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Abstract

We use the conformal bootstrap to study conformal field theories with O(N) global
symmetry in d = 5 and d = 5.95 spacetime dimensions that have a scalar operator φi
transforming as an O(N) vector. The crossing symmetry of the four-point function of this
O(N) vector operator, along with unitarity assumptions, determine constraints on the scaling
dimensions of conformal primary operators in the φi × φj OPE. Imposing a lower bound
on the second smallest scaling dimension of such an O(N)-singlet conformal primary, and
varying the scaling dimension of the lowest one, we obtain an allowed region that exhibits a
kink located very close to the interacting O(N)-symmetric CFT conjectured to exist recently
by Fei, Giombi, and Klebanov. Under reasonable assumptions on the dimension of the second
lowest O(N) singlet in the φi × φj OPE, we observe that this kink disappears in d = 5 for
small enough N , suggesting that in this case an interacting O(N) CFT may cease to exist
for N below a certain critical value.
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1 Introduction and Summary

The conformal bootstrap [1–4] has recently reemerged as a powerful tool for obtaining

non-perturbative information about the operator spectrum and operator product expansion

(OPE) coefficients of conformal field theories (CFTs). Introduced originally in the context

of two-dimensional CFTs [1–4], this technique has been applied to higher-dimensional CFTs

only recently starting with the work of [5]. The bootstrap uses the crossing symmetry of cor-

relation functions of CFTs to put an infinite set of constraints on the CFT data. While it is

difficult to solve these constraints exactly in d > 2, the recent reformulation of the bootstrap

uses unitarity to rephrase the constraint problem as a convex optimization problem, which

can be numerically solved to get bounds on the CFT data in any number d of spacetime

dimensions (see, for example, [5–38]). In several cases [18, 29, 35, 38], these bounds have

featured kinks that are believed to be located very close to known CFTs. The conformal

bootstrap has therefore allowed these known CFTs to be studied nonperturbatively.

A recent notable application of these techniques has been to CFTs with global O(N)

symmetry in d = 3 [18]. This class of CFTs are of interest because they include the critical

O(N) vector model, which has several physical applications for d = 3 and N ≤ 3. In

2 < d < 4 the critical O(N) vector model corresponds to the IR fixed point of the RG

flow that starts from a free theory of N scalars φi, i = 1, . . . , N , in the UV perturbed by

the (φiφi)
2 operator. The critical O(N) vector model in 2 < d < 4 is strongly coupled

in the IR, so perturbative analysis must employ either a large N expansion [39–48] or a

Wilson-Fisher ε � 1 expansion for d = 4 − ε [49, 50], neither of which extend easily to

the physically interesting cases of small N and ε = 1. The conformal bootstrap bounds on

the scaling dimensions of CFTs with O(N) symmetry feature a kink at values that seem to

correspond to the perturbative prediction for the critical O(N) vector model at large N and

are consistent with Monte Carlo simulation results at small N [18]. It is tantalizing that

the conformal bootstrap may provide a new way of calculating the CFT data of the critical

O(N) model, and that this new way can perhaps have better accuracy than other current

methods.

The conformal bootstrap for O(N) theories successfully found the nontrivial critical the-

ory in d < 4; should we expect it to find another nontrivial interacting theory with O(N)

symmetry in d > 4 spacetime dimensions? This question is particularly interesting due to

the proposal that O(N) vector models in d dimensions are dual to higher spin quantum grav-

ity with Dirichlet boundary conditions in d + 1 dimensions according to the AdSd+1/CFTd

correspondence [51,52]. In d > 4 spacetime dimensions, the quartic operator (φiφi)
2 is irrel-
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evant, so there is no IR fixed point in this case that can be reached from the theory of N

free scalars perturbed by this quartic operator. However, it has been proposed [53–56] that

a nontrivial interacting O(N) theory should also exist for 4 < d < 6 as a UV fixed point

from which one can flow to the theory of N free scalars. Such a UV fixed point can itself

be thought of as the IR fixed point of the asymptotically free cubic theory of N + 1 scalars

with Lagrangian [51,52]

L =
1

2
(∂µφi)

2 +
1

2
(∂µσ)2 +

g1
2
σφiφi +

g2
2
σ3. (1.1)

Like in the 2 < d < 4 version described above, when 4 < d < 6, the nontrivial unitary

IR fixed point of (1.1) is generically strongly coupled. Perturbative analysis must employ

either a large N expansion or an ε � 1 expansion for d = 6 − ε.1 Unlike the 2 < d < 4

version, the 4 < d < 6 interacting O(N) vector model is predicted to have a critical value

of N below which the theory becomes non-unitary. The large N expansion predicts that

this Ncrit is small in d = 5, roughly Ncrit < 35, so as in the 2 < d < 4 case, the physically

interesting regime is small N and ε = 1, albeit for a different reason. For such N and ε, the

perturbative methods are inaccurate and the conformal bootstrap becomes one of the only

available nonperturbative tools at our disposal.

The conformal bootstrap analysis of interacting O(N) theories is more difficult in d = 5

than in d = 3 due to the following subtlety. In d = 3, the critical theory was identified

with a kink on the upper bound for the lowest dimension ∆σ of an O(N) singlet operator

in terms of the dimension ∆φ of the O(N) fundamental field φi. This bound was derived

from the crossing symmetry constraints on the 4-point function 〈φiφjφkφl〉 under no other

assumptions besides unitarity for all other operators appearing in the φi × φj OPE. Such

single operator bootstrap studies with no further operator spectrum assumptions tend to

produce monotonically increasing upper bounds that begin at value (∆φ,∆σ) = (d−2
2
, d −

2) corresponding to the free theory of N scalars, at least when φi has small anomalous

dimension. (In the theory of N free scalars, we have that σ = φiφi is the lowest dimension

O(N) singlet.) The large N expansion of the interacting O(N) theory yields ∆φ = d−2
2

+

O(1/N) and ∆σ = 2 +O(1/N) for all d. Therefore, for d = 3 the critical theory could exist

as a kink on the border of the upper bound on ∆σ as a function of ∆φ, but for d = 5 the

interacting theory of [55, 56] would be hidden in the allowed region in the (∆φ,∆σ) plane

1In the case of the ε expansion, it was found in [55, 56] that there are three non-trivial RG fixed points,
two of which exist only for N >∼ 1000, while the latter exists for all values of N—See Figure 2 in [55]. It is
not clear what the fate of these fixed points is as one increases ε, but it is believed that at least one of them
is still present when ε = 1 and N is large enough.
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below the free theory value ∆σ = d− 2.

One way of further carving out parts of the allowed region below ∆σ = d − 2 is to

examine more complicated 4-point functions. In the O(1) = Z2 Ising case, this region

was probed by bootstrapping mixed correlators [33] and assuming that the only relevant

scalar operators are φ and σ. This assumption is physically motivated for the critical O(N)

vector models. These techniques yielded a small island of allowed region around the critical

Ising point. Bootstrapping mixed correlators for general O(N) theories is significantly more

computationally intensive than for the N = 1 case, however, because there are many more

crossing relations for N > 1.

An alternative is to avoid the problem mentioned above altogether by using the conformal

bootstrap to look at OPE coefficients instead of at scaling dimensions of operators. Ref. [27]

determined bounds on the stress tensor and O(N) current central charges,2 cT and cJ , for

d = 5 O(N)-symmetric CFTs. They found that, for large N , the minimum of cJ seemed

to correspond to the value expected from the large N interacting theory value. It was not

clear, however, whether minimizing cJ would match the interacting theory at smaller values

of N . Notably, in [27] no critical value of N was identified.

In this paper, we find that simply imposing a lower bound on the second lowest conformal

primary operator in the O(N) singlet sector (which we will henceforth refer to as σ2), and

then employing the crossing symmetry of the single operator four point function 〈φiφjφkφl〉,
along with unitarity assumptions, is enough to probe the region in the (∆φ,∆σ) plane below

the free theory value ∆σ = d− 2.3 We emphasize that the lower bound on ∆σ2 (where this

lower bound is chosen to be strictly greater than ∆σ) must be chosen judiciously if one’s goal

is to study the interacting O(N) theories proposed in [55,56]. Indeed, in these theories, one

has ∆σ2 = 4+O(1/N), where the leading 1/N correction is negative [39–48]. At least at large

N , one therefore expects the scaling dimension of σ2 to be slightly less than four. Similarly, if

one were to work in d = 6−ε dimensions, with ε� 1, a perturbative computation shows that

∆σ2 = 4 +O(ε), where again the leading correction in ε is negative [55,56]. At least at small

ε, we therefore expect ∆σ2 to be slightly less than four. In this paper, we therefore choose

the lower bound on ∆σ2 to be slightly smaller than four, as informed by the perturbative

expansions we just mentioned.

The summary of our paper is as follows. We start with a study in d = 6− ε space-time

2These “central charges” are defined as the numerical coefficients that appear in the two-point functions
of the canonically normalized stress tensor and O(N) current, respectively. If one normalizes the stress
tensor and O(N) current to a fixed number in all CFTs, the central charges mentioned above can be read
off from the coefficients with which the stress tensor and of the O(N) current appear in the φi × φj OPE.

3A similar observation has been made in d = 3 for theories with a fermionic operator ψ [57, 58].
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dimensions, with ε = .05. The advantage of such a study is that, in principle, we can be

guided either by the ε expansion or by the 1/N expansion, or by both.4 As we review in more

detail in the following section, the ε expansion provides evidence for the existence of three

RG fixed points in the model (1.1), out of which only one is expected to be continuously

connected to the interacting O(N) model in d = 5. In d = 6 − ε this fixed point exists

only for values of N larger than Ncrit ≈ 1000. Using the bootstrap, we find a kink for

N >∼ 1000 whose (∆φ,∆σ) values match the ε � 1 perturbative prediction for this fixed

point. Interestingly, we find that this kink persists, however, for N <∼ 1000 as well, and its

existence does not seem to be related to one of the other RG fixed points that is expected

to exist for all N .

We continue with a study of O(N)-symmetric theories in d = 5. We start with N = 500

and using the large N expansion value for ∆σ2 and our most accurate numerics we find

a kink at (∆φ,∆σ) = (1.500409, 2.027) that is very close to the large N expansion values

(∆φ,∆σ) = (1.500414, 2.022) for the critical theory.5 We then examine N ≤ 40 and find a

kink that disappears around 15 < Ncrit < 22 for a reasonable assumption of ∆σ2 , which is

consistent with the large N expansion prediction of Ncrit < 35. We check that our choice of

∆σ2 does not qualitatively affect our answers for 6 ≤ N ≤ 40.

The outline of this paper is as follows. In Section 2 we briefly list some relevant facts

about the recently proposed 4 < d < 6 O(N)-symmetric critical theory in d = 5 as well as

d = 6− ε for ε = .05. In Section 3 we present our bootstrap bounds for d = 5.95 and d = 5.

Lastly, Section 4 contains an interpretation of our results with further discussion.

Note added: As this work was in its final stages, the preprint [61], which explores the

same topic as we do, appeared on arXiv.org.

4A slight disadvantage is that it has not been established conclusively whether the interacting O(N)
theories of [55,56] are unitary in non-integer dimensions. Indeed, in [59] it was noted that free field theories
in fractional dimensions are non-unitary, and it was conjectured that the Wilson-Fisher fixed points would
share the same feature. In d = 4 − ε, it can be checked explicitly that high-dimension operators acquire
complex anomalous dimensions [60]. The numerical conformal bootstrap may not be sensitive to such mild
potential violations of unitarity, as evidenced by the results of [19] on the Ising model in 2 < d < 4.

5The match between our numerical results and the estimates coming from the large N expansion can be
improved both by carrying out the large N expansion to a higher order and by increasing the search space
in our numerics. It would be interesting to perform such an analysis in the future.
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2 Review of Nontrivial O(N)-symmetric Theories for

4 < d < 6

The large N analysis of the interacting O(N) vector model has been carried out for arbitrary

dimension d in [39–48]. For the two cases studied in this work, d = 5 and d = 5.95, we record

that the dimensions for the O(N) fundamental φi and the two lowest singlet operators σ and

σ2 are

d = 5 : ∆φ = 1.5 +
0.216152

N
− 4.342

N2
− 121.673

N3
+O(1/N4) , (2.1a)

∆σ = 2 +
10.3753

N
+

206.542

N2
+O(1/N3) , (2.1b)

∆σ2 = 4− 13.8337

N
− 1819.66

N2
+O(1/N3) , (2.1c)

d = 5.95 : ∆φ = 1.975 +
.0476989

N
− 1.86705

N2
− 58.7662

N3
+O(1/N4) , (2.2a)

∆σ = 2 +
1.91309

N
+

311.496

N2
+O(1/N3) , (2.2b)

∆σ2 = 4− 4.67497

N
− 2287.35

N2
+O(1/N3) . (2.2c)

For d = 5, one can estimate that ∆φ no longer obeys the unitarity bound ∆φ ≥ 3/2 if N is

smaller than Ncrit ≈ 35, although this estimate is of course very crude [55,56].

In d = 6−ε, one can also use the ε� 1 expansion computed in [55,56] for the Lagrangian

(1.1). In that study, the β-function β(g1, g2) and the anomalous dimensions γσ(g1, g2) and

γφ(g1, g2) were computed to three loop order O(ε3), while the anomalous dimension γσ2(g1, g2)

was computed to one loop order O(ε). The fixed point couplings g∗1, g
∗
2 are then found by

solving for β(g∗1, g
∗
2) = 0, and can then be plugged into the anomalous dimensions to find the

scaling dimensions at the fixed points. In general there are three distinct solutions (g∗1, g
∗
2): a

solution that corresponds to the interacting O(N) model with two relevant scalar operators,

and two solutions that correspond to theories with three relevant scalar operators. In the

Appendix we list the ε expansion for each solution for the various values of N used in this

paper for d = 5.95. The interacting O(N) fixed point coupling solution becomes complex at

Ncrit = 1038.26605− 609.83980ε− 364.17333ε2 +O(ε3) . (2.3)
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Note that while one of the solutions with three relevant scalar operators also becomes complex

at this point, the other one remains real until

N ′crit = 1.02145 + 0.03253ε− 0.00163ε2 +O(ε3) , (2.4)

i.e. effectively for all N > 0.

3 Conformal Bootstrap Numerics

Let us briefly review the formulation of the numerical conformal bootstrap for CFTs with

O(N) global symmetry. For further details, see [18]. Invariance of the four point function of

O(N) fundamental fields

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 (3.1)

under the exchange (x1, i)↔ (x3, k) implies the crossing equation∑
O∈φi×φj OPE

λ2O
~dR,J(∆O,∆φ) = 0 , (3.2)

where O runs over all conformal primaries in the OPE φi×φj. Here, λ2O are the squares of the

OPE coefficients that must be positive by unitarity, and ~dR,J(∆O,∆φ) are three-component

vectors whose components are explicit functions of the conformally-invariant cross-ratios

u =
x212x

2
34

x213x
2
24

and v =
x214x

2
34

x223x
2
24

, and whose form depends only on the dimension of both the

O(N) fundamental ∆φ and on the dimension ∆O, Lorentz spin J , and O(N) irrep R of

the operator O. (R ∈ {s, t, a}, where s, t, a represent O(N) singlets, rank-two symmetric

traceless tensors, and rank-two anti-symmetric tensors, respectively. It is only ~dt,J that have

explicit N dependence.) As in [18], we normalize the OPE coefficient of the identity operator

λId=1.

To find bounds on the scaling dimensions of operators appearing in the φi×φj OPE, one

can consider linear functionals α satisfying the following conditions:

α(~ds,0(0,∆φ)) = 1 ,

α(~dR,J(∆,∆φ)) ≥ 0, for all ∆ ≥ ∆∗R,J
(3.3)

where ∆∗R,J are the assumed lower bounds for spin-J conformal primaries (other than the
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identity) that appear in the φi×φj OPE and transform in the O(N) irrep R. The existence

of any such α would contradict (3.2), and thereby would allow us to find a combined upper

bound on the lowest-dimension ∆∗R,J of the spin-J conformal primary in irrep R. If we set

∆∗s,0 = ∆σ and all other ∆∗R,J equal to the corresponding unitarity value, we can then find

disallowed points in the (∆φ,∆σ) plane. As mentioned in the introduction, this procedure

gives a monotonically increasing upper bound for ∆σ vs. ∆φ, and the interacting theories

discussed in 4 < d < 6 dimensions discussed in the previous section sit well within the

allowed region.

To overcome this difficulty, we modify the procedure mentioned above and look for func-

tionals α satisfying

α(~ds,0(0,∆φ)) = 1 ,

α(~ds,0(∆σ,∆φ)) ≥ 0 ,

α(~ds,0(∆,∆φ)) ≥ 0, for all ∆ ≥ ∆∗s,0 > ∆σ ,

α(~dR,J(∆,∆φ)) ≥ 0, for all (R, j) 6= (s, 0) and ∆ ≥ ∆∗R,J .

(3.4)

The existence of such a functional α disproves the existence of an O(N)-symmetric SCFT for

which the conformal primaries appearing in the φi×φj OPE satisfy the following conditions:

• The lowest spin-0 O(N) singlet has dimension ∆σ.

• All other spin-0 O(N) singlets have dimensions larger than ∆∗s,0.

• All spin-J conformal primaries other than spin-0 Lorentz singlets have dimension larger

than ∆∗R,J .

From now on we set ∆∗R,J equal to the unitarity bound for all (R, J) 6= (s, 0), and we interpret

∆∗s,0 as a lower bound on the second lowest dimension ∆σ2 of a spin-0 O(N) singlet conformal

primary. We denote this second lowest dimension by ∆σ2 because in the interacting O(N)-

symmetric theory described by the Lagrangian (1.1) the corresponding operator is σ2.

The numerical implementation of the above problem requires two truncations: one in

the number of derivatives used to construct α and one in the range of spins J that we

consider, whose contributions to the conformal blocks are exponentially suppressed for large

spin J . We denote the maximum derivative order by Λ (as in [34]) and the maximum spin by

Jmax. The truncated constraint problem can then be rephrased as a semidefinite programing

problem using the method developed in [5]. This problem can be solved efficiently by freely

available software such as sdpa gmp [62]. The limiting factor in this implementation of the
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Figure 1: Righthand graph is zoomed in version of region in lefthand graph denoted by dashed
square. Bounds on ∆σ in terms of ∆φ in d = 5.95 for N = 600, 1000, 1400 under the assump-
tion that σ is the only scalar operator with dimension less than ∆σ2 ≥ 3.986, 3.993, 3.996
respectively. These bounds were computed with Jmax = 20 and Λ = 17. The red dot,
triangle, and square denote the large N expansion (∆φ,∆σ) values for the critical O(N)
vector model for N = 1400, 1000, and 600, respectively. The crosses denote the ε expansion
(∆φ,∆σ) values for the CFT with three relevant operators that exists for all N > 0 (Theory
3).

numerics is the parameter Λ. In this study we were able to compute numerically stable

results for Λ ≤ 21 and spins up to Jmax = 30. In each of the following cases we specify what

values of Λ and Jmax were used.

3.1 Bounds for d = 5.95

In Figure 1 we show bounds on ∆σ in terms of ∆φ in d = 5.95 for N near (N = 1000) the

large N expansion Ncrit ≈ 1000, as well as above (N = 1400) and below (N = 600). In

obtaining these plots we used ∆σ2 = 3.993, 3.996, 3.986, respectively, as obtained from the

large N expansion (2.2).6 Interestingly, these plots show an allowed region that starts at

the free theory point (∆φ,∆σ) = (1.975, 3.95) and that exhibits a kink close to ∆σ ≈ 2, as

expected for the RG fixed points mentioned in the previous section.

Recall that in the ε expansion around d = 6, there are three RG fixed points, two of

which exist only for N larger than Ncrit (referred to as the “Critical” theory and “Theory 2”

in the Appendix) and one that exists for all values of N (“Theory 3”). When N = 1400, the

values of (∆φ,∆σ) corresponding to the Critical and Theory 2 fixed points are numerically

very close and are marked with a red dot in Figure 1. They are also very close to the kink

6Note that if we were to use slightly smaller gaps for ∆σ2 the allowed region would expand slightly.
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Figure 2: Righthand graph is zoomed in version of region in lefthand graph denoted by dashed
square. Bounds on ∆σ in terms of ∆φ in d = 5.95 for N = 1000 under the assumption that
σ is the only scalar operator with dimension less than ∆σ2 ≥ 3.993. The black line was
computed with Jmax = 30 and Λ = 21, the brown line was computed with Jmax = 25 and
Λ = 19, and the orange line was computed with Jmax = 20 and Λ = 17. The red dot denotes
the large N expansion (∆φ,∆σ) values for the critical O(N) vector model for N = 1000.
Note that the lower kink corresponding to the interacting O(N) CFT is well converged, but
the second higher kink diminishes significantly as Λ is increased.

mentioned in the previous paragraph, which suggests that this kink corresponds to one of

these two interacting theories in d = 5.95. The values of (∆φ,∆σ) for the Theory 3 fixed

point are marked with crosses of different colors in Figure 1. They are all in the disallowed

region, perhaps due to the fact that the values of ∆σ2 for these theories are significantly

below the lower bounds on ∆σ2 we used in making these plots.

It is worth noting that the kink close to ∆σ ≈ 2 persists even below Ncrit. If one were to

continue the RG fixed points that exist only above Ncrit to smaller values of N , one would

obtain fixed points whose critical couplings acquire imaginary parts. These fixed points

therefore continue as non-unitary theories for N < Ncrit.
7 We can speculate that the kinks

in Figure 1 for N ≤ 1000 are linked to these non-unitary theories, where the violations of

unitarity are too small to be detected by our numerics. It would be very interesting to find

a way of reproducing Ncrit ≈ 1000 from a bootstrap computation, and we leave this question

open for future work.

It is also worth noting that in Figure 1 there is a less pronounced second kink close to

the kink at ∆σ ≈ 2 we just discussed. However, this second kink becomes less and less

7As mentioned in Footnote 4, it is not clear whether the interacting O(N) theories of [55,56] are unitary
in non-integer dimension even at large N .
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pronounced as we increase the parameter Λ in our numerics—see Figure 2 for a comparison

between Λ = 17, Λ = 19, and Λ = 21 when N = 1000. We notice that the disallowed region

becomes significantly larger as we increase Λ, but the main kink around ∆σ ≈ 2 discussed

above is rather well-converged. The same phenomenon is observed also for N = 600 and

N = 1400.

3.2 Bounds for d = 5

Let us now show numerical bootstrap bounds in d = 5. In Figure 3 we show bounds on

∆σ in terms of ∆φ for N = 500, with Jmax = 20, 25, 30 and Λ = 17, 19, 21 respectively.

The value N = 500 is large enough that we can use the 1/N expansion in (2.1) reliably.

In particular, we use ∆σ2 = 3.965 as an accurate lower bound for our computation. As in

the d = 5.95 plots described above, the global shape of the allowed region in the (∆φ,∆σ)

plane shows a kink below the free theory value ∆σ = 3. For Λ = 21, this kink is located at

(∆φ,∆σ) = (1.500409, 2.027), which matches the large N values computed from (2.1) rather

well. (To the accuracy in (2.1), we have (∆φ,∆σ) ≈ (1.500414, 2.022).) Note that as we

increase Λ, the kink seems to roughly move along the lower border of the allowed region,

which does not change significantly. It is encouraging that the analytical approximation

marked by a red dot in Figure 3 also lies very close to the lower border of the allowed region,

because it is likely that as we increase Λ the kink would move closer to the red dot.

In Figure 4 we show bounds on ∆σ in terms of ∆φ for a range of N near Ncrit ≈ 35 as

approximated by the large N expansion. These plots were made under the assumption that

σ is the only scalar operator with dimension less than ∆σ2 ≥ 3.8. For this plot we used

Jmax = 25 and Λ = 19. The most notable features of this plot are the sharp kinks clearly

noticeable for the larger values of N , which seem to disappear between N = 15 and N = 22.

At the low values of N considered in Figure 4 the large N expansion for ∆σ2 (2.1c) no

longer provides an accurate estimate for the lower bound on ∆σ2 . We chose ∆σ2 ≥ 3.8 as

a reasonable estimate, considering that at N > 200 the large N expansion is reasonably

accurate, gives ∆σ2 > 3.9, and tends to be monotonically increasing with N fairly slowly.

In Figure 5 we show that considering large or smaller bounds for ∆σ2 does not qualitatively

change the features in our plots, in particular the appearance or lack of appearance of a

kink, for the highest (N = 40) and lowest (N = 6) values of N that we consider. Note that

a kink does not appear if we assume a less stringent bound on ∆σ2 , so we can say reliably

that our plots feature no kinks for small values of N and physical values of ∆σ2 . (Recall that

we expect ∆σ2 to be less than 4 for the interacting O(N) models proposed in [55,56].) Note
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Figure 3: Bounds on ∆σ in terms of ∆φ in d = 5 for N = 500 under the assumption that σ is
the only scalar operator with dimension less than ∆σ2 ≥ 3.965. The black line was computed
with Jmax = 20 and Λ = 17, the brown line was computed with Jmax = 25 and Λ = 19,
and the orange line was computed with Jmax = 30 and Λ = 21. The red dot denotes the
large N expansion (∆φ,∆σ) = (1.500414, 2.022) for the critical O(N) vector model. Note
the extremely zoomed in scale of this plot.

also that the kinks persist and become sharper as we increase ∆σ2 . Since large gaps for ∆σ2

are unphysical, we should not view the presence of kinks computed with unphysically large

∆σ2 as evidence for the existence of a CFT. These plots were computed for Jmax = 25 and

Λ = 19.

4 Discussion

We end with a discussion of our results. Our main observation in this work is that one can

study interacting O(N)-symmetric CFTs in more than four spacetime dimensions using the

conformal bootstrap, and that the conformal bootstrap provides evidence for the RG fixed

points found in [55, 56]. Moreover, we provide evidence that the conformal bootstrap can

lead to a precision study of these theories, as they seem to be located near sharp features

(kinks) in the space of allowed scaling dimensions for certain operators. More explicitly, our

strategy is to consider the O(N)-singlet conformal primaries that appear in the OPE φi×φj
of two O(N) fundamental operators, and impose a bound (that we hold fixed) on the second
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Figure 4: Bounds on ∆σ in terms of ∆φ in d = 5 for a range of N under the assumption
that σ is the only scalar operator with dimension less than ∆σ2 ≥ 3.8. These bounds are
computed with Jmax = 25 and Λ = 19.

Disallowed

Allowed��2 �
3.5

3.8

4

1.500 1.501 1.502 1.503 1.504 1.505 1.506
��

2.55

2.60

2.65

2.70

2.75

��

d = 5, N = 6, � = 19

Disallowed Allowed

��2 �

3.5

3.8

4

1.500 1.501 1.502 1.503 1.504
��2.20

2.25

2.30

2.35

2.40

2.45

2.50

2.55

2.60
��

d = 5, N = 40, � = 19

Figure 5: Bounds on ∆σ in terms of ∆φ in d = 5 for N = 6 (left) and N = 40 (right) under
the assumption that σ is the only scalar operator with dimension less than ∆σ2 . The solid
lines were computed with Jmax = 25 and Λ = 19 for a variety of assumed lower bounds for
∆σ2 .

lowest dimension ∆σ2 of such an operator. Then varying the lowest scaling dimension ∆σ

of such an O(N) singlet, we find an allowed region that exhibits the kink around ∆σ ≈ 2,

where the interacting theories of [55, 56] were expected to exist. For large values of N , we

match the location of this kink with results coming from the large N expansion.
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There are several questions that we leave open and that we hope to come back to in the

future. Perhaps the most interesting one is how to determine precisely whether in d = 5 there

exists a critical value of N below which the interacting O(N) theory of [55,56] ceases to exist.

We noticed in Figure 4 that under a reasonable assumption on ∆σ2 , the kink in the (∆φ,∆σ)

plane disappears somewhere between N = 15 and N = 22. It is tempting to conjecture

that the critical value of N lies in this range. However, we noticed that in d = 5.95, the

kink corresponding to the interacting O(N) CFT persisted down to smaller values of N than

what was expected from the ε-expansion, and the same could be true in d = 5 as well. We

therefore make a more conservative conjecture that, in d = 5, there is no interacting O(N)

CFT for N < 15.8 It would be very interesting to find a systematic way of determining the

precise value of Ncrit in this case. Perhaps one way to proceed would be to examine whether

there are any qualitative changes in the spectrum of operators for a potential CFT that lives

at the kink as one varies N using, for instance, the method of [16,29].

Along these lines, it is worth pointing out a similarity between our study and that of [38],

where Z2-invariant CFTs were examined in d < 3. For d ≥ 3, the upper bounds on the

dimension ∆σ of the lowest scalar that appears in the φ × φ OPE (where φ is the lowest

dimension Z2-odd operator) exhibit a kink in the (∆φ,∆σ) plane corresponding to the Ising

model. Below d = 3, this kink splits into two distinct kinks, and a careful examination of

the operator spectrum near these kinks shows that, if these kinks were to correspond to

CFTs, they would be of different nature than the Ising model in d ≥ 3. We did observe

a second kink d = 5.95 in Figures 1 and 2, but it is currently unclear whether this second

kink gets washed out as we increase the parameter Λ in our numerics. It would therefore

be very interesting to increase Λ further, perhaps using a different semi-definite programing

solver from sdpa gmp. If the second kink does not get washed out, it is conceivable that its

appearance could be correlated with the lack of unitarity that occurs at the critical value

of N .

While in this work we focused on a two-dimensional section in the space (∆φ,∆σ) for

a fixed lower bound on ∆σ2 , it would be interesting to let this lower bound on ∆σ2 vary

and obtain a three-dimensional plot. Alternatively, one can assume that in the O(N)-singlet

sector there are only two relevant conformal primary operators, σ and σ2, and vary their

dimensions to obtain a three-dimensional plot. Preliminary exploration shows that a fixed

∆σ2 section of such a plot coincides with the plots shown in this paper where we simply

impose a lower bound on ∆σ2 .

8This value is close to the estimate Ncrit ≈ 14 obtained in [56] from extrapolating the 4 + ε expansion to
ε = 1.
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Lastly, it would be desirable to extend the bootstrap studies we performed beyond using

the crossing symmetry of a single four-point function. In the d = 3 Ising case, such an

extension provided a much more constrained allowed region in the (∆φ,∆σ) plane that

includes a small island around the Ising point. We leave such a study in d = 5 for future

work.

Acknowledgments

We are particularly grateful to Simone Giombi and Igor Klebanov for many insightful conver-

sations. We are also grateful to Vinod Gupta and Sumit Saluja for their help with using the

Princeton Physics Department Feynman Computing Cluster. SSP and RY also thank Luca

Iliesiu, Filip Kos, David Poland, and David Simmons-Duffin for collaboration on a related

project. This work was supported in part by the US NSF under Grant No. PHY-1418069.

A Fixed Point Solutions in d = 6− ε for ε� 1

We now give the approximate dimensions of φ, σ, and σ2 in the 6 − ε expansion for the

values of N we use in Figure 1.9 Recall that in 6 − ε dimensions, the Lagrangian (1.1) has

three fixed points that were refer to as the critical theory, Theory 2, and Theory 3. They

correspond, respectively, to the red dot, the black dot close to the red dot, and the other

black dot in Figure 2 of [55]. The critical theory has only two relevant scalar operators, while

the other two have three relevant scalar operators.

Note that the critical theory and Theory 2 values have imaginary components that are

nonnegligible for N < Ncrit ≈ 1000, while the Theory 3 values are real for all N > 0. The

scaling dimension ∆σ2 has only been computed to order O(ε), and to this order it differs by

a non-negligible amount from the large N value. Since the large N value of ∆σ2 is known to

order O(1/N3), and since the value for d = 5.95 (2.2c) seems converged for the large values

of N considered in this paper, thus we use the large N value of ∆σ2 instead of the ε � 1

expansion value.

9We thank S. Giombi and I. Klebanov for help in generating these expansions.
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N = 600 :

Critical :

∆φ = 2− (0.498178− 0.000018i)ε− (0.00208299− 0.00003561i) ε2

+ (0.000225164− 0.000106536i)ε3 (A.1)

∆σ = 2 + (0.0837282− 0.0301539i)ε− (0.0657586− 0.0431323i)ε2

+ (0.0000980 + 0.0342568 i)ε3 (A.2)

∆σ2 = 4− (0.202864− 0.336716i)ε (A.3)

Theory 2 :

∆φ = 2− (0.498178 + 0.000018i)ε− (0.00208299 + 0.00003561i) ε2

+ (0.000225164 + 0.000106536i)ε3 (A.4)

∆σ = 2 + (0.0837282 + 0.0301539i)ε− (0.0657586 + 0.0431323i)ε2

+ (0.0000980− 0.0342568 i)ε3 (A.5)

∆σ2 = 4− (0.202864 + 0.336716i)ε (A.6)

Theory 3 :

∆φ = 2− 0.498897ε− 0.000547562ε2 + 0.000444379 ε3 (A.7)

∆σ = 2− 0.0798213ε+ 0.0419642ε2 + 0.0954303ε3 (A.8)

∆σ2 = 4− 1.31623ε (A.9)
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N = 1000 :

Critical :

∆φ = 2− 0.498960ε − (0.001094448− 0.000041800i)ε2

+ (0.000050697 + 0.000189705i)ε3 (A.10)

∆σ = 2 + (0.0578740 + 0.0053953i)ε− (0.0432267 + 0.0465933i) ε2

− (0.014584 + 0.174052i)ε3 (A.11)

∆σ2 = 4− (0.287985 + 0.079340i)ε (A.12)

Theory 2 :

∆φ = 2− 0.498960ε − (0.001094448 + 0.000041800i)ε2

+ (0.000050697− 0.000189705i)ε3 (A.13)

∆σ = 2 + (0.0578740− 0.0053953i)ε− (0.0432267− 0.0465933i) ε2

− (0.014584− 0.174052i)ε3 (A.14)

∆σ2 = 4− (0.287985− 0.079340i)ε (A.15)

Theory 3 :

∆φ = 2− 0.499306ε − 0.000383821ε2 + 0.000232945ε3 (A.16)

∆σ = 2− 0.0639239ε+ 0.0345723ε2 + 0.0748065ε3 (A.17)

∆σ2 = 4− 1.26281ε (A.18)
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N = 1400 :

Critical :

∆φ = 2− 0.499263 ε− 0.000730931ε2 − .000006959ε3 (A.19)

∆σ = 2 + 0.0338577 ε− 0.0357827ε2 + 0.000671719 ε3 (A.20)

∆σ2 = 4− 0.117458ε (A.21)

Theory 2 :

∆φ = 2− 0.499287 ε− 0.000734725ε2 + 0.0000427058ε3 (A.22)

∆σ = 2 + 0.0579004ε2 − 0.0348804ε3 (A.23)

∆σ2 = 4− 0.537913ε (A.24)

Theory 3 :

∆φ = 2− 0.499491 ε− 0.000297667ε2 + 0.000152964ε3 (A.25)

∆σ = 2.00000− 0.0549757ε+ 0.0302051ε2 + 0.0634041ε3 (A.26)

∆σ2 = 4− 1.23113ε (A.27)
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