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Several arguments suggest that the entropy density at high energy density ρ should be given by
the expression s = K

√

ρ/G, where K is a constant of order unity. On the other hand the covariant
entropy bound requires that the entropy on a light sheet be bounded by A/4G, where A is the area
of the boundary of the sheet. We find that in a suitably chosen cosmological geometry, the above
expression for s violates the covariant entropy bound. We consider different possible explanations
for this fact; in particular the possibility that entropy bounds should be defined in terms of volumes
of regions rather than areas of surfaces.

I. INTRODUCTION

How much entropy S can there be in a given region?
The ‘Bekenstein bound’ [1] was proposed for regions
where gravity is not strong. It says that S < 2πER,
where E is the energy in the region and R is some mea-
sure of its physical size. The Bekenstein-Hawking en-
tropy of black holes is given by S = A/4G [2]; based
on this expression it has been argued that in strongly
gravitating systems the number of degrees of freedom is
proportional to the surface area of a region rather than
the volume.
Cosmology poses a further challenge. Consider a flat

universe at an early time in its evolution; say, in the ra-
diation dominated phase. Consider a box-shaped region
of physical volume V . the entropy in the box is propor-
tional to V , and so for a sufficiently large box the entropy
S in the box will exceed the surface area of the box. Are
there any limits that we can place on S?

FIG. 1. A box of the same physical size at different times in
an expanding cosmology. At an early enough time, the box
will contain more mass than required to make a black hole
with size equal to the size of the box.

One can hope to bound the entropy in the box by lim-
iting the box itself. Bekenstein [3] argued that entropy
bounds should be plced on the matter inside the particle
horizon. In [4], it was argued that entropy bound should
be given by A/4G, were A is the area of the particle hori-
zon. In [5, 6], it was argued that the more correct scale
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for this purpose is H−1, where H is the Hubble constant.
In [7] it was suggested that one should use the scale set
by the apparent horizon arising from the cosmological
expansion1; this scale is also ∼ H−1. In [8] a covari-
ant version of the entropy bound was given: the entropy
passing through a ‘light sheet’ should be less than A/4G,
where A is the area of a surface that bounds the light
sheet.
In this paper we will consider a certain expression for

the entropy density s, which is motivated by several dif-
ferent physical considerations. We will then observe that
this s violates the apparent horizon bound and the co-
variant entropy bound.
In more detail, we proceed as follows:

(i) We recall that several different considerations lead
to the expression

s = K

√

ρ

G
(1)

for the entropy density in the early universe. Here ρ is
the energy density, and K is a constant of order unity,
determined by the details of the gravitational theory. In
string theory, it appears plausible that one can actually
construct a set of states that give rise to such an s; we
will recall this construction. For example we can take
a lattice of string states [9] that are near the Horowitz-
Polchinski correspondence point.

(ii) We consider a flat cosmology

ds2 = −dt2 +

d
∑

i=1

a2i (t)dxidxi (2)

1 In [10] it was argued that entropy bounds of this form should not
be considered; instead the most general constraint on entropy
comes from the generalized second law of thermodynamics. In
[11] it was noted that the proposal of [4] gives constraints of the
fluctuations arising from inflation.
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At some time t0 we choose initial conditions

ȧi(t0)

ai(t0)
≡ bi0 (3)

to get an expansion that is in general asymmetric, since
the bi0 need not be all equal. We will need to consider
only an infinitesimally thin slice of this cosmology

t0 −∆t < t < t0, ∆t → 0 (4)

The metric of this thin slice is determined just by the
choice of initial conditions (3). The only constraint on
the bi0 comes from the Friedmann equation relating them
to ρ.

(iii) We construct the a light sheet in the thin slice (4),
and compute the entropy flowing through this light sheet
assuming the entropy density is given by (1). We find
that the covariant entropy bound of [8] is violated if the
expansion is suitably asymmetric. For example, suppose
all but one of the bi0 are equal: bi0 = b, i = 2, . . . , d,
while b10 is allowed to be different. Then the bound is
violated if

b10
b

>
π

2K2
(d− 1)− d− 2

2
. (5)

This is the main result of this paper. To summarize, it
appears that we can construct states in string theory to
get the entropy density (1), and this entropy density vio-
lates the covariant entropy bound in the above mentioned
asymmetric cosmological metric.

Note that we are not trying to violate the bound by
assuming that K is larger than a certain value. Rather,
we are assuming that the theory of gravity determines
some value of K, and then we show that for any such K,
the bounds will be violated when the initial conditions of
the expansion are chosen to be sufficiently asymmetric.
Note that the asymmetry required is not parametrically
large in any way; it is just order unity. For example, if
d = 3 and K = 1, then the bound is violated for

b10
b

> 2.65 (6)

After arriving at (5), we explore other issues related
to this result. In particular we look at entropy bounds
based on the apparent horizon, and on causal connection
scales; we find that the former is violated by asymmetric
expansion while the latter need not be.
What should we conclude from this violation of the

bounds? There are several possibilities:
(i) It might be that some physical effect in string the-

ory disallows the states leading to (1), or disallows the
asymmetric initial conditions that we assume. In that
case we would learn something interesting about the lim-
itations of the expression (1).
(ii) It might be that the conditions assumed in the en-

tropy bounds need to be tightened, so that the states

leading to (1) are not appropriate candidates for appli-
cation of the bound. In that case we might discover new
limitations on the application of entropy bounds to the
very early universe.
(iii) It might be that the very notion of bounding en-

tropy by area is flawed; in that case it may be that (1)
itself gives the general bound on entropy.

The plan of this paper is as follows. In section II we
recall the arguments for the equation of state (1). In sec-
tion III we review the covariant entropy bound, using as
an illustration the geometry which we will use later when
examining the bound. Section IV contains the main re-
sult of this paper: we show that the covariant entropy
bound is violated in a thin slice geometry for the equa-
tion of state (1) if we consider suitably anisotropic ex-
pansion. In sectionV we compute the full evolution for
the equation of state p = ρ, and again note the violation
of the covariant entropy bound. In sectionVI we discuss
the evolution in the situation where we have p = ρ, but
also the minimum viscosity required by the conjectured
bounds on η/s. In sectionVII we perform a check for
the entropy bound based on the apparent horizon, and
again find a violation for suitably asymmetric expansion.
In sectionVIII we recall some proofs that were proposed
for the covariant entropy bound. These proofs assumed
certain conditions on the entropy flow, but we find that
the asymmetric initial conditions we need for violating
the bound also violate the assumptions made in these
proofs; thus our results are not in conflict with these
proofs. In section IX we recall the causal entropy bound
proposed in [12] and note that it can be consistent with
the equation of state (1). SectionX is a discussion where
we analyze various possible implications of our results.

II. A CONJECTURE FOR THE ENTROPY AT
HIGH DENSITIES

In this section we will review the arguments that lead
to a certain suggestion for the entropy density s of the
early universe. We will first explain the construction of
the states in string theory that lead to this expression
for s. We will then note that several abstract lines of ar-
gument (not necessarily related to string theory) suggest
the same expression for s.

A. The entropy in a box

Consider a toroidal box of volume V . In this box we
put an energy E. What is the entropy

S = S(E, V ) (7)

in the limit where the energy density ρ = E/V becomes
large?
For low values of the E, we expect the phase of matter

to be radiation. This phase has entropy S ∼ V ρd/(d+1),
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(a) (b)

FIG. 2. (a) At energy E ∼ Ebh the maximum entropy is
attained by a single hole filling the box (b) At larger E, a
lattice of black holes has more entropy than a single hole.

where d is the number of spatial dimensions. At larger
E, we can get more entropy by forming a black hole. As
we increase E, we reach a critical value E ∼ Ebh, where
the radius of the hole Rs becomes order the size L of the
box (fig.2(a)). The entropy of this black hole is

Sbh =
A

4G
∼ Ld−1

G
(8)

Can we fit more entropy than Sbh in our box with vol-
ume V ∼ Ld? A simple construction shows how we can
achieve such a goal. Instead of one black hole filling V ,
we just consider a lattice of smaller holes (fig.2(b)). We
will recall below the computation of entropy for such a
lattice. But before we do that, it is helpful to address a
few natural questions:

(a) It is often said that entropy is maximized when
all the energy is put into a single black hole. But this
statement is true only if we hold the total energy fixed,
and allow the hole to expand to its natural size in an
asymptotically flat space. Suppose instead that we fix
the volume to a given value V , and do not constrain the
energy E. Then we can get more entropy than that of a
single large hole, as can be seen from fig.2. In fig.2(a), we
have a single large hole filling the box; the surface area
of this hole is of order the area Abox of the walls of the
box. In fig.2(b) we have a lattice of smaller holes. The
total area of these holes is of order the total surface area
of the cubes that contain these holes. The total surface
area of these cubes includes a contribution Abox from the
outer walls of the box. But we also get the contribution
of all the other walls depicted by the dashed lines, so the
total surface area of these cubes Acubes is much more than
Abox. Thus we see that the entropy of the lattice of holes
in fig.2(b) can be made much more than the entropy of
the single hole in fig.2(a).

(b) Even though the lattice of black holes in fig.2(b)
has more entropy than the single black hole of fig.2(a),
one might wonder if the lattice of holes is somehow un-
stable to collapsing into a single large hole. But this
is clearly impossible, since the lattice of holes has much
more entropy than the single hole. The holes can cer-
tainly move and interact, but the configuration they will

end up in cannot be a single black hole; the total entropy
is ∼ Acubes/G which is much more than Abox/G.

(a) (b)

FIG. 3. A pictorial depiction of the configurations that repro-
duce the entropy (1). (a) Clusters of intersecting branes give
the entropy of order the black hole entropy for each cluster.
The overall entropy is then the sum of these entropies. (b)
These brane sets will in general interact and merge, but the
entropy cannot decrease below the value obtained from the
separate brane sets of (a).

(c) Black holes might appear to be somewhat esoteric
objects, and one might wonder if entropy bounds are re-
quired to work for a fluid made of such holes. But in
string theory we know that the entropy of a black hole
can be reproduced by considering a set of intersecting
branes [13, 14]; further, the size of this set is of order the
horizon radius of the corresponding black hole [15]. In
fig.3 we depict a lattice made of sets of such intersecting
branes. It is true that the intersecting brane construc-
tion in string theory is best established for extremal and
near extremal holes, but this is sufficient for our pur-
pose. We can let the lattice in fig.3(a) be composed of
extremal holes, with charge alternating between positive
and negative for successive holes in the lattice. Then the
overall configuration will be charge neutral as required
for a cosmology. The resulting configuration of branes is
a configuration of ‘normal matter’ in string theory, and
gives an entropy of the same order as the entropy Scubes

in fig.2(b). It is true that if we start with the configura-
tion if fig.3(a) and then let it evolve, the brane sets will
in general interact and merge to create more complicated
states (fig.3(b)). But since entropy can only increase, the
resulting configurations will not have an entropy that is
below the entropy of fig.3(a), which is of order Scubes.

B. The entropy of a lattice of black holes

Let us now compute the entropy of the lattice of black
holes in fig.2(b).
We will assume that we are in a (d + 1)-dimensional

spacetime. Consider a torus T d with volume V . Consider
a lattice of black holes, each with the same radius Rs.
Let the separation between the holes also be ∼ Rs. The
number of holes is then

Nhole ∼
(

V

Rd
s

)

(9)
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The entropy of each hole is

Shole ∼
Rd−1

s

G
(10)

Thus the total entropy is

S ∼ NholeShole ∼
V

RsG
(11)

We see that we can make S as big as we want by making
Rs small enough. In particular, the entropy of such con-
figurations can exceed the entropy given by the surface
area of the box. The energy of each hole is

Ehole ∼
Rd−2

s

G
(12)

Thus the total energy is

E ∼ NholeEhole ∼
V

R2
sG

(13)

From this expression we have

Rs ∼
(

V

EG

)
1
2

(14)

Substituting this in (11) we find

S ∼ 1

Rs

V

G
∼
(

V

EG

)− 1
2 V

G
∼
√

EV

G
(15)

Introducing a constant K of order unity we get

S = K

√

EV

G
(16)

Noting that

ρ =
E

V
(17)

we see that

S = K

√

ρ

G
V (18)

The entropy density s = S/V is then given by (1).

C. General arguments for the entropy expression
(1)

Let us now recall the various arguments that suggest
the expression (1) (or equivalently, eq.(18)) for the en-
tropy density of the early universe.

(a) In the above discussion we treated our box as hav-
ing a fixed size. But in fact the energy density ρ will

cause the box to expand in accordance with the Fried-
mann equation. This expansion leads to a cosmological
horizon, with radius

H−1 ∼ (Gρ)−
1
2 (19)

Supose we argue that the entropy in a region of radius
H−1 should be given by the entropy of a black hole with
radius ∼ H−1; models of this kind can be found in [6, 9,
16]. The entropy of a black hole of radius H−1 is S ∼
H−(d−1)/G. If we use a similar expression for the entropy
in a cosmological horizon region, then the entropy density
would be

s ∼ S

H−d
∼ H

G
∼
√

ρ

G
(20)

in agreement with (1).

(b) Banks and Fischler made a detailed study of a uni-
verse where the energy is in the form of a dense collection
of black holes - a ‘black hole gas’ [16]. It was noted that
the entropy (1) corresponds to an equation of state

p = ρ (21)

A general picture was developed where horizon sized
black holes coalesce as the universe expands, so that the
entropy in a region of size H(t)−1 remains of order the
entropy of a black hole of radius H(t)−1.
When ρ is of order the string scale, it was argued in

[9] that an entropy density (1) would be obtained for
a closely packed gas of string states which are at the
‘Horowitz-Polchinski correspondence point’ [17] (i.e., at
the point where the string is large enough to be at the
threshold of collapsing into a black hole).

(c) The expression (1) was obtained in [18] by arguing
for a ‘spacetime uncertainty relation’. In [12, 19] the
notion of a causal connection scale was used to arrive at
the same equation of state (1). In [20] a similar relation
was argued to correspond to the Cardy formula for the
density of states.

(d) In [21] it was noted that the expression (18) was
invariant under the T and S dualities. It was noted that
if one further requires that S ∝ V (i.e. S is extensive),
then we get (18).
In [22] the expression (18) was obtained as an extension

of the entropy of black holes. Let Ebh be the energy for
which a black hole has a size of the order of our torus.
Suppose we require that
(i) S should be invariant under T-duality in any cycle

of the torus.
(ii) S should be invariant under S-duality.
(iii) We should get S ∼ Sbh when the box size and

shape is such that E ∼ Ebh for that box.
Then it was argued in [22] that we are led to the ex-

pression (18), in the domain

ρbh . ρ . ρp , (22)



5

Here ρbh is the energy density corresponding to the en-
ergy Ebh placed in the volume V , and ρp stands for the
Planck density – Planck mass per unit Planck volume.
At the lower end of this range (ρ ∼ ρbh) the expres-
sion (18) matches onto the area entropy of the black hole
Sbh ∼ A/4G. At the upper end ρ = ρp, (18) gives an
entropy of one bit per unit Planck volume.2 Thus (18)
extrapolates the Bekenstein ‘area entropy’ to the domain
(22). Since ρ & ρbh, we will say that matter is ‘hyper-
compressed’; i.e., compressed beyond the density of the
largest black hole that can fit in the box.

It is interesting that the different approaches (a)-(d)
mentioned above all lead to the expression (1).3

D. The equation of state

Let us compute the values of different thermodynami-
cal quantities that follow from the equation of state

S = K

√

EV

G
(23)

The observations below were noted earlier in [16, 18], and
a detailed dynamics was conjectured for such an equation
of state in [27].
The first law of thermodynamics gives

TdS = dE + pdV (24)

Thus

T =

(

∂S

∂E

)−1

V

=
2

K

√

EG

V
(25)

p = T

(

∂S

∂V

)

E

=
E

V
= ρ (26)

Writing p = wρ we see that

w = 1 (27)

III. THE COVARIANT ENTROPY BOUND

The expression S = A/4G for the entropy of a black
hole suggests that the entropy in a region is somehow
limited by its surface area in Planck units. But consider
a flat homogenous cosmology. Since the spatial slices are
homogenous, the entropy S should be proportional to
the volume of any region R on this slice. But for a large

2 We will recall the details of this statement in sectionXC below.
3 For other conjectures about the entropy in the early universe,
see for example [23–25]. For other conjectires on the entropy in
gravitaional systems, see [26].

R R

(a) (b) 

t=0 t=0

FIG. 4. The entropy in a region R increases with the volume
ofR. To get a bound proportional to the area of the boundary
of R, we consider only the entropy that passes through the
light sheet shown with the dotted lines. (b) If we take the
region R to be a horizon volume (and assume that entropy
is conserved in each comoving volume), then the entropy on
R is the same as the entropy passing through the light sheet
bounding R.

enough R, the entropy in R would exceed the quantity
A/4G defined through the surface area of the region R.
To remedy this problem, the following idea was sug-

gested in [4]. Consider a light-like surface formed by
light rays heading to the past and towards the center of
R. Instead of looking at the entropy in the region R,
we should only look at the entropy that passes through
this light-like surface. It was then conjectured that this
entropy would always be bounded by A/4G, where A is
the area of the boundary of R.
A somewhat different approach was suggested in [5],

where it was argued that the Hubble radius H−1 should
be taken as a ‘maximal box size’; the entropy in a ball
of radius H−1 should be bounded by A/4G where A is
the area of the boundary of this ball. In [7] a suggestion
was made that also involves the scale H−1. We consider
a space-like slice, with a particular point on this slice.
Assuming spherical symmetry around this point, we find
the radius Xa of the apparent horizon. The conjecture
then says that the entropy within Xa is less than A/4G,
where A is the area of the apparent horizon.
While such prescriptions were interesting, it was found

that there are counterexamples to such conjectures (see
for example [28]). An approach without these problems
was developed by Bousso [8]. Let us describe this pro-
posal, called the ‘covariant entropy bound’ or the ‘Bousso
bound’, in more detail:

(a) We assume that we are in (d+1)-dimensional space-
time. Consider a (d − 1)-dimensional space-like hyper-
surface S. This hypersurface may be closed (i.e. without
boundary) or it may be open (i.e. with boundary). Let
A be the area of S.
As an illustration let us take an open hypersurface S;

later on we will use this example (and the notation given
below) to carry out our investigation of entropy bounds
for the equation of state (1). We let the S be a cuboid in
the directions x2, . . . xd, spanning the coordinate ranges

0 ≤ xi ≤ Li (28)

All points on this cuboid are at a fixed value of time t
and space coordinate x1:

t = t0, x1 = x1
0 (29)
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X

t = 0

t = t0

x
1

t

FIG. 5. The set-up of the covariant entropy bound in (2+1)-
dimensional spacetime {t, x1, x2}.The cross depicts the spatial
direction x2 which goes into the plane of the paper. The solid
slanted line starting at the cross is a null ray headed to the
past; this ray stays at constant x2. The set of such null rays
(for different x2) form the light sheet. The upward arrows
depict entropy crossing the light sheet.

FIG. 6. The same set-up as in Fig.5, but in a 3-dimensional
depiction. The length of the x2 direction shrinks to zero as
we follow the light sheet back towards t = 0.

(b) At each point of the hypersurface S we look for a
null geodesic leaving the hypersurface, in a direction that
is orthogonal to the hypersurface. In general there will
be four such null geodesics from every point: there are
two opposite spatial directions to move out in, and the
geodesic could be future directed or past directed. We
consider the set of null geodesics constructed this way;
one from each point of S. (As we will note below, there
will be further restrictions on this set of null geodesics.)
In our illustration, let us assume that the metric has

the form

ds2 = −dt2 +

d
∑

i=1

a2i (t)dx
idxi (30)

so that the directions t, xi are all orthogonal to each
other. Then for the hypersurface (28), the orthogo-
nal spatial direction is x1. In fig.5 we depict the null
geodesics heading in the positive direction x1 as we move
to the past. Each geodesic remains at a fixed value of

the coordinates x2, . . . xd. The change of x1 is found by
requiring ds = 0 in the metric (30):

dx1

dt
=

1

a1(t)
(31)

(c) We require that the set of null geodesics constructed
this way be nondiverging as we move away from our hy-
persurface S. In other words, suppose we consider a small
area element dA on S, and the subset of the null geodesics
discussed above that start in dA. After we follow these
geodesics for an affine distance λ, the transverse area
spanned by the geodesics will have a value dA(λ). We
require that

dA(λ)

dλ
≤ 0 (32)

In our illustration, we can consider the area element
defined by infinitesimal intervals dxi, i = 2, . . . d. In the
metric (30), the area of this element is

dA(t) =

d
∏

i=2

ai(t)dx
i (33)

Requiring that dA(t) decrease along the geodesics head-
ing to the past is equivalent to

dA

dt
=

d

dt

(

d
∏

i=2

ai(t)

)

≥ 0 (34)

(d) We follow the null geodesics described above up
to the point where they reach a caustic; i.e., the point
where the separation of neighboring geodesics goes to
zero. The surface spanned by the null rays emanating
from S, followed up to any point before meeting a caustic,
defines a light sheet. We now consider the entropy Ssheet

on this light sheet; this can also be defined by the entropy
that ‘crosses’ the light sheet from one side to the other.

(e) There are two versions of the covariant entropy
bond that we will study:

(i) The covariant entropy bound originally proposed in
[8] says that

Ssheet ≤ Sbound (35)

where

Sbound =
A

4G
(36)

with A being the area of S.

(ii) A generalized version of this bound was proposed
in [29]. In this version, we do not need to construct
the light sheet all the way to the caustic; we can stop
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following the null rays at any point before they reach the
caustic. The end points of these null rays then describe
a surface with area A′. Let Ssheet be the entropy that
passes through the part of the light sheet that these null
rays describe. Then the generalized covariant entropy
bound is the requirement (35), with

Sbound =
∆A

4G
(37)

where

∆A ≡ A−A′ (38)

(Note that A′ < A because the light rays are converging
along their path.)

We will first look at the form (37) of the covariant en-
tropy bound in the case where the surfaces with areas
A,A′ are very close to each other; in this situation it will
be easy to see that the equation of state (1) can violate
the bound for suitable initial conditions. Next we will
consider complete evolutions where we follow the light
sheet all the way to its caustic at the initial singularity;
in this case the bound is given by (36). The latter com-
putation will allow us to address some efforts that were
devoted to proving the covariant entropy bound under
certain assumptions.

IV. VIOLATING THE BOUND IN AN
INFINITESIMAL TIME SLICE

In this section we will look at the violation of the co-
variant entropy bound in the simplest setting: where the
light sheet is infinitesimally thin in the time direction.
In this situation the metric in the neighbourhood of the
sheet is given just by a choice of initial conditions.

A. The metric

We wish to consider a metric of the form encountered
in a flat cosmology:

ds2 = −dt2 +

d
∑

i=1

a2i (t)dxidxi (39)

We have in mind that the full theory of quantum gravity
is given by M-theory, so we should have 10 space direc-
tions. But in what follows it will be equally easy to let
the number of space dimensions be an arbitrary integer
d.
The light sheet we use will be confined to the interval

t0 −∆t ≤ t ≤ t0 (40)

where we will take the limit of ∆t small. The metric is
subject to Einstein’s equations, which are second order

equations for the metric components. We can choose the
ai, ȧi at time t0:

ai(t0) ≡ ai0,
ȧi(t0)

ai(t0)
≡ bi0 (41)

subject only to the constraint set by the Einstein equa-
tion Gt

t = 8πGT t
t:

−1

2

(

∑

i

ȧi
ai

)2

+
1

2

∑

i

ȧ2i
a2i

= −8πGρ (42)

This constraint gives

−1

2

(

∑

i

bi0

)2

+
1

2

∑

i

b2i0 = −8πGρ0 (43)

where ρ0 = ρ(t0). The Gk
k equations for the space di-

rections k then determine the äk (there is no sum over
k):

Gk
k =

äk
ak

+
ȧk
ak

(

∑

i

ȧi
ai

)

− ȧ2k
a2k

−1

2



2
∑

i

äi
ai

+

(

∑

i

ȧi
ai

)2

−
∑

i

ȧ2i
a2i





= 8πGT k
k (44)

These equations have the form

Mä = S (45)

where ä is a column vector with entries {ä1, ä2, . . . , äd},
M is the matrix with entries

Mij = δij − 1 (46)

and S is a column vector with entries

Sk = 8πGT k
k−

ȧk
ak

(

∑

i

ȧi
ai

)

+
ȧ2k
a2k

+
1

2

(

∑

i

ȧi
ai

)2

+
∑

i

ȧ2i
a2i

(47)
We have

detM = (1− d) 6= 0 (48)

so solving the relation (45) yields finite values of the äk.
Thus in the interval (40) we get

ai(t) = ai0[1 + bi0(t− t0)] +O(∆t)2 (49)

Since we are interested in the limit ∆t → 0, we will just
write

ai(t) = ai0[1 + bi0(t− t0)], t0 −∆t ≤ t ≤ t0 (50)

in what follows. We will take

bi0 > 0, i = 1, . . . , d (51)
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so that the slice t0 −∆t < t < t0 represents a segment of
an expanding cosmology. (We take ai0 as positive num-
bers as well.)
Note that we have used very little information about

the matter content of the theory in constructing the ex-
panding segment (50). We can always choose the initial
values of the metric and its first derivative, with the only
constraint being (42).4

B. Checking the covariant entropy bound

Let us follow the steps (a)-(e) in section III where we
described the covariant entropy bound with the help of
an illustration; we will use the metric and hypersurface
etc. used in that illustration. We label the steps below
as (a’)-(e’), in accordance with the corresponding steps
in section III.

(a’) Our metric is given by (39),(50). Consider the
(d− 1)-dimensional hypersurface S defined by (28),(29).
The area of this hypersurface is

A =
d
∏

i=2

Liai(t0) =
d
∏

i=2

Liai0 (52)

(b’) Consider a null geodesic starting at a point
{x2

0, . . . x
d
0} on S. The geodesic starts with a tangent

vector which has with nonzero components

dx1

dλ
< 0,

dt

dλ
< 0 (53)

so it heads to the past, in the direction of decreasing x1,
and in a direction normal to S. The coordinate x1 along
the geodesic satisfies (31), which gives, in the infinitesi-
mal slice (40)

x1(t) = x1
0 −

(t0 − t)

a10
(54)

(c’) We require that the set of null geodesics con-
structed this way be converging as we move away from
S. The condition for this is (34). We find

dA

dt
=

d

dt

(

d
∏

i=2

Liai(t)

)

=

(

d
∏

i=2

Liai0

)





d
∑

j=2

bi0



 (55)

4 In the initial conditions we have taken the off-diagonal compo-
nents of the metric to vanish; the corresponding Einstein equa-
tions tell us that these off diagonal components will be O(∆t)2

in our slice, and so can be ignored in (50). In fact the Ein-
stein equations have a xi ↔ −xi symmetry. Thus assuming that
the matter stress tensor also has this symmetry, the off diagonal
terms gti and gij , i 6= j will continue to vanish for all time if they
are taken to vanish in the initial conditions.

where we have used (50) and kept only terms that are
nonzero in the limit ∆t → 0. From (51) we find

dA

dt
> 0 (56)

in accordance with the requirement (34).

(d’) Our light sheet is made of the above null rays,
followed back from the surface t = t0 to the surface t =
t0 −∆t.

X t = t0

x
1

t

∆t

∆x
1

t = t0 −∆t

FIG. 7. The same set-up as in fig.5, for a light sheet that
lies between two spacelike hypersurfaces separated by an in-
finitesimal distance ∆t. The entropy on the spatial segment
∆x1 will pass through the light sheet in the time ∆t.

Let us now compute the entropy passing through this
light sheet. On the spatial slice at this time t, consider
the sliver of space given by

x1
0−∆x1 ≤ x1 ≤ x1

0, 0 ≤ xi ≤ Li, i = 2, . . . , d (57)

where

∆x1 =
∆t

a10
(58)

As can be seen from fig.7, the entropy passing through
our light sheet is equal to the entropy present on this
sliver of space. The proper volume of this sliver is

∆V = a10∆x1

(

d
∏

i=2

ai0Li

)

= ∆t

(

d
∏

i=2

ai0Li

)

(59)

The entropy density on this sliver is

s = K

√

ρ0
G

(60)

Thus the entropy Ssheet passing through our light sheet,
which equals the entropy on the sliver, is

Ssheet = s∆V = K

√

ρ0
G

∆t
d
∏

i=2

ai0Li (61)

(e’) We will use the form (37) of the covariant entropy
bound. The area A is given by (52). The area A′ is the
area of the surface at the lower end of the light sheet.
We have

A′ =

d
∏

i=2

Liai(t0 −∆t) =

d
∏

i=2

Liai0(1− bi0∆t)

=

(

d
∏

i=2

Liai0

)(

1−∆t

d
∑

i=2

bi0

)

(62)
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Thus

Sbound =
A−A′

4G
=

(

∏d
i=2 Liai0

)

∆t
∑d

i=2 bi0

4G
(63)

We find that

r ≡ Ssheet

Sbound
=

4K
√
ρ0G

∑d
i=2 bi0

(64)

Substituting ρ0 from (43), we get

r =
K√
π

[

(

∑d
i=1 bi0

)2

−∑d
i=1 b

2
i0

]
1
2

∑d
i=2 bi0

(65)

It is easy to see that for any given value of K, we can
choose the bi0 to get r > 1, thus violating the covariant
entropy bound. For example suppose we set

bi0 = b, i = 2, . . . d (66)

We then find that r > 1 if we take

b10
b

>
π(d− 1)

2K2
− d− 2

2
(67)

The relation (67) is the main result of this paper. This in-
equality shows that we can violate the covariant entropy
bound by an asymmetric choice of initial conditions on
a spacelike slice, if the entropy density is given by (1).
On the other hand it has ben argued that an entropy
density of the form (1) can be obtained by a collection of
string states at the Horowitz-Polchinski correspondence
point [9], or by a gas of black holes [16], or by a collection
of intersecting brane states that describe black holes in
string theory [22]. Putting this fact together with the in-
equality (67), we find a violation of the covariant entropy
bound.
In sectionXA we will discuss if it is possible to avoid

this conclusion; for example there may be a physical rea-
son why asymmetric expansion like (67) is not allowed.
We do not however know of any such clear reason, and
looking for one may open up interesting avenues of ex-
ploration.

V. THE FULL COSMOLOGY FOR THE
EQUATION OF STATE p = ρ

We have seen that using a thin slice (50) of a flat cos-
mology was enough to yield a violation of the covariant
entropy bound for the equation of state (1). Neverthe-
less, it is helpful to get a perspective of the full evolution
under this equation of state, and to see the violation of
the bound in this situation. In this section we will con-
sider the evolution assuming a perfect fluid with p = ρ;
in the next section we will consider the effect of viscosity
on the evolution.

A. The metric for the equation of state p = ρ

In this section we will solve the Einstein equations for
our flat cosmology with equation of state p = ρ (eq.
(26)), assuming the stress tensor of a perfect fluid.
The metric is assumed to have the form

ds2 = −dt2 +

d
∑

i=1

a2i (t)dxidxi (68)

Suppose the pressure in the direction xi is given by pi =
wiρ. The G0

0 component of Einstein’s equations gives
the Friedmann equation

−1

2

(

∑

i

ȧi
ai

)2

+
1

2

∑

i

ȧ2i
a2i

= −8πGρ (69)

The Gk
k components give

äk
ak

+
ȧk
ak

(

∑

i

ȧi
ai

)

− ȧ2k
a2k

−
∑

i

äi
ai

= 8πG(1 + wk)ρ = 16πGρ (70)

where in the second step we have set wi = 1 for all i in
accordance with our equation of state (26).5 The above
equations can be solved with the ansatz

ai = a0it
Ci , i = 1, . . . d (71)

with a0i, Ci constants. Then

ȧi
ai

=
Ci

t
,

äi
ai

=
Ci(Ci − 1)

t2
(72)

Equations (69) and (70) give respectively

1

t2



−1

2

(

∑

i

Ci

)2

+
1

2

∑

i

C2
i



 = −8πGρ (73)

1

t2

[

Ck(Ck − 1) + Ck

∑

i

Ci − C2
k −

∑

i

Ci(Ci − 1)

]

= 16πGρ (74)

Eliminating ρ gives

Ck

(

∑

i

Ci − 1

)

=
∑

j

Cj

(

∑

i

Ci − 1

)

(75)

There are two cases:

(1) Suppose

∑

i

Ci 6= 1 (76)

5 The solution for general wi was found in [30].
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Then we get

Ck =
∑

i

Ci ≡ CT (77)

Summing over the d possibilities for k gives dCT = d2CT ,
which implies CT = 0. From (77), we get

Ck = 0, k = 1, . . . , d (78)

From (69) we find ρ = 0, so we just have empty, toroidally
compactified, Minkowski space. This case will not be of
interest to us.

(2) The other option is

∑

i

Ci = 1 (79)

Then the relations (75) place no constraints on the Ck

apart from the condition (79). From (73) we get

ρ =
1

16πGt2

(

1−
∑

i

C2
i

)

(80)

To get ρ > 0 we need

∑

i

C2
i < 1 (81)

We will take this solution for the metric and examine the
entropy bound using the entropy density (1).

B. Checking the bound

Let us follow the steps (a)-(e) in section III where we
described the covariant entropy bound with the help of
an illustration; we will use the metric and hypersurface
etc. used in that illustration.
Our metric is (30). The scale factors evolve as

ai = ai0t
Ci , i = 1, . . . , d (82)

where ai0 > 0 are constants and the Ci satisfy (79),(81).
We assume in addition that

Ci > 0, i = 1, . . . d (83)

so that all spatial directions collapse to zero size at the
initial singularity t = 0.
We again label the steps below as (a’)-(e’), in accor-

dance with the corresponding steps in section III.

(a’) Consider the (d − 1)-dimensional hypersurface S
defined by (28),(29). The area of this hypersurface is

A =

d
∏

i=2

Liai(t0) =

d
∏

i=2

Liai0t
Ci

0 (84)

(b’) Consider a null geodesic starting at a point
{x2

0, . . . x
d
0} on S. The geodesic starts with a tangent

vector

dx1

dλ
< 0,

dt

dλ
< 0 (85)

so it heads to the past, in the direction of decreasing x1,
and in a direction normal to S. The coordinate x1 along
the geodesic satisfies (31), which gives

x1(t) = x1
0 −

∫ t0

t=t

dt

a10tC1
= x1

0 −
t1−C1
0 − t1−C1

a10(1 − C1)
(86)

(c’) We require that the set of null geodesics con-
structed this way be converging as we move away from
S. The condition for this is (34). We find

dA

dt
=

(

d
∏

i=2

ai0

)

d

dt

(

t
∑

d
I=2 Ci

)

=

(

d
∏

i=2

ai0

)

d

dt
t1−C1

(87)
where in the last step we have used (79). From the condi-
tion (81) we find that 1−C1 > 0. This gives dA/dt > 0,
in accordance with the requirement (34).

(d’) It is easy to see that as we follow the null geodesics
backwards in time, the separation between neighboring
geodesics reaches zero at t = 0, but not before. The
surface formed by these geodesics from their start at S
to their endpoint at the singularity t = 0 is thus a ‘light
sheet’.

X

t = 0

t = t0

x
1

t

∆t

∆x
1

FIG. 8. The same set-up as in fig.5. We consider the entropy
passing through a small part of the light sheet. The entropy
on the spatial segment ∆x1 will pass through the light sheet
in the time ∆t.

Let us now compute the entropy passing through this
light sheet. Take a time t, with 0 < t < t0. The position
of the light sheet at this time is given by the value of
x1(t) given in (86). On the spatial slice at this time t,
consider the sliver of space given by

x1(t)−∆x1 ≤ x1 ≤ x1(t), 0 ≤ xi ≤ Li, i = 2, . . . , d
(88)

As can be seen from fig.8, the entropy on this sliver of
space will soon thereafter pass through the light sheet.
The spatial volume of this sliver is

∆V = a1(t)∆x1
d
∏

i=2

ai(t)Li (89)
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The entropy density on this sliver is

s = K

√

ρ

G
= KG− 1

2

[

(

1−
∑

iC
2
i

)

16πGt2

]
1
2

(90)

where we have used (80). Thus the entropy on the sliver
is

∆s = s∆V

= KG− 1
2

[

(

1−∑i C
2
i

)

16πGt2

]
1
2

a1(t)∆x1
d
∏

i=2

ai(t)Li

(91)

We can write ∆x1 = ∆t/a1(t), where ∆t is the time over
which the entropy on the sliver crosses the light sheet
(fig.8). This gives

∆s = KG− 1
2

[

(

1−
∑

i C
2
i

)

16πGt2

]
1
2

∆t

d
∏

i=2

ai(t)Li

(92)

Adding over all such intervals ∆t gives the total entropy
Ssheet passing through our light sheet. Using (82) we find

Ssheet =
K
∏d

i=2 ai0Li

G

[

1−∑i C
2
i

16π

]
1
2
∫ t0

t=0

dt
t
∑

d
i=2 Ci

t

=
K
∏d

i=2 ai0Li

G

[

1−∑i C
2
i

16π

]
1
2 t

∑d
i=2 Ci

0
∑d

i=2 Ci

=
K
∏d

i=2 ai0Li

G

[

1−∑i C
2
i

16π

]
1
2 t1−C1

0

1− C1
(93)

where in the last step we have used (79).

(e’) We consider the covariant entropy bound in the
form given by eq.(36). Using (84) we find

Sbound =
A

4G
=

1

4G

(

d
∏

i=2

Liai0

)

t
∑

d
i=2 Ci

0

=
1

4G

(

d
∏

i=2

Liai0

)

t1−C1
0 (94)

We find that

r ≡ Ssheet

Sbound
=

K
(

1−∑i C
2
i

)
1
2

√
π(1− C1)

(95)

It is easy to see that for any given value of K, we can
choose the Ci to get r > 1, thus violating the covariant
entropy bound. For example suppose we set

Ci = C̃, i = 2, . . . d (96)

Using (79) we can write C̃ in terms of C1

C1 = 1− (d− 1)C̃ (97)

We then find that r > 1 if we take

1−
2K2

π

1 + K2d
π(d−1)

< C1 < 1 (98)

where the last inequality follows from (79) and (83). It
can be checked that if we take a thin slice of the full
geometry studied in this section, then the condition (98)
is consistent with the general condition (67).

C. Comments on the computation

Let us now make a few comments on the above com-
putation.

(a) In the above computation we had used an open
surface S. We can perform a similar check for a closed
surface S, as follows. The open surface S was defined by
the coordinate intervals

0 ≤ xi ≤ Li, i = 2, . . . , d (99)

Let us compactify spacetime so that this cuboid becomes
a torus T d−1

(xi = 0) ∼ (xi = Li), i = 2, . . . , d (100)

In (86) choose x1
0 such that

x1
0 =

t1−C1
0

a10(1− C1)
(101)

With this choice, the null geodesics starting on S reach
x1 = 0 at t = 0.
Now consider the (d − 1)-dimensional region R de-

scribed as follows

t = t0, − x1
0 ≤ x1 ≤ x1

0, 0 ≤ xi ≤ Li, i = 2, . . . , d
(102)

The x1 direction gives a 1-dimensional line segment with
two endpoints; at each endpoint we have the torus T d−2

described by the compact directions xi, i = 2, . . . .d.
These two T d−2-dimensional torii form the boundary of
the region R, and their union is the surface S that will
appear in the Bousso bound. The light sheets start-
ing at each of these torii are constructed just as in sec-
tionVB: the null geodesics stay at a constant value of
xi, i = 2, . . . , d, while moving in the x1 direction as

dx1

dt
= ± 1

a1(t)
(103)

(The two signs are for the right and left torii respectively.)
We thus get the wedge shape depicted in figs.9,10. The
entropy through each of the slanted portions of the wedge
is equal to the value Ssheet found in (93). The area of each
torus is equal to the area A given in (84). Thus for the
present case both Ssheet and Sbound are twice the values
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in (95), and we get the same value for their ratio r as
before

r ≡ Ssheet

Sbound
=

K(1−∑i C
2
i )

1
2

√
π(1− C1)

(104)

Thus the choice (98) will again violate the bound.

X

t = 0

t = t0

x
1

t

∆t

∆x
1

X

right torusleft torus

R

FIG. 9. The region R; its boundaries are marked by the
crosses, which depict compact torii. We compute the entropy
through the light sheets indicated, and compare this to the
total area of the two torii.

Compact Directions (torus)
Non- compact Directions

FIG. 10. The same as in fig.9, shown in a 3-dimensional
depiction. The light rays making up the light sheet maintain a
constant coordinate position in the compact directions, while
moving radially in the noncompact directions.

In the above example, the surface S was compact, since
it was the boundary of a region R. The region R had
one noncompact direction, while its other directions were
compact. It does not seem possible to violate the bound
(for an arbitrary value of K) if we choose a region R
which has more than one noncompact direction. It would
be interesting to understand the implications of this re-
striction better.

(b) The equation of state (1) has s ∼ ρ
1
2 . If one con-

siders the cases s ∼ ρµ with µ > 1
2 , then we do not get a

violation of the bound. In this latter case one finds that
the ratio r = Ssheet/Sbound decreases with t; we repro-
duce the relevant computation in the appendix A. Thus
if the bound is satisfied at the Planck time, then it will
be satisfied at later times. For the case µ = 1

2 , the ratio

r becomes time independent, and then the choice (98)
violates the bound at all t where this equation of state
holds.

VI. THE EFFECT OF VISCOSITY

We have seen that the equation of state (1) gives p = ρ.
But it is possible that the fluid has in addition a viscosity,
which will add further terms to the stress tensor. In this
section we will consider how the evolution of the last
section is modified by viscous effects.6

With viscosity η, the stress tensor Tµν gets an addi-
tional term −2ησµν , where σµν is the traceless symmet-
ric part of the velocity gradients. With a metric of the
form (39), we get

T 0
0 = −ρ

T k
k = p− 2ησk

k = p− 2η

[

ȧk
ak

− 1

d

d
∑

l=1

ȧl
al

]

= ρ− 2η

[

ȧk
ak

− 1

d

d
∑

l=1

ȧl
al

]

(105)

where in the last step we have set p = ρ.

We do not know the value of η for the ‘black hole gas’,
but it was conjectured in [31] that as a general rule

η

s
≥ 1

4π
(106)

This inequality was derived using AdS/CFT, where a
black hole yielded η/s = 1/4π; conjecturing that a black
hole has the lowest η/s yields (106). Let us conjecture
that the black hole gas also has this minimum viscosity,
so that

η =
1

4π
s =

K

4π

√

ρ

G
(107)

Now let us consider the Einstein equations. The G0
0

component gives the Friedmann equation

−1

2

(

∑

i

ȧi
ai

)2

+
1

2

∑

i

ȧ2i
a2i

= 8πGT 0
0 = −8πGρ (108)

6 We thank Soo-Jong Rey for pointing out the possible connections
between entropy bounds and the viscosity bound.
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The Gk
k components give

äk
ak

+
ȧk
ak

(

∑

i

ȧi
ai

)

− ȧ2k
a2k

−
∑

i

äi
ai

= −8πGT 0
0 + 8πGT k

k

= 8πG

[

ρ+ ρ− K

2π

√

ρ

G

(

ȧk
ak

− 1

d

d
∑

l=1

ȧl
al

)]

= 8πG

[

2ρ− K

2π

√

ρ

G

(

ȧk
ak

− 1

d

d
∑

l=1

ȧl
al

)]

(109)

With dissipation, we no longer expect to get the simple
power law solutions that we had without dissipation. But
it is instructive to check this fact explicitly. Thus we
assume the ansatz

ai = a0it
Ci , i = 1, . . . d (110)

with a0i, Ci constants. Equations (108) gives

1

t2



−1

2

(

∑

i

Ci

)2

+
1

2

∑

i

C2
i



 = −8πGρ (111)

Eq. (109) gives

1

t2

[

Ck(Ck − 1) + Ck

∑

i

Ci − C2
k −

∑

i

Ci(Ci − 1)

]

= 8πG

[

2ρ− K

2π

√

ρ

G

1

t

(

Ck −
1

d

d
∑

l=1

Cl

)]

(112)

We can find ρ from (111) and substitute into (112); this
gives

1

t2

[

Ck(Ck − 1) + Ck

∑

i

Ci − C2
k −

∑

i

Ci(Ci − 1)

]

= 8πG

[

2ρ− K

2π

√

ρ

G

1

t

(

Ck − 1

d

d
∑

l=1

Cl

)]

=
1

t2





(

∑

i

Ci

)2

−
∑

i

C2
i





− K

√

2

π

1

t2





1

2

(

∑

i

Ci

)2

− 1

2

∑

i

C2
i





1
2 (

Ck −
1

d

d
∑

l=1

Cl

)

(113)

Solving for the Ck gives

Ck =

(

∑

i

Ci

)

×
(
∑

iCi − 1) + K
d
√
π

[

(
∑

iCi)
2 −∑iC

2
i

]
1
2

(
∑

iCi − 1) + K√
π

[

(
∑

i Ci)
2 −

∑

i C
2
i

]
1
2

(114)

so that all the Ck are equal. Summing (114) over k gives
(after a little algebra), the relation

∑

i

Ci = 1 (115)

so that we get

Ck =
1

d
, k = 1, . . . , d (116)

Thus the only solution in the power law ansatz is an
isotropic one. For an isotropic expansion the viscosity
term has no effect, and (116) agrees with the isotropic
solution allowed by (79) in the zero viscosity case.
Even though we have not found the general solution in

the case of nonzero viscosity, the lesson we wish to draw
can already be seen from (113). We expect that if we
start from anisotropic initial conditions, then the solu-
tion will eventually asymptote to the isotropic power law
solution (116). From (113) we see that the contribution
of the terms from the geometry is of the same order as
the terms from the viscous effects. Thus a solution that
is initially anisotropic will isotropize on a timescale that
is of the order of the Hubble scale H−1; in particular this
isotropization will not happen ‘instantaneously’ or over
planck times. Thus even in the presence of viscosity, we
can return to the computation of section IV where we set
up anisotropic initial conditions, and follow the evolution
for a small time ∆t; viscous effects will contribute only
to the O(∆t)2 terms in (49), and will thus not affect the
argument showing violation of the generalized covariant
entropy bound.

VII. THE ENTROPY BOUND BASED ON THE
APPARENT HORIZON

Let us also consider the entropy bound proposed in [7].
Due to the expansion of the cosmology, we can find space-
like surfaces of dimension (d− 1) that form an apparent
horizon. Take any such surface, and let the area of this
apparent horizon be A. Then the conjecture states that
the entropy within this apparent horizon will be bounded
by A/4G.
To get a violation of the bound for the equation of state

(1), we will again need to have an asymmetric expansion;
i.e., not all the Ci in (71) would be the same. In this
situation the apparent horizon is not a spherical surface,
making computations difficult. To avoid this problem,
we take a spacetime where some of the directions are
compactified to circles, while the others are noncompact.
We will then let these two sets of directions expand at
different rates, getting the required asymmetry.
We let d1 directions be noncompact and d2 = d − d1

directions be compact. Let each compact direction have
a coordinate range

0 ≤ xi ≤ L, i = d1 + 1, . . . , d (117)
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We let

ai = a0t
C ≡ anc(t), i = 1, . . . , d1

ai = ã0t
C̃ ≡ ac(t), i = d1 + 1, . . . d (118)

with

C > 0, C̃ > 0 (119)

The condition (79) gives

d1C + d2C̃ = 1 (120)

The metric (39) in the noncompact directions is now
homogenous and isotropic. We can thus write it in the
form

ds2 = −dt2 + a2nc(t)
(

dr2 + r2dΩ2
)

(121)

Following [7], we define r̃ = ancr, and compute ∇r̃ in the
directions t, r

∇r̃ = {r̃,t, r̃,r} = {ȧncr, anc} (122)

We then have

|∇r̃|2 = r̃,µr̃,νg
µν = 1− ȧ2ncr

2 (123)

This vanishes when

r =
1

ȧnc
(124)

This corresponds to a proper radius of the apparent hori-
zon

Xa = ancr =
anc
ȧnc

, (125)

a value that equals the Hubble radius of the expansion.
Noting from (118) that anc = a0t

C , we get

Xa =
t

C
(126)

The volume Vc of the compact directions is

Vc = V0t
d2C̃ (127)

where V0 = (ã0L)
d2 . The area of the apparent horizon

(including the extent in the compact directions) is

A = Ωd1−1X
d1−1
a Vc = Ωd1−1

(

t

C

)d1−1

V0t
d2C̃ (128)

The volume of the noncompact directions is

Vnc =
Ωd1−1

d1
Xd1 =

Ωd1−1

d1

(

t

C

)d1

(129)

Thus the overall volume inside the apparent horizon is

V =
Ωd1−1

d1

(

t

C

)d1

V0t
d2C̃ (130)

From (80) we have

ρ =
1

16πGt2

(

1− d1C
2 − d2C̃

2
)

(131)

This gives, with the entropy expression (18)

S = K

√

1

16πG2t2

(

1− d1C2 − d2C̃2
)

×Ωd1−1

d1

(

t

C

)d1

V0t
d2C̃ (132)

We can write this as

S = K

√

(1− d1C2 − d2C̃2)

πd21C
2

A

4G
(133)

Thus

r =
S

Sbound
= K

√

(1− d1C2 − d2C̃2)

πd21C
2

(134)

Let us choose any d1 ≥ 1 and any d2 ≥ 1. The relation
(120) gives

C̃ =
1− d1C

d2
(135)

Then we can see that we get r > 1 if we take

C <
d1K

2 +
√

d1d2K2[(d− 1)K2 + d1(d2 − 1)π]

d1(dK2 + d1d2π)
(136)

where d = d1 + d2.
Thus we see that the entropy expression (1) can violate

the bound given in terms on the area of the apparent
horizon.

VIII. RELATION TO PROOFS OF THE
BOUSSO’S BOUND

There have been several approaches to proving the
Bousso bound. These proofs start with some assump-
tions, and prove the bound subject to these assumptons.
We will now look at some of these proofs, and see that
the assumptions taken there do not hold for the equation
of state and initial conditions on expansion that we have
used to show a violation of the bound.

A. The first proof of [29]

In [29] it was shown that under some assumptions on
the matter stress tensor, one can actually prove the co-
variant entropy bound. Two such proofs were given. For
the first proof, it was assumed that the entropy current
sa is constrained by the stress tensor Tab in the manner

|saka| ≤ π(λ∞ − λ)Tabk
akb (137)
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Here λ is an affine parameter along the null geodesics
used in the covariant entropy bound. We have λ = 0
at the surface S used in the bound, and λ = λ∞ at the
endpoint of the geodesic.
For our example, we have the metric (39) and a null

geodesic moving in the plane t, x1. The null nature of
the geodesic gives

dt

dλ
= a1

dx1

dλ
(138)

The geodesic equation gives

d2x1

dλ2
= −2Γ1

10

dx1

dλ

dt

dλ
= −2

ȧ1
a1

dx1

dλ

dt

dλ
= −2

da1
dλ

1

a1

dx1

dλ
(139)

This gives

dx1

dλ
=

α

a21
=

α

a210
t−2C1 (140)

where α < 0 due to (53). We then have from (138)

dt

dλ
= a1

α

a210
t−2C1 =

α

a10
t−C1 (141)

which gives

λ− λ∞ =

∫ t

t=0

dt
a10
α

tC1 =
a10

α(1 + C1)
t1+C1 (142)

We have

sa = {s, 0, . . . 0} (143)

and

ka =

{

dt

dλ
,
dx1

dλ
, 0, . . . , 0

}

(144)

Thus we have

|saka| =
∣

∣

∣

∣

s
dt

dλ

∣

∣

∣

∣

= K

√

ρ

G

(−α)

a10
t−C1

=
K

4Gπ
1
2

(1−
∑

i

C2
i )

1
2
(−α)

a10
t−C1−1 (145)

With the equation of state p = ρ (eq.(26)) we have

Tab = ρ diag
{

1, a21, . . . , a
2
d

}

(146)

Thus we get

Tabk
akb = ρ

(

dt

dλ

)2

+ ρa21

(

dx1

dλ

)2

=
(1−∑iC

2
i )

8πGt2
α2

a210
t−2C1 (147)

Then the inequality (137) becomes

K

4Gπ
1
2

(

1−
∑

i

C2
i

)
1
2

≤ 1

(1 + C1)

(

1−
∑

i C
2
i

)

8G
(148)

which simplifies to

K ≤ 1

(1 + C1)

π
1
2 (1−∑iC

2
i )

1
2

2
(149)

We can write this as

r′ ≡ 2K(1 + C1)

π
1
2 (1 −∑i C

2
i )

1
2

≤ 1 (150)

We have

r′

r
=

2(1− C2
1 )

(1−∑i C
2
i )

(151)

where r is given in (64). Since (1 −∑iC
2
i ) ≤ (1 − C2

1 ),
we find

r′

r
≥ 2 (152)

Thus if we take initial conditions that give r > 1 to vi-
olate the covariant entropy bound, then we would also
have r′ > 1, so we would violate the condition (137) of
the proof of [29]. Thus there is no conflict between the
violation we find and the first proof of [29].

B. The second proof of [29]

In the second proof of [29], there are two assumptions
about the matter content. We will now examine these,
and find that the second condition is in fact violated by
our equation of state and the chosen initial conditions.
The two assumptions are

(i) (sak
a)2 ≤ α1

G
Tabk

akb (153)

(ii) |kakbsa;b| ≤ α2Tabk
akb (154)

where ka is any null vector. The constants α1, α2 are
constrained by

(πα1)
1
4 +

(α2

π

)
1
2

= 1 (155)

Let us examine the conditions (i) and (ii) in turn.

(i) Our metric is (39). The entropy current and the
stress tensor are given respectively in (143) and (146).
The most general null vector (up to a scaling) is

ka =

{

1,
e1
a1

, . . . ,
ed
ad

}

(156)

where

d
∑

i=1

e2i = 1 (157)
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Then

sak
a = −s, Tabk

akb = 2ρ (158)

Thus the condition (153) becomes

s ≤
√

2α1ρ

G
(159)

We see that we can satisfy this if we take

K ≤
√
2α1 (160)

(ii) We have

st;t = −ṡ, st;j = sj;t = 0

sj;i = δijaj ȧjs = δij
Cj

t
a2j s (161)

Thus the condition (154) is
∣

∣

∣

∣

∣

∣

−ṡ+
d
∑

j=1

e2jCj

t
s

∣

∣

∣

∣

∣

∣

≤ 2α2ρ (162)

We have from (80)

s = K

√

ρ

G
=

K

Gt

(1−∑iC
2
i )

1
2

√
16π

,

ṡ = − K

Gt2
(1 −∑i C

2
i )

1
2

√
16π

(163)

Then (162) becomes equivalent to the requirement

r′′ ≡
2K

√
π(1 +

∑d
j=1 e

2
jCj)

α2(1−
∑d

i=1 C
2
i )

1
2

≤ 1 (164)

We note that

r′′

r
=

2π(1 − C1)(1 +
∑d

j=1 e
2
jCj)

α2(1−
∑d

i=1 C
2
i )

(165)

where r is given by (64). From (155) we note that α2 ≤ π.
We then have

r′′

r
≥

2(1− C1)(1 +
∑d

j=1 e
2
jCj)

(1−∑d
i=1 C

2
i )

≥
2(1− C1)(1 +

∑d
j=1 e

2
jCj)

(1− C2
1 )

=
2
(

1 +
∑d

j=1 e
2
jCj

)

(1 + C1)
(166)

We can choose out null vector ka such that e1 = 1, ej =
0, j = 2, . . . d. Then we get

r′′

r
≥ 2 (167)

Thus we see that whenever we choose the initial condi-
tions in our cosmology to get r > 1, we also find that
r′′ > 1, in violation of the condition (154) which was as-
sumed in [29]. Thus the situations where we violate the
covariant entropy bound are not covered by the proof of
[29].

C. Other proofs

In [32] another proof of the bound was given, under
the assumption that the entropy current sa vanishes on
the surface S. But in our cosmology, sa is nonvanishing
on S, so this proof does not apply.
For situations with weak gravity, a proof of the co-

variant entropy bound was given in [33, 34]. This proof
builds on definitions of the entropy S and the energy
E formulated in terms of entanglement entropy [35]. It
may be that the definitions of energy and entropy that
give the covariant entropy bound are not the ones that
are directly related to the entropy and energy that we
have used. We have treated these quantities as contin-
uous functions, defined by an appropriate local averag-
ing proceedure. It may be that in certain situations the
quantum fluctuations are such that they do not permit
such an averaging, and then one may be able to preserve
the covariant entropy bound in some way. But in that
case it is not clear what the significance of the bound is.
One would hope to use the bound in situations like the
early Universe, and if the quantum fluctuations here are
such that they do not give well defined local entropy and
energy densities, then it is unclear how the bound could
be useful.7

IX. THE CAUSAL ENTROPY BOUND

In this section we address the ‘causal entropy bound’
proposed in [12]. This bound is based on the idea that
there is a critical ‘Jeans length’ scale above which pertur-
bations in a cosmology would be causally disconnected,
and so black holes larger than this scale would not form.
The bound is then obtained from the entropy of the
largest hole that can in fact form. The bound is expressed
in a covariant form, described as follows.
Consider a hypersurface τ = constant in spacetime,

and a region described as σ < 0 on this hypersurface.
Then the entropy S in this region is bounded by

SCEB

=
c1
4G

∫

σ<0

d4x
√−gδ(τ)

√

Max± [(Gµν ±Rµν)∂µτ∂ντ ]

= c1

√

π

2G

∫

σ<0

d4x
√−gδ(τ)

×
√

Max±

[

(Tµν ± Tµν ∓
1

2
gµνT )∂µτ∂ντ

]

(168)

We have included an extra constant c1 of order unity (not
present in the expression of [12]), since the arguments
leading to (168) are order of magnitude estimates and it

7 We thank R. Brustein for a discussion on this issue.
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is not clear if they imply c1 = 1; further, we would like
to extend (168) to all space dimensions d, and it may be
that c1 depends on d.
Let us consider this bound for our metric

ds2 = −dt2 +

d
∑

i=1

a2i (t)dxidxi (169)

Setting τ = t, we find that the delta function reduces
to a 3-dimensional one over a spatial volume; thus the
bound is given in terms of a volume rather than an area.
This is in line with the arguments of the present paper,
which suggest that bounds in terms of an area may not
be valid. We have

∂µτ = {−1, 0, 0, 0} (170)

We then find

Max±

[

(Tµν ± Tµν ∓
1

2
gµνT )∂

µτ∂ντ

]

= Max±

[

(ρ± ρ± 1

2
(−ρ+ 3 p)

]

= Max± [(ρ± ρ± ρ]

= 3ρ (171)

where in the third line we have set p = ρ, and in the
last line we see that the upper signs give the required
maximum. We then find

SCEB = 3c1

√

π

2

√

ρ

G
(172)

The equation of state (1) is not in contradiction with this
bound, as long as

K ≤ 3c1

√

π

2
(173)

If we conjecture that the causal entropy bound is satu-
rated in the early universe by the ‘black hole gas’ type of
states, then the equation of state for this phase would be

s = 3c1

√

π

2

√

ρ

G
(174)

X. DISCUSSION

We have seen that the equation of state (1) leads to
a violation of the covariant entropy bound if we take a
sufficiently asymmetric cosmology. Let us now discuss
the possible physical implications of this observation.

A. Possible inadmissibility of the set-up

We have made several implicit assumptions in our
treatment of the equation of state; let us now see if these
could be invalid:

(a) We required the cosmology to have an anisotropic
expansion, with an anisotropy of order unity. It is possi-
ble that the brane states depicted in fig.3(b) are resistant
to such an anisotropic expansion. Consider the setup of
section IV. Suppose there was a dynamical reason which
enforced the requirement

b10
b

??
≤ [(d− 1)− K2

π (d− 2)]
2K2

π

(175)

Then we cannot have the asymmetry required in (67),
and we would not be able to violate the covariant entropy
bound. We do not however know of a clear reason that
would yield a requirement like (175).

(b) We have seen that the entropy (18) can be realized
by a gas of black holes [9, 16], and that in string theory
we can get the same entropy by sets of intersecting branes
[22]. It is possible that some long distance effect disallows
such an array of black holes or intersecting brane sets. In
that case we may get less entropy than that given by (18),
and thus not end up violating the bound.
There are some difficulties in such a resolution how-

ever. For one thing, it is not clear what effect in general
relativity could prevent us from taking a lattice of black
holes. If we use intersecting brane sets in string theory,
then in the configuration of fig.3(a), these brane sets are
expected to just reproduce the entropy of black holes.
Away from the black hole horizon the physics of these
branes is supposed to approximate the usual supergrav-
ity behavior of black holes. So again it is not clear how we
could avoid getting configurations that yield an entropy
(18).
In spite of these issues, let us assume that there is

some long distance effect that makes the entropy of an
intersecting brane lattice less than (18). Note that it
would not help if this long distance effect just reduced the
value of K; we have seen that the bound can be violated
for any value ofK, however small. We can avoid violating
the bound if (18) was modified to

S = K

√

EV

G

(

log
EV

G

)−1

(176)

In [22] it was noted when arriving at (18) that we are
working in a regime EV

G ≫ 1. Thus the log factor in this
relation does not vanish and lead to a divergence. For
macroscopic volumes V the log reduces S by a large fac-
tor. To compare this modified expression of S with the
expression (18), we can say that the prefactor K in (18)
gets replaced by an effective prefactor K/ log(EV/G).
Then eq.(98) tells us that the values of C1 needed to
violate the bound tend to unity. From (80) we then find
that ρ → 0, and we do not get a sensible evolution. Thus
we avoid violating the covariant entropy bound.
But a modification of the form (176) does not respect

the underlying idea used in [22] to conjecture the equa-
tion of state (18). Recall the requirement (iii) in the ap-
proach (c) mentioned in section IIA. This requirement
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says that the entropy S in the box should be of order the
Bekenstein entropy Sbh when the energy E in the box is
order Ebh, the energy of a hole with radius the order of
the box size. Since a round hole cannot exactly fit in our
toroidal box, this requirement S ∼ Sbh can only be an
order of magnitude relation, undefined upto a factor of
order unity. But this lack of precision cannot be extended
to accommodate a modified relation of the form

S ∼ Sbh/ log(EV/G) ≪ Sbh (177)

since it is in fact possible to make a black hole in the
box with S ∼ Sbh. Thus (176) does not appear to be a
reasonable modification of (18); other attempts to reduce
S will face a similar difficulty.

B. Possible constraints on applicability of the
bound

It might be that a naive use of the equation of state
(1) violates the covariant entropy bound, but that there
are subtle conditions on when we can use the bound, and
these prevent us from arguing that the bound is indeed
violated. It has already been noted that the quantum
evaporation of black holes gives a stress tensor that re-
quires modification of the Bousso bound [37, 38]. Let us
examine some possibilities related to our current matter
model:

(a) When we model our matter as a ‘black hole gas’
(following [16]), then these holes have some typical radius
Rs that depends on the elapsed time t since the big bang.
A similar ‘lumpiness’ on the scale Rs may exist when the
holes are replaced by sets of intersecting branes. One
finds that [16, 22]

Rs ∼ t (178)

so the size of the ‘matter bits’ is of order the extent of the
light sheet. It is possible that in this situation we cannot
use the bound; the bound may require the matter fluid
to be very homogenous on the scale of the light sheet.8

If such is the case, then we learn something interesting
about the domain of validity of the bound. It is also not
clear if we can use such a bound in the early universe,
where models like the ‘black hole gas’ may describe the
matter content.

(b) Suppose the matter is described by the black hole
gas. If we follow a null geodesic back from our hypersur-
face S, then this geodesic can fall into one of the holes
and end up at the central singularity of the hole. In that
case one may say that we cannot follow the geodesic all
the way back to the cosmological singularity at t = 0,

8 We thank Erick Weinberg for a discussion on this point.

and thus we cannot get the full light sheet that has been
used above. Then we would not get all the entropy Ssheet

in (61) to flow through the sheet, and we may not be able
to violate the bound.
But in string theory we would replace the black holes

by intersecting brane sets, which give rise to ‘fuzzballs’
but no horizons or singularities. One may still argue that
null geodesics follow very complicated paths when they
enter an entity like a fuzzball, and one might find caustics
before reaching t = 0. If we use such an argument to save
the bound, however, then we have to ask how we can ever
hope to use the bound for cosmology, since the matter in
the very early universe is likely to be dense and stringy
anyway.

C. Replacing the area bound by a volume bound

Finally one must consider a fundamental change in how
we expect entropy bounds to work. Black holes have an
entropy given by their surface area:

S =
A

4G
(179)

This fact has suggested that we try to bound the en-
tropy in a region R in terms of the area of some surface
associated to R; the covariant entropy bound is one such
conjecture. But duality symmetries of string theory sug-
gest the answer (18), which gives the entropy in terms of
the volume of R. In fact, as we have noted

S = K

√

EV

G
= K

√

ρ

G
V (180)

so the entropy is extensive in the volume just as for nor-
mal thermodynamic systems. The area entropy (179)
arises as a particular limit, where the energy E is just
enough to make a single black hole in the box of volume
V . This can be seen as follows. Suppose we have just
enough energy to make a single black hole radius the size
of the box:

Rs ∼ V
1
d (181)

The energy of this hole is (eq.(12))

E ∼ Rd−2
s

G
∼ V

d−2
d

G
(182)

The entropy expression S ∼
√

EV
G gives

S ∼

√

V
d−2
d

+1

G2
∼ V

d−1
d

G
∼ A

G
(183)

Thus we recover the area dependence of (179). If we have
more energy in the box, then we will have several holes,

and the expression ∼
√

EV
G will cover this more general
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case as well. As noted in [22], we expect the volume
dependent expression (180) to hold over the domain

ρbh . ρ . ρp (184)

Here ρbh is the energy density that is just enough to make
a single black hole of order the box size; the entropy at
this density matches onto the area expression as noted in
(183). At the upper end ρ = ρp (180) gives an entropy
of one bit per unit Planck volume. This corresponds
to having a lattice of black holes with each hole of order
Planck size. Thus (180) extrapolates the Bekenstein ‘area
entropy’ [2] to the domain (22). Since ρ & ρbh, we will
say that matter is ‘hyper-compressed’; i.e., compressed
beyond the density of the largest black hole that can fit
in the box.
We have seen that the causal connecton bound of [12]

expresses the entropy in a region in terms of the volume of
region, rather than area of its boundary. We have seen
that our arguments do not rule out this bound; rather
they support the spirit in which this bound was proposed.
It is interesting that the Bekenstein bound [1] related

the entropy to the energy E and the parameter R giv-
ing the linear size of the system. The covariant entropy
bound tries to extend the behavior of black hole entropy
to general situations, limiting the entropy through a light
sheet in terms of the area A of the enclosed region. The
expression (180) gives an entropy that is proportional to
the volume V .9

It would be interesting to explore these general ideas
further, in particular using lessons from the fuzzball pic-
ture of black holes. This picture suggests that whenever
there is enough mass in a region to create a horizon, then
tunneling into fuzzballs leads to a breakup of the space-
time into parts that are disconnected but entangled [40].
This suggests that the black hole gas may have to thought
of as a collection of disjoint spacetime regions, that join
up as the expansion proceeds. We hope to return to these
considerations elsewhere.10

Appendix A: General power-law entropy expression

In this appendix we study a general power-law entropy
expression in an isotropic spatially flat FRW universe.
The entropy for a photon gas or the entropy given by
Eq.(1) would be special cases of this general expression.
We work in (d+1) spacetime dimensions. We assume the
the entropy density has the form

s = mαρµ . (A1)

9 In [39] it was argued that the expression for the entropy of a
black hole should be modified in a cosmological context, to one
which involves length and volume terms besides the area.

10 For other conjectures on the evolution of the big bang/ big
crunch, see [41].

Here m is a constant with the units of mass. (In most
cases m would just be the Planck mass). Matching di-
mensions, we find

α = d(1 − µ)− µ . (A2)

We first derive the thermodynamical properties of this
equation of state:

T =

(

∂U

∂S

)

V

=

(

∂(U/V )

∂(S/V )

)

V

=

(

∂ρ

∂s

)

V

=
1

µmα
ρ1−µ ,

p = T

(

∂S

∂V

)

E

= T (1− µ)mαρµ =
1− µ

µ
ρ . (A3)

Thus

w =
(1− µ)

µ
, (A4)

As expected, this gives w = 1 for µ = 1
2 . In the Fried-

mann equations (69) and (70), we assume for simplicity
that we have isotropy:

ai(t) = a(t), i = 1, . . . d (A5)

Then we get

aä

ȧ2
= −wd+ d− 2

2
= 1− d

2µ
. (A6)

The scale factor and entropy density are given by

a(t) = a0t
2µ/d , ρ =

µ2(d− 1)

4πGt2d
,

s(t) = mα

(

µ2(d− 1)

4πGd

)µ

t−2µ ≡ ηt−2µ . (A7)

Now consider the computation of entropy passing
through a lightsheet, as carried out in sectionVB. As
in that computation, we choose the surface S at a time
t0, in a plane orthogonal to the x1 direction. Using the
results from (A8) and repeating the steps in the compu-
tation leading to (61) gives

Ssheet =

∫ t0

0

s(t)A

d
∏

i=2

(

ai(t)

ai(t0)

)

a1(t)
dx1

dt
dt

= η

∫ t0

0

t
2µ(1−d)

d

0 t−
2µ
d Adt . (A8)

To get a finite value for the entropy passing through the
sheet we need

2µ < d . (A9)

We notice that for µ < 1
2 , the ratio of Ssheet to the Bousso

bound increases without any limit. Our equation of state
(1) has µ = 1

2 , and we see it is a marginal case in this

sense. For the cases µ > 1
2 we have

r =
Ssheet

Sbound
=

4Gηd

d− 2µ
t1−2µ
0 . (A10)
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Thus we can formally violate the bound by going to a
sufficiently small value of t0; that is by choosing

t0 < F1/(1−2µ)M
(1−d)(1−µ)/(1−2µ)
P mα/(1−2µ) , (A11)

where

F =
4d

(d− 2µ)

(

µ2(d− 1)

4πd

)µ

(A12)

and we have set G = 1/Md−1
P . If the scale m is set

at the Planck mass, then it is easy to check that the
condition (A11) gives t0 ≤ tP . Since we do not expect
our gravitational analysis to make sense at times earlier
than Planck time, we see that there is no violation of the
bound for µ > 1

2 .

Appendix B: Entropy in a comoving volume

In this appendix we show that for the equation of
state (1), the entropy enclosed in any comoving volume
is constant during the cosmological evolution. Consider
a small comoving cubic coordinate volume ∆Vcoord =
∆x1∆x2 . . .∆xd. The entropy enclosed is s∆Vphys where
s is the entropy density given by (1) and ∆Vphys is the
physical enclosed volume:

∆Vphys(t) = ∆Vcoord

d
∏

i=1

ai(t) . (B1)

Using (79) we get

∆Sencl(t) = s(t)∆Vphys(t) =
K

t

√

α

G
∆Vcoord

d
∏

i=1

ai(t)

=
K

t

√

α

G
∆Vcoord

(

d
∏

i=1

ai0

)

t
∑

d
i=1 Ci

= K

√

α

G
∆Vcoord

(

d
∏

i=1

ai0

)

. (B2)

where we have used (79). Thus the entropy in our co-
moving volume is independent of t.
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