken
to monitor the experiment for gain and frequency drifts.
Each data point represents the mean of a 14.4- or 12-
minute set. Each error bar shown is the 1σ standard
deviation of the mean, including both the statistical un-
certainty and the systematic errors associated with the
force calibration. The 2002 force calibration and param-
eters are given by Eq. (2) and Table 1 of Ref. [8]. The
2012 parameters are unchanged except that the mechani-
cal quality factor was 22479±64, the resonance frequency
was 1191.32± 0.015 Hz, and the integrated mode shape
was (6.0±0.6)×10−11 m5/2. The calibration uncertain-
ties for the 2002 and 2012 data increase the errors by
about 1% and 2%, respectively.

Figure 2 represents a finite time series of force data
with uneven time distribution. To analyze the data for
Lorentz violation, we adopt a well-established procedure
[13]. The ideal measure of each harmonic signal com-

2012 data 2012 data 2002 data 2002 data

Mode d̃k D̃k d̃k D̃k

C0 −8.1± 5.0 −3.1± 6.2 −4.2± 7.8 1.7± 19.1

Sω −0.7± 6.8 −2.9± 8.7 24.9 ± 9.6 14.4± 22.9

Cω 7.5± 7.3 7.2 ± 7.8 −2.2± 12.2 −2.6± 11.5

S2ω −4.1± 7.1 −10.1 ± 8.7 −16.9 ± 12.0 −4.3± 12.4

C2ω −9.4± 7.0 −11.3 ± 7.6 −0.8± 9.9 −11.0± 26.4

S3ω −17.2 ± 7.1 −18.9 ± 7.4 33.5 ± 10.4 30.8± 20.8

C3ω −11.8 ± 7.0 −15.6 ± 8.9 −19.2 ± 11.5 −17.5± 12.6

S4ω −0.9± 7.1 0.1 ± 7.6 0.6 ± 11.3 6.7± 13.8

C4ω 3.4± 7.1 −1.1± 8.1 9.1 ± 10.7 8.8± 21.7

TABLE I: Fourier transforms in fN units.

ponent is the corresponding Fourier amplitude in Eq.
(6). Each of these nine amplitudes, k = 1, . . . 9, can

be estimated by the discrete Fourier transform d̃k =
2

N

∑
j f(Tj)ak(Tj), where N is the total number of force-

data points plotted in Fig. 2, f(Tj) are the values of the
force at each time Tj, and ak(Tj) is either sin(ωkTj) or
cos(ωkTj) with ωk = mω⊕, m = 0, 1, 2, 3, 4. For this
part of the analysis, we treat the 2012 and 2002 results
as separate datasets. The nine components d̃k extracted
from the 2012 dataset and from the 2002 dataset are
listed in the second and fourth columns of Table I. The
uncertainties are determined by propagating the errors
of the time-series data in Fig. 2. The uncertainties can
also be estimated by computing the Fourier transforms at
several frequencies above and below the signal frequency
and calculating the root mean square of the values ob-
tained. The former method is slightly more pessimistic
and is adopted here.

For a finite time series, the Fourier components over-
lap. The overlap can be quantified by a correlation co-
variance matrix cov(ak, ak′) = (2/N)

∑
j ak(Tj)ak′(Tj).

The covariance matrix relates the amplitudes D̃k for con-
tinuous data to the amplitudes d̃k for discrete data ac-
cording to d̃k =

∑
k′ cov(ak, ak′)D̃k′ . The nine continu-

ous amplitudes D̃k can be obtained by applying the in-
verse matrix cov−1. For the 2012 and 2002 datasets, the
results of this calculation are also displayed in the third
and fifth columns of Table I. The D̃k can be taken to
represent the measured values of the force components.
These values largely are consistent with zero within the
quoted errors, which include the small calibration sys-
tematics along with statistical errors. The modes at 3ω
appear to display resolved signals at this stage. However,
the associated coefficient weights are tiny, so these force
components become swamped by position systematics in
the final results below.

Individual measurements of the independent compo-
nents of (keff)JKLM can be extracted from a global prob-
ability distribution formed using the values of the nine
continuous amplitudes D̃k and their errors. Each mea-
sured amplitude can be assigned a corresponding proba-
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Coefficient 2012 value 2002 value Combined

(10−7 m2) (10−7 m2) (10−7 m2)

(keff)XXXX 1.1± 3.2 0.5± 16.1 1.1± 3.1

(keff)Y Y Y Y 0.5± 3.2 −1.7± 16.2 0.4± 3.1

(keff)ZZZZ 0.6± 2.5 −0.7± 14.9 0.6± 2.5

(keff)XXXY 5.3± 19.5 2.5± 34.9 −3.4± 15.8

(keff)XXXZ −9.5± 13.7 −5.9± 28.7 −8.1± 10.7

(keff)Y Y Y X −5.7± 19.5 −1.0± 35.1 −4.4± 15.8

(keff)Y Y Y Z 7.3± 12.2 −31.7± 44.8 4.6± 9.6

(keff)ZZZX −6.6± 21.5 −3.5± 45.7 −5.4± 16.6

(keff)ZZZY 7.4± 23.3 −12.6± 45.8 3.4± 17.8

(keff)XXYY 0.4± 1.6 −0.5± 8.5 0.4± 1.5

(keff)XXZZ 0.2± 1.6 −0.5± 9.1 0.2± 1.6

(keff)Y Y ZZ 0.6± 1.6 −0.3± 9.1 0.5± 1.6

(keff)XXYZ −3.6± 5.7 16.2 ± 25.0 −2.7± 5.5

(keff)Y Y XZ 4.7± 7.2 7.5± 17.2 5.0± 6.6

(keff)ZZXY −4.0± 6.5 −0.4± 2.1 −0.7± 1.9

TABLE II: Coefficient values (2σ) from the 2012, 2002, and
combined datasets, with all other coefficients vanishing.

bility distribution pk = pk((keff)JKLM ) that is a function
of the 15 independent components of (keff)JKLM . The
pk are assumed to be gaussian with means µk and stan-
dard deviations σk. The global probability distribution
P = P ((keff)JKLM ) of interest is then the product of the
individual pk, taking the form

P = P0 exp

[
−

9∑

k=1

(D̃k − µk)
2

2σ2

k

]
. (7)

In this expression, P0 is an arbitrary normalization. The
predicted signal µk = µk((keff)JKLM ) for the kth ampli-
tude is determined from Eqs. (5) and (6), and the vari-
ance σ2

k includes all statistical and systematic errors.
An independent measurement of any one chosen com-

ponent of (keff)JKLM can in principle be obtained by
integrating the global probability distribution P over all
other components. The result is a distribution involving
the chosen component with a single mean and standard
deviation, which constitute the estimated component
measurement and its error. However, the 2012 dataset
alone contains only nine signal components, which is in-
sufficient to constrain independently each of the 15 de-
grees of freedom in (keff)JKLM . Following standard prac-
tice in the field [3], we can obtain maximum-sensitivity
constraints on each component of (keff)JKLM in turn by
integrating the global probability distribution with the
other 14 degrees of freedom set to zero. The resulting
measurements and 2σ errors on each independent compo-
nent of (keff)JKLM are displayed in the first two columns
of Table II. Note that the first column reveals our choice
for the 15 independent components of (keff)JKLM . Note
also that the sensitivity of the apparatus to the coeffi-
cients (keff)JKLM can be crudely estimated as the ratio

of the thermal-noise force at the location of the probe
(∼10 fN) to the scale (∼10 µN/m2) of the amplitudes in
the Fourier series (6), multiplied by a suppression factor
of order 10−2 because the dominant contribution to the
noncentral force in a parallel-plate geometry arises from
edge effects [29]. This estimate matches the size of the
values in the second column of Table II.
The third column of Table II displays the values for the

coefficients (keff)JKLM obtained from a comparable anal-
ysis of the 2002 dataset. These 2002 results are about a
factor of five less sensitive than the 2012 data, a feature
that can be traced to the larger average gap between the
source and detector masses and the smaller source-mass
amplitude in the 2002 experiment. The final column of
Table II presents the measured values of each indepen-
dent component taken in turn that are obtained from
analyzing the combined datasets.
The contents of Table II represent the first measure-

ments of noncentral inverse-quartic corrections to New-
ton gravity and hence of quadratic curvature couplings
violating local Lorentz invariance. The inverse-quartic
dependence implies the corrections are perturbative at
squared distances greater than the coefficient values. For
example, the perturbative effects at the apparatus scale
are roughly comparable to the Newton force, while on
the macroscopic scale of the laboratory the attained con-
straints exclude noncentral forces at about parts in ten
million. An alternative perspective can be obtained by
comparing the length dimension associated with the co-
efficients (keff)JKLM to the various scales set by the
Compton wavelengths of elementary particles. The ex-
periment here probes modifications governed to within
about an order of magnitude of the scale of the neutrino
Compton wavelength. Effects at the scales of Compton
wavelengths of other particles would be smaller, reflecting
the possibility that comparatively large ‘countershaded’
Lorentz violation remains a viable possibility [30].
The results reported here set a benchmark for future

efforts. For example, upgrading the apparatus used by
improving the test-mass and shield flatness could reduce
the average gap by a factor of two, and refining the test-
mass metrology could reduce the uncertainty in the av-
erage gap by a factor of four. Simulations suggest these
improvements would increase the overall sensitivity by
more than an order of magnitude in the absence of new
systematics. With several months of run time, the statis-
tical error bars could be reduced by about another order
of magnitude. Moreover, other experimental groups also
have the capability of improving substantially over the
results in the present work [5]. For example, the HUST
experiment has recently reported sensitivities to the co-
efficients (keff)JKLM surpassing those reported here [29].
Overall, the prospects for improved future short-range
searches for Lorentz violation are excellent.
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