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Holographic entanglement entropy and the internal space

Andreas Karch∗ and Christoph F. Uhlemann†

Department of Physics, University of Washington, Seattle, WA 98195-1560, USA

We elaborate on the role of extremal surfaces probing the internal space in AdS/CFT. Extremal
surfaces in AdS quantify the “geometric” entanglement between different regions in physical space
for the dual CFT. This, however, is just one of many ways to split a given system into subsectors, and
extremal surfaces in the internal space should similarly quantify entanglement between subsectors
of the theory. For the case of AdS5×S5, their area was interpreted as entanglement entropy between
U(n) and U(m) subsectors of U(n+m) N = 4 SYM. Making this proposal precise is subtle for a
number of reasons, the most obvious being that from the bulk one usually has access to gauge-
invariant quantities only, while a split into subgroups is inherently gauge variant. We study N = 4
SYM on the Coulomb branch, where some of the issues can be mitigated and the proposal can
be sharpened. Continuing back to the original AdS5×S5 geometry, we obtain a modified proposal,
based on the relation of the internal space to the R-symmetry group.
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I. INTRODUCTION

A fascinating aspect of AdS/CFT is how properties of
the CFT are geometrized in the bulk description. Under-
standing that relation allows to address questions about
the bulk quantum gravity using field-theory methods,
which from a conceptual point of view may be the most
interesting application of the dualities. When it comes to
explicitly reconstructing the bulk geometry from the dual
field theory, entanglement correlations play a prominent
role [1, 2]. Using the entanglement 1st law in the CFT, it
is actually possible to derive the linearized bulk gravity
field equations from the CFT [3–6]. So far, the internal
space of the bulk geometry has played a very subordinate
role in the relation of entanglement entropy (EE) to bulk
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minimal surfaces [1, 7], and the same applies for the pro-
cedures to reconstruct the bulk geometry from boundary
data. On the other hand, the internal space is crucial
for the dualities already when it comes to matching the
symmetries on both sides.

The intriguing proposal of [8] aims to identify the area
of codimension-2 minimal surfaces wrapping an entire
spatial slice of the AdS factor of AdS5×S5 with the en-
tanglement entropy between U(n) and U(m) subsectors of
U(n+m) N = 4 SYM. The proposal passed a number of
consistency checks, including the behavior of the entropy
as function of the ratio n/m and the fact that it is propor-
tional to the volume of the space on which the field the-
ory is defined. Nevertheless, there are a number of rather
unsatisfactory features, too. The usual definition of en-
tanglement entropy builds on a tensor decomposition of
the Hilbert space, and one may wonder whether there is a
gauge-invariant way to specify the desired subsectors. On
top of that, the degrees of freedom in the two subsectors
do not even add up to those of the full theory: it is not
clear how to treat the fields in U(n+m)/(U(n)⊗U(m)),
which we will collectively refer to as the “Ws” in analogy
with the W-bosons of the standard model. Another issue
is that extremal surfaces with general Dirichlet bound-
ary conditions at the boundary of AdS do not even exist
[9]. Any attempt to directly interpret such a boundary
condition as specifying the split into subsectors therefore
seems questionable.

For these reasons we start out from U(n+m) N = 4
SYM on the Coulomb branch1, where the gauge symme-
try is spontaneously broken to U(n)⊗U(m). When a UV
cut-off is imposed far below the mass scale of the Ws,
one can actually make the proposal precise. The only
degrees of freedom left in the low energy theory are the
fields of the unbroken U(n)⊗U(m) and one can indeed
calculate the entanglement between the two independent

1 This procedure had already been mentioned in [8] as a motivation
for their proposal.
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gauge sectors from a minimal surface. By raising the UV
cut-off one can gradually add the heavy fields back into
the picture. The bulk geometry is a multi-center brane
solution, which is AdS5×S5 only asymptotically. We im-
pose boundary conditions on the minimal surface in the
IR, where their interpretation can be understood more
straightforwardly than in the UV. This, however, makes
the departure from AdS5×S5 crucial for understanding
the interpretation of the minimal surfaces. We are led to
a sharpened version of the proposal of [8], where the ad-
ditional fields in U(n+m)/(U(n)⊗U(m)) play a crucial
role. In fact, we find that the entanglement among these
Ws dominates the entanglement entropy when the UV
cut-off is large. As the UV cut-off becomes very large,
the minimal area eventually becomes insensitive to the
details of the split into subgroups, indicating that this is
not quite the way to look at it. We propose a new iden-
tification of the area of minimal surfaces dividing the in-
ternal space with entanglement entropies, which is based
on the global symmetries involved and closer to the usual
AdS/CFT dictionary.

II. BULK GEOMETRY FOR N = 4 SYM ON THE
COULOMB BRANCH

To fix notation we introduce the bulk geometry and
briefly emphasize some of the properties relevant here.
The metric for the IIB supergravity solution correspond-
ing to two separated stacks of D3 branes can be written
as

ds2 = f−1/2ηµνdx
µdxν + f1/2d~y 2 ,

f = 1 +
κR4

|~y − ~Y1|4
+

(1− κ)R4

|~y − ~Y2|4
.

(1)

We set the radius of curvature to R= 1 in the following,
and note that in the usual limits of small string length,
large N and large ’t Hooft coupling only the last two

terms in f survive. ~Y1 and ~Y2 correspond to the positions
of the two stacks of D3 branes. Without loss of generality
we can take their separation to be along the y1 direction
and choose the origin of the transverse space half way

between the brane stacks so that ~Y1,2 = (±d,~0). κ ≡
n/(n+m) parametrizes the relative size of the two stacks.
The stack at y1 = +d consists of n coincident D3 branes,
whereas the stack at y1 = −d consists of m D3 branes.

We parametrize the space transverse to the D3 branes
by setting y1 = y and yi = rωi for i= 2, . . . , 6 with∑
i ω

2
i = 1, such that

d~y2 = dy2 + dr2 + r2dΩ2
4 ,

f =
κ

((y + d)2 + r2)
2 +

1− κ
((y − d)2 + r2)

2 .
(2)

This makes manifest the SO(5) rotational symmetry in
the y2, . . . , y6 directions. A connection to the standard

Poincaré AdS5×S5 metric can be made by setting

r = u sin θ y = ym + u cos θ , (3)

where ym = d(1− 2κ) is the location of the maximum of
f on slices of constant r for large r, and gives the center
of mass of the brane stacks [10]. For u= |~y|� 1 we get
f ≈ R4/|~y|4 and this yields the Poincaré AdS5×S5 metric
with conformal boundary at u =∞.

The geometric data d and κ describing this 2-centered
solution has a direct field theory interpretation. Due to
the [Xi, Xj ]

2 potential for the 6 adjoint scalars of N = 4
SYM, the moduli space is parametrized by 6 commuting
matrices in the adjoint of U(n+m). Since they are com-
muting, they can be simultaneously diagonalized. The
eigenvalues can then directly be interpreted as the ~y-
space positions of the corresponding D3-branes. The
2-centered solution described in here corresponds to a
locus where U(n+m) is broken to U(n)⊗U(m) by a vac-
uum expectation value set by d. Concretely, the W mass
is given by the energy of a string stretched between the

two stacks, mW =
√
λd
π .

A. Introducing a UV cut-off

Studying the dual CFT with an explicit UV cut-off
will be an essential part of what follows. In the usual
AdS/CFT prescription this would translate to a large-
volume cut-off in the dual AdS5 geometry, removing the
region of space with u ≥ u∗. Intuitively speaking, the
scale factor multiplying the Minkowski factor of the met-
ric then corresponds to the cut-off scale in the dual CFT.
Here, we do not quite have AdS5×S5, so also the cut-off
prescription looks a bit different. Like in the usual AdS5

picture, we define the cut-off surface as a codimension-1
surface where the scale factor multiplying the Minkowski
part of the metric (1) is constant. This gives the level
sets of f as cut-off surfaces, as shown in Fig. 1. The pre-
cise relation of the bulk cut-off to a cut-off in the dual
CFT is subtle, and not completely understood [11, 12].
Here we will only use the qualitative picture, that a larger
bulk cut-off (meaning smaller f) corresponds to including
more UV degrees of freedom in the dual CFT.

B. Connected vs. disconnected bulk

The geometric and topological properties of the bulk
geometries with a cut-off at the surface f = Λ−4 are quite
different for different values of Λ (which corresponds to
an energy scale in the dual CFT). For small enough Λ we
find two disconnected components. Close to each one
of the brane stacks, the influence of the other one is
negligible, and we thus get just two CFTs with gauge
groups U(n) and U(m). This is reflected in the cut-
off surface being spherical around each one of the brane
stacks. There’s no interactions between them. For op-
erators of large scaling dimension this may be seen from
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FIG. 1. Level sets of f for κ = 1
3
, giving the cut-off surfaces.

The two black dots mark the positions of the brane stacks.

the fact that their correlators can be computed from bulk
geodesics, and there just are no geodesic connecting the
two components.

As the cut-off is increased, such that more of the bulk
geometry is included around the brane stacks, we see that
the throats start slightly deforming. This is a sign of the
fact that the holographic cut-off is not a strict UV cut-off
that completely removes all degrees of freedom above a
given energy. Some parts of the Ws are still present in the
cut-off theories. We thus get two deformed CFTs, which
include N = 4 SYM with gauge group U(n) and U(m),
respectively, and some parts of the Ws in addition. There
are still no interactions yet between the two subsectors.

As Λ is increased further, the bulk geometry eventu-
ally becomes connected. The point where the two com-
ponents meet is at the minimum of f on the slice r = 0,
which is

y? =
1− x
1 + x

d , x =
(
κ−1 − 1

)1/5
. (4)

The critical value of Λ, where the components meet, is
Λ = f(y?)

−1/4∝ d. Since d sets the symmetry breaking
scale and hence the mass of the massive gauge bosons
in U(n+m)/(U(n) ⊗ U(m)), we apparently have now
crossed their mass scale. This way we get interactions
among the two subsectors. The fact that there is a sharp
transition between interacting and non-interacting CFTs
despite the fact that the Ws are never really cut out
completely seems puzzling at first. But this is precisely
the sharp transition found in [13] from a different analy-
sis. Further increasing Λ, there is another special value,
beyond which the shape of the bulk geometry becomes
convex.

As indicated above, the picture we get from just study-
ing the cut-off bulk geometries is reminiscent of the anal-
ysis in [13], which also analyzed entanglement entropies

on the Coulomb branch. Our analysis in the following
sections differs in crucial ways: we will be using extremal
surfaces spanning the whole field theory space and im-
pose an actual UV cut-off. Instead, [13] used the ge-
ometric entanglement entropy for spheres of increasing
radius to probe the IR. In that context the field-theory
meaning of the construction is clear and the holographic
prescription reduces to the RT (Ryu-Takayanagi) mini-
mal surface. The reason why their calculation was sensi-
tive to details of the internal space is that the geometry
was not globally a product space. In contrast, we try to
give a direct interpretation for RT surfaces in the internal
space.

III. ONE-PARAMETER FAMILY OF
EXTREMAL SURFACES SEPARATING THE

BRANE STACKS

In the standard RT description the entanglement en-
tropy is computed as the area of an extremal surface
separating the two entangled regions [1]. In the same
spirit, entanglement between the degrees of freedom in
the two D3 brane stacks should be encoded in extremal
surfaces separating the two brane stacks, which we set
out to study in this section. Note that a surface of this
class can not be transformed continuously into a surface
which does not separate the brane stacks. This is de-
spite the fact that the area stays finite as one crosses the
singularities at r = 0, y = ±d.

The background geometry has an SO(5) rotational
symmetry in the y2, . . . , y6 directions, and we will look
for minimal surfaces invariant under these symmetries.
The point on the Coulomb branch we are considering
preserves this symmetry, and we will look for entangle-
ment entropies which preserve it as well2. More precisely,
we consider a slice of constant time (the setup is static)
and look for extremal surfaces separating the two brane
stacks. These can then be parametrized by y = y(r).
The area of such a surface reads

A = VS3V4

∫ ∞
0

dr r4
√

1 + y′(r)2f1/2 , (5)

where VS4 denotes the volume of an S4 with unit radius
and V3 is the volume in the ~x directions. The Euler-
Lagrange equation for extremality of the surface reads

r4
√

1 + y′2
δf

δy
− r4y′√

1 + y′2
f ′

−2f
d

dr

r4y′√
1 + y′2

= 0 .

(6)

2 In the deep IR, where the split into two subgroups becomes pre-
cise, the full SO(6) R-symmetry is restored.



4

For κ= 1/2 we immediately find the solution y ≡ 0. In
the language of the asymptotic AdS5×S5 geometry, this
directly corresponds to the θ ≡ π

2 solution found in [8].
We are interested in solutions separating the brane

stacks at r= 0, y= ±d, so it is natural to impose bound-
ary conditions at r= 0. We would näıvely expect a two-
parameter family of solutions to the second-order differ-
ential equation (6), labeled by, e.g., y(0) and y′(0). As
often the case in AdS/CFT, we will argue that requir-
ing regularity of the solution at r = 0 in fact imposes a
relation between y and y′ at r = 0 and so regular solu-
tions are uniquely determined by y(0). We will explicitly
show that this is indeed the case for fluctuations around
the y≡ 0 solution for κ= 1/2, before coming to the full
non-linear case.

The corresponding asymptotic UV behavior is insen-
sitive to the Coulomb branch deformation and hence
follows from the analysis [9] of general extremal sur-
faces asymptoting to AdSk+1×S` in an asymptotically
AdS5×S5 geometry. Unlike extremal surfaces in asymp-
totically AdS, which can end on any prescribed boundary
submanifold, the internal part of any extremal manifold
has to itself be extremal on the boundary. That is, all
our extremal surfaces will end at an equatorial S4, which
corresponds to θ = π/2. Our numerical simulations are
consistent with this statement, as are the calculations in
[8], which had to truncate the surface at a finite u in order
to have it end at other values of θ. Taking θ to be inde-
pendent of the internal coordinates to preserve the full
rotational symmetry, the scaling exponents with which
it approaches θ = π/2 are complex and the asymptotic
behavior becomes

θ = π/2 + au−3/2 cos
(√7

2
log u

)
+ bu−3/2 sin

(√7

2
log u

)
+ . . . .

(7)

The regularity constraint at r = 0 fixes the relation be-
tween a and b. Different values of y(0) will give rise to
different values of a asymptotically.

A. Fluctuations around y ≡ 0 at κ = 1/2

We fix κ= 1/2 and linearize (6) around y≡ 0, which
yields the equation for fluctuations around that minimal
surface. With δ = d2 + r2 we get

2r
(
r2 − 5d2

)
y + δ

(
d2 + δ

)
y′ + δ2ry′′ = 0 . (8)

Solving the indicial equation for y = rγ
∑
αir

i around
r= 0 yields γ ∈{−3, 0}, and a general solution can thus
be written as y = r−3ya+ yb. To get an extremal surface
separating the two brane stacks, we need a finite y(0),
and thus have to fix ya≡ 0. This yields a one-parameter
family of solutions parametrized by y(0) =: y0, as ex-
pected.

B. Numerical solutions for the general case

For the general solutions to (6), the ansatz
y= rγ

∑
αir

i does not lead to a simple indicial equa-
tion with an a priori fixed number of solutions. Never-
theless, fixing γ= 0 leads to a recursive relation fixing
αi for i> 1 in terms of α0. The other solution we had
seen in the linearized case, γ=− 3, does not in general
yield a solution anymore. Nevertheless, we still expect
a two-parameter family of solutions to the second-order
ODE. Indeed, specifying initial data {y(r0), y′(r0)} at a
generic point r0 > 0 yields two classes of solutions: In
the generic case the solution diverges towards small r at a
finite 0<rmin<r0, and the same happens towards large
r, where the solution again diverges at an∞>rmax>r0.
On the other hand, by tuning the initial data one can ar-
range for the solution to stay bounded as r → 0. In that
case it also stays bounded as r →∞, and we recover the
one-parameter family of bounded solutions found before
as an expansion around r = 0. Since we are interested in
solutions with finite y(0), these are the surfaces we are
looking for3.

The strategy for finding numerical solutions is as fol-
lows. For a given starting value y0, we solve for the first
couple of coefficients in the Taylor expansion analytically.
This yields a decent approximation ỹ to the correspond-
ing solution in a vicinity of r= 0. We then take ỹ(ε) and
ỹ′(ε) as initial data at an ε� 1 to numerically solve (6).
For |y0|<d we get an extremal surface separating the
brane stacks, as desired. The AdS5×S5 surfaces stud-
ied explicitly in [8], on the other hand, correspond to
starting values |y0|� d, for which the geometry probed
by the extremal surface becomes AdS5×S5. From their
geometric properties it is not quite clear how these sur-
faces relate to a split into subgroups, and we will give a
different interpretation for their area in Sec. V.

IV. EXTREMAL SURFACES AND
ENTANGLEMENT ENTROPY FOR

INTERACTING SUBSECTORS

We have seen in the previous section that we get a
one-parameter family of extremal surfaces separating the
brane stacks, i.e. the ones with |y0| < d. The proposal
of [8] is that the minimal among those computes the EE
for two interacting subsectors of the full dual U(n+m)
SYM. The proposal was to define the subsectors as the
SYM based on the U(n) and U(m) subgroups respec-
tively. For N=4 SYM on the Coulomb branch, with the
gauge symmetry spontaneously broken to U(n)⊗U(m),
this split makes sense in the IR, that is below the mass

3 The other solutions correspond to minimal surfaces starting at a
point of the S5 at the boundary of AdS, from where they blow
up and extend into AdS, but not enough to reach the two brane
stacks or separate them.
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of the Ws. For these energies only the degrees of free-
dom belonging to these two subsectors survive and so it
makes sense to separate the remaining degrees of freedom
according to which subgroup they belong to. In order to
understand this regime, we start with an investigation
with a rather low explicit UV cut-off.

A. Low cut-off: two (non-)interacting CFTs

We start with the case where the cut-off is below the
mass scale of the massive gauge bosons, Λ < f(y?)

−1/4.
In that case the bulk geometry has two disconnected com-
ponents and the subsectors are not entangled. This is
reflected in the properties of the family of extremal sur-
faces, too. Fig. 2 shows the extremal surfaces and two
cut-off surfaces, and the case of interest now corresponds
to the inner cut-off surface. Clearly, the extremal surface
with minimal area is one of those starting and ending di-
rectly at the cut-off surface, so the EE is zero. We may
still ask what the meaning of the other extremal sur-
faces separating the branes is. If the cut-off were a hard
UV cut-off in the field theory, the heavy gauge bosons
would not play any role whatsoever in this regime, since
they are simply cut off. This is exactly what happens
at very low cut-offs, where the bulk geometry to a good
approximation consists of just two disconnected cut-off
AdS5×S5 geometries, and the extremal surface in either
one of the components, say the second, define a split
where one subsector consists of CFT1 and part of CFT2,
while the other consequently consists of only a part of
CFT2. The associated EE therefore is merely due to an
“unfortunate” split into subsectors, in the sense that it
does not reflect the EE between the U(n) SYM and the
U(m) SYM alone.

r

y

FIG. 2. One-parameter family of extremal surfaces for κ =
1/3 and we set d = 1 in all figures. The cut-off surfaces are
shown for Λ4 ∈ { 2

3
, 3}.

We now turn to the case where the cut-off is above

the mass scale of the heavy gauge bosons, but still of the
same order of magnitude. The two CFTs now interact
non-trivially, as the Ws are part of the spectrum. This
case corresponds to the outer cut-off surface in Fig. 2.
The bulk geometry is still squeezed in the region between
the branes. The area for the family of minimal surfaces is
given by the upper curve in Fig. 3. The one with minimal

-0.5 0.5
y0�d

0.1

0.2

0.3

0.4

A

FIG. 3. Areas of the extremal surfaces as function of the
starting value at r = 0, y0, for the two cut-off surfaces of Fig. 2
with the lower/upper curve corresponding to Λ4 ∈ { 2

3
, 3}.

area is one of those very close to the bottleneck, as one
would expect intuitively: The function f has a minimum
in between the two stacks and this is where the geometry
is very narrow. The surfaces at the bottleneck therefore
have the shortest length in terms of their parametrization
(this is what we see in the picture), but also the proper
length per parameter length is minimal. As Λ approaches
f(y?)

−1/4, the surface becomes the one starting at y?
given in (4). For κ = 1/2, the corresponding minimal
surface would be the y ≡ 0 or θ ≡ π/2 surface discussed
in [8].

Together with the previous discussion of the discon-
nected case, we can now give a suggestive argument for
why we choose the minimal among the extremal surfaces
to compute the EE. The difference is not as qualitative
anymore, since in this case we can not cleanly associate a
single component of the bulk geometry to a single subsec-
tor. In the field theory this corresponds to the presence
of the massive gauge bosons. Not only do they mediate
interactions between the U(n) SYM and U(m) SYM, we
also have to decide how to split them and assign them
to the two subsectors. For these cut-offs of order the
W mass, the EE is still dominated by the entanglement
between the two unbroken subgroups, but we can con-
tinuously change the EE by shifting how to split the Ws
between the two subsectors. This is what is accomplished
by changing y0. We are interested in the minimal EE that
can be achieved, which we may call irreducible EE. It is
this quantity that we want to continue to identify as the
EE between the two unbroken subgroups due to the in-
teractions mediated by the Ws. This is given by the area
of the minimal among the extremal surfaces separating
the branes. Fig. 3 shows that this is positive.

We close the subsection with a look at the EE as a
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function of κ. The result is shown in Fig. 4. One should
be suspicious whether it makes sense to compare the com-
putations for different κ at a fixed cut-off Λ. The relation
of bulk to boundary cut-off is subtle, making it hard to
ensure that the true field theory cut-off stays fixed as we
change κ. In here we simply proceed with the compari-
son at fixed Λ, hoping that this will at least give qualita-
tively correct results. The result is shown in Fig. 4. If we

0.1 0.2 0.3 0.4 0.5
Κ

0.5

1.0

1.5

2.0

Amin

FIG. 4. Areas of the minimal among the extremal surfaces as
function of κ. From lower to upper curve, Λ4 ∈ {10, 20, 30}.
The plot is symmetric in κ → 1 − κ. As κ → 0, we see that
the area does not vanish.

make a crude approximation, assuming that each degree
of freedom in one sector is to some extent entangled with
each d.o.f. in the other, we should get SEE ∝ κ2(1− κ)2.
This suggests that the EE should be maximal for κ = 1

2
and minimal for κ ∈ {0, 1}. The results roughly repro-
duce this anticipated behavior. They are also roughly
compatible with the results found in [8], although ob-
tained in a completely different way. Note that the EE
does not vanish as κ→ 0/1. Geometrically, this is easily
understood from the fact that, as long as Λ > f(y?)

−1/4,
the cut-off surface does not come arbitrarily close to the
brane stacks, such that each extremal surface separating
the branes necessarily has some finite area.

B. Raising the UV cut-off: the 1st-order phase
transition

Our analysis of the low cut-off configurations helped
us to understand two important lessons. First, the role
of y0 is to determine how the Ws are split between the
two subsectors. Second, the corresponding ambiguity in
the EE can be uniquely fixed by singling out the mini-
mal EE for a given point on the Coulomb branch and a
given cut-off. With these lessons in mind, we now study
the behavior as the cut-off is increased further. The first
thing to notice is that the shape of the bulk geometry
becomes convex as the cut-off is increased beyond a cer-
tain value, as seen in Fig. 1. A second thing to notice
is that the structure of f as function of y changes as we
move away from the brane stacks. At r = 0, f diverges/is
maximal at the brane stacks and has a minimum in be-

tween. This behavior persists to other slices of constant r
close to the branes. Asymptotically, however, the geome-
try and f approach the behavior for one stack of branes,
i.e. AdS5×S5. This means that f just has a maximum
somewhere between y = d and y = −d, and no minima.
The surface which starts out as a minimal surface in the
vicinity of r = 0 thus does not necessarily minimize the
area for large r. This is most clear for κ = 1/2: close to
r = 0, y ≡ 0 is the minimal among the extremal surfaces.
At r → ∞, however, it sits right on the maximum of
f , and thus picks up larger contributions than the other
extremal surfaces.

This makes us expect a phase transition for some value
of the cut-off, where the minimal among the extremal sur-
faces jumps from one starting close to y? to one starting
close to one of the brane stacks. That this is indeed the
case is shown in Fig. 5. As the cut-off is increased, we see
a discontinuous transition for the minimal surface from
the surface y ≡ 0 to one of the degenerate two starting
close to either one of the brane stacks.

With a cut-off only slightly above the mass scale of the
heavy gauge bosons, their sole effect was to mediate in-
teractions between the U(n) and U(m) subsectors and we
were able to ignore interactions and entanglement among
them. But with the higher cut-off we get a significant
contribution to the EE from how the Ws are distributed
among the subsectors. They correspond to open strings
stretching between the brane stacks, so choosing a mini-
mal surface starting close to one of the brane stacks seems
to correspond to assigning the bifundamentals entirely to
one of the subsectors. The fact that, beyond a certain
cut-off, the EE is minimized by the surfaces starting close
to either one of the brane stacks, seems to tell us that
the EE is dominated by entanglement among the heavy
gauge bosons. For lower cut-offs it was preferable to start
roughly in the middle between the two brane stacks, cor-
responding to the cleanest split between the U(n) adjoint
and U(m) adjoint d.o.f.. But this is outweighed now by
the strong entanglement among the heavy gauge bosons,
which means we get the least EE by assigning them to
one subsector completely.

Fig. 6 shows the same plot for κ = 1/3, to show how
the degeneracy between the two minima is lifted. The
qualitative behavior stays the same: With increasing cut-
off the minimal surface slips slightly towards the lighter
brane stack, before discontinuously jumping to another
one close to the lighter brane stack at a certain value
of the cut-off. As the cut-off is then increased further,
the minimal surface smoothly moves further towards the
lighter stack.

To conclude our main results, we have determined the
irreducible EE as a function of UV cut-off for a family
of Coulomb branch configurations where the unbroken
gauge group has two factors. We found a phase transi-
tion that separates the qualitatively different low cut-off
and high cut-off regimes. With a low cut-off, the en-
tanglement among the Ws can be neglected and the de-
grees of freedom can be meaningfully split according to
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FIG. 5. The top panel shows the one-parameter family of
extremal surfaces for κ = 1/2 and cut-off surfaces for Λ4 ∈
{10/9, 15, 25, 35, 45, 50}. The red ones are those with minimal
area for a given cut-off (they are red only up to this cut-off).
The bottom panel shows the corresponding areas as function
of y0/d. Each curve is normalized to the area of the y ≡ 0
surface with the corresponding value of the cut-off, and the
lower the curve the larger the value of Λ. We see that the
area develops three local minima, and at a certain value of the
cut-off the two degenerate minima close to the brane stacks
become lower than the central one. This is where the red
surface in the upper panel jumps from the center to one of
the brane stacks.

which subgroup they belong to, along the lines of [8].
Correspondingly the extremal surface giving rise to the
irreducible EE cuts space roughly in the middle between
the two stacks of D3 branes. At large cut-off, however,
the EE is dominated by the Ws. The irreducible EE
arises for minimal surfaces very close to one or the other
stack, so that the Ws are almost entirely associated to
one or the other subsector. Clearly, in this case we can
no longer simply tag the two subregions by what unbro-
ken subgroup they belong to. This becomes even more
severe when we look at the UV structure. Since all ex-
tremal surfaces dividing the internal space end on the
same equatorial S4 in S5, they all share the same leading

r

y

(a)

-0.5 0.5
y0�d

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A�A0

(b)

FIG. 6. The top panel shows the one-parameter family
of extremal surfaces for κ = 1/3 and cut-off surfaces for
Λ4 ∈ {10/9, 3, 8, 15, 25, 50}. The red ones are again those
with minimal area for one of the cut-offs. The bottom panel
shows the corresponding areas as function of y0/d, with each
curve normalized to the area of the surface closest to the brane
stack at y= 1.

UV divergence in their area. Clearly, if the areas were
intrinsically related to the entanglement entropy between
different subgroups, this should not be the case: differ-
ent splits would produce different numbers of degrees of
freedom in each subsector, which should be reflected in
the UV structure of the entanglement entropy. We con-
clude that the subsectors should rather be defined more
directly according to what part in the transverse space
they are dual to, which loosely speaking corresponds to
the R-charge. We attempt to make this last statement
more precise in the next section.

V. EXTREMAL SURFACES AND
R-SYMMETRY: A REFINED PROPOSAL

From our explicit investigation of minimal surfaces
splitting the internal space in the previous sections, we
have seen that the interpretation of their area as en-
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tanglement entropy between U(n) and U(m) subsectors
of U(n+m) N = 4 SYM makes sense only in certain
regimes. Moreover, this interpretation is somewhat ques-
tionable on formal grounds: from the bulk one usu-
ally only has access to gauge-invariant quantities on the
boundary. So a split according to an actual (global) sym-
metry group, rather than a gauge redundancy group,
seems more natural. With the isometries of S5 corre-
sponding to the R-symmetry group of N = 4 SYM the
latter is a natural candidate, and we elaborate in the
following on how such a split could work.

The relation of geometric EE to minimal surfaces in
AdS is facilitated by the direct identification of the
boundary geometry of AdS with the field theory geom-
etry. For the internal space this certainly is a bit more
tricky, but from the bulk perspective CFT subsectors can
be assigned to subregions in a qualitatively similar way.
To illustrate that, we start by looking at the geometric
EE in the language of algebraic QFT [14].

The standard definition of EE starts out from a ten-
sor decomposition of the Hilbert space H = HA ⊗ HB .
The global state is described by a density operator ρ, and
the reduced density operator for, say, subsystem A is ob-
tained by a partial trace operation ρA = trB ρ. The focus
in algebraic QFT is more on the algebra of operators and
observables, rather than on a concrete Hilbert-space rep-
resentation. More precisely, the basic object is a net of
operator algebras O 7→ A(O), associating to each region
of spacetime O an algebra A(O), which is a subalgebra of
a ?-algebra A (e.g. an abstract C?-algebra or a von Neu-
mann algebra). The self-adjoint elements represent the
physical observables, and a state is described as a map
from the algebra to the complex numbers, ω : A → C.
In a Hilbert space representation that state can be rep-
resented by a density operator ρ via ω : O 7→ tr(ρO) for
O ∈ A. A subsystem corresponds to a subalgebra of A,
and the reduced density operator is the representation of
the pullback of the global state to that subalgebra. A
state is pure iff it can not be written as a convex combi-
nation of other states, i.e. as ω = αω1 + (1 − α)ω2 with
α ∈ (0, 1). Now it may be possible to find ω1/2 and α to
satisfy this equation on a subalgebra, but not on the en-
tire algebra, and this is how a pure state becomes mixed
upon restriction.

The geometric EE in AdS/CFT fits into that frame-
work as follows: Setting the boundary values of bulk
fields to zero outside of a region A on some constant-
time slice, we only source operators localized in A at that
time. To define the subsystem associated to A, we then
take the subalgebra of A generated by that set of oper-
ators, e.g. its double commutant in A for von Neumann
algebras. The pullback of the global state to that subal-
gebra via the inclusion map ι gives the reduced density
operator ρA ↔ ι?ω, and the RT proposal [1] states that
a minimal surface in AdS computes the von Neumann
entropy of that pullback state.

Let us now turn to an extension of this proposal to min-
imal surfaces in the internal space. The first step is to

make sense of what it means to restrict sources to a sub-
space of the internal space. To this end we look at bound-
ary data φ0(x, y) for a bulk field φ(x, z, y), where x, z
label coordinates on AdS and y are coordinates on the
internal space. That boundary data may be expanded in
spherical harmonics as

φ0(x, y) =
∑
r,~m

φ0,r,~m(x)Yr,~m(y) . (9)

The Yr are spherical harmonics on S5, r runs through
the representations of SO(6) and ~m are the analogs of
the angular-momentum quantum number. Each of the
φ0,r,~m is now identified as source for an operator Or,~m
in N = 4 SYM. Restricting the boundary data to have
support only in a part A of S5 (at some given time) cor-
responds to sourcing only very particular linear combina-
tions of operators. Namely, we can only source operators

OA =
∑
r,~m

cr,~mOr,~m , (10)

where the coefficients cr,~m, if interpreted as coefficients
for the spherical harmonics, produce a function with sup-
port in A only. Let us denote this set of operators, which
can be sourced by bulk fields which are non-zero only in
the part A of S5, by Op(A). An extension of the minimal-
area prescription to minimal surfaces in the internal space
emerges naturally now: To define a subsystem we take
the subalgebra AA of A that is generated by Op(A). A
reduced density operator on this subsector of the theory
can again be defined via the pullback of the global state
to the subalgebra. In analogy to the geometric EE, a
minimal surface which splits the internal space into A
and its complement should then compute the von Neu-
mann entropy of this reduced state, giving the desired
extension of the RT proposal to the internal space. The
construction can be extended to other choices of the com-
pact manifold or to geometries which are AdS×compact
only asymptotically by following the same logic.4

We can now rephrase the analysis of the previous sec-
tions in the following way: We studied particular sub-
algebras of operators, corresponding to the part of the
internal space that the minimal surfaces studied there
wrap at the boundary of the cut-off bulk geometry. In
principle, they are characterized by their R-symmetry
representations as just outlined. By imposing a selec-
tion criterion in the IR, we selected the split which in
the IR coincides with a split into unbroken sub-gauge-
groups. This corresponded to a particular orientation of
the S4 entangling surface w.r.t. the alignment of the vev
in a Higgsed N = 4 SYM, and we can thus incorporate

4 We have not shown that this yields a tensor decomposition. So
while we have defined an entropy, it is not clear that this is an
entanglement entropy in the usual sense. This plagues geometric
EE in gauge theories as well [15].
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the proposal of [8] into a more natural picture based on
R-symmetry.

On the conformal boundary itself, we know already
from [9] that all minimal surfaces splitting the internal
space end on extremal boundary surfaces. This seems
to have a natural interpretation in the context of the
current construction: going to the UV, the completion
of Op(A) to an algebra seems to need all the operators
corresponding at least to a half sphere, no matter what
the region we started. We leave a more detailed analysis
of this issue for the future.

Summing up, we have given a field-theory construction
to select a set of operators corresponding to keeping only
a part of the internal space in AdS5×S5. This set can
be completed to a minimal algebra by a unique construc-
tion, which allows to associate a well-defined subsystem
to them. The entropy of the corresponding reduced den-
sity operator would – by straightforward extension of the

RT proposal – be expected to be given by the area of a
minimal surface splitting the internal space. This identi-
fication seems better motivated than the proposal of [8]
on formal grounds, since in contrast to the gauge group
the global R-symmetry group is indeed directly accessi-
ble from the bulk. We found that in the IR the proposal
coincides – for certain cases and up to subtleties we dis-
cussed – with the split according to subgroups. In the
UV, however, it is clearly distinct.
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