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Gravitational wave data from ground-based detectors is dominated by instrument noise. Signals
will be comparatively weak, and our understanding of the noise will influence detection confidence
and signal characterization. Mis-modeled noise can produce large systematic biases in both model
selection and parameter estimation. Here we introduce a multi-component, variable dimension,
parameterized model to describe the Gaussian-noise power spectrum for data from ground-based
gravitational wave interferometers. Called BayesLine, the algorithm models the noise power spectral
density using cubic splines for smoothly varying broad-band noise and Lorentzians for narrow-band
line features in the spectrum. We describe the algorithm and demonstrate its performance on data
from the fifth and sixth LIGO science runs. Once fully integrated into LIGO/Virgo data analysis
software, BayesLine will produce accurate spectral estimation and provide a means for marginalizing
inferences drawn from the data over all plausible noise spectra.

I. INTRODUCTION

Gravitational wave data from ground based observa-
tories such as LIGO [1] and Virgo [2] are dominated
by instrument noise. Even with the improved hardware
capabilities of the Advanced LIGO/Virgo interferome-
ters [3, 4] sensitive analysis methods must be in place to
take full advantage of the data. While a wide variety of
search pipelines exist for a similarly wide variety of GW
source types (e.g. [5–7]), all fundamentally stem from the
same principle – assessing whether the detector output
is statistically different from our model for the data. For
an examination of the inherent similarity of different GW
search techniques see Ref [8].

For analyses which have the advantage of strong the-
oretical predictions for the gravitational wave signal,
such as searches for the inspiral and merger of stel-
lar mass compact binaries (neutron stars and/or black
holes) template based techniques are optimal [9, 10]. In
the template based analyses used for signal characteri-
zation [11, 12], a trial waveform, or “template,” is sub-
tracted from the data and the residual is compared to a
theoretical model for the instrument noise. The statistic
used to assess whether the residual and the noise model
are consistent is the likelihood, or the probability density
of the detectors producing data d for a hypothetical grav-
itational wave signal h with parameters θ. Assuming we
understand the properties of the noise distribution, the
likelihood will be maximized when the template wave-
form matches the true signal modulo statistical fluctua-
tions due to the specific realization of the noise.

Any unsound approximations in the likelihood will con-
tribute to systematic errors which could result in erro-
neous inferences as the template waveform parameters
flex away from the “true” values in an attempt to achieve
the expected statistics for the residual. Receiving most
of the spotlight in the effort to control systematic errors

are the template waveforms themselves [13–17]. How-
ever, understanding the noise is just as important if we
want to ensure accurate astrophysical parameter estima-
tion and discoveries, or limits pertaining to fundamental
physics such as alternative theories of gravity [18–20] and
the equation of state of neutron stars [21–24].

The LIGO/Virgo noise is dominated by three main
components: Seismic noise steeply limits sensitivity be-
low 10 Hz; thermal noise from the mirror suspensions and
coatings dominate between 10 and 200 Hz; and quantum
(photon shot) noise is the limiting factor at high frequen-
cies. Each component is a broad-band effect with rela-
tively simple frequency dependence. Standing out above
the broad-band noise are high power, narrow band, spec-
tral lines which originate from a variety of sources in-
cluding the mirror suspensions, the AC electrical supply,
or sinusoidal motion imparted on the mirrors for data
calibration.

Approaches for improving the noise model include
modifying the functional form of the likelihood [25–28];
demanding additional consistency checks between analy-
ses on single detectors and the network [29, 30]; or intro-
ducing degrees of freedom which help fit to the instru-
ment noise [31, 32]. Here we introduce a new way of pa-
rameterizing LIGO/Virgo Gaussian noise and use mod-
ern data analysis methods for fitting to, and eventually
marginalizing over, the noise model. A companion publi-
cation will address the non-stationary and non-Gaussian
noise by introducing the BayesWave algorithm [33]; a
trans-dimensional Bayesian approach similar in spirit to
BayesLine but employing a different basis – wavelets –
to model transient, non-Gaussian noise. While demon-
strations in this paper use BayesLine as a “preprocessor”
spectral estimation code, the algorithm is too computa-
tionally intensive to be employed in low latency searches
for GWs. BayesLine will ideally be integrated into the
parameter estimation pipelines used to followup candi-
date transient GW events. Doing so will allow estimated
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parameter uncertainties to incorporate statistical errors
due to uncertainty in the noise power spectral density. It
may also prove beneficial to adapt BayesLine for stochas-
tic GW background searches.

In Section II we motivate the need for real-time spec-
tral estimation, in Section III we consider features com-
monly found in LIGO and Virgo noise spectra which
place different demands on our model. Section IV in-
troduces the BayesLine algorithm and we demonstrate
its performance on LIGO data in V. Our conclusions
are summarized in Section VI while Appendix A briefly
explores the prospects of coherently fitting out spectral
lines associated with the electrical power supply.

II. MOTIVATION

The noise from gravitational wave detectors n is ap-
proximately Gaussian with zero mean (i.e. 〈n〉 = 0) and
stationary (meaning the noise statistics are not time de-
pendent). Here, and throughout, bold-faced quantities
indicate the vector of all samples, while un-bolded quan-
tities refer to a single sample. Because the autocorrela-
tion matrix of stationary noise depends only on the lag,
the noise covariance matrix of ñ, where the tilde rep-
resents a Fourier transform, is diagonal (i.e., there are
no correlations between noise at different frequencies).
Under these conditions we can completely characterize
the noise by its one-sided power spectral density (PSD)
Sn(f) ≡ 2

T 〈|ñ(f)|2〉 where T is the duration of data be-
ing analyzed, typically 10 s to 1000 s for LIGO/Virgo
compact binary signals. In the paradigm of stationary
and Gaussian noise we arrive at the standard likelihood
used in gravitational wave data analysis [34]

log p (d|θ) = −
Net∑
I

[∫ ∞
0

|r̃I(f ;θ)|2

SI
n(f)

df

]
+ C (1)

where r̃(f ;θ) = d̃(f)− h̃(f ;θ) is the residual noise after
the gravitational wave template has been regressed from
the data, and the summation is over detectors in the
network (e.g., the two LIGO detectors and Virgo).

Characterizing the detector noise is a challenge because
it is not stationary for times much longer than a few tens
of second, depriving us of a sufficiently accurate “refer-
ence” noise spectrum that can be used for all analyses.
Instead, the noise floor must be estimated from the data
directly. Different analyses have different prescriptions
for PSD estimation. Past searches for binary in-spiral
signals used a running average of the instrument power
spectrum over long durations of time [6] while the param-
eter estimation follow-up analysis relied on Welch averag-
ing the power spectrum of many segments of data near
in time to a candidate signal coming from the search
pipeline [11, 12]. Searches for un-modelled signals have
their own methods for PSD estimation, including pre-
conditioning the data by filtering narrow-band spectral

features and piece-wise whitening the Fourier domain
data [35], and whitening across frequency layers in a dis-
crete wavelet transform representation of the data [36].

Consider the parameter estimation follow-up pipeline
approach to PSD estimation. Relying on off-source data
to estimate the noise level presents several hazards in-
cluding times when the detector noise experiences large
excursions due to impulsive noise events, “glitches,” or
long duration fluctuations of data quality due to pro-
longed changes in the environment such as seismic activ-
ity, wind, etc. In past analyses, times used to produce
PSDs were manually inspected to ensure quality data
was employed in the Welch averaging and the windows
of time were adjusted accordingly. Finding adequate data
for noise estimation could be challenging, and the poste-
rior distribution functions recovered occasionally showed
statistically significant dependence to the data used for
PSD estimation [11, 32].

The challenge of producing good initial estimates of
the noise power spectrum will be compounded in the ad-
vanced detector era. As the sensitivity of the detectors
improves, particularly at low frequency, the amount of
time that a gravitational wave chirp signal will be in band
increases. For example, a 1.4 − 1.4 M� binary neutron
star merger takes ∼ 25 seconds to evolve from 40 Hz (the
approximate low frequency cut-off during the initial sci-
ence runs) to the point where the stars merge. Advanced
LIGO/Virgo are expected to ultimately reach down to
frequencies of ∼ 10 Hz [37], at which point the binary
is in band for ∼ 103 seconds. Reliance on averaging for
PSD estimation will demand ∼ 104 seconds – hours – of
stationary noise similar to the data containing the can-
didate event. The demands on detector stability for the
durations needed to achieve good noise estimates are im-
practical.

It was demonstrated in Ref. [32] that sensitivity to the
initial PSD estimation could be mitigated, but not erad-
icated, by marginalizing over the overall power in the in-
strument background using parameters which produced
a step-wise re-scaling of the noise spectrum. The PSD
rescaling is a step in the right direction, and is compu-
tationally inexpensive, but requires an initial estimate of
the PSD and is limited in its flexibility; it was unable to
modify the spectral slope or the location and relative am-
plitude of the spectral lines found in LIGO/Virgo data.

Given this reality, an alternative approach to deter-
mining the PSD – one which only relies on the data con-
taining the trigger – is desirable. Ideally we would have
a parameterized model for the instrument noise, just as
we do for the gravitational wave signal, and the two will
be deduced simultaneously during the parameter estima-
tion analysis. Bayesian spectral estimation and parame-
ter estimation is a lively topic of research. We refer the
interested readers to Ref. [38] for a thorough primer on
the subject. Here we present a novel approach to PSD
estimation where we introduce a variable number of phe-
nomenological parameters which are sufficiently flexible
to fully characterize the noise power spectrum but are
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held in check using Bayesian model selection to prevent
over-fitting the data. The PSD model is broken up into
two components: Cubic spline interpolation is used to
fit to the broad-band spectrum dominated by seismic,
thermal, and shot noise while a linear combination of
Lorentzians is used to whiten the narrow-band resonant
features in the data due in part to the AC power supply,
calibration lines, and vibrational modes of the suspension
system supporting the test masses.

III. THE LIGO/VIRGO POWER SPECTRUM

Before launching into the details of how we will model
the PSD, and how this improvement impacts inferences
drawn from the data, we will first motivate the need
for more sophisticated treatment of the instrument noise
by demonstrating the breakdown of the standard as-
sumptions about the data being stationary on timescales
needed to perform in-spiral analyses. To do so we will
use data from the LIGO Livingston Observatory to illus-
trate the challenges facing future observations. To start,
we will begin with an example Fourier power spectrum of
typical LIGO data shown in the gray (dashed) line of Fig-
ure 1. Plotted over the spectrum is the design sensitivity
(blue, dashed line) which is the type of PSD typically
used in studies relying on simulated data. Notice that
the design sensitivity curve is missing many important
features found in real data, particularly the high-power,
narrow-band features, or “lines”, located throughout the
sensitivity band of the detector. Finally, the red (solid)
curve shows a typical PSD that would be used during
a parameter estimation follow-up analysis of a candidate
chirp signal. To demonstrate the challenges of estimating
the PSD using the methods employed in deriving the red
curve, we will dissect the LIGO power spectrum into two
components: The broad-band noise as approximated by
the design sensitivity curves, and the spectral lines found
in the real data.

A. The broadband LIGO/Virgo noise

Ground based gravitational wave interferometer noise
is dominated by three main components (details of the
bandwidth for each effect depend on the instrument):
Sesimic noise steeply limits sensitivity below a few tens
of Hz, thermal noise from the mirror suspensions and
coatings dominate between the seismic wall and a few
hundred Hz, and quantum (photon shot) noise is the
limiting factor at high frequencies. Each component is
a broad-band effect with relatively simple behavior as
a function of frequency, the sum of which produce the
familiar sensitivity curves (e.g. the blue dotted line in
Figure 1) where the three different slopes are where the
three different components – seismic (f <∼ 30 Hz), ther-
mal (30 <∼ f <∼ 100 Hz), and shot noise (f >∼ 100 Hz)–
dominate the noise budget. The example shown in Fig-
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FIG. 1: Example strain spectral density (square root of the

Fourier power; gray, dashed) and
√

2Sn(f)/T (red, solid) dur-

ing LIGO’s 5th science run, compared to the design sensitiv-
ity (blue, dotted). Notice that the design sensitive consists
strictly of broad-band features due to seismic, thermal, and
quantum noise, while the actual data show high-amplitude
narrow-band spectral lines. The design sensitivity is the type
of noise curve used for studies in simulated data, while the
red (solid) line is needed for analyzing the actual data.

ure 1 comes from 1024 s of data taken towards the end
of LIGO’s fifth science run – when LIGO achieved ini-
tial design sensitivity – which took place from November
2005 to October 2007, henceforth “S5.”

Upgrades to the LIGO/Virgo facilities are, in a broad
sense, intended to further suppress each of these three
components. A detailed discussions of the LIGO noise
budget during S5 is found in Refs [39, 40]. For a preview
of the expected noise budget for Advanced LIGO see Fig-
ure 2 of Ref. [37]. Between the completion of S5, and
before the full-scale commissioning work for Advanced
LIGO began, the S6 science run took place between July
2009 to October 2010. S6 achieved better sensitivity than
S5 but the power spectrum was qualitatively similar to
Fig. 1. For the remainder of this article, all examples will
use data taken during S6.

To quantify how non-stationary the noise can be we
begin with 1024 seconds of data which is the nominal
duration used for PSD estimation in the follow-up of S6
triggers [11, 12]. We then divide that data into equal du-
ration segments of width 32 s – the amount of data which
would be needed to perform parameter estimation of a
binary neutron star signal in S6. In each 32 second seg-
ment of data we use the BayesLine algorithm (a detailed
description of which can be found in Section IV) to com-
pute Sn(f) at 100 Hz, with 1σ error bars as characterized
by a Markov chain. The PSD at 100 Hz is then plotted
for each segment, as a function of segment start time rela-
tive to the full 1024 s of data, as the gray (dashed) points
in Figure 2. We then repeat the analysis using 16 s (red,
solid) and 64 s (blue dotted) seconds of data. Notice
that over the span of 1024 seconds – the desired amount
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of data used to compute the average PSD during S6 –
we find statistically significant variation in the PSD. To
quantify the time dependence, we fit the time-dependent
PSD to an nth-order polynomial. The curves in Fig. 4
show the best-fit polynomials whose order n (10th for
the 16 s segments, 7th for the 32 s segments, and 11th

for the 64 s segments) had the highest Bayesian evidence
as determined by a Reverse Jump Markov chain Monte
Carlo (RJMCMC) code. During the advanced detector
era, a binary neutron star signal will be in band for this
entire 1024 s segment of data and, using the same proce-
dure as in previous analyses, nine hours of data would be
required to estimate the PSD. As can be seen from this
demonstration, approximating the noise as being station-
ary over such long-duration intervals is not reliable. By
contrast, BayesLine only needs the data being analyzed
for a GW signal to determine the PSD, as opposed to re-
quiring durations of data many times longer for spectral
estimation.
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FIG. 2: Demonstration of the time variability for the broad-
band Gaussian noise. Top panel: PSD over 1024 s of S6
data at 100 Hz estimated using BayesLine over intervals of
16 (red), 32 (green), and 64 (blue) seconds of data. The thick
line is the median PSD from each segment’s chain and the
shaded region spans the 90% credible interval. Bottom panel:
Legendre polynomial fit to the data, where a RJMCMC was
used to determine the best-fit degree (n) for the polynomial
(n = 10 for 16 s, n = 7 for 32 s, and n = 11 for 64 s ).

B. The spectral lines

Above the broad-band noise floor for ground-based
interferometric detectors are comparatively high power,
narrow band, spectral features as seen in Figure 1. The
most significant spectral lines in Initial LIGO/Virgo data
originate from one of three main processes: Resonances
of the wires which suspend the mirrors in the interferom-
eter, henceforth referred to as “violin” modes, predom-
inantly located around 320 Hz (plus higher harmonics)
in initial LIGO; the AC electrical supply “power line”
and subsequent higher frequency harmonics (at 60 Hz in
the LIGO observatories); and calibration lines which are

“injected” into the data by driving the mirrors at spe-
cific frequency and amplitude. Advanced LIGO/Virgo
will have similar features, though the central frequen-
cies may differ. The precise frequency and amplitude of
the environmental (power and violin) lines tend to drift
on timescales shorter than the amount of data needed
to estimate PSDs for in-spiral signals through averaging
off-source data.

Figure 3 depicts the time-evolution of the frequency
(left axis, red solid line) and amplitude (right axis, blue
dashed line) of the 60 Hz line computed by taking 1024 s
of data and dividing it into 128 equal-length (8 second)
segments. Each segment of data was then Fourier trans-
formed, and the frequency and amplitude of the peak in
the power spectrum found in a window around 60 Hz
was recorded. Higher harmonics (e.g. at 120 Hz) show
near-perfect correlation with the 60 Hz power line.

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

 0  200  400  600  800  1000

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

∆
f(

|h
m

a
x
|)

 (
H

z
)

|h
m

a
x
| 
x
 1

0
-1

7
 (

H
z

-1
/2

)

t (s)

Frequency

Amplitude

FIG. 3: The 60 Hz power line shows non stationary fre-
quency (left axis, red solid line) and amplitude (right axis,
blue dashed line) over timescales shorter than the amount of
data needed to characterize binary in spiral signals. Higher
frequency harmonics are practically 100% correlated with the
main power line.

As is evident in Figure 3, the amount of fluctuation in
the location of spectral lines can be dramatic – migrat-
ing by tens of Fourier bins for inspiral analyses – which
results in differences between the power spectrum used
for the noise model and the actual power spectrum of the
data.

In principal, one could argue that notch-filtering the
lines (i.e., excluding frequencies associated with line fea-
tures from the likelihood integration in Eq. 1) would be
a simpler strategy. However, what is not captured in
Figure 3 are similar fluctuations in the line width. Any
notch filter would need to be conservative in order to en-
sure that no line power would leak into the integration
domain and doing so would be at the expense of poten-
tially throwing away good data. A “real time” strategy
for mitigating spectral lines is therefore preferred.

Several methods for dynamically removing lines have
been put forward. Analyses by Finn and collaborators
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using the 40 m prototype LIGO interferometer explored
the use of Kalman filters [41, 42] to subtract the violin
modes from the data, while relying on auxiliary magne-
tometer data to approximate the contribution from the
power lines in the gravitational wave channel and sub-
sequently subtract the lines from the data. Sintes and
Schutz [43] used data from the Glasgow laser interfer-
ometer to develop the coherent line removal algorithm
which detects (and regresses) lines by searching for co-
herent harmonics of narrow-band features.

We will now introduce an alternative method for in-
ferring Sn(f) which is generically applicable to different
spectral features in the data and does not depend on off-
source data or long-term averages. The algorithm is con-
structed with the end goal of simultaneously characteriz-
ing gravitational wave signals and detector noise in mind.
To do so we have created a framework by which param-
eters for the Gaussian component of LIGO/Virgo noise
can be seamlessly integrated into the existing parameter
estimation software. The algorithm, named BayesLine,
uses RJMCMC methods to determine the most probable
model for the PSD. What follows is a detailed description
of the algorithm and examples designed to demonstrate
its benefits for LIGO/Virgo data analysis

IV. THE BAYESLINE ALGORITHM

To infer the noise power spectral density from the data
we have constructed a parameterized model for Sn(f)
which uses a MCMC to determine the posterior distribu-
tion function for the PSD. MCMC methods have become
increasingly common in astrophysics and are ubiquitous
within the gravitational wave community, so in lieu of re-
hashing the usual description of the algorithm we refer
the reader to an accessible subset of the available litera-
ture [44–47].

Just as our demonstrations of non-stationary LIGO
noise separated the broad-band noise from the lines, we
will model the two components separately, so that the
total PSD Sn(f) is the sum of the broad band “smooth”
part of the power spectrum and the line model. The
dimension of the broad-band noise SS(f ; ξ, NS) and the
spectral line models SL(f ;λ, NL) – with parameters ξ ,
NS , λ, and NL to be defined in the next subsections – is
a free parameter, with the quantities NS (the number of
control points in the cubic spline) and NL (the number
of Lorentzians) tracking each component’s dimension.

For this application, NS and NL are nuisance parame-
ters so we are not interested in selecting the PSD model
with the largest evidence. Instead, because we use an
RJMCMC to sample the entire model space, we produce
the model averaged distribution for Sn(f). As a result,
inferences drawn from analyses which use BayesLine will
be marginalized over the noise model.

A. The cubic spline model for broadband noise

The smooth part of the PSD, SS(f ; ξ, NS), is fit using
cubic spline interpolation. The parameters of the model
are the number NS , and location in frequency-PSD plane
ξi → {fj , Sj} of each spline point i ∈ [0, NS ] in the in-
terpolation. A trial set of control points {ξj} is chosen
randomly from the prior and fed into the cubic spline
routines available in the GNU Science Library [48] to de-
termine the spline coefficients cn. From the coefficients
we compute the cubic spline curve that goes through all
of the points

SS(fj ≤ f < fj+1) =

3∑
n=0

cjn (f − fj)n for j ∈ [0, NS ].

(2)
That curve will then be compared to the Fourier power
spectrum of the actual data when we compute the like-
lihood for the trial set of spline points as described in
Sec. .

The spline control points start on a regular grid in
frequency with an interval of ∼ 10 Hz and Sj is initial-
ized with the median Fourier power in a small window
around frequency fj . During the Markov chain analysis
the location of each spline point is adjusted both in fre-
quency and power spectral density, existing points can
be removed from the fit, and new points can be added.

Priors for the spline model are uniform in frequency
and in power spectral density. The maximum number
of control points is set by the total bandwidth of the
data and the initial ∼ 10 Hz grid. The range of allowed
PSD values for each spline point depends on the type
of data being analyzed, as we envision BayesLine being
a useful tool not only for gravitational wave data but
also for auxiliary channels used to monitor the external
environment at each observatory.

B. The Lorentzian line model

The most noticeable lines in the power spectrum are
the “violin modes” caused by resonances in the mirror
suspension system. A good model for the source of
the suspension lines is a noise-driven and damped har-
monic oscillators. The power spectrum for such systems
is known to be a Lorentzian [41] and so we will choose
that as the basis for our model for the lines. While the
physical mechanism responsible for other spectral fea-
tures found in the data – including the 60 Hz power
line (plus harmonics) and calibration lines – are not best
represented by Lorentzians, we found that our choice of
basis was adequate for all spectral features in the data
and so opted for the simplest model to implement. A
more sophisticated model which is tailored for the differ-
ent line-inducing processes in the data is discussed in the
Appendix and left as a future direction to improve the
BayesLine algorithm.
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The details of our Lorentzian line model are as follows:
We begin with a parameter vector λi → {Ai, fi, Qi} for
the ith Lorentzian in the fit where Ai is the amplitude,
fi is the central frequency, and Qi is the quality factor
which governs the width of the line.

The full line model SL(f) is then the sum of each in-
dividual Lorentzian Λ(f ;λi) in the fit

SL(f) =

NL∑
i

Λ(f ;λi)

Λ(f ;λi) =
z(f)Aif

4
i

(fif)
2

+Q2(f2i − f2)2
(3)

where z(f) is used to truncate the tails of the Lorentzian
distribution via

z(f) =

{
1, if |f − fi| ≤ δf
e−
|f−fi|−δf

δf , otherwise
(4)

with δf ∼ fi/50 used to truncate the lines after several
intervals of the full width at half maximum bandwidth
for the line. The precise choice of δf was based on tests
using LIGO data and a wide range of definitions for δf
worked equally well.

Our priors for the central frequency of the spectral lines
are uniform over the full bandwidth of the data and de-
serve further improvements: Archived and auxiliary data
provide information about the location of spectral lines;
the power line (and its harmonics) are within a fraction
of a percent of 60 Hz (and higher multiples); calibration
lines are purposefully added to the data at known fre-
quency and amplitude; and the suspension lines are me-
chanical resonances with narrowly constrained frequen-
cies. The “signal to noise” of the spectral lines is very
high and will overwhelm our choice of prior, but making
more informed selections about the spectral line parame-
ters will improve the convergence of the BayesLine model
when integrated with algorithms which rely on parallel
tempering for evidence calculations [12, 33].

C. The likelihood

We arrive at the full noise power spectral density by
adding the two components together

Sn(f) = SL(f ;λ, NL) + SS(f ; ξ, NS). (5)

To construct the likelihood we consider the joint prob-
ability that the N complex Fourier coefficients of the
data d̃ would be realized from Sn(f) assuming that the

whitened data d̃(f)/(T
2 Sn(f))1/2 should be consistent

with a unit normal distribution

log p(d|λ, NL, ξ, NS) = − 2

T

N∑
f

[
|d̃(f)|2

Sn(f)

]
(6)

where we have left off the constant normalization
−N

2 log(2π) as the MCMC is only concerned with rel-
ative likelihoods between points in parameter space.

D. Reverse Jump Markov Chain Monte Carlo

The central engine of BayesLine is a trans-dimensional
variant of a Markov chain – RJMCMC – where the chain
transitions between different models for the data, po-
tentially of different dimension, thereby simultaneously
characterizing the posterior distribution function for each
model and producing the evidence ratio, or Bayes fac-
tor, for each model [49]. RJMCMC methods have been
used in gravitational wave astronomy to assess wether
simulated data contain a detectable astrophysical sig-
nal [31, 50–54], to estimate the mass distribution of
stellar-mass black holes [55], and as a proof of principal
for modeling non-Gaussian noise [31].

RJMCMC has the unique ability to transition between
competing models, effectively making the model one of
the search parameters. Like its fixed dimension counter-
part, the RJMCMC is guaranteed to (eventually) con-
verge to the true target distribution – the likelihood dis-
tribution across model space. The marginalized likeli-
hood, or relative evidence, for each model is the number
of iterations the chain spends in each model divided by
the total number of iterations in the chain. A derivation
of the error in RJMCMC evidence calculations is in our
companion BayesWave paper, Ref [33].

Allowing for the exploration of different models (which
may differ in dimension) requires a separate Metropolis-
Hastings step which proposes to move the chain from
one model to another. Parameters θi for trial model
Mi are drawn from q(θi|Mi). If the models are nested,
such as proposing additional parameters to include in the
existing set, all of the like parameters are held fixed while
the new parameters are drawn from q. Once the new
models parameters are in hand the trans-model Hastings
ratio is calculated by

HMi→Mj
=
p(d|θj ,Mj)p(θj |Mj)q(θi|Mi)

p(d|θi,Mi)p(θi|Mi)q(θj |Mj)
|Jij | (7)

where the Jacobian |Jij | accounts for any change in di-
mension between models Mi and Mj . Selecting an ef-
ficient proposal distribution for model transitions is typ-
ically the major obstacle in the implementation of an
efficient RJ routine. If the proposal distributions yield
the model parameters directly, instead of a set of ran-
dom numbers which are then used to determine the new
model parameters, the Jacobian is unity and can be ne-
glected.

For the spline model uniform draws from the prior
for the frequency and power spectral density of control
points provide adequate mixing of trans-dimensional pro-
posals, though this would improve with stricter priors.
For the line model we again rely on uniform draws from
the prior for the amplitude and quality factor for the
Lorentzians. For the central frequency the power spec-
trum is first divided into several narrow-band segments
which are weighted by the power in that segment divided
by the median power of the full data, thereby preferring
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to propose Lorentizians in segments that have a large ex-
cess of power. Segements are proposed according to their
relative weighting and the frequency is drawn uniformly
from within the narrow-band segment. We verify that
detailed balance is satisfied by running BayesLine with
the likelihood set to a constant and confirming that the
recovered posterior agrees with our priors.

V. STUDIES USING LIGO DATA FROM S6

With the likelihood and prior distributions defined, we
can now completely characterize the posterior distribu-
tion function of the PSD using the RJMCMC algorithm.
We will now make use of this formalism to demonstrate
how our parameterized PSD outperforms the off-source
averaging method for spectral estimation using data ac-
quired by the LIGO observatories during S6.

For the stopping condition of the Markov chain we de-
termine when the chain has converged by using a poste-
rior predictive check which demands that the whitened
data (which should be consistent with a normal distri-
bution) do not have large-sigma outliers. We do not
currently monitor the autocorrelation length to adap-
tively determine when enough posterior samples have
been collected after the convergence criterion is satisfied,
instead using a fixed number of samples in the chain post-
convergence that has proven to work well. As BayesLine
is incorporated into existing LIGO/Virgo Bayesian infer-
ence pipelines the stopping criteria will need to be more
carefully handled.

Run-times for the current BayesLine implementation
are a factor of a few times larger than the duration of
data being analyzed, depending on the sampling rate.
For example, BayesLine requires ∼ 1 hour to estimate
the PSD for 1024 seconds of data sampled at 4096 Hz.
The run time is insignificant when compared to the com-
putational cost of compact binary parameter estimation
analyses [12].

To begin we show in Figure 4 a typical S6 LIGO power
spectrum (gray, dashed) and and the two component
BayesLine maximum a posteriori PSD (with the appro-
priate T/2 normalization). The spline model is shown in
the red (solid) curve while the Lorentzians used to fit the
spectral lines are depicted by the blue (dotted) lines. The
full PSD would be sum of the spline and Lorentzian fit.
For this example we use T = 32 s of data from the LIGO
Livingston Observatory. Our choice for T is consistent
with the amount of data required for parameter estima-
tion follow up of a binary neutron star (BNS) signal. BNS
in-spirals pose the most stringent challenge for PSD esti-
mation (among the transient sources) because the dura-
tion of the signal increases with decreasing mass. Binary
neutron stars are anticipated to be the lowest mass sig-
nals and, as a result, require the longest data segments.

Using averaged off-source data to estimate the PSD
would demand >∼ 1024 s of data. To show the difference
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FIG. 4: Example S6 data power spectrum (gray, dashed) with
BayesLine PSD shown separated into the cubic spline (red,
solid) and Lorentzian (blue, dotted) components.

between the BayesLine noise spectrum and a PSD esti-
mated by averaging we use the 1024 seconds immediately
after the 32 s segment of data used in Figure 4 to com-
pute Sn(f) as was done during S6. Had the data from
Figure 4 contained a candidate detection, this would be
indicative of the PSD used in the analysis. To compare
the two PSDs we use each of them to whiten the original
32 s of data, and then histogram the real and imaginary
Fourier coefficients.

According to the likelihood function used for parame-
ter estimation (Eq. 1) the whitened data should be drawn
from a normal distribution with zero mean and unit vari-
ance. Figure 5 shows the distribution of the whitened
data using the BayesLine PSD (red, solid) and the off-
source PSD (blue, dotted) as compared to a zero-mean
unit-variance normal distribution N [0, 1] (gray dashed).
The difference is striking – using the off-source PSD
leaves behind significant large σ tails. Because the like-
lihood is maximized when the whitened residual looks
Gaussian, the excess tails left behind by the off-source
whitening invite bias by the gravitational wave model in
an attempt to account for the non-Gaussian residual. On
the other hand, our BayesLine PSD produces a Gaussian
residual thereby suppressing the potential for large sys-
tematic errors in GW parameter estimation due to the
PSD estimation.

As motivated in Sec. I, estimating Sn(f) for long-
duration signals in the advanced detector era using off
source data is not feasible. To illustrate this reality we re-
peat the analysis from Fig. 5 but using observation times
T = 1024 s consistent with a BNS signal in Advanced
LIGO/Virgo. We estimate the PSD and histogram the
whitened Fourier coefficients, shown in Figure 6, using
BayesLine (red, solid) 10 × 1024 (magenta, small dots)
and 30 × 1024 (blue, large dots) seconds of off-source
data. The 10240 seconds we consider the bare minimum
for PSD estimation, while the 30720 s segment uses the
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same number of segments (30) in the Welch average as
the S6 example for advance LIGO-like segment lengths.
Note that ∼30000 seconds (∼8 hours) of stationary noise
is unlikely to be available due to environmental distur-
bances affecting data quality.
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FIG. 5: Initial LIGO example distribution of whitened
Fourier domain data using the standard PSD estimation in
LALInference (blue, dotted) and the BayesLine PSD (red,
solid), compared to a normal distribution with zero mean and
unit variance (gray, dashed) which is assumed by the likeli-
hood function.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-10 -8 -6 -4 -2  0  2  4  6  8  10

h(f) Sn(f)
-1/2

N[0,1]

10x1024 s

30x1024 s

BayesLine

FIG. 6: Example distribution of whitened Fourier domain
data made from the amount of data consistent with what is
needed for Advanced LIGO BNS analyses. PSDs were de-
termined via the standard PSD estimation in LALInference

using 10 (magenta, dotted) and 30 (blue, short dashed) 1024 s
segments of data for averaging and the BayesLine PSD (red,
solid). All three distributions are compared to N [0, 1] (gray,
long dashed).

To demonstrate how the PSD model can impact pa-
rameter estimation we add simulated binary black hole
signals (with total mass ∼ 15 M�) to 16 s of real data
and use the LIGO/Virgo parameter estimation software

LALInference to recover the signals and characterize
their posterior distribution functions [12].

Figure 7 shows the poster distributions for the mass
ratio q = m2/m1, chirp mass Mchirp = (m1m2)3/5(m1 +

m2)−1/5, and luminosity distance DL for two different
simulated compact binary signals in 16 s of real detector
noise using LALInference. The x-axes are shifted by the
true value of each parameters. The red solid distribution
was obtained using the BayesLine PSD. It is plotted with
posteriors inferred from the same data, of the same simu-
lated source, but using off-source PSDs determined from
256 s of data starting (i) before the signal entered the
LIGO band (gray, solid), (ii) 256 s (dark blue, dashed)
and (iii) 512 s (blue, dotted) after the merger time. Dif-
ferent rows correspond to different signals added to dif-
ferent 16 s segments of data. When the noise spectrum
is stable the BayesLine PSD agrees well with off-source
estimates (bottom row) and does not “harm” parameter
estimation. Posteriors in the top row are sensitive to the
start time of the data used for spectral estimation. In
each example, the BayesLine posterior is most consis-
tent with the results using data immediately before (top
row) or after (bottom row) the trigger time. This result
suggests that BayesLine will enable parameter estimates
that are more robust to long-term non stationary noise.

In principle there is a risk that the PSD model is able
to fit-out part of the gravitational wave signal and thus
introduces, instead of resolves, biases. In practice this is
not a problem. Our ultimate vision of having BayesLine
and gravitational wave parameters simultaneously in the
model will not suffer from this hazard because the tem-
plate provides a much better model for the GW signal
than BayesLine and so the RJMCMC will, by construc-
tion, prefer models which do not interfere with the sig-
nal characterization. We demonstrate this point using
simulated data (so the true PSD is known) and a sim-
ple model for the gravitational wave signal and template
(a sine Gaussian). The data is analyzed once using the
LIGO design sensitivity curve (which was used to simu-
late the noise), and again using BayesLine and the GW
model simultaneously. We show the agreement between
our fit and the true PSD, as well as between the recov-
ered waveforms from the two runs in Figure 8. The top
panels show the whitened simulated data in gray, and
the recovered waveforms are plotted using the true PSD
(red) and the BayesLine PSD (blue). The solid lines are
the median waveform and the dotted lines span the 1σ er-
rors for the reconstructed waveform. The agreement be-
tween the recovered waveforms using the different PSDs
is excellent. The bottom panel shows the median and
1σ residuals between the two reconstructed waveforms,
which are consistent with zero.

VI. CONCLUSIONS AND FUTURE GOALS

Analysis of ground-based gravitational wave interfer-
ometer data is challenging in part because the instrument
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FIG. 7: Comparison of marginalized posterior distribution functions of the mass ratio q = m2/m1, chirp mass Mchirp =

(m1m2)3/5(m1 + m2)−1/5, and luminosity distance DL for two different simulated compact binary signals in 16 s of real
detector noise using LALInference. The x-axes are shifted by the true value of each parameter. Results obtained with the
BayesLine PSD (red, solid) are compared to posteriors using off-source PSDs determined from 256 s of data before the signal
entered the LIGO band (gray, solid), 256 s after the merger time (dark blue, dashed) and 512 s after the merger time (blue,
dotted). When the noise spectrum is stable the BayesLine PSD agrees well with off-source estimates (bottom row) and does not
“harm” parameter estimation. Posteriors in the top row are sensitive to the start time of the data used for spectral estimation.
The BayesLine posterior is most consistent with the results using data immediately after the trigger time. This result suggests
that BayesLine will enable parameter estimates that are more robust to long-term non stationary noise.

noise, over intervals of time longer than duration of tran-
sient signals, is not stationary making spectral estimation
a challenge. The standard approach to noise character-
ization used by analyses for binary in-spiral signals in-
volves averaging over long durations of data compared
to the amount of time that the signal is in band and is
thereby susceptible to systematic errors. In this paper
we provide an alternative approach to PSD estimation –
dubbed BayesLine – for inferring the noise spectrum di-
rectly from the data being analyzed. Doing so within the
MCMC framework means that our inferences about GW
detections can be marginalized over all PSDs consistent
with the data. The BayesLine algorithm has the added
benefit of freeing the analyses from needing to use large
amounts of data for spectral estimation.

Our parameter estimation results shown in figure 7 use

a relatively small amount of data compared to the du-
ration of signals expected during the Advanced LIGO
era and still suggest that BayesLine will enable robust
parameter estimates in the presence of long-term non-
stationarity in the noise spectrum. Signals used in this
example will be in the Advanced LIGO band for ∼ 100s.
As shown in figures 5 and 6 the impact of non station-
ary noise on parameter estimation is likely to be more
substantial as longer durations of data are needed for
the analysis and spectral estimation. Quantifying how
BayesLine improves parameter estimation for Advanced
detector data is beyond the scope of this paper but our
preliminary results are promising. We will embark on a
large scale study using S6 data “recolored” to Advanced
LIGO sensitivities and a broader range of inspiral sig-
nals to fully address the role BayesLine has to play in
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parameter estimation of future detections.

BayesLine has been developed outside of any exist-
ing LIGO/Virgo analysis pipelines and, for this work,
is used as a stand-alone tool for PSD estimation. We
have described the algorithm and demonstrated its abil-
ity to produce estimates to LIGO noise spectra which
offer advantages over methods historically used for bi-
nary in-spiral parameter estimation analyses. BayesLine
only addresses the stationary, Gaussian component of
the noise and is otherwise insensitive to glitches which
have caused problems for the analysis both in regards
to false alarm rates and parameter estimation biases. A
companion algorithm which does model transient non-
Gaussian noise has been combined with BayesLine and
is described in Ref [33].

The BayesLine method will reach its full potential
when it is integrated into other data analysis pipelines.
We will next look to incorporate our spectral estimation
method into the LALInference pipeline for parameter
estimation follow up of binary in-spiral and merger sig-

nals.

The priors used in BayesLine are very wide and pose
challenges for computing evidence integrals. A high pri-
ority improvement is to develop more informative pri-
ors which will improve efficiency of the RJMCMC and
make evidence integrals tractable. One method currently
under consideration is to construct kernel density esti-
mates of the PSD using archived data. In this paradigm,
BayesLine would run continuously on data as it is col-
lected and continually update the kernel density estimate
used for the prior in follow-up analysis of candidate sig-
nals.

BayesLine still implicitly assumes that the noise in
the segment of data being analyzed is stationary which
we have demonstrated not to be true for the low-mass
compact binary signals. We envision developing a version
of BayesLine that works across multiple small segments,
with the parameters in each segment linked together by
using the spectrum from neighboring segments as a prior.

Our model for the PSD is effective but is completely
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phenomenological. A physically motivated model for the
broad-band noise and spectral lines will provide more
information about the detector. For the smooth broad-
band contribution to the PSD a physical model for the
quantum noise can be found in Ref [56] and phenomeno-
logical models for seismic and thermal noise have been
constructed – all of which are parameterized by quan-
tities relating to the detector. A more physically moti-
vated model for the lines is also an intriguing possibility.
For example, the 60 Hz line invites coherent modeling
and subtraction from the data, as opposed to whitening.
Doing so will provide a cleaner residual for long-duration
data segments and could also provide improved efficiency
because harmonics may not need to be independently
modeled. We conducted a preliminary study when decid-
ing between regressing and whitening the spectral lines
the results of which can be found in the Appendix.
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Appendix A: Subtracting the power lines

An alternative to the whitening approach taken by
BayesLine when accounting for spectral lines is to co-
herently model and regress spectral lines from the data.
Instead of modeling the power contained in the spectral
lines – appearing in the denominator of Eq. 1 – we can
include the time-dependent phase and amplitude evolu-
tion of the spectral lines in our calculation of the residual
in the numerator, i.e. the residual becomes

r̃(f ;θ) = d̃(f)− h̃(f ;θ)− l̃(f ;λ) (A1)

where l̃(f ;λ) is a model for the spectral lines.
We will demonstrate this approach by focusing on the

60 Hz power line found in the LIGO data. Our example
will use a 1024 s segment of data from the LIGO Liv-
ingston Observatory taken during S6. We choose the 60

Hz line because a Lorentzian is less physically motivated
as the line profile – it is not a damped driven harmonic
oscillator.

If the 60 Hz line had constant frequency it would put
in a single spike in the Fourier series of the data and
would be well approximated by a sinusoid. The line width
spreads due to couplings between the electronics and the
strain measurement and finite sampling effects. Tempo-
ral evolution will further broaden the spectral lines in
a priori unpredictable ways. Sinusoids are a convenient
basis to work in to model the noise at 60 Hz, but the data
will demand another adaptive-dimension linear combina-
tion as is done with the Lorentzian-based model for the
spectral lines discussed in this paper.

We experimented with modeling the power lines as si-
nusoids with amplitude A(t) and frequency f(t) which
we compute in the time-domain. A Fast Fourier Trans-
form (FFT) of the time-domain model is used to deter-

mine l̃(f ;λ) which is then subtracted from the frequency-
domain data as in Eq. A1. The functions A(t) and f(t)
are modeled by a linear combination of sines and cosines,
with the number of basis functions used in each model
determined by a RJMCMC.

Figure 9 shows the power spectrum of the data [red,
solid], the coherent 60 Hz line model [green, dashed] and
the residual [blue, dotted] after the line is subtracted.
We found f(t) required ∼ 60 basis functions, while A(t)
was easier to model, using only∼ 10. We find this to
be an intriguing result and plan to further explore the
benefits of coherently modeling spectral lines instead of
whitening.

To compare our time-domain model with the real data,
we estimate the central frequency and peak amplitude of
the 60 Hz line by sub-dividing the data into 16 s in-
tervals, Fourier transforming each sub-segment of data,
and finding the frequency with peak Fourier power. Fig-
ure 10 shows the peak frequency [left axis; red, solid]
and peak amplitude (square root of peak Fourier power)
[right axis; blue short-dashed] as a function of time for
each 16 second interval. Our best fit model for f(t) and
A(t) found from analyzing the full 1024 seconds of data
using the sinusoid RJMCMC model is shown in the green
long-dashed curve and the magenta dotted curve, respec-
tively. We find the agreement between the time-evolving
peak frequency and our model to be remarkable. These
are two totally independent ways of estimating the fre-
quency evolution of the 60 Hz line.

Note that unlike the Lorentzian model, which does
power spectrum whitening, the power line model does
coherent subtraction. The line-subtraction approach can
be adapted to simultaneously remove harmonics of the
60 Hz line using a single model for f(t) and A(t) plus an
overall scale factor for the amplitude of each harmonic.
Early indications of this approach were promising but
more work is necessary for this approach to reach matu-
rity The multi-harmonic line model could potentially re-
duce the overall dimension of the line model which would
in turn simplify the MCMC implementation.
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FIG. 9: The power spectrum of the data [red, solid], the
coherent 60 Hz line model [green, dashed] and the residual
[blue, dotted] after the line is subtracted.
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FIG. 10: The frequency [left axis; red, solid] and amplitude
[right axis; blue short-dashed] of the data as a function of
time as estimated by taking FFTs of each 16 s interval. The
best fit model for f(t) and A(t) derived from the full 1024
seconds of data are shown in the green long-dashed curve and
the magenta dotted curve, respectively.

The sum-of-sinusoids approach worked well for the
power lines but when it was tested on other narrow-band
features in the data, especially lines from the mirror sus-
pension system, the model required a challenging num-
ber of basis functions. As discussed in the main text
of this paper, the suspension lines are noise driven and
damped harmonic oscillators which are better modeled
by the Lorentzians. Conveniently, the Lorentzian model
also doing a fine job with the power and calibration lines.
For our first implementation of BayesLine we therefore
elected to use Lorentzians for all narrow-band features
rather than have a complicated multi-component model
for the different types of lines.

We find the results of the sinusoid model to be of great
interest and will continue developing the model for the
power lines including higher harmonics. We will also
investigate how incorporating environmental monitoring
channels at the observatories may lead to more direct
measurement, and therefore better modeling, of the time
evolution of the electrical power supply and other narrow-
band features.


