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I. INTRODUCTION

As a natural extension of early work on relativistic fluid mechanics [1], Lichnerowicz

and Anile developed a theory of relativistic magnetohydrodynamics [2–4] paralleling the

well-studied nonrelativistic version. The primary assumption of MHD, that the fluid in

question is charged but quasineutral, holds in relativistic contexts of interest, although the

definition of quasineutrality must be restated in terms of a 4-current. As a result, relativistic

MHD holds an important position in the field of relativistic computational modelling, with a

variety of algorithms both suggested and implemented (e.g. Refs. 5–11). The present paper

explores the theoretical side of the subject, which recently has received less attention than

the computational side. In particular, our main contributions are i) the introduction of a

new canonical 4-momentum, and a new divergenceless 4-vector to represent the magnetic

field; ii) using the new variables to cast relativistic MHD into a covariant Poisson bracket

formalism in terms of Eulerian field variables; iii) investigating many properties of our new

formalism, including several alternative brackets, a reformulation in differential-geometric

concepts, and the consequences of a new gauge freedom.

Physicists know well the benefits of casting a theory into a Hamiltonian or action prin-

ciple mold, as our present work accomplishes. In addition to being aesthetically appealing

in its own right, this form has several practical advantages: (i) certain numerical algorithms

are based on such a structure (e.g. the recent works of Refs. 12–14), while others can use said

structure as a consistency check; (ii) finding the equations of motion in general coordinates,

which Landau and Lifschitz called “unsolved” for fluid mechanics, becomes straightforward;

(iii) the formulation assists both the discovery and classification of constants of motion; (iv)

a Hamiltonian structure provides a handy framework for equilibrium and stability analysis;

(v) both Hamiltonian and action principle pictures provide a way of quantizing physical

systems, tying into the field of “quantum plasmas” currently receiving much attention. The

present work also necessitates a handful of new concepts (a modified enthalpy density, a

momentum differing significantly from the standard kinetic momentum, and another “mo-

mentum” conjugate to the magnetic field), which may provide new insight into this physical

system.

It would be remiss for us not to mention previous attempts at providing an action principle

for relativistic MHD. Maugin [15] did provide a Lagrangian action principle, but in terms of
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Clebsch potentials, rather than the physical quantities themselves. Alternatively, Kawazura

et al. [16] have recently produced a useful Lagrangian variable action principle. In future

work we will show how these action principles relate to our own. Meanwhile, the Poisson

bracket structure of Morrison and Greene [17] was shown to be applicable to relativistic

MHD in terms of 3-vectorial quantities in a specific reference frame[18]. This bracket is in

effect a (3+1) split of the present theory, which uses only tensorial quantities and does not

require a choice of reference frame. The chief advantage of the present work over Maugin’s

and Kawazura’s is that it takes place in Eulerian variables, rather than Lagrangian ones:

both the aforementioned theories require a map to the physical Eulerian variables after the

variational principle has been performed, adding an additional step that our formalism does

not require.

The paper is organized as follows. Section II provides a review of MHD, starting with the

nonrelativistic theory in Sec. IIA before describing the relativistic theory in Sec. II B, where

the new variable hµ that describes the magnetic field is introduced. Section III then presents

our new action principle using the new variable. Here we first describe, in Sec. IIIA, the

functional that serves as our action and show how conjugate variables arise from functional

differentiation; then, in Sec. III B, we describe the covariant Poisson bracket formulation

that provides our constrained variations. Section IV is dedicated to alternative brackets:

first, in Sec. IVA we present a bracket with nontrivial Jacobi identity; in Sec. IVB, a bracket

using a tensorial magnetic potential; in Sec. IVC, the differential-geometric form of our main

bracket, with several other quantities also presented in that form; finally, in Sec. IVD, we

show how to couple our relativistic MHD theory to a fixed gravitational background. In

Sec. V we discuss several features of our theory, including the nature of the divergence-free

constraint and Casimirs. Finally, in Sec. VI we summarize our results.

II. MHD REVIEW

The equations of MHD, both nonrelativistic and relativistic, can be written in various

ways in terms of different variables. In this section we gather together formulae and well-

known identities needed for the remainder of the paper. The main new contribution of this

section is the introduction of the variable hµ of (12).
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A. Nonrelativistic MHD – two descriptions

First we give the equations of ideal nonrelativisitic ideal MHD, with the force law and

Faraday’s law expressed in two alternative ways:

∂v

∂t
+ (v · ∇)v = −∇p

ρ
+

1

4πρ

[

(∇×B)×B
]

(1)

= −∇p
ρ

+
1

4πρ
∇ ·
(

I B2/2−B⊗B
)

(2)

∂B

∂t
= ∇× (v ×B) (3)

= −B∇ · v +B · ∇v − v · ∇B (4)

∂ρ

∂t
+ ∇ · (ρv) = 0

∂s

∂t
+ v · ∇s = 0 .

Here ρ is the fluid density, p its pressure, s its specific entropy, v the velocity field, and B

the magnetic field. In (2) the symbol I represents the identity tensor. The current j and

electric field E have been eliminated from these equations, but they can be recovered from

the ideal conductor Ohm’s Law, E+ (v/c)×B = 0, and Ampére’s Law, j = (c/4π)∇×B.

Observe the alternative versions of (1) and (3) given in (2) and (4), respectively. These

equations differ by terms involving ∇ · B, and both Eqs. (3) and (4) preserve the initial

condition ∇ ·B = 0, which can be seen by rewriting (4):

∂B

∂t
= −B∇ · v +B · ∇v − v · ∇B = ∇× (v ×B)− v∇ ·B . (5)

Upon taking the divergence,

∂∇ ·B
∂t

= −∇ · (v∇ ·B) . (6)

Consequently, if ∇ ·B is initially identically zero it remains so as well. Equation (5) shows

that forms (3) and (4) are equivalent when the magnetic field is divergenceless, although

the former reveals its Faraday law origin, while the latter shows an advected magnetic flux.

Geometrically (4) is ∂B/∂t+£
v
B = 0, where £

v
B is the Lie derivative ofB, a vector density

dual to a 2-form. Similarly, Eqs. (1) and (2) differ by a ∇·B term, with the former revealing

its Lorentz force origin via a clearly identified current, while the latter takes the form of a

conservation law, which Godunov [19] showed to be superior for numerical computation.
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We have distinguished these two forms because they possess different Hamiltonian struc-

tures. In Ref. 17 a Poisson bracket was given for the form with (1) and (3), but this structure

required building in the initial condition ∇ ·B = 0. However, an alternative and more nat-

ural form was first given in Refs. 20 and 21, which is entirely free from ∇ ·B = 0, it being

only one possible choice for an initial condition. Later in the paper we will demonstrate

relativistic equivalents of both structures, and the two will also differ by the divergence of a

4-vectorial quantity; to be equivalent, said divergence must vanish, which will motivate our

use of the new magnetic quantity hµ.

Should one wish to add displacement current back into MHD, as is done in the most

prevalent version of relativistic MHD, the momentum equation would have to be altered as

follows:
∂v

∂t
+ (v · ∇)v = −∇p

ρ
+

1

4πρ

[(

∇×B+
∂

∂t

( v

c2
×B

)

)

×B

]

. (7)

However, the new term, when compared to ∂v/∂t, scales as

B2

4πρc2
=
(vA
c

)2

,

where vA is the Alfvén velocity. In the nonrelativistic limit, waves involving disturbances of

the matter must also travel much slower than the speed of light, allowing one to drop the

displacement current. This also means that relativistic MHD is free to add said displacement

current back in (albeit constrained by Ohm’s Law), while still reducing to conventional MHD

in the nonrelativistic limit: one simply needs to keep in mind that said limit goes beyond

just setting v/c→ 0.

B. Relativistic MHD

Turning now to the description of relativistic MHD, we use signature and units such that

4-velocities have positive unit norms uµu
µ = gµνu

µuν = 1, where the Minkowski metric gµν is

given by dia(1,−1,−1,−1). The 4-vector field uµ will denote the plasma’s 4-velocity at each

point in spacetime; at each such point, this quantity will define a reference frame with locally

vanishing 3-velocity, helpful for some purposes. The fluid density is now ρ = mn(1 + ǫ),

where n is the baryon number density, m is the fluid rest mass per baryon (including both

proton and electron, for the typical case), and ǫ is the internal energy per baryon, normalized

to m. The specific entropy s is unchanged, though later on it will prove more convenient
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to use the entropy density σ = ns. We will suppose that the energy can be written ǫ(n, σ),

hence ρ(n, σ), in which case the pressure is given by

p = n
∂ρ

∂n
+ σ

∂ρ

∂σ
− ρ , (8)

which is just the first law of thermodynamics, Tds = d(ρ/n) + pd(1/n), written in terms of

n and σ.

In electromagnetism, having chosen a specific reference frame, one extracts the electric

field 3-vector from the field tensor F µν by Ei = −F i0, i = 1, 2, 3, while the magnetic field

3-vector Bi = Fi0, where Fµν = ǫµναβF
αβ/2 is the dual of F µν . Given uµ, one can also define

the two 4-vectors Bµ ≡ Fµνuν = γ(v ·B,B−v×E) and Eµ ≡ F µνuν = γ(v ·E,E+v×B).

Note that Bi = Bi and Ei = Ei in the reference frame defined by uµ. In terms of the

4-vectors Bµ and Eµ the field tensor has the decomposition

F µν = ǫµνλσBλuσ + (uµEν − uνEµ) , (9)

a form valid for any timelike 4-vector uµ. One can also reverse this process by taking Bµ

and Eµ to be fundamental, and then defining the field tensor F µν via (9). In this case,

different values of Bµ and Eµ can give the same field tensor, for one can add any quantity

proportional to uµ to either 4-vector while leaving the field tensor unchanged; however, if

the constraints Eλuλ = Bλuλ = 0 are imposed, then the representation is unique. This

multiplicity of representations of the field tensor will prove important later.

In MHD one eliminates the electric field from the theory, if necessary using Ohm’s Law

to express it in terms of the fluid velocity and magnetic field. In a relativistic context, this

is done by setting Eµ = F µλuλ = 0, which gives E+ v ×B = 0 (i.e. Ohm’s Law) and, in a

specific reference frame,

Bµ = γ

(

v ·B, B
γ2

+ v (v ·B)

)

. (10)

For convenience bµ ≡ Bµ/
√
4π will be used, in which case the MHD field tensor and its dual

have the forms

F µν =
√
4π ǫµνλσbλuσ and Fµν =

√
4π (bµuν − uµbν) . (11)

Although (10) satisfies the restriction bλuλ = 0, we noted earlier that this condition is

not needed for a representation of the form of (9). One can, in fact, construct a family of

vectors

hµ = bµ + αuµ (12)
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where α is an arbitrary scalar field and now, in general, hµuµ = α 6= 0. The field tensor F µν

and its dual Fµν are unchanged when written in terms of hµ, i.e.

F µν/
√
4π = ǫµνλσbλuσ = ǫµνλσhλuσ (13)

Fµν/
√
4π = bµuν − uµbν = hµuν − uµhν .

Because bµ only appears in the equations of relativistic MHD via the form (11), one can just

as easily use the quantity hµ, choosing α in order to give it some useful property. When

constructing an Eulerian action principle (with covariant Poisson bracket) for relativistic

MHD it will prove fruitful to do so. The quantity bµb
µ, which appears in the stress-energy

tensor and will be seen in Sec. III to appear in the action, evaluates to

bµb
µ =

1

4π

(

E2 −B2
)

= − 1

4π

(

B ·B
γ2

+ (v ·B)2
)

= − 1

4π
B2

rest ,

where ‘rest’ indicates a rest frame quantity. Thus the 4-vector bµ is spacelike. However,

since hµh
µ = bµb

µ + α2, the status of hµ will depend on α, remaining spacelike for small α.

Each equation of relativistic MHD can be written as the vanishing of a divergence:

∂µ(nu
µ) = 0 (14)

∂µ(σu
µ) = 0 (15)

∂µ Fµν = 0 (16)

∂µ T
µν = 0 . (17)

Equations (14) and (15) express conservation of particles and entropy, respectively. In

addition, (16) provides the equivalent of the homogeneous Maxwell’s equations; however,

one cannot call them Maxwell’s equations without qualification, as the constraint F µνuν = 0

is already built in when one expresses F µν in terms of bµ or hµ:

∂ν(b
µuν − uµbν) = ∂ν(h

µuν − uµhν) = 0 .

This expression, of course, is the same whether bµ or hµ is used, as the quantity α cancels

out. Equation (17) gives conservation of stress-energy, where the stress-energy tensor T µν

is considerably more complex when written in terms of hµ rather than bµ:

T µν = T µν
fl + T µν

EM , (18)
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where the fluid and field parts are

T µν
fl = (ρ+ p) uµuν − p gµν ,

T µν
EM =

1

4π

(

F µλF ν
λ +

1

4
gµνFλσF

λσ

)

= −bµbν −
(

bλb
λ
)

uµuν +
1

2
gµνbλb

λ (19)

= −hµhν −
(

hλh
λ
)

uµuν +
(

hλu
λ
)

(hµuν + uµhν) +
1

2
gµν
(

hλh
λ −

(

hλu
λ
)2
)

, (20)

respectively. Equation (19) is obtained by substitution of the first of Eqs. (11) and making

use of the orthogonality condition bλuλ = 0, while (20) follows from (13) without orthogo-

nality. We emphasize that, despite appearances, T µν
EM does not depend on one’s choice of α.

The field part T µν
EM depends on bµ or hµ only through the tensor Fµν , in which, as previously

noted, α cancels out. Lastly, we note it can be shown that this system preserves bµuµ = 0

and uµuµ = 1. We next turn to the problem of devising an action principle for this system.

III. COVARIANT ACTION PRINCIPLE FOR RELATIVISTIC MHD

The covariant Poisson bracket formalism of Ref. 22 requires two parts: i) an action S that

is a covariant functional of the field variables and ii) a covariant Poisson bracket { , } defined

on functionals of the fields. Instead of the usual extremization δS = 0, the theory arises

from setting {F, S} = 0 for all functionals F , which is in effect a constrained extremization.

A general Poisson bracket for fields Ψ has the form

{F,G} =

∫

dz
δF

δΨ
J δG

δΨ
,

where δF/δΨ is the functional derivative, dz is an appropriate spacetime measure, and J is

a cosymplectic operator that provides {F,G} with the properties of antisymmetry and the

Jacobi identity. Thus

{F, S} = 0 ∀ F ⇒ J δS

δΨ
= 0 . (21)

If J is nondegenerate, i.e., has no null space, then (21) is equivalent to δS/δΨ = 0 and

the covariant Poisson bracket formalism reproduces the conventional variational principle.

However, of interest here are matter models like MHD, which when written in terms of

Eulerian variables possesses nonstandard or noncanonical Poisson brackets (see e.g. Ref. 23),

for which J possess degeneracy that is reflected in the existence of so-called Casimirs (see
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Sec. VA). For such systems the covariant Poisson bracket naturally enforces constraints. In

field theories that describe matter, understanding the null space of J may be a formidable

exercise[24], and finding nondegenerate coordinates, which are expected to exist because of

the Jacobi identity, may only serve to obscure the structure of the theory.

A variation that preserves the constraints, referred to as a dynamically accessible variation

in Ref. 25 (see also Ref. 23), can be represented as

δΨDA = {Ψ, G} , (22)

for some functional G, whence

δS =

∫

dz
δS

δΨ
δΨDA =

∫

dz
δS

δΨ
{Ψ, G} = {S,G} = 0 ,

which shows directly how the Poisson bracket effects the constraints without them being

explicitly known.

A. Action and functional derivatives

We construct our action S in a straightforward fashion:

S[n, σ, u, F ] =

∫

d4x

(

1

2

(

p+ ρ
)

uλu
λ +

1

2

(

p− ρ
)

− 1

16π
FλσF

λσ

)

(23)

S[n, σ, u, b] =
1

2

∫

d4x
(

(

p+ ρ− bλb
λ
)

uλu
λ + p− ρ

)

(24)

S[n, σ, u, h] =
1

2

∫

d4x
(

(

p+ ρ− hσh
σ
)

uλu
λ +

(

hλu
λ
)2

+ p− ρ
)

. (25)

Equation (23) is the sum of the fluid action of Ref. 22, where thermodynamic variables p

and ρ are considered to be functions of n and σ, together with a standard expression for the

electromagnetic action.

In (24) the MHD expression of (11) has been substituted into FλσF
λσ and finally in

(25) we obtain our desired form in terms of hµ. Observe that the integrand of (24) when

evaluated on the constraint uλu
λ = 1 is the total pressure, fluid plus magnetic, p+ |bλbλ|/2.

This choice of action will be seen to give the desired field equations when inserted into the

covariant Poisson bracket.

From the action of (25) one derives a momentum mµ by functional differentiation,

mµ =
δS

δuµ
= (p+ ρ− hσh

σ)uµ +
(

hλu
λ
)

hµ ≡ µuµ + αhµ . (26)
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The quantity

µ = p+ ρ− hλh
λ (27)

is a modified enthalpy density. If αuµ is small compared to bµ, hµ will be spacelike, leaving

µ positive.

Since uµ and bµ are independent of α, expressions for them solely in terms of mµ and hµ

can be obtained. Using α = hλu
λ, which follows from (12), and uµ = (mµ − αhµ) /µ, which

follows from (26), we have

α = hλu
λ =

1

µ

(

hλm
λ − αhλh

λ
)

.

Then, solving for α gives

α =
hλm

λ

µ+ hσhσ
. (28)

Equation (28), incidentally, shows that α can be written entirely in terms of the field variables

mµ and hµ. Thus, one can also write the variables bµ and uµ entirely in terms of the new

ones:

uµ =
mµ

µ
− hλm

λ

µ(µ+ hσhσ)
hµ

bµ = hµ
(

1 +
(hλm

λ)2

µ(µ+ hσhσ)2

)

− hλm
λ

µ(µ+ hσhσ)
mµ .

(29)

Equations (29) are not invertible. To see this consider a local frame in which v = 0,

i.e., one where uµ = (1, 0) and bµ = (0,B)/
√
4π. In this frame hµ = (α,B/

√
4π) and

mµ = (p+ ρ+B2/4π, αB/
√
4π). Given any value of α these equations are compatible with

(28), but produce the same rest frame values of bµ and uµ. Thus, Eqs. (29) are not one-one.

We will explore this degeneracy, which provides a kind of gauge condition, more fully in

Sec. V.

Now we are in a position to obtain our action in terms of the variables mµ and hµ, which,

due to the form of the upcoming bracket (38), are the appropriate variables for the action

principle:

S[n, σ,m, h] =
1

2

∫

d4x

(

mλm
λ

µ
−

(

hλm
λ
)2

µ(µ+ hσhσ)
+ p− ρ

)

. (30)

Upon introducing the “mass” matrix

M ≡





µ+ α2 α

α 1



 , (31)
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(30) can be written compactly as

S =
1

2

∫

d4x
(

Ψλ · M−1 ·Ψλ + hλh
λ − α2 + p− ρ

)

=
1

2

∫

d4x
(

uλmλ + bλhλ + hλh
λ − α2 + p− ρ

)

(32)

=
1

2

∫

d4x
(

Φλ · M· Φλ + bλb
λ + p− ρ

)

=
1

2

∫

d4x
(

uλmλ + bλhλ + bλb
λ + p− ρ

)

where Ψλ ≡ (mλ, hλ), Φλ ≡ (uλ, bλ) and · indicates summation over the 2 × 2 matrix M.

However, because the mass matrix (31) depends on the field variables via µ and α, as given

by (27) and (28), the expression (30) is superior for calculations; in addition, the mass

matrix is inconsistent in units, so it would have to be normalized before, say, eigenvalue and

eigenvector calculations could be done. One possible normalization is given in (57) below.

After taking variations of the action, one may impose the constraint uλu
λ = 1. In terms

of the momentum mµ, this constraint becomes

1 = uλu
λ =

1

µ2

(

mλm
λ − 2

(

hλm
λ
)2

µ+ hσhσ
+

(

hλm
λ
)2

(µ+ hσhσ)
2
(hτh

τ )

)

. (33)

Thanks to the relations (29) and (33), all functional derivatives of the action of (30) can be

reduced to simple expressions, provided (33) is applied only after functional differentiation.

To start with,

δS

δn
=

(

−mλm
λ

2µ2
+

(

hλm
λ
)2

2µ2(µ+ hσhσ)
+

(

hλm
λ
)2

2µ (µ+ hσhσ)
2

)

∂µ

∂n
+

1

2

∂p

∂n
− 1

2

∂ρ

∂n

= −∂ρ
∂n

. (34)

Similarly,

δS

δσ
= −∂ρ

∂σ
. (35)
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The remaining functional derivatives are

δS

δmν
=
mν

µ
− (hλm

λ)

µ(µ+ hτhτ )
hν = uν , (36)

δS

δhν
=
mλm

λ

µ2
hν −

(

hλm
λ
)2

µ2(µ+ hσhσ)
hν −

(hλm
λ)

µ(µ+ hσhσ)
mν

=

(

1 + 2

(

hλm
λ
)2

µ2(µ+ hσhσ)
−

(

hλm
λ
)2

µ2 (µ+ hσhσ)
2
(hτh

τ )

)

hν

−
(

hλm
λ
)2

µ2(µ+ hσhσ)
hν −

(hλm
λ)

µ(µ+ hσhσ)
mν

=

(

1 +

(

hλm
λ
)2

µ(µ+ hσhσ)2

)

hν −
(hλm

λ)

µ(µ+ hσhσ)
mν

= bν . (37)

The compact result δS/δhν = bν gives a meaning to hν : it is a conjugate to bν , just as mν

is to uν .

B. Covariant Poisson bracket and field equations

The covariant Poisson bracket for relativistic MHD is obtained by extending the nonrel-

ativistic bracket of Refs. 20 and 21 to spacetime. This is done by merely summing over the

four spacetime indices instead of the three spatial ones and altering a few signs. However,

a difficulty arises in choosing an appropriate equivalent of the nonrelativistic momentum

and field, because the 4-vectorial equivalents of M = ρv and B will no longer produce the

correct equations. Instead, the 4-vectors mν and hν provide the appropriate replacements,

giving the relativistic MHD bracket

{F,G} =

∫

d4x

(

n

(

δF

δmµ

∂µ
δG

δn
− δG

δmµ

∂µ
δF

δn

)

+ σ

(

δF

δmµ

∂µ
δG

δσ
− δG

δmµ

∂µ
δF

δσ

)

+mν

(

δF

δmµ

∂µ
δG

δmν

− δG

δmµ

∂µ
δF

δmν

)

+ hν
(

δF

δmµ

∂µ
δG

δhν
− δG

δmµ

∂µ
δF

δhν

)

+ hµ
[(

∂µ
δF

δmν

)

δG

δhν
−
(

∂µ
δG

δmν

)

δF

δhν

]

)

.

(38)

The bracket is complicated, but one can derive the equations of motion fairly quickly, thanks

to the simple functional derivatives, as obtained in Eqs. (34), (35), (36), and (37), for the

action of (30):

δS

δn
= −∂ρ

∂n
;

δS

δσ
= −∂ρ

∂σ
;

δS

δmν

= uν ;
δS

δhν
= bν ,
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where uµ and bµ here are shorthands for their expressions in terms of the fields mµ and hµ

as given by (29).

Using F =
∫

d4xn(x)δ4(x− x0) in {F, S} = 0 gives, after an integration by parts,

∂µ(nu
µ) = 0 ,

which is the continuity equation (14), evaluated implicitly at x0; however, since that point

is arbitrary, the result holds for the entire spacetime. Going forward such niceties involving

delta functions will be skimmed over. In the same manner one also finds the adiabaticity

equation (15) from a σ variation.

The hµ variation gives

∂ν(h
µuν)− hν∂νu

µ = 0 . (39)

The above equations are not Maxwell’s equations, although they are analogous to the non-

relativistic equation (4), since they correspond to £uh
µ = 0, the Lie-dragging of the four-

dimensional vector density hµ by uµ. The theory obtained from the variational principle

can be viewed as a family of theories, only some of which correspond to physical systems.

However, if ∂µh
µ = 0, then one obtains the usual form of relativistic MHD. The situation is

exactly analogous to that in nonrelativistic Hamiltonian MHD, which can describe systems

with ∇ ·B 6= 0: in both cases, the physical systems are a subset of the full class of systems

described by the formalism. In the nonrelativistic case the condition ∇·B = 0 is maintained

by the dynamics and the similar situation that arises for hµ will be shown in Sec. VB. There

also exists an alternative bracket that builds in ∂µh
µ = 0, given later in Sec. IVA, where the

constraint is enforced by the bracket’s Jacobi identity. In any event, with hµ thus specified,

we can subtract a term uµ∂νh
ν from (39), giving the usual equivalent of Maxwell’s equations

0 = ∂µ(h
µuν − uµhν) .

13



Finally, the mλ variation gives, after some work,

0 = −n∂µ
(

−∂p

∂n

)

− σ∂µ
(

−∂p

∂σ

)

+mν∂
µ (uν) + ∂ν (m

µuν)

+ hν∂
µ (bν)− ∂ν (h

νbµ)

= −∂µp+
(

µuν +
(

hλu
λ
)

hν
)

∂µuν + ∂ν
(

µuµuν +
(

hλu
λ
)

hµuν
)

+ hν∂
µ
(

hν −
(

hλu
λ
)

uν
)

− ∂ν
(

hνhµ −
(

hλu
λ
)

hνuµ
)

= ∂ν

(

(

ρ+ p−
(

hλh
λ
))

uµuν + gµν
[

− p+
1

2

(

hλh
λ −

(

hλu
λ
)2
) ]

− hµhν +
(

hλu
λ
)

(hµuν + uµhν)

)

,

which is the momentum equation (17). Having been derived, it can be replaced with the

much simpler, equivalent version involving bµ.

Now we have shown that the covariant Poisson bracket formalism produces the field

equations of relativistic MHD. In Secs. VB and VC we will probe more deeply the cor-

respondence between the variables (mµ, hµ) and (uµ, bµ), exploring in particular how one

might use the field equations in practice. First, however, we will demonstrate several ways

in which the bracket formalism can be modified.

IV. ALTERNATIVE BRACKETS

In this section we present additional Poisson brackets. The first (Sec. IVA) adds an extra

constraint to (38), the second (Sec. IVB) rewrites the magnetic parts in terms of a tensor

potential, the third (Sec. IVC) recasts these terms in differential-geometric language, and

the last (Sec. IVD) incorporates an arbitrary background gravitational field.

A. Constrained bracket

Consider the magnetic field part of the bracket of (38),

{F,G}h : =

∫

d4x

(

hν
(

δF

δmµ

∂µ
δG

δhν
− δG

δmµ

∂µ
δF

δhν

)

+ hµ
[(

∂µ
δF

δmν

)

δG

δhν
−
(

∂µ
δG

δmν

)

δF

δhν

]

)

. (40)

Just as the nonrelativistic bracket of Ref. 20 and 21 has a counterpart in Ref. 17, the terms

(40) have an analogous relativistic counterpart that requires divergence-free magnetic fields,

14



i.e. an hµ such that ∂µh
µ = 0. This relativistic counterpart is simply given by an integration

by parts of (40) and making use of ∂µh
µ = 0, i.e.,

{F,G}∂h=0 : =

∫

d4x

(

hν
(

δF

δmµ

∂µ
δG

δhν
− δG

δmµ

∂µ
δF

δhν

)

(41)

+ hµ
[(

∂µ
δF

δhν

)

δG

δmν

−
(

∂µ
δG

δhν

)

δF

δmν

]

)

.

The bracket is identical to (38), but for the swapped functional derivatives in the final line.

The action (25) is unchanged, as are the n equation (14) and the σ equation (15). The hµ

gains an extra term, and may be written directly as the Maxwell-like equation

∂ν(h
µuν − uµhν) = ∂νFµν = 0

without yet imposing a condition on hµ. Finally, the equation for mµ ends up with a couple

fewer terms than before, yielding

∂νT
µν +

(

hµ − (hσuσ) u
µ
)

∂νh
ν = 0 , (42)

where T µν is the (unchanged) stress-energy tensor (18).

However, unlike the prior bracket (38), the bracket (41) fails to satisfy the Jacobi identity

unless the condition ∂νh
ν = 0 holds, as is shown in the Appendix. On the plus side, the

momentum equation (42) is now reduced to its desired conservation form; on the minus side,

the bracket is defined on a smaller class of functionals than our original bracket (38). The

original bracket always yields a momentum equation that is not only in conservation form,

but also independent of α; however, it will yield differing magnetic equations depending on

α, and only those corresponding to ∂νh
ν = 0 produce a Maxwell-like equation.

We regard the first bracket (38) to be superior, for then relativistic magnetohydrody-

namics may be regarded as a specific example of a broader class of (mostly non-physical)

dynamical systems, some of which may be of theoretical interest. For instance, in the nonrel-

ativistic case the broader class have been argued to be superior for computational algorithms

(see, e.g., Ref. 19), and although similar numerical techniques have been used for numerical

relativity (e.g., Ref. 5), our formulation provides a fully covariant form analogous to non-

relativistic MHD that may provide advantages. Moreover, they may correspond to exotic

theories, such as those including magnetic monopoles.
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B. Bivector potential

The divergence-free condition can be made manifest by introducing an antisymmetric

bivector potential Aνµ such that

hµ = ∂νA
νµ . (43)

Such a representation gives rise to a gauge condition Aµν → Aµν + ǫµναβ∂αψβ , for chosen ψβ;

such gauging could be useful, but we will not explore this further here.

Assuming F [h] = F̄ [A], i.e. functionals of the bivector potential obtain their dependence

through h, we obtain

δF =

∫

d4x
δF

δhµ
δhµ =

∫

d4x
δF̄

δAνµ
δAνµ = δF̄ . (44)

Relate δhµ to δAνµ via (43) and insert δhµ = ∂νδA
νµ into the second equation of (44). Even

assuming δAνµ is arbitrary, it only picks out the antisymmetric part of what it is contracted

with, so we obtain the functional chain rule relation

δF̄

δAµν
=

1

2

(

∂ν
δF

δhµ
− ∂µ

δF

δhν

)

. (45)

Inserting (45) into (41) gives the compact expression

{F,G}A := 2

∫

d4x (∂αA
αν)

(

δF

δmµ

δG

δAνµ
− δG

δmµ

δF

δAνµ

)

. (46)

We will use this form in Sec. VA, where we discuss Casimir invariants.

C. 3-Form bracket

For nonrelativistic MHD we observed in Sec. IIA that the magnetic equation may be

written ∂B/∂t + £
v
B = 0, where £

v
B is the Lie derivative of the vector density B dual

to a 2-form. Thus one can write Bi = ǫijkωjk and ωjk = Biǫijk/2, where i, j, k = 1, 2, 3.

In terms of the 2-form the equation becomes ∂ω/∂t + £
v
ω = 0, with £

v
now being the

appropriate expression for the Lie derivative of a 2-form in three dimensions (e.g., Ref. 26).

In n dimensions, an (n−1)-form has n independent components. This suggests we can

introduce the dual 3-form for relativistic MHD as follows:

ωαβγ = ǫαβγδ h
δ and hδ =

1

6
ǫαβγδωαβγ ,
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which shows that hµ is a vector density because it is the contraction of the tensorial three-

form with ǫαβγδ a relative tensor of unit weight. From the above it follows that the 3-form

equation of motion is given by ∂ω/∂t + £uω = 0. If we denote by F µ
m the 4-vector given

by δF/δmµ, then the magnetic portion of the Poisson bracket in terms of the 3-form can be

compactly written as follows:

{F,G}ω =

∫

d4x

(

δF

δωαβγ

(£Gm
ω)αβγ −

δG

δωαβγ

(£Fm
ω)αβγ

)

. (47)

Although similar expressions in terms of Lie derivatives exist for all terms of all brackets,

we are concentrating on the magnetic terms, which written out are

(£Gm
ω)αβγ = Gµ

m∂µωαβγ + ωµβγ∂αG
µ
m + ωαµγ∂βG

µ
m + ωαβµ∂γG

µ
m .

The transformation from the bracket {F,G}h of (40) to that of (47) follows from a chain

rule calculation similar to that described in Sec. IVB. Thus, it satisfies the Jacobi identity

because {F,G}h does, as shown directly in Appendix A.

Relativistic MHD has a natural 3-form dual to bµ, viz. Fλσuν + Fσνuλ + Fνλuσ, which

follows from the definition bµ =
√
4πǫµνλσFλσuν/2 with uµb

µ = 0 and Fµνu
ν = 0. The 3-form

dual to hµ can similarly be represented as ωλσν =
√
4π (Fλσwν + Fσνwλ + Fνλwσ) /6, where

wµ ≡ (h2uµ−αhµ)/(bλbλ) is designed so that hµwµ = 0 and wµu
µ = 1 and evidently ωλσνh

µ =

0. Observe wµ can be written in various ways using (29), (28), and other expressions.

The Jacobi identity for the bracket with (47) does not require closure of the 3-form.

However, if the 3-form ω is exact then it can be written as the exterior derivative of a 2-form

Aµν as follows:

ωαβγ = ∂αAβγ + ∂βAγα + ∂γAαβ

and one can rewrite the bracket in terms of Aµν . Instead of writing this out, we observe the

bivector potential is given by

Aνµ ≡ 1

2
ǫνµστAστ

and so the closed 3-form bracket is essentially given by (46).

When the 3-form ωαβγ is exact we have, for any 3-surface Ω in our four-dimensional

Minkowski space-time, Stokes’ theorem

∫

Ω

ω =

∫

Ω

dA =

∫

∂Ω

A ,
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where
∫

Ω
ω contains the notion of ‘flux’ in this setting. If Ω contains a time-like direction,

we can write this as a conservation law, but such 3+1 splittings will not be considered here;

instead, we refer to Ref. 22.

D. Background gravity

Now we generalize the full formalism to curved spacetimes. In this context, the equations

(14) - (17) are now written

(nuµ);µ = 0 (48)

(σuµ);µ = 0 (49)

Fµν
; ν = 0 (50)

T µν
; ν = 0 , (51)

where the ‘;’ denotes covariant derivative.

Three modifications to the previous action principle are required: (1) because all inte-

grations have tensorial integrands, the integrations must take place over a proper volume
√−g d4x; (2) hµ should be treated as a contravariant vector, and mµ as a covariant one,

befitting their definitions (note that treating them any other way would introduce extra

factors of gµν into the bracket); (3) functional derivatives should be defined in a way that

makes them tensorial. Specifically, for a field variable v, one implicitly defines the functional

derivative via

d

dǫ

∣

∣

∣

∣

ǫ=0

F (v + ǫδv) =

∫

d4x
δF

δv
δv

√
−g .

The action is now

S =
1

2

∫

d4x

(

gλσmλmσ

µ
−

(

hλmλ

)2

µ(µ+ gλσhλhσ)
+ p− ρ

)

√−g

and its functional derivatives are

δS

δn
= −∂ρ

∂n
;

δS

δσ
= −∂ρ

∂σ
;

δS

δmµ

= uµ ;
δS

δhµ
= gµνb

ν .
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Finally, the bracket becomes

{F,G} =

∫

d4x
√−g

(

n

(

δF

δmµ

∂µ
δG

δn
− δG

δmµ

∂µ
δF

δn

)

+ σ

(

δF

δmµ

∂µ
δG

δσ
− δG

δmµ

∂µ
δF

δσ

)

+mν

(

δF

δmµ

∂µ
δG

δmν

− δG

δmµ

∂µ
δF

δmν

)

+ hν
(

δF

δmµ

∂µ
δG

δhν
− δG

δmµ

∂µ
δF

δhν

)

+ hµ
[(

∂µ
δF

δmν

)

δG

δhν
−
(

∂µ
δG

δmν

)

δF

δhν

]

)

.

(52)

The ∂µ operators inside the bracket are still just partial derivatives, but the presence of the

metric will tend to convert them into covariant derivatives (see e.g. Ref. 27, Ch. 21). After

an integration by parts, the variation {F, S} = 0 of the test function F =
∫

d4xn(x) δ4(x−
x0)

√−g gives

∂µ
(

nuµ
√−g

)

=
√−g

(

∂µ (nu
µ) + nuνΓµ

νµ

)

=
√−g (nuµ)

;µ = 0 ,

with a similar result obtaining for the σ variation. The hµ variation once again requires

special attention, as it gives

∂ν
(

hµuν
√−g

)

− hν (∂νu
µ)

√−g =
√−g

(

hµuνν + hµνu
ν − hνuµν + hµuλΓν

λν

)

= 0 .

This time we choose α so that hµ;µ = ∂µh
µ + hνΓµ

νµ = 0. Similar considerations apply

to this choice as in the special relativistic case. Subtracting this expression and combining

like terms then gives, with Fµν = hµuν − hνuµ,

∂νFµν + FµλΓν
λν + FνλΓµ

νλ = Fµν
;ν = 0 .

Note that the third term is zero by the antisymmetry of Fµν and the symmetry of the

covariant indices of Γµ
νλ.

Finally, one obtains the momentum equation (51) by varying the test function F =
∫

d4x gµνmνδ
4(x − x0)

√−g. This derivation is lengthy, and will only be summarized here:

(1) the partial derivative terms appear, and combine, exactly as in the special-relativistic

case; (2) the T µλΓν
λν terms come from taking the partial derivatives of

√−g; (3) the T νλΓµ
νλ

terms come from derivatives of extra factors of the metric gµν , some of which come from its

inclusion in the test function, others of which come from δS/δhµ = gµνb
ν .

We conclude with an important note. While we constructed the above formalism to han-

dle curved spacetimes, it also applies to flat spacetimes with arbitrary coordinate systems,
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such as cylindrical, spherical, or toroidal coordinates. The nonrelativistic version may be

generalized the same way (altering volumes d3x to proper volumes
√
gd3x), thus solving the

problem of MHD coordinate changes in a pleasantly general way.

V. DEGENERACY AND SETTING THE GAUGE

Now we consider various issues pertaining to degeneracy. In Sec. VA we obtain Casimir

invariants, showing that the action S is not unique. Then in Sec. VB we further explore

the noninvertiblily of the transformations from (uµ, bµ) to (mµ, hµ). Finally, in Sec. VC we

discuss the how the divergence-free condition on hµ can be constructed for any problem.

A. Casimirs and degeneracy

As noted in Sec. III the covariant Poisson bracket possesses degeneracy and associated

Casimirs. A functional C is a Casimir if it satisfies

{F,C} = 0 ∀ F . (53)

Equation (53) should not be confused with the variational principle of (21), {F, S} = 0 for

all functionals F , for the former is an aspect of the bracket alone, and provides no equations

of motion. Because of the definition of C, the action S is not unique and can be replaced

by S + λC for any Casimir C and any dimensionally appropriate number λ.

Turning to the task of finding Casimirs, we use (53) to provide functional equations for

the Casimirs. Although difficult to solve in general, some explicit solutions can be found,

facilitated by our knowledge of Casimirs for nonrelativistic MHD[21, 28]. First, it is easy to

obtain a family of what we call the entropy Casimirs,

Cs =

∫

d4xnf(σ/n) , (54)

where f is an arbitrary function. In the nonrelativistic case this is a generalization of the total

entropy, for if f = σ/n and σ is the entropy per unit volume then
∫

d3xnf(σ/n) =
∫

d3xσ

is the total integrated entropy.

Next we seek a Casimir that is a relativistic version of the cross helicity
∫

d3xv ·B. For

nonrelativistic MHD invariance of cross helicity requires a barotropic equation of state and
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∇ ·B = 0, so we make analogous assumptions here. We assume ρ has no dependence on σ,

and we implement the analogue of ∇ ·B = 0 by using the antisymmetric bivector potential

of Sec. IVB, hµ = ∂γA
γµ, ensuring that ∂µh

µ = 0. Using the bracket of (46) it is easy to

show that the following generalization of the cross helicity is a Casimir:

Cch =

∫

d4x
mµ

n
∂γA

γµ =

∫

d4x
mµh

µ

n
. (55)

This quantity ceases to be a Casimir when the divergence hµ is nonzero. Observe that on

the constraint uλu
λ = 1, the integrand of (55) can be written as mµ ∂γA

γµ/n = mµh
µ/n =

α(p + ρ)/n, which follows from (28). Since α does not exist in the original (uµ, bµ) theory,

this Casimir is a quantity tied to the covariant bracket theory in terms of (mµ, hµ).

One also expects the existence of a magnetic helicity Casimir, but the nature of linking

in four dimensions makes the situation complicated. Relativistic generalizations of magnetic

helicity have been found in Refs. 16 and 29, but we have yet to demonstrate that a quantity

like either of these is in fact a Casimir. We also anticipate the existence of additional

Casimirs that are generalizations of the nonrelativistic ones found in Refs. 30 and 31, but a

full discussion of Casimirs will await a future publication. In any event, because of the form

ΨDA as given by (22), we can be assured that the extremization of our covariant bracket

variation preserves any Casimirs that exist.

B. Gauge degeneracy

In Sec. IIIA we noted that Eqs. (29) are not invertible. This lack of invertibility, which

arises from the gauge freedom associated with α, can be understood in greater generality.

Because the degeneracy is not associated with the thermodynamic variables ρ and p, we

move them out by introducing the following scaled variables:

h = (
√
p+ ρ) h̄ , m = (p + ρ) m̄ , b = (

√
p+ ρ) b̄ , u = ū , α = (

√
p + ρ) ᾱ ,

In terms of these variables (29) becomes

Φ̄ = M̄−1 · Ψ̄ , (56)

with

M̄−1 =
1

µ̄





1 −ᾱ
−ᾱ µ̄+ ᾱ2



 , M̄ =





µ̄+ ᾱ2 ᾱ

ᾱ 1



 , (57)
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and Φ̄ = (ū, b̄) , Ψ̄ = (m̄, h̄). The quantity µ̄ ≡ 1− h̄2 is a normalized µ, and the quantity

ᾱ satisfies ᾱ = m̄ν h̄
ν = ūνh̄

ν . Varying (56) gives

δΦ̄ = M̄−1 · δΨ̄ +
∂M̄−1

∂ᾱ
· Ψ̄ δᾱ+

∂M̄−1

∂µ̄
· Ψ̄ δµ̄ .

Degeneracy follows if we can find a nonzero δΨ̄ giving δΦ̄ = 0. Such would be given by

δΨ̄ = −M̄ · ∂M̄
−1

∂ᾱ
· Ψ̄ δᾱ− M̄ · ∂M̄

−1

∂µ̄
· Ψ̄ δµ̄

= −M̄ · ∂M̄
−1

∂ᾱ
·M · Φ̄ δᾱ− M̄ · ∂M̄

−1

∂µ̄
· M̄ · Φ̄ δµ̄

=
∂M̄
∂ᾱ

· Φ̄ δᾱ +
∂M̄
∂µ̄

· Φ̄ δµ̄

= δᾱ





2ᾱ 1

1 0



 · Φ̄ + δµ̄





1 0

0 0



 · Φ̄ . (58)

Thus from (58), δm̄ν = (2ᾱūν + b̄ν)δᾱ + ūνδµ̄ and δh̄ν = ūν δᾱ. Using δµ̄ = −2h̄νδh̄ν =

−2h̄ν ūν δᾱ = −2ᾱ δᾱ, the two conditions imposed by (58) are

δh̄ν = ūν δᾱ and δm̄ν = b̄ν δᾱ , (59)

reiterating our earlier point that α can vary while leaving uµ and bµ unchanged.

In terms of the scaled variables the action becomes

S[n, σ, m̄, h̄] =
1

2

∫

d4x

(

p+ ρ

µ̄

(

m̄λm̄
λ −

(

h̄λm̄
λ
)2
)

+ p− ρ

)

. (60)

Now if we consider variation of the integrand of (60) with variations given by (59), and

restrict to the constraint uµu
µ = 1 as given by the scaled version of (33), then the action is

easily seen to be invariant. Using the scaled action in the form of (32), the integrand becomes

upon variation (p+ρ)(ūλδm̄
λ+ b̄λδh̄

λ)+ h̄λδh̄
λ− ᾱδᾱ, which vanishes upon insertion of (59),

with the first two terms vanishing individually because ūλb̄
λ = 0. Thus, degeneracy appears

as one transitions from (24) to (25). We add that in scaled variables F ∼ ūµb̄ν − b̄µūν ∼
ūµh̄ν − h̄µūν ; thus, at fixed ūµ, δF ∼ ūµδh̄ν − δh̄µūν = 0.

However, we also require that the equations of motion in terms of (uµ, bµ) stay unaffected

by the degeneracy in (mµ, hµ). This requires ∂µh
µ = 0, as we earlier discussed in the context

of the magnetic equation (39). Written in full, this condition becomes

∂µ (αu
µ) = −∂µbµ . (61)
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As usual in the case of extra degeneracy, the system now possesses an additional symmetry,

for one can add to α any solution ∆α of the continuity equation (∆αuµ),µ = 0 while leaving

the dynamics unchanged. This is not as powerful as choosing α freely, as (59) seemed to

imply, but we will show in Sec. VC that it is nearly as powerful. We hope to further explore

the consequences of this new symmetry in future work.

Our system’s degeneracy is related to the adaptation of Goldstone’s theorem[32–35] de-

scribed in Ref. 36, where it was proven in the context of degenerate Poisson brackets with

Casimir invariants that nonrelativistic Alfvèn waves associated with degeneracy can be

thought of as an analog of Goldstone modes. A similar interpretation arises here in this

covariant relativistic MHD setting, but discussion is beyond the scope of the present work.

C. Setting the gauge

Given a relativistic MHD problem posed in terms of (uµ, bµ), we must determine the

associated problem in terms of (mµ, hµ), and this requires the determination of α, which

amounts to setting the gauge so that ∂µh
µ = 0. Doing so may seem difficult on first sight,

but in fact turns out to be simple. Since this idea sits at the crux of our formalism, we will

explain it is some detail.

Posing a relativistic MHD problem requires one specify (uµ, bµ) as well as n and σ on

a space-like 3-volume, Ω ⊂ D, where is D is our four-dimensional space-time. In addition,

a physical problem will have initial conditions that satisfy uλu
λ = 1 and uλb

λ = 0. Using

uα∂α = ∂/∂τ where τ is the proper time measured by an observer comoving with a flow line,

one can choose τ = 0 to correspond to the state specified on Ω and then propagate values

off of Ω by using the equations of motion to determine ∂bµ/∂τ , ∂uµ/∂τ , ∂n/∂τ , and ∂σ/∂τ

at τ = 0. This is the standard scenario for a Cauchy problem, and many references for both

MHD and relativistic fluids (e.g., Refs. 2 and 4) describe this in detail. One can imagine

an exotic flow in which there exist spacetime points not connected to Ω by any flow lines;

however, a modest boundedness condition excludes such cases.

The present situation is complicated by the fact that given bµ on Ω at τ = 0 we must

also have that ∂µh
µ = 0 for all time, in order for our (mµ, hµ) dynamics to coincide with

the physical (uµ, bµ) dynamics. Fortunately, ∂µh
µ = 0 is maintained in time if it is initially

true on Ω. To see this we act on (39) with ∂µ and obtain ∂ν(u
ν∂µh

µ) = uν∂ν(∂µh
µ) +
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(∂νu
ν)(∂µh

µ) = 0 or
∂(∂µh

µ)

∂τ
+ (∂νu

ν)(∂µh
µ) = 0 , (62)

an equation analogous to (6) for nonrelativistic MHD. From (62), one concludes that if

∂µh
µ = 0 on Ω at τ = 0, then ∂µh

µ remains zero for all time. Thus, one can solve the

(mµ, hµ) equations and uniquely obtain the (uµ, bµ) via (29) – provided one can ‘set the

gauge’, i.e., find an α such that ∂µh
µ = 0 on Ω at τ = 0 consistent with the (uµ, bµ, n, σ) of

our posed problem.

We will first consider a special example of setting the gauge, corresponding to the case

described in Sec. IIIA. We are given the MHD problem with initial conditions v(0,x) ≡ 0,

i.e., uµ(0,x) = (1, 0) and bµ(0,x) = (0,B(0,x))/
√
4π on the space-like 3-volume Ω with

coordinates x, and we wish to obtain an hµ(0,x) = (α,B/
√
4π) and mµ(0,x) = (p + ρ +

B2/4π, αB/
√
4π) such that ∂µh

µ(0,x) = 0. Denoting ∂0α = αt, etc., gives the condition

0 = ∂µh
µ(0,x) =

1√
4π

(

γtv ·B+ γvt ·B+ γv ·Bt + αt

√
4π
)

+∇ · h , (63)

where h is the spatial part of hµ. Evaluating (63) on the initial condition gives

0 = vt ·B(0,x) + αt(0,x)
√
4π +∇ ·B(0,x) ,

whence, with ∇ ·B(0,x) = 0, we conclude that

0 = vt ·B(0,x) + αt(0,x)
√
4π = −1

ρ
∇p ·B(0,x) + αt(0,x)

√
4π ,

using the MHD momentum equation in the last step. Thus αt(0,x) = (
√
4πρ)−1∇p ·B(0,x)

on Ω will assure ∂µh
µ = 0 for all time. Observe, α(0,x) has not been specified – we are free

to choose it as we please. In doing so we will obtain different initial conditions mµ(0,x) and

hµ(0,x) and these can be chosen for convenience. Finally, if we solve our equations for mµ

and hµ and obtain their values at any later time, insert them into (29), then values of uµ

and bµ thus obtained are solutions of the relativistic MHD equations.

Now let us consider the general case, beginning with the expression

∂µh
µ = ∂µb

µ + ∂µ(αu
µ) = ∂µb

µ + ∂µ(αnu
µ/n) = ∂µb

µ + n
∂

∂τ

(α

n

)

, (64)

where the last equality follows from (14). Upon contracting ∂ν(b
µuν − uµbν) = 0 with uµ we

obtain

∂νb
ν = uν

∂bν

∂τ
= −bν ∂uν

∂τ
. (65)
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Consequently, (64) and (65) imply

∂

∂τ

(α

n

)

=
bν

n

∂uν
∂τ

; α(τf) = n(τf )

∫ τf

0

bν

n

∂uν
∂τ

dτ + α(0) , (66)

where the above requires one integration per flow line.

Thus the freedom in α reduces to a choice of α on the initial surface Ω, its value at any

later time being found by solving the Cauchy problem. Furthermore, even this initial step

may be rendered trivial. While discussing the condition (61), we pointed out that one can

add to α any quantity ∆α obeying ∂µ(∆α uµ) = 0. Reiterating the argument that led to

(66), we find this becomes
∂

∂τ

(

∆α

n

)

= 0 ,

which says that we may choose ∆α freely on Ω, and the ratio of it over the number density

will remain constant along flow lines. Given this freedom, why not simply pick ∆α = −α on

the initial surface? So the new α is zero on Ω, the initial conditions are simply (mµ, hµ) =

((ρ+ p + |b2|)uµ, bµ), and α develops along flow lines according to (66). Said integral never

actually has to be evaluated, for if one solves the Cauchy problem for mµ and hµ (whose

equations of motion incorporate the condition ∂µh
µ = 0), one can then calculate α via

(28). Nonetheless, (66) may be useful as a consistency check on calculations or simulations.

Similarly, the two constraints uµbµ = 0 and uµuµ = 1 propagate along the flow lines and

do not need to be enforced explicitly provided they are true on Ω initially, though they too

remain useful as consistency checks.

We close this discussion by considering a point that may cause confusion. Given (mµ, hµ)

on Ω we can certainly calculate ∇ · h, and ∂h0/∂τ will be determined by the equations of

motion for (mµ, hµ). Thus, one may wonder how we are free to chose α and ∂α/∂τ to make

∂µh
µ = 0. The answer lies in the fact that the (mµ, hµ) system has a solution space that

includes solutions that are not relativistic MHD solutions, and our procedure for picking the

quantity selects out those that do indeed correspond – for these the two ways of determining

∂µh
µ are equivalent.

VI. SUMMARY

We have successfully cast relativistic MHD into a covariant action formalism using a

noncanonical bracket. Along the way, we had to develop a few new ideas with possible con-
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sequences beyond our current domain: a modified enthalpy density containing a magnetic

“pressure”, a canonical momentum differing from the kinetic momentum by a magnetic

term, and a divergenceless magnetic 4-vector possessing a new degeneracy and symmetry.

We presented several closely related additional brackets, and carefully investigated the non-

invertibility of the transformations between our original Eulerian quantities and their con-

jugate momenta. Many consequences of our formalism were investigated, but many more

remain to be covered: for instance, 3+1 reductions, additional Casimirs, the relation to

Lagrangian action principles, brackets in systems possessing extra symmetry (e.g. spheri-

cal or toroidal), applications to the Godunov numerical scheme in relativity, and conserved

quantities related to the α symmetry. It may be objected that we have, as yet, produced

no practical application for our formalism, though it certainly does possess a certain beauty

of its own. However, while practicality usually precedes beauty in physics, the opposite is

sometimes the case, reason enough not to disregard that beauty.
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Appendix A: Direct proof of the Jacobi identity

The brackets of (38) and (41) are direct generalizations of the Lie-Poisson form given in

Refs. 17, 20, and 21 for nonrelativistic MHD, so the Jacobi identity follows from general Lie

algebraic and functional derivative properties (see e.g., Refs. 21, 23, 37, and 38). However,

since these will not be known to most readers we include a direct proof in this appendix.

The Jacobi identity is

{{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0 (A1)
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for the two brackets (38) and (41).

When expanding the expression (A1), many terms will contain second functional deriva-

tives, for instance

nhλ
δG

δmν

(

∂ν
δ2F

δhλδmµ

)

∂µ
δH

δn

Thankfully, by a theorem in Ref. 21, all such terms cancel for any antisymmetric bracket.

Thus we only have to worry about those terms containing only first functional derivatives.

Starting with the bracket (38), the needed terms are thus

δ{F,G}
δn

=
δF

δmµ

∂µ
δG

δn
− δG

δmµ

∂µ
δF

δn
+ . . .

δ{F,G}
δσ

=
δF

δmµ

∂µ
δG

δσ
− δG

δmµ

∂µ
δF

δσ
+ . . .

δ{F,G}
δmµ

=
δF

δmν

∂ν
δG

δmµ

− δG

δmν

∂ν
δF

δmµ

+ . . .

δ{F,G}
δhµ

=
δF

δmν

∂ν
δG

δhµ
− δG

δmν

∂ν
δF

δhµ
+

∂µ
δF

δmν

δG

δhν
− ∂µ

δG

δmν

δF

δhν
+ . . .

(A2)

with similar expressions for the other two permutations of F , G, and H . Beginning with this

expression, it is to be understood that, in the absence of parentheses, the gradient operators

act only on the term immediately to their right; when they are followed by an expression

in parentheses, they act as normal. This convention will remove many superfluous symbols.

The ellipses at the end of each line indicate the terms that may be disregarded thanks to

the aforementioned theorem. Upon inserting the expressions (A2) into the Jacobi identity

(A1), all pertinent terms will be linear in the field variables. Each of these four sets of terms

(one for each field variable) must vanish separately.

The terms linear in n are:

∫

d4xn

[(

δF

δmν

∂ν
δG

δmµ

− δG

δmν

∂ν
δF

δmµ

)

∂µ
δH

δn
− δH

δmµ

∂µ

(

δF

δmν

∂ν
δG

δn
− δG

δmν

∂ν
δF

δn

)

+ �
F,G,H

]

(A3)

where the circle symbol indicates permutation in F , G, and H . Inside the square braces,

the collected second derivative terms are

− δH

δmµ

δF

δmν

∂2µν
δG

δn
+

δH

δmµ

δG

δmν

∂2µν
δF

δn
− δF

δmµ

δG

δmν

∂2µν
δH

δn

+
δF

δmµ

δH

δmν

∂2µν
δG

δn
− δG

δmµ

δH

δmν

∂2µν
δF

δn
+

δG

δmµ

δF

δmν

∂2µν
δH

δn
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which vanish due to the fact that second (partial) derivatives commute. The remaining

terms linear in n, keeping the same order they have in the Jacobi identity, follow:

δF

δmν

∂ν
δG

δmµ

∂µ
δH

δn

2©
− δG

δmν

∂ν
δF

δmµ

∂µ
δH

δn

6©
− δH

δmµ

∂µ
δF

δmν

∂ν
δG

δn

3©
+

δH

δmµ

∂µ
δG

δmν

∂ν
δF

δn

1©
+

δG

δmν

∂ν
δH

δmµ

∂µ
δF

δn

5©
− δH

δmν

∂ν
δG

δmµ

∂µ
δF

δn

1©
− δF

δmµ

∂µ
δG

δmν

∂ν
δH

δn

2©
+

δF

δmµ

∂µ
δH

δmν

∂ν
δG

δn

4©
+

δH

δmν

∂ν
δF

δmµ

∂µ
δG

δn

3©
− δF

δmν

∂ν
δH

δmµ

∂µ
δG

δn

4©
− δG

δmµ

∂µ
δH

δmν

∂ν
δF

δn

5©
+

δG

δmµ

∂µ
δF

δmν

∂ν
δH

δn

6©

They vanish in pairs, as labeled by the circled numbers.

So all the terms linear in n have vanished from the Jacobi identity. However, the terms

linear in σ are identical, but with functional derivatives δ/δn replaced by δ/δσ. So the σ

terms vanish by an identical calculation. Moreover, the mλ terms do as well: the δ/δn are

replaced with δ/δmλ, contracted with the remaining mλ term outside the square brackets

of its version of (A3), and the calculation proceeds as before.

The only terms remaining to be checked are those linear in hλ; unfortunately, there are

quite a few:

∫

d4xhλ

[

(

δF

δmµ

∂µ
δG

δmν

− δG

δmµ

∂µ
δF

δmν

)

∂ν
δH

δhλ

1©

− δH

δmν

∂ν

(

δF

δmµ

∂µ
δG

δhλ
− δG

δmµ

∂µ
∂F

∂hλ

) 1©
− δH

δmν

∂ν

(

∂λ
δF

δmµ

δG

δhµ
− ∂λ

δG

δmµ

δF

δhµ

)

+∂λ

(

δF

δmµ

∂µ
δG

δmν

− δG

δmµ

∂µ
δF

δmν

)

δH

δhν

−∂λ
δH

δmν

(

δF

δmµ

∂µ
δG

δhν
− δG

δmµ

∂µ
δF

δhν
+∂ν

δF

δmµ

δG

δhµ
− ∂ν

δG

δmµ

δF

δhµ

)

+ �
F,G,H

]

The terms labelled by a circled “one” produce a calculation identical to that already per-

formed, and thus cancel. From the remaining terms, we first gather all the second derivative

ones inside the square braces:

− δH

δmν

δG

δhµ
∂2λν

δF

δmµ

5©
+

δH

δmν

δF

δhµ
∂2λν

δG

δmµ

2©
+

δF

δmµ

δH

δhν
∂2λµ

δG

δmν

1©
− δG

δmµ

δH

δhν
∂2λµ

δF

δmν

4©

− δF

δmν

δH

δhµ
∂2λν

δG

δmµ

1©
+

δF

δmν

δG

δhµ
∂2λν

δH

δmµ

6©
+

δG

δmµ

δF

δhν
∂2λµ

δH

δmν

3©
− δH

δmµ

δF

δhν
∂2λµ

δG

δmν

2©

− δG

δmν

δF

δhµ
∂2λν

δH

δmµ

3©
+

δG

δmν

δH

δhµ
∂2λν

δF

δmµ

4©
+

δH

δmµ

δG

δhν
∂2λµ

δF

δmν

5©
− δF

δmµ

δG

δhν
∂2λµ

δH

δmν

6©
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They cancel in pairs. Finally, the remaining terms, in the same order and bearing the same

indices as in the Jacobi identity, are:

− δH

δmν

∂λ
δF

δmµ

∂ν
δG

δhµ

3©
+

δH

δmν

∂λ
δG

δmµ

∂ν
δF

δhµ

9©
+
δH

δhν
∂λ

δF

δmµ

∂µ
δG

δmν

4©
− δH

δhν
∂λ

δG

δmµ

∂µ
δF

δmν

12©

− δF

δmµ

∂λ
δH

δmν

∂µ
δG

δhν

1©
+

δG

δmµ

∂λ
δH

δmν

∂µ
δF

δhν

5©
− δG

δhµ
∂λ

δH

δmν

∂ν
δF

δmµ

7©
+
δF

δhµ
∂λ

δH

δmν

∂ν
δG

δmµ

2©

− δF

δmν

∂λ
δG

δmµ

∂ν
δH

δhµ

10©
+

δF

δmν

∂λ
δH

δmµ

∂ν
δG

δhµ

1©
+
δF

δhν
∂λ

δG

δmµ

∂µ
δH

δmν

11©
− δF

δhν
∂λ

δH

δmµ

∂µ
δG

δmν

2©

− δG

δmµ

∂λ
δF

δmν

∂µ
δH

δhν

6©
+

δH

δmµ

∂λ
δF

δmν

∂µ
δG

δhν

3©
− δH

δhµ
∂λ

δF

δmν

∂ν
δG

δmµ

4©
+
δG

δhµ
∂λ

δF

δmν

∂ν
δH

δmµ

8©

− δG

δmν

∂λ
δH

δmµ

∂ν
δF

δhµ

5©
+

δG

δmν

∂λ
δF

δmµ

∂ν
δH

δhµ

6©
+
δG

δhν
∂λ

δH

δmµ

∂µ
δF

δmν

7©
− δG

δhν
∂λ

δF

δmµ

∂µ
δH

δmν

8©

− δH

δmµ

∂λ
δG

δmν

∂µ
δF

δhν

9©
+

δF

δmµ

∂λ
δG

δmν

∂µ
δH

δhν

10©
− δF

δhµ
∂λ

δG

δmν

∂ν
δH

δmµ

11©
+
δH

δhµ
∂λ

δG

δmν

∂ν
δF

δmµ

12©

They also cancel in pairs, establishing the Jacobi identity. This derivation is also valid in

curved spacetimes, for the functional derivative cancels out a factor of
√−g, and there is no

integration by parts to catch another such factor.

Next we will perform a similar calculation for the alternative bracket (41). While the

same kinds of terms appear as above, there is no longer a complete cancellation. Most of

the functional derivatives (A2) are unchanged, the only differing one being

δ{F,G}
δhµ

=
δF

δmν

∂ν
∂G

∂hµ
− δG

δmν

∂ν
∂F

∂hµ
+ ∂µ

δF

δhν
δG

δmν

− ∂µ
δG

δhν
δF

δmν

+ . . .

with the ellipsis again indicating terms with second functional derivatives, all of which can

be disregarded.

The terms of the Jacobi identity once more appear in four sets, each linear in one of the

field variables. The n, σ, and mλ terms involve no derivatives with respect to hλ, and are

thus unchanged: they cancel as before. Only the hλ terms differ. They read:

∫

d4xhλ

[

(

δF

δmν

∂ν
δG

δmµ

− δG

δmν

∂ν
δF

δmµ

)

∂µ
δH

δhλ

1©

− δH

δmν

∂ν

(

δF

δmµ

∂µ
δG

δhλ
− δG

δmµ

∂µ
δF

δhλ

) 1©
− δH

δmν

∂ν

(

∂λ
δF

δhµ
δG

δmµ

− ∂λ
δG

δhµ
δF

δmµ

)

+∂λ

(

δF

δmµ

∂µ
δG

δhν
− δG

δmµ

∂µ
δF

δhν
+ ∂ν

δF

δhµ
δG

δmµ

− ∂ν
δG

δhµ
δF

δmµ

)

δH

δmν

− ∂λ
δH

δhν

(

δF

δmµ

∂µ
δG

δmν

− δG

δmµ

∂µ
δF

δmν

)

+ �
F,G,H

]

29



The terms labelled with a circled “one” cancel as in the previous bracket. The collected

second derivative terms are

− δH

δmν

δG

δmµ

∂2νλ
δF

δhµ

2©
+

δH

δmν

δF

δmµ

∂2νλ
δG

δhµ

1©
+

δF

δmµ

δH

δmν

∂2λµ
δG

δhν

− δG

δmµ

δH

δmν

∂2λµ
δF

δhν
+

δH

δmν

δG

δmµ

∂2λν
δF

δhµ

2©
− δH

δmν

δF

δmµ

∂2λν
δG

δhµ

1©
+ �

F,G,H

=
δF

δmµ

δH

δmν

∂2λµ
δG

δhν
− δG

δmµ

δH

δmν

∂2λµ
δF

δhν
+

δG

δmµ

δF

δmν

∂2λµ
δH

δhν

− δH

δmµ

δF

δmν

∂2λµ
δG

δhν
+

δH

δmµ

δG

δmν

∂2λµ
δF

δhν
− δF

δmµ

δG

δmν

∂2λµ
δH

δhν

Six terms do not cancel. The other terms (i.e. those that are not second derivatives) are

− δH

δmν

∂λ
δF

δhµ
∂ν

δG

δmµ

2©
+

δH

δmν

∂λ
δG

δhµ
∂ν

δF

δmµ

5©
+

δH

δmν

∂λ
δF

δmµ

∂µ
δG

δhν
− δH

δmν

∂λ
δG

δmµ

∂µ
δF

δhν

+
δH

δmν

∂λ
δG

δmµ

∂ν
δF

δhµ
− δH

δmν

∂λ
δF

δmµ

∂ν
δG

δhµ
− δF

δmµ

∂λ
δH

δhν
∂µ

δG

δmν

1©
+

δG

δmµ

∂λ
δH

δhν
∂µ

δF

δmν

3©

− δF

δmν

∂λ
δG

δhµ
∂ν

δH

δmµ

6©
+

δF

δmν

∂λ
δH

δhµ
∂ν

δG

δmµ

1©
+

δF

δmν

∂λ
δG

δmµ

∂µ
δH

δhν
− δF

δmν

∂λ
δH

δmµ

∂µ
δG

δhν

+
δF

δmν

∂λ
δH

δmµ

∂ν
δG

δhµ
− δF

δmν

∂λ
δG

δmµ

∂ν
δH

δhµ
− δG

δmµ

∂λ
δF

δhν
∂µ

δH

δmν

4©
+

δH

δmµ

∂λ
δF

δhν
∂µ

δG

δmν

2©

− δG

δmν

∂λ
δH

δhµ
∂ν

δF

δmµ

3©
+

δG

δmν

∂λ
δF

δhµ
∂ν
δH

δmµ

4©
+

δG

δmν

∂λ
δH

δmµ

∂µ
δF

δhν
− δG

δmν

∂λ
δF

δmµ

∂µ
δH

δhν

+
δG

δmν

∂λ
δF

δmµ

∂ν
δH

δhµ
− δG

δmν

∂λ
δH

δmµ

∂ν
δF

δhµ
− δH

δmµ

∂λ
δG

δhν
∂µ

δF

δmν

5©
+

δF

δmµ

∂λ
δG

δhν
∂µ

δH

δmν

6©

This time twelve terms do not cancel. All told, eighteen terms remain, which collect in

groups of three. Each group reduces to a gradient with a ∂λ pulled outside the expression.

The whole Jacobi identity simplifies to

{{F,G}, H}+ {{G,H}, F}+ {{H,F}, G}

=

∫

d4xhλ∂λ

(

δF

δmν

δG

δmµ

∂µ
δH

δhν
− δG

δmν

δF

δmµ

∂µ
δH

δhν
+

δG

δmν

δH

δmµ

∂µ
δF

δhν
−

δH

δmν

δG

δmµ

∂µ
δF

δhν
+

δH

δmν

δF

δmµ

∂µ
δG

δhν
− δF

δmν

δH

δmµ

∂µ
δG

δhν

)

An integration by parts shows that the Jacobi identity is satisfied if hν ,ν = 0. In a

curved spacetime, the above expression is the same, except that d4x becomes
√−gd4x.
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The integration by parts catches this extra factor, yielding (hν
√−g),ν = hν ;ν = 0 as a

requirement for the Jacobi identity.
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