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We derive the scalar waveform generated by a binary of nonspinning compact objects (black holes
or neutron stars) in a general class of scalar-tensor theories of gravity. The waveform is accurate
to 1.5 post-Newtonian order [O((v/c)3)] beyond the leading order tensor gravitational waves (the
“Newtonian quadrupole”). To solve the scalar-tensor field equations, we adapt the direct integration
of the relaxed Einstein equations formalism developed by Will, Wiseman, and Pati. The internal
gravity of the compact objects is treated with an approach developed by Eardley. We find that the
scalar waves are described by the same small set of parameters which describe the equations of motion
and tensor waves. For black hole-black hole binaries, the scalar waveform vanishes, as expected from
previous results which show that these systems in scalar-tensor theory are indistinguishable from
their general relativistic counterparts. For black hole-neutron star binaries, the scalar waveform
simplifies considerably from the generic case, essentially depending on only a single parameter up
to first post-Newtonian order. With both the tensor and scalar waveforms in hand, we calculate the
total energy flux carried by the outgoing waves. This quantity is computed to first post-Newtonian
order relative to the “quadrupole formula” and agrees with previous, lower order calculations.

PACS numbers: 04.30.Db, 04.25.Nx, 04.50.Kd

I. INTRODUCTION

We are entering the age of gravitational-wave (GW) astronomy. The Advanced LIGO interferometric detectors
in Louisiana and Washington [1] will come online in 2015, followed later by Advanced Virgo in Italy [2], KAGRA
in Japan [3], and possibly a third LIGO detector in India [4]. This network of detectors will measure GWs in the
“high-frequency” band, f = 1–103 Hz. The International Pulsar Timing Array collaboration is currently using pulsar
timing residuals to search for GWs in the “very-low-frequency” band, f = 10−9–10−7 Hz [5]. In between these two
bands, GW detection requires interferometry in space. This science is the target of the European Space Agency “L3”
mission, due to launch in 2034, most likely with an instrument resembling the well-known eLISA design [6].
The primary sources for all of these experiments are compact binaries comprising white dwarfs, neutron stars (NSs),

and black holes (BHs). We expect to learn a great deal about the astrophysics of these systems, ranging from simple
event rates to very precise information on their masses, spins, orientations, and sky locations. We can also use the
gravitational waves they emit to test Einstein’s theory of general relativity (GR).
General relativity is nearing its one-hundredth birthday and continues to pass all tests with flying colors. Deviations

from GR have been strongly constrained by measurements of the solar system and of binary pulsar systems [7]. How-
ever, GR has not yet been tested in the strong-field, dynamical regime we expect to probe with the GW observatories.
In particular, as compact binaries emit gravitational radiation, they lose energy to that radiation, causing the binary
orbit to decay. Eventually, the two objects merge, producing a final burst of gravitational waves before settling into
a quiescent state. The combination of strong gravitational fields and short time scales involved in this inspiral and
merger process represents a limit in which general relativity might break down.
One peculiarity of gravitational-wave detection is the need for very accurate template waveforms with which to

compare the data. While perhaps some very strong signals in the eLISA detector could be picked out by eye, most
GW signals will be heavily buried in noise. Matched filtering with a template bank is often the only way to recover
the actual GW data. While it is possible to conduct searches without templates (and sometimes necessary, in the
case of unmodeled burst searches), templates are necessary to fully realize the detection capability of an instrument.
Furthermore, finding the best-fit template allows one to precisely determine the system parameters for purposes of
astrophysics, as well as search for deviations from general relativity.
With this application in mind, we have undertaken an effort to produce waveform models for a particular alternative

to general relativity, scalar-tensor theory. This theory dates back over 50 years and yet remains extremely relevant
today. For instance, many so-called f(R) theories, which modify the action of general relativity to allow arbitrary
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functions of the Ricci scalar, can be expressed in the form of a scalar-tensor theory [8]. These f(R) theories may
explain the acceleration of the universe without resorting to dark energy. Scalar-tensor theory is also a potential
low-energy limit of string theory [9].
The term “scalar-tensor theory” is really a catch-all for a collection of theories, possibly including multiple scalar

fields in addition to the tensor field (metric) of general relativity. We limit ourselves to a single scalar. The action we
choose is

S =
1

16π

∫
[

φR− ω(φ)

φ
gµν∂µφ∂νφ

]√−g d4x+ Sm(m, gµν) , (1.1)

where gµν is the spacetime metric, g is its determinant, R is the Ricci scalar derived from this metric, φ is the scalar
field, and ω is the scalar-tensor coupling. Note that ω = ω(φ) is not a constant; that is, we are not restricting our
attention to Brans-Dicke theory. We do, however, restrict ourselves only to massless scalar fields (i.e., those without
a potential). We have also written Sm to represent the matter action. Note that it depends only on the matter fields
m and the metric; the scalar field φ does not couple directly to the matter. This means that (1.1) is expressed in the
“Jordan” frame. All of our work will be done in this frame. An alternative representation is the “Einstein” frame,
related to the Jordan frame by a conformal transformation [10]. Regardless of in which frame the calculation is done,
the final result—the gravitational waveform—will be the same.
The action generates the following field equations,

Gµν =
8π

φ
Tµν +

ω(φ)

φ2

(

φ,µφ,ν − 1

2
gµνφ,λφ

,λ

)

+
1

φ
(φ;µν − gµν2gφ) , (1.2a)

2gφ =
1

3 + 2ω(φ)

(

8πT − 16πφ
∂T

∂φ
− dω

dφ
φ,λφ

,λ

)

. (1.2b)

Here Gµν is the Einstein tensor, Tµν is the stress energy of matter and nongravitational fields, and T ≡ gαβTαβ is its
trace. We use commas to denote ordinary derivatives. Semicolons denote covariant derivatives (taken using gµν in
the usual way), and 2g ≡ gαβ∂α∂β is the d’Alembertian with indices raised by the metric. These conventions will be
used throughout the paper.
The computation of the gravitational waveform in this set of scalar-tensor theories spans three papers, including

this one. We focus on the inspiral phase, when the compact objects can be regarded as separate bodies, and derive
the waveform using the post-Newtonian approximation. This approximation is an expansion in powers of v/c ∼
(Gm/rc2)1/2, with each power representing half a “post-Newtonian order,” and is valid until just before the end of
the inspiral phase. In the first paper ([11], hereafter Paper I), Mirshekari and Will computed the equations of motion
for a compact binary to order (v/c)5 (2.5PN) beyond the leading (“Newtonian”) term. This result is a necessary
precursor for computing the waveform, as well as extremely interesting in its own right. In the second paper ([12],
hereafter Paper II), we derived the tensor gravitational waveform to order (v/c)4 (2PN) beyond the leading term.
In both of these papers, the final results were shown to reduce to the general relativistic versions in the appropriate
limit.
In this paper, we compute the final piece of the puzzle, which has no GR analog: the scalar waveform. A

gravitational-wave detector will measure both tensor and scalar waves. In Paper II, we showed that the separa-
tion between masses ξi in a detector will obey the equation

ξ̈i = −R0i0jξ
j , (1.3)

where

R0i0j = −1

2
¨̃hij
TT − 1

2
Ψ̈(N̂ iN̂ j − δij) . (1.4)

Here N̂ i is the direction from the source to the detector, δij is the Kronecker delta, and h̃ij and Ψ are redefined tensor
and scalar fields which we use in this series. They are written out explicitly in Sec. II A below. The subscript “TT”
designates the transverse-traceless projection of the tensor field. The tensor field has the usual two polarizations
expected in general relativity, + and ×, though the exact time dependence of the waves will take the new form
computed in Paper II. The scalar waves, on the other hand, will appear as a transverse “breathing” mode. The
detection of a third polarization state like this one would be a smoking gun that general relativity is somehow
incorrect.
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The scalar waveform actually begins at −0.5PN order, keeping the same definition of “0PN” that we use for the
tensor waveform in both GR and scalar-tensor theory. This feature is due to the presence of a nonvanishing “scalar
dipole moment,” which also creates 1.5PN radiation-reaction effects in the equations of motion and various effects
in the tensor waves. (Technically, there is a monopole piece in the far field at −1PN order; however, it is time-
independent and not wavelike. The leading-order monopole contribution to the waves thus enters at 0PN order.)
Because of this “shifting” of post-Newtonian orders, it is much more difficult to calculate the scalar waveform at the
same order as the tensor waveform. Therefore, we compute the scalar waveform only to 1.5PN order.
The challenge in all three papers is to solve the scalar-tensor field equations (1.2a) and (1.2b). To do so, we use

a method called “direct integration of the relaxed Einstein equations” (DIRE), based on the original framework of
Epstein and Wagoner [13] and then extended by Will, Wiseman, and Pati [14–17]. It is easily adapted to scalar-tensor
theories. In the adapted DIRE method, the scalar-tensor field equations are first rewritten in a “relaxed” form:
flat-spacetime wave equations for the “gravitational field” h̃µν and the modified scalar field Ψ. The wave equations
are simplified by the choice of a particular coordinate system, represented by a gauge condition on h̃µν . Together,
the wave equations and gauge condition contain all the content of the full field equations. The wave equations can
be solved formally by using a retarded Green’s function. When converting to a more useful form, we evaluate these
formal solutions differently depending on whether the source and field points are close to the compact objects (in the
“near zone”) or far away (in the “radiation zone”). The four different methods of evaluation are described in detail
in [15] and [16].
Since scalar-tensor theories do not obey the strong equivalence principle, the motion and gravitational-wave emission

of a binary depend on the internal composition of its constituent bodies. To handle this effect, we have adopted the
approach of Eardley [18]. We treat the matter stress-energy tensor as a sum of delta functions located at the position
of each compact object. However, instead of assigning each body a constant mass, we let the mass be a function of
the scalar field, MA = MA(φ). This gives the matter action an indirect dependence on φ, even though we still work
in the Jordan frame. This is the origin of the term ∂T/∂φ in (1.2b). In the final waveform, we express the varying
mass using the sensitivity,

sA ≡
(

d lnMA(φ)

d lnφ

)

0

, (1.5)

as well as derivatives of this quantity. (The subscript 0 means that the derivative should be evaluated using the
asymptotic value of the scalar field, φ0.) In the weak-field limit, the sensitivity is proportional to the Newtonian
self-gravitational energy per unit mass of the body. For neutron stars, the sensitivity depends on the mass and
equation of state of the star, with typical values 0.1–0.3 [19, 20]. For black holes, s = 0.5, and all derivatives vanish.
Since we assume that the sensitivities are constant in time, our work does not capture any “dynamical scalarization”
effects [21–23]; however, we expect such effects to be relevant only at the end of inspiral, when the post-Newtonian
approximation breaks down.
The scalar waves we find depend on the same relatively small set of parameters that characterizes the equations

of motion and tensor waves. These parameters are defined in terms of the coupling function (or more precisely, its
Taylor expansion coefficients) and the sensitivities and sensitivity derivatives of the compact objects. For black hole-
black hole binaries, the scalar waveform vanishes completely. This result is not unexpected. Papers I and II showed
that black hole binaries in scalar-tensor theory cannot be distinguished from their general relativistic counterparts by
studying their motion or tensor wave emission. For mixed (black hole-neutron star) binaries, the scalar waves simplify
considerably. After a mass rescaling, the waves up to 1PN order only depend on two parameters: the same parameter
Q which characterizes the equations of motion and the tensor waves for mixed binaries, plus an overall amplitude
factor. At 1.5PN order, the expression becomes more complicated.
Having computed both the tensor and scalar radiation from the system, we also calculate the total energy flux

carried off by the waves. This energy loss backreacts on the system, causing the radius of the orbit to shrink
and the frequency of the orbit and GWs to increase (“chirp”). The expression we derive can be used to generate
useful template waveforms for GW detectors. Because of the strange nature of PN counting in scalar-tensor theory,
specifically the existence of a negative-order dipole contribution to the scalar waves, computing the energy flux at
N -th post-Newtonian order actually requires knowing at least some pieces of the scalar waveform at (N + 1/2)-th
order. For this reason, we stop our calculation of the flux at first post-Newtonian (1PN) order, where “0PN” is defined
as the lowest order tensor flux (i.e., the “quadrupole formula”). We plan to continue the calculation to higher order
in future work.
The outline of the paper is as follows: Section II reviews necessary results from Papers I and II, including the

relaxed field equations, the Eardley approach to the matter source, and the definition of various “potentials” with
which we express intermediate results. Section III describes the calculation of the near-zone contribution to the scalar
waveform. We first describe the general technique, which requires the computation of “scalar multipole moments.”
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We then review the construction of the source τs in the near zone and give explicit expressions for it. Next, we
calculate the scalar multipole moments. The techniques for doing so are identical to those used in calculating the
“Epstein-Wagoner moments” of Paper II. We then simplify the scalar moments to two-body systems and convert
them to relative coordinates. We also discuss how the equations of motion from Paper I are used to expand time
derivatives of the moments.
Section IV presents the radiation-zone contribution to the scalar waves. We first discuss the formalism for finding

this contribution and review results from Paper II which are needed to construct τs in the radiation zone. We then
compute the waveform produced by this source. These terms begin at 1PN order, half an order lower than in the
tensor case. They include scalar “tail” terms which depend on the entire history of the binary. We call such terms
“hereditary” terms. Unlike the tensor case, there are no non-tail hereditary terms.
In Sec. V, we present the full 1.5PN scalar waveform for a nonspinning compact binary in massless scalar-tensor

theory. Finally, in Sec. VI, we compute the rate at which energy is carried away from the system by both tensor and
scalar waves.
In this paper, we use units in which c = 1. We do not set G = 1; as we shall see, the effective Newtonian gravitational

constant depends on the asymptotic value of the scalar field. Greek indices run over four spacetime values (0, 1, 2,
3), while Latin indices run over three spatial values (1, 2, 3). We use the Einstein summation convention, in which
repeated indices are summed over. We use a multi-index notation for products of vector components: xijk ≡ xixjxk.
A capital letter superscript denotes a product of that dimensionality: xL ≡ xk1xk2 · · ·xkl . Angular brackets around
indices denote symmetric, trace-free (STF) products (see Appendix B of Paper II for details). Finally, we use standard
notation for symmetrized indices, e.g. x(iyj) ≡ (xiyj + xjyi)/2.

II. PRELIMINARIES

In this section, we review some key concepts from Papers I and II with which the reader should be familiar before
continuing on to the next sections. For brevity, we omit many details. They can be found in Papers I and II.

A. Reduced field equations

The adapted DIRE method solves the scalar-tensor field equations (1.2a)-(1.2b) by rewriting them in an equivalent,
but more easily manageable, form. We first assume that far away from the compact binary, the metric reduces to the
Minkowski metric, ηµν , and the scalar field tends to a constant φ0. We introduce a rescaled scalar field,

ϕ ≡ φ

φ0
≡ 1 + Ψ . (2.1)

Calculating the form of Ψ at a distant gravitational-wave detector is the primary goal of this paper. We also define
a new tensor field of interest, the “gravitational field” h̃µν ,

h̃µν ≡ ηµν − g̃
µν . (2.2)

The “gothic” metric is given by

g̃
µν ≡

√

−g̃g̃µν , (2.3)

where

g̃µν ≡ ϕgµν (2.4)

is a conformally transformed version of the metric and g̃ is its determinant. In general relativity, the DIRE method
defines a gravitational field in much the same way. However, since there is no scalar field, the regular metric gµν and
its determinant g take the place of the conformally transformed versions. For convenience, we define the components
of the gravitational-field tensor to be

h̃00 ≡ N , (2.5a)
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h̃0i ≡ Ki , (2.5b)

h̃ij ≡ Bij , (2.5c)

h̃ii ≡ B . (2.5d)

We are free to pick coordinates in which the field equations take on a simpler form. We choose the Lorenz gauge
condition

h̃µν
,ν = 0 . (2.6)

Then the field equation (1.2a) reduces to

2ηh̃
µν = −16πτµν , (2.7)

where 2η ≡ ηαβ∂α∂β is the flat-spacetime wave operator and the source is

τµν ≡ (−g)
ϕ

φ0
T µν +

1

16π
(Λµν + Λµν

s ) . (2.8)

Here T µν is the stress energy of matter and nongravitational fields; in our case, it is generated by the compact source.
We will discuss it further in Sec. II B. The two terms Λµν and Λµν

s depend on the gravitational (tensor) and scalar
fields. Exact expressions for them can be found in Paper II. Our choice of variables ensures that Λµν maintains the
same basic form as in general relativity; compare Eqs. (3.4) in Paper I with Eqs. (4.4) in [16]. The Λµν

s term is new
to scalar-tensor theory. The gauge condition (2.6) implies a conservation law for the source,

τµν ,ν = 0 . (2.9)

The scalar field equation (1.2b) can also be written as a flat-spacetime wave equation,

2ηΨ = −8πτs , (2.10)

with source

τs ≡ − 1

3 + 2ω

√−g
ϕ

φ0

(

T − 2ϕ
∂T

∂ϕ

)

+
1

16π

d

dϕ

[

ln

(

3 + 2ω

ϕ2

)]

ϕ,αϕ,β g̃
αβ − 1

8π
h̃αβϕ,αβ . (2.11)

Recall that T is the trace of T µν.
The wave equations (2.7) and (2.10) can be solved formally in all spacetime by using a retarded Green’s function,

h̃µν(t,x) = 4

∫

τµν(t′,x′)δ(t′ − t+ |x− x′|)
|x− x′| d4x′ , (2.12a)

Ψ(t,x) = 2

∫

τs(t
′,x′)δ(t′ − t+ |x− x′|)

|x− x′| d4x′ . (2.12b)

The integrations take place over the past flat-spacetime null cone C emanating from the field point (t,x). To obtain
explicit solutions, we divide the spacetime into two regions. Define the characteristic size of the source as S. We
assume the bodies move at velocities v ≪ 1. Then the near zone is defined as the area with |x| = R < R, where
R ∼ S/v is the characteristic wavelength of gravitational radiation from the system. (We use capital R to denote
the distance from the binary’s center of mass to a field point in order to avoid confusion later with r, the orbital
separation of the binary.) Everything outside the near zone (R > R) is the radiation zone.
There are a total of four different ways to evaluate (2.12a) and (2.12b), depending on which of the two zones contain

the field and source points. For instance, in Paper I, the integrals were evaluated for field points in the near zone.
The integration was split into two pieces, one piece for source points in the near zone and one piece for source points
in the radiation zone. (The latter turned out not to contribute at the post-Newtonian order considered.) In Paper II,
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(2.12a) was evaluated for field points in the radiation zone, i.e., far away from the source where gravitational waves
are measured. The integral was again split into two pieces, one for source points in the near zone and one for source
points in the radiation zone. In this paper, we evaluate (2.12b) for field points in the radiation zone. Integration over
the near-zone source points is described in Sec. III. Integration over the radiation-zone source points is described in
Sec. IV.
Because the radius R of the boundary between zones is completely arbitrary, no terms in the final expressions for

the fields should depend on it. It was shown in [15] and [16] that, for general relativity, the terms dependent on R
which arise from the near-zone integral cancel exactly with the terms dependent on R which are generated by the
radiation-zone integral. In our work, we simply assume that this property holds and throw away all terms which
depend on R.

B. Matter source and potentials

Following Paper I, the compact source can be described in terms of “σ densities” [24],

σ ≡ T 00 + T ii , (2.13a)

σi ≡ T 0i , (2.13b)

σij ≡ T ij , (2.13c)

σs ≡ −T + 2ϕ
∂T

∂ϕ
. (2.13d)

From these, we can define a number of Poisson-like potentials. For example, given a generic Poisson integral for a
function f(t,x),

P (f) ≡ 1

4π

∫

M

f(t,x′)

|x− x′|d
3x′ , (2.14)

then the simplest potentials are

Uσ ≡ P (4πσ) =

∫

M

σ(t,x′)

|x− x′|d
3x′ , (2.15a)

Usσ ≡ P (4πσs) =

∫

M

σs(t,x
′)

|x− x′| d
3x′ . (2.15b)

The integrals are taken over a constant-time hypersurface M at time t out to radius R, the boundary of the near
zone. The σ subscript clarifies that these potentials use the σ densities. Expressions for all other σ-density potentials
can be found in Paper I, Eqs. (3.12) and (3.13). Note that the generic Poisson integral has the property

∇2P (f) = −f . (2.16)

This will be very useful throughout the calculation. Using the σ densities and the associated potentials, we can solve
the field equations for a generic system. To get answers specific to a system of compact objects, we must study the
compact stress energy T µν more closely.
Since a compact object is gravitationally bound, its total mass depends on its internal gravitational energy. This,

in turn, depends on the effective local value of the gravitational coupling. In scalar-tensor theory, the coupling is
controlled by the value of the scalar field φ in the vicinity of the body (scaling like 1/φ). To deal with this complication,
we use the approach of Eardley [18]. In his method, we consider the compact objects to be point masses, with a mass
M(φ) that is a function of the scalar field. The stress-energy tensor is then given by

T µν(xα) = (−g)−1/2
∑

A

∫

dτ MA(φ)u
µ
Au

ν
Aδ

4(xα − xα
A(τ))

= (−g)−1/2
∑

A

MA(φ)u
µ
Au

ν
A(u

0
A)

−1δ3(x− xA) .
(2.17)
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Here uµ
A is the four-velocity of body A and τ is the proper time measured along its world line. (This is the only

instance in which we use the symbol τ for this purpose.) This construction assumes that the dynamical time scale of
the body is short compared to an orbital time scale.
We expand MA(φ) about the asymptotic value of the scalar field, φ0,

MA(φ) = MA0 +

(

dMA

dφ

)

0

δφ+
1

2

(

d2MA

dφ2

)

0

δφ2 +
1

6

(

d3MA

dφ3

)

0

δφ3 + · · ·

= mA

[

1 + sAΨ+
1

2
(s2A + s′A − sA)Ψ

2 +
1

6
(s′′A + 3s′AsA − 3s′A + s3A − 3s2A + 2sA)Ψ

3 + O(Ψ4)

]

≡ mA[1 + S(sA; Ψ)] ,

(2.18)

where mA ≡ MA0. We define the sensitivity and its derivatives as

sA ≡
(

d lnMA(φ)

d lnφ

)

0

, (2.19a)

s′A ≡
(

d2 lnMA(φ)

d(ln φ)2

)

0

, (2.19b)

s′′A ≡
(

d3 lnMA(φ)

d(ln φ)3

)

0

, (2.19c)

and so on. Note that s′A has the opposite sign of the equivalent quantity in [25] and [26]. For later convenience, we
also define the quantities

asA ≡ s2A + s′A − 1

2
sA , (2.20a)

a′sA ≡ s′′A + 2sAs
′
A − 1

2
s′A , (2.20b)

bsA ≡ a′sA − asA + sAasA . (2.20c)

If we define a new density

ρ∗ ≡
∑

A

mAδ
3(x− xA) , (2.21)

the stress energy becomes

T µν = ρ∗(−g)−1/2u0vµvν [1 + S(s; Ψ)] , (2.22)

where vµ = (1,v) is the ordinary velocity. The various velocities and the sensitivity s technically should have body
labels, but they will each pick one up when multiplied by the delta function in ρ∗. As shown in Paper I, (2.22) can
be used to rewrite the σ densities in terms of the ρ∗ density as a post-Newtonian expansion.
We can also define new potentials based on the ρ∗ density. For instance,

U ≡
∫

M

ρ∗(t,x′)

|x− x′| d
3x′ , (2.23a)

Us ≡
∫

M

(1 − 2s(x′))ρ∗(t,x′)

|x− x′| d3x′ . (2.23b)

Note that (2.16) implies that ∇2U = −4πρ∗ and ∇2Us = −4πρ∗(1 − 2s). More generally,

Σ(f) ≡
∫

M

ρ∗(t,x′)f(t,x′)

|x− x′| d3x′ = P (4πρ∗f) , (2.24a)
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Σi(f) ≡
∫

M

ρ∗(t,x′)v′if(t,x′)

|x− x′| d3x′ = P (4πρ∗vif) , (2.24b)

Σij(f) ≡
∫

M

ρ∗(t,x′)v′ijf(t,x′)

|x− x′| d3x′ = P (4πρ∗vijf) , (2.24c)

Σs(f) ≡
∫

M

(1− 2s(x′))ρ∗(t,x′)f(t,x′)

|x− x′| d3x′ = P (4π(1− 2s)ρ∗f) , (2.24d)

X(f) ≡
∫

M

ρ∗(t,x′)f(t,x′)|x− x′|d3x′ , (2.24e)

Xs(f) ≡
∫

M

(1− 2s(x′))ρ∗(t,x′)f(t,x′)|x− x′|d3x′ , (2.24f)

so that U = Σ(1) and Us = Σs(1). The other potentials we use in this paper are

V i ≡ Σi(1) , V i
s ≡ Σs(v

i) , Φij
1 ≡ Σij(1) , Φ1 ≡ Σii(1) ,

Φs
1 ≡ Σs(v

2) , Φ2 ≡ Σ(U) , Φs
2 ≡ Σs(U) , Φs

2s ≡ Σs(Us) ,

X ≡ X(1) , Xs ≡ Xs(1) , P ij
2 ≡ P (U ,iU ,j) , P ij

2s ≡ P (U ,i
s U

,j
s ) .

(2.25)

Equations (5.13)–(5.22) in Paper I show how to convert between many σ-density and ρ∗-density potentials (e.g., Uσ

and U).

III. NEAR-ZONE CONTRIBUTION TO THE SCALAR WAVEFORM

In this section, we calculate the near-zone contribution to the scalar waveform. This is, by far, the more difficult and
time-consuming of the two contributions. We begin by discussing the general formalism for evaluating the near-zone
integral, namely the calculation of scalar multipole moments. We also discuss the counting of post-Newtonian orders,
which is a bit more subtle than in the tensor wave case. Next, we discuss the construction of the source τs. Third,
we present the calculation of the scalar multipole moments. We provide some details but refer the reader to Paper II
for more. Finally, we conclude this section by rewriting the scalar multipole moments explicitly for two-body systems
in relative coordinates. We hold off on presenting the final scalar waveform generated by the near-zone integral until
Sec. V.

A. General structure of near-zone calculation

The goal of this entire section is to evaluate (2.12b) for near-zone source points and radiation-zone field points.
We can simplify the problem even further by considering only a subset of the radiation zone, the far-away zone. In
the far-away zone, R ≫ R, so we only need to keep the leading 1/R part of the field. A distant gravitational-wave
detector measuring the scalar waves from the system lies in the far-away zone. With this simplification, the near-zone
contribution to the waveform is given by

ΨN (t,x) =
2

R

∞
∑

m=0

1

m!

∂m

∂tm

∫

M

τs(τ,x
′)(N̂ · x′)md3x′

=
2

R

∞
∑

m=0

N̂k1 · · · N̂km
1

m!

dm

dtm
Ik1···km

s (τ) .

(3.1)

Here N is the three-dimensional hypersurface representing the intersection of the past null cone C and the near-
zone world tube. The actual integration takes place over M, the intersection of the near-zone world tube with a
hypersurface of constant retarded time τ = t−R. The direction from the source to the detector is N̂ ≡ x/R. Finally,
we define the scalar multipole moments as

Ik1···km

s (τ) ≡
∫

M

τs(τ,x)x
k1 · · ·xkmd3x . (3.2)
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In Paper II, these were also known asMM
s ; here, we will only use the IM

s notation. The role of these moments in finding
the near-zone contribution to the scalar waveform is analogous to the role of the “Epstein-Wagoner moments” [Paper
II, Eqs. (2.22)] in finding the near-zone contribution to the tensor waveform. The Epstein-Wagoner construction is a
bit more complicated due to a convenient rearrangement using the conservation law (2.9). That approach requires the
calculation of “surface moments” for the two- and three-index case. No such complications exist in the computation
of the scalar moments.
In the tensor case, the lowest order moment is the two-index, or quadrupole, moment. Its contribution to the tensor

waves is given by

h̃ij
N (t,x) =

2

R

d2

dt2
IijEW(τ) , (3.3)

where

IijEW =

∫

M

τ00xijd3x+ IijEW (surf) . (3.4)

(The second term is the surface moment, defined in Paper II.) In the scalar case, the lowest order moment is the zero-
index, or monopole, moment. Note that the sources that enter these two moments are of the same post-Newtonian
order, τ00 ∼ O(ρ) ∼ τs. But because of the two time derivatives in (3.3), the lowest order tensor field contains a factor
of v2 that the lowest order scalar field does not. This means that the lowest order tensor field is one post-Newtonian
order higher than the lowest order scalar field. However, in Paper II, we defined the lowest order tensor field to be
“0PN” order. While it would be a simple matter to redefine the post-Newtonian scale to start with the lowest order
of all the waves, we instead keep the previous definition. In this way, our usage of “0PN” matches the usual usage in
general relativity (as well as all other studies of scalar-tensor theory).
As a consequence of this choice, the lowest order piece of the scalar monopole moment generates a “−1PN” scalar

field in the far-away zone. (As it turns out, this piece is time independent and therefore uninteresting; however, higher
order pieces of the monopole moment generate 0PN and higher order scalar waves.) The dipole moment generates
“−0.5PN” and higher order scalar waves. The quadrupole moment generates 0PN and higher order waves, and the
pattern continues to higher-index moments. Therefore, in order to generate a final waveform at N -th post-Newtonian
order, the m-index moment, if it contributes to the NPN term at all, must be calculated to (N + 1 − m/2)-th
post-Newtonian order beyond its own leading-order term.
Because of this complication, we compute the scalar waveform only to 1.5PN order. Computing it to 2PN order,

as we did for the tensor waveform in Paper II, would require first constructing the monopole moment to 3PN order
beyond its leading-order term. The source τs has several times as many terms at 3PN order than at 2.5PN order. In
addition, many of these terms become quite complicated to integrate. For instance, many include “triangle potentials”
and “quadrangle potentials” [17], which are difficult to integrate even when multiplied by a compact source (usually
the easiest case, as we shall see below). Higher order pieces of the scalar waveform will be considered in future work.

B. Source τs

To calculate the scalar multipole moments, we first need an expression for the source τs to 2.5PN relative order, or
O(ρǫ5/2). Here we have introduced a post-Newtonian counting parameter ǫ ∼ m/r ∼ v2, where m is the total mass
of the binary, r is the orbital separation, and v is the magnitude of the relative velocity. To simplify some of the
discussion, we divide τs into three pieces, one compact and two non-compact,

τs ≡ τs,C + τs,F1 + τs,F2 , (3.5)

corresponding to the first, second, and third terms in (2.11). We label the non-compact terms “F” for “field.” Writing
out each term, we find

τs,C = Gσs

[

ζ − (2λ1 + ζ)Ψ +
1

2
ζN +

1

ζ
(−λ2 + 4λ2

1 + 2ζλ1 + ζ2)Ψ2 − 1

2
(2λ1 + ζ)ΨN − 1

2
ζB − 1

8
ζN2 + · · ·

]

,

(3.6a)
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τs,F1 =
1

8π

[

1

ζ
(λ1 − ζ)(∇Ψ)2 − 1

ζ
(λ1 − ζ)Ψ̇2 +

1

ζ2
(λ2 − 2λ2

1 + ζ2)Ψ(∇Ψ)2 + · · ·
]

, (3.6b)

τs,F2 = − 1

8π
(NΨ̈ + 2KiΨ̇,i +BijΨ,ij) . (3.6c)

We have defined the quantity

G ≡ 1

φ0

4 + 2ω0

3 + 2ω0
, (3.7)

where ω0 ≡ ω(φ0). The definition ensures that for a perfect fluid with no internal gravitational binding energy (i.e.,
zero sensitivities), the metric component g00 = −1+ 2GUσ as in general relativity. We do not set G equal to 1, since
it depends on the asymptotic value of the scalar field φ, which could potentially vary in time over the history of the
universe. The other parameters in (3.6a)–(3.6c) are

ζ ≡ 1

4 + 2ω0
, (3.8a)

λ1 ≡ (dω/dϕ)0ζ

3 + 2ω0
, (3.8b)

λ2 ≡ (d2ω/dϕ2)0ζ
2

3 + 2ω0
. (3.8c)

The expression (3.6c) for τs,F2 is exact. Equations (3.6a) and (3.6b) have been kept to the PN order necessary for the
near-zone integral. These general expressions will also be useful when we compute the radiation-zone integral in Sec.
IV.
We wish to convert (3.6a)–(3.6c) to a more explicit form valid in the near zone. This requires finding the fields

N , Ki, Bij , and Ψ in the near zone. This calculation was the focus of much of Paper I. Finding the near-zone fields
typically requires integrations over both the near and radiation zones. However, the radiation-zone integrals do not
contribute at the order to which we work in this series of papers. The near-zone integrals are given by

h̃µν
N (t,x) = 4

∞
∑

m=0

(−1)m

m!

∂m

∂tm

∫

M

τµν(t,x′)|x− x′|m−1d3x′ , (3.9a)

ΨN (t,x) = 2

∞
∑

m=0

(−1)m

m!

∂m

∂tm

∫

M

τs(t,x
′)|x − x′|m−1d3x′ . (3.9b)

Here M is the intersection of the near-zone world tube with the hypersurface t = const (i.e., not the retarded time).
Note that in the near zone, the slow motion approximation v ≪ 1 means that each time derivative corresponds to an
increase of one-half post-Newtonian order.
In the near zone, it turns out that N ∼ O(ǫ), Ki ∼ O(ǫ3/2), Bij ∼ B ∼ O(ǫ2), and Ψ ∼ O(ǫ). Equations (3.9a) and

(3.9b) are solved in an iterative manner. At lowest order, N and Ψ are determined purely in terms of the compact
piece of the sources τ00 and τs. At the next order, these fields are plugged into the field pieces of the sources. The
process continues until we have the fields (and thus the sources) to the desired post-Newtonian order. Paper I presents
expressions for N , Ki, Bij , and Ψ to high post-Newtonian order. All are expressed in terms of σ-density potentials.
We can find τs to the order we need in this paper by plugging these expressions into (3.6a)–(3.6c). We must also

convert σ to ρ∗ and the σ-density potentials to the ρ∗-density potentials using the relations in Paper I. The final
results are

τs,C = Gζρ∗
{

1− 2s

+ [−G(4λ1 − ζ)(1 − 2s)− 4Gζas]Us −G(1− ζ)(1 − 2s)U − 1

2
(1− 2s)v2
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+

[

G2

(

20λ2
1 − 9ζλ1 +

1

2
ζ2 − 4λ2

)

(1− 2s) + 4G2ζ(5λ− 2ζ)as − 4G2ζ2bs

]

U2
s

+ [G2(1− ζ)(4λ1 − ζ)(1 − 2s) + 4G2ζ(1 − ζ)as]Φ
s
2

+ [G2(8λ2
1 + 2ζλ1 − 2ζ2 + ζ)(1 − 2s) + 4G2ζ(2λ1 + ζ)as]Φ

s
2s +

[

−1

2
G(4λ1 − ζ)(1 − 2s)− 2Gζas

]

Ẍs

+
1

2
G2(1 − ζ)2(1− 2s)U2 − 3

2
G(1 − ζ)(1 − 2s)Φ1 −

1

2
G(1− ζ)(1 − 2s)Ẍ

+ [G2(1− ζ)(4λ1 − ζ)(1 − 2s) + 4G2ζ(1 − ζ)as]UUs +

[

1

2
G(4λ1 − ζ)(1 − 2s) + 2Gζas

]

Φs
1

+ [4G2ζ(4λ1 − ζ)(1 − 2s) + 16G2ζ2as]Σ(asUs) +

[

1

2
G(4λ1 − ζ)(1 − 2s) + 2Gζas

]

v2Us

−3

2
G(1− ζ)(1 − 2s)v2U +G2(1− ζ)2(1 − 2s)Φ2 + 4G(1− ζ)(1 − 2s)viV i − 1

8
(1− 2s)v4

}

+Gρ∗
{

[(4λ1 − ζ)(1 − 2s) + 4ζas]İs(t) +
[

−1

3
(4λ1 − ζ)(1 − 2s)− 4

3
ζas

]

xj ...I j
s(t)

+

[

1

6
(4λ1 − ζ)(1 − 2s) +

2

3
ζas

]

...
I kk

s (t) +
2

3
ζ(1− 2s)

...
I kk

(t)

}

, (3.10a)

τs,F1 = G2ζ(λ1 − ζ)

[

1

2π
(∇Us)

2 − 1

2π
∇Us · ∇Φs

1 −
1

π
G(1− ζ)∇Us · ∇Φs

2 −
1

π
G(2λ1 + ζ)∇Us · ∇Φs

2s

− 4

π
Gζ∇Us · ∇Σ(asUs) +

1

2π
∇Us · ∇Ẍs −

1

2π
U̇2
s

]

+
1

π
G3ζ(−4λ2

1 + 4ζλ1 − ζ2 + λ2)Us(∇Us)
2

+
1

3π
G(λ1 − ζ)U ,i

s

...
I i

s(t) ,

(3.10b)

τs,F2 = G2ζ(1− ζ)

[

− 1

π
UÜs −

2

π
V iU̇ ,i

s − 1

π
Φij

1 U
,ij
s − 1

π
G(1 − ζ)P ij

2 U ,ij
s +

1

2π
G(1 − ζ)Φ2∇2Us

− 1

4π
G(1 − ζ)U2∇2Us −

1

π
GζP ij

2sU
,ij
s +

1

2π
GζΦs

2s∇2Us −
1

4π
GζU2

s∇2Us

]

+
1

2π
GζU ,ij

s

...
I ij

(t) .

(3.10c)

The highest order (2.5PN) pieces of these expressions contain “regular” and scalar multipole moments. Since we are
constructing τs for the purpose of calculating the scalar multipole moments, the process is naturally iterative. The
regular multipole moments are given by

Ik1···km(t) ≡
∫

M

τ00(t,x)xk1 · · ·xkmd3x . (3.11)

In particular, we need the quadrupole moment Iij . Because it only appears in the highest order terms, we only require
its lowest order form,

Iij = G(1 − ζ)
∑

A

mAx
ij
A . (3.12)

Similarly, we only need the lowest order forms of the scalar moments Ii
s and Iij

s . However, the scalar monopole
moment Is is time independent to lowest order, so we need it to relative 1PN order. All of the necessary expressions
are written out below. Note that τs,C begins at O(ρ). Relative to this, τs,F1 begins at 1PN order, or O(ρǫ), and τs,F2
begins at 2PN order.
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C. Zero-index moment Is

We begin with the zero-index moment,

Is =
∫

M

τs d3x . (3.13)

To evaluate it to the necessary order, we require τs all the way to O(ρǫ5/2). The lowest order piece of the moment
will generate a −1PN scalar field, while the highest order piece we calculate will generate 1.5PN scalar waves.
Since ρ∗ [Eq. (2.21)] contains delta functions, the compact moment can be written down by inspection,

Is,C = Gζ
∑

A

mA

{

1− 2sA − 1

2
(1− 2sA)v

2
A

−
∑

B 6=A

GmB

rAB
[(1− ζ)(1 − 2sA) + (4λ1 − ζ)(1 − 2sA)(1 − 2sB) + 4ζasA(1 − 2sB)]

− 1

8
(1− 2sA)v

4
A

+
∑

B 6=A

GmB

rAB

{[

−3

2
(1− ζ)(1 − 2sA) +

1

2
(4λ1 − ζ)(1 − 2sA)(1− 2sB) + 2ζasA(1− 2sB)

]

v2A

− 2(1− ζ)(1 − 2sA)v
2
B + 4(1− ζ)(1 − 2sA)vA · vB

+

[

1

2
(1 − ζ)(1 − 2sA) +

1

2
(4λ1 − ζ)(1 − 2sA)(1− 2sB) + 2ζasA(1− 2sB)

]

aB · xAB

+

[

1

2
(1 − ζ)(1 − 2sA) +

1

2
(4λ1 − ζ)(1 − 2sA)(1− 2sB) + 2ζasA(1− 2sB)

]

(vB · n̂AB)
2

+
∑

C 6=A

GmC

rAC

[

1

2
(1− ζ)2(1− 2sA) + (1 − ζ)(4λ1 − ζ)(1 − 2sA)(1− 2sC) + 4ζ(1 − ζ)asA(1− 2sC)

+

(

20λ2
1 − 9ζλ1 +

1

2
ζ2 − 4λ2

)

(1 − 2sA)(1 − 2sB)(1 − 2sC) + 4ζ(5λ1 − 2ζ)asA(1 − 2sB)(1 − 2sC)

−4ζ2bsA(1 − 2sB)(1 − 2sC)

]

+
∑

C 6=B

GmC

rBC

[

(1− ζ)2(1 − 2sA) + (1− ζ)(4λ1 − ζ)(1 − 2sA)(1 − 2sB) + 4ζ(1− ζ)asA(1 − 2sB)

+ (8λ2
1 + 2ζλ1 − 2ζ2 + ζ)(1 − 2sA)(1 − 2sB)(1− 2sC) + 4ζ(2λ1 + ζ)asA(1− 2sB)(1− 2sC)

+4ζ(4λ1 − ζ)(1 − 2sA)asB(1− 2sC) + 16ζ2asAasB(1− 2sC)
]

}

+
∑

B

GmB

{

4(1− ζ)(1 − 2sA)vB · aB

+

[

4

3
(1 − ζ)(1 − 2sA) +

1

3
(4λ1 − ζ)(1 − 2sA)(1− 2sB) +

4

3
ζasA(1− 2sB)

]

xB · ȧB

+

[

−1

3
(4λ1 − ζ)(1 − 2sA)(1 − 2sB)−

4

3
ζasA(1− 2sB)

]

xA · ȧB

+
∑

C 6=B

GmC

r2BC

ṙBC [(1− ζ)(4λ1 − ζ)(1 − 2sA)(1 − 2sB) + 4ζ(1− ζ)asA(1 − 2sB)

+ (4λ1 − ζ)(2λ1 + ζ)(1 − 2sA)(1 − 2sB)(1 − 2sC) + 4ζ(2λ1 + ζ)asA(1− 2sB)(1− 2sC)

+4ζ(4λ1 − ζ)(1 − 2sA)asB(1− 2sC) + 16ζ2asAasB(1− 2sC)
]

}}

. (3.14)
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Here body A (for example) has position xA, velocity vA, and acceleration aA. The distance between bodies A and B
is rAB, and the unit vector n̂AB = xAB/rAB points from body B to body A. This expression contains terms at 0PN,
1PN, 2PN, and 2.5PN orders relative to itself. (As discussed above, with our counting scheme, it generates a scalar
field at −1PN, 0PN, 1PN, and 1.5PN orders.)
To calculate the contribution from the non-compact parts of τs, we first notice that four terms in τs,F2 involve

∇2Us = −4πρ∗(1 − 2s), making these terms effectively compact terms. They can then be evaluated as trivially as
the contribution from τs,C. The rest of the contributions from τs,F1 and τs,F2 require evaluating integrals involving
the potentials. To do so, we use the same techniques described in Sec. IVA of Paper II. The source τs,F1 contains the
lowest order (1PN) field integral,

∫

M

(∇Us)
2d3x , (3.15)

where we have left off the constants for the time being. This is easily evaluated by integrating by parts. The surface
term is evaluated by expanding the potential Us and its derivative in inverse powers of the surface radius R:

Us =
∑

A

mA(1− 2sA)

(

1

R +
n̂axa

A

R2
+

1

2

(3n̂ab − δab)xab
A

R3
+ · · ·

)

∼ 1

R +
n̂a

R2
+

1 + n̂ab

R3
+ · · · , (3.16)

U ,k
s ∼ n̂k

R2
+

1 + n̂ck

R3
+

n̂c + n̂cdk

R4
+ · · · . (3.17)

In these expressions only, n̂a represents a unit normal to the surface. Plugging (3.16) and (3.17) into the surface
integral reveals no pieces independent of R. Recall that we ignore all pieces which depend on R because they will
cancel with radiation-zone contributions in the final waveform. The volume integral can be reduced to a compact
integral using ∇2Us = −4πρ∗(1 − 2s). Thus the final value of the original integral is

∫

M

(∇Us)
2d3x = 4π

∑

A

∑

B 6=A

mA(1− 2sA)mB(1− 2sB)

rAB
. (3.18)

Most of the 2PN integrals arising from τs,F1 can be calculated in the same way, by integrating by parts and turning
the remaining volume integral into a compact integral. The surface terms always vanish. The exception is the integral
∫

M U̇2
s d

3x. To tackle it, we write U̇s = −V i,i
s and integrate by parts. The remaining volume integral requires a bit

more work than in the previously discussed cases. Written out, it is

∑

A

∑

B 6=A

mA(1− 2sA)mB(1− 2sB)v
j
Av

i
B

∫

M

[

−3
(x− xA)

ij

|x− xA|5
+

δij

|x− xA|3
+

4π

3
δijδ3(x− xA)

]

1

|x− xB |
d3x . (3.19)

The delta-function term is required to ensure the right answer when U̇ ,k
s is integrated in a sphere around the point

mass position xA. [See Paper II, Eqs. (4.20).]
Several of the 2PN integrals arising from τs,F2, as well as many of the integrals we will encounter in higher order

moments, can also be written in a form like (3.19). They always involve two potentials. The strategy to solve them is
simple: First, integrate by parts, as we did above, so that only one potential is undifferentiated. Next, evaluate any
integrals which can easily be converted to a compact integral. The remaining pieces should be of a form similar to
(3.19).
To evaluate integrals like (3.19), we change integration variables from x to y = x−xA. We check to see if the surface

terms so generated contribute anything independent of R. (Sometimes terms which are potentially independent of R
vanish upon integrating over the surface.) We also check the case A = B to see if it contributes. To solve the case
A 6= B, we make use of the following relation,

1

|y + xAB|
=
∑

l,m

4π

2l+ 1

(−r<)
l

rl+1
>

Y ∗
lm(n̂AB)Ylm(ŷ) , (3.20)

where Ylm are the spherical harmonics, and r<(>) denotes the lesser (greater) of rAB and y. We then substitute

this expansion into the volume integral and then express all products of ŷi in terms of symmetric, trace-free (STF)
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products ŷ〈L
′〉 (see Appendix B of Paper II). Here 〈L′〉 denotes an l′-dimensional STF combination. We can then

perform the angular integration using

∑

m

∫

Y ∗
lm(n̂AB)Ylm(ŷ)ŷ〈L

′〉d2Ωy = n̂
〈L〉
ABδ

ll′ . (3.21)

Finally, the radial integral is evaluated using

∫ R

0

rl<

rl+1
>

yqdy =
2l + 1

(l + q + 1)(l − q)
rqAB , (3.22)

where we have dropped terms dependent on R. See Paper II for a more detailed example of this technique. Note
that we can reuse many intermediate results from Paper II. We have to be slightly careful, however: In Paper II, we
dropped terms which could not survive a transverse-traceless projection at the end of the calculation. In the scalar
case, we have to make sure we reuse only the purest results, before any terms were dropped.
The integrals arising from τs,F2 involving P ij

2 and P ij
2s are a bit more complicated. Luckily, we have also tackled

similar terms in Paper II. We can write out the first integral as

∫

M

P ij
2 U ,ij

s d3x =

∫

M

d3x

[

1

4π

∫

M

1

|x− x′|U
′,iU ′,jd3x′

]

×
∑

A

mA(1− 2sA)

[

3
(x− xA)

ij

|x− xA|5
− δij

|x− xA|3
− 4π

3
δijδ3(x − xA)

]

,

(3.23)

where U ′ is the usual potential written as a function of x′. We can integrate over x (unprimed) first, using the
change-of-variable technique discussed above, except with xB → x′. Dropping the primes on the remaining integration
variable, the result is

∫

M

P ij
2 U ,ij

s d3x =

∫

M

d3x U ,iU ,j
∑

A

mA(1− 2sA)

[

1

2

(xA − x)ij

|xA − x|3 − 1

2

δij

|xA − x|

]

=

∫

M

d3x U ,iU ,j
∑

A

mA(1− 2sA)

(

−1

2
XA,ij

)

,

(3.24)

where XA ≡ |x−xA|. This integral can be evaluated by integrating by parts several times and converting to compact

integrals (including using the relation ∇2XA = 2UA). The second integral, involving P ij
2s, is evaluated in exactly the

same way.
Finally, the 2.5PN integrals, which involve only one potential times a function of time (one of the other moments),

can be evaluated simply by integrating by parts. In these cases the surface integrals are the only contributions, and
they do not vanish. We find the R-independent pieces

∫

M

U ,i
s d

3x =
4π

3

∑

A

mA(1− 2sA)x
i
A , (3.25)

∫

M

U ,ij
s d3x = −4π

3

∑

A

mA(1− 2sA)δ
ij . (3.26)

The final field pieces of the monopole moment are given by

Is,F1 = G2ζ(λ1 − ζ)
∑

A

∑

B 6=A

mA(1− 2sA)mB(1 − 2sB)

rAB

[

2− 2(vA · n̂AB)
2 + 2aA · xAB

+(vA · n̂AB)(vB · n̂AB)− vA · vB]

+G3ζ
∑

A

∑

B 6=A

∑

C 6=A

mAmBmC

rABrAC
[−4(1− ζ)(λ1 − ζ)(1 − 2sA)(1 − 2sB)
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+ (12ζλ1 + 2ζ2 − 16λ2
1 + 2λ2)(1− 2sA)(1− 2sB)(1− 2sC)− 16ζ(λ1 − ζ)asA(1 − 2sB)(1 − 2sC)]

+
4

9
G2ζ(λ1 − ζ)

∑

A,B

mA(1− 2sA)mB(1− 2sB)(xB · ȧA) , (3.27)

Is,F2 = G2ζ(1 − ζ)
∑

A

∑

B 6=A

mA(1− 2sA)
mB

rAB



−2(vA · n̂AB)
2 + 2v2A + 2aA · xAB + 4(vA · n̂AB)(vB · n̂AB)

−4vA · vB − 2(vB · n̂AB)
2 + 2v2B + 2

∑

C 6=B

GmC [1− ζ + ζ(1 − 2sB)(1 − 2sC)]
n̂i
BC

r2BC

xi
AB





+G2ζ(1 − ζ)
∑

A,B

mA(1− 2sA)mB

[

−4vB · aB − 4

3
xB · ȧB

]

.

(3.28)

We see that Is,F1 contains terms at 1PN, 2PN, and 2.5PN order (relative to the compact moment), while Is,F2
contains terms at 2PN and 2.5PN order.
It is interesting to note that the integral of τs,F2 can also be calculated by integrating the original expression from

(2.11) directly by parts, i.e., without substituting in for the fields. Using the conservation law (2.9), we find

− 1

8π

∫

M

h̃αβϕ,αβ d3x = − 1

8π

[

d2

dt2

∫

M

h̃00Ψ d3x+ 2

∮

∂M

h̃0iΨ̇ d2Si +

∮

∂M

h̃ijΨ,i d2Sj +

∮

∂M

˙̃
h0iΨ d2Si

]

. (3.29)

The notation ∂M means that the surface integrals are evaluated on a sphere of radius R bounding the hypersurface
M. The first and third surface integrals contribute nothing. The second surface integral reproduces the 2.5PN
terms in (3.28). The volume integral can be evaluated using the previous change-of-variable technique or by applying
∇2X = 2U and integrating by parts twice. The final result is

2G2ζ(1 − ζ)
∑

A

∑

B 6=A

mA(1− 2sA)mB r̈AB . (3.30)

This can be shown to be equal to the 2PN terms in (3.28). This alternative method is therefore an important check
of part of our result. However, it also has other utility. The form in (3.30) makes it easier to write down the two-body
moment, as we will do in an upcoming subsection. Furthermore, the alternative method will help save considerable
effort when we extend this calculation to higher order. It is much simpler to calculate the integral of h̃00Ψ and then
take two time derivatives than to calculate directly the integral of h̃αβϕ,αβ .

D. Higher-order scalar multipole moments

The rest of the moments are calculated in much the same way as Is. For the one-index (dipole) moment, we only
need τs to O(ρǫ2). The compact moment can be easily written down by adding a factor of xi

A to the monopole version,

Ii
s,C = Gζ

∑

A

mAx
i
A

{

1− 2sA − 1

2
(1− 2sA)v

2
A

−
∑

B 6=A

GmB

rAB
[(1− ζ)(1 − 2sA) + (4λ1 − ζ)(1 − 2sA)(1 − 2sB) + 4ζasA(1 − 2sB)]

− 1

8
(1− 2sA)v

4
A

+
∑

B 6=A

GmB

rAB

{[

−3

2
(1− ζ)(1 − 2sA) +

1

2
(4λ1 − ζ)(1 − 2sA)(1− 2sB) + 2ζasA(1− 2sB)

]

v2A

− 2(1− ζ)(1 − 2sA)v
2
B + 4(1− ζ)(1 − 2sA)vA · vB
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+

[

1

2
(1 − ζ)(1 − 2sA) +

1

2
(4λ1 − ζ)(1 − 2sA)(1− 2sB) + 2ζasA(1− 2sB)

]

aB · xAB

+

[

1

2
(1 − ζ)(1 − 2sA) +

1

2
(4λ1 − ζ)(1 − 2sA)(1− 2sB) + 2ζasA(1− 2sB)

]

(vB · n̂AB)
2

+
∑

C 6=A

GmC

rAC

[

1

2
(1− ζ)2(1− 2sA) + (1 − ζ)(4λ1 − ζ)(1 − 2sA)(1− 2sC) + 4ζ(1 − ζ)asA(1− 2sC)

+

(

20λ2
1 − 9ζλ1 +

1

2
ζ2 − 4λ2

)

(1 − 2sA)(1 − 2sB)(1 − 2sC) + 4ζ(5λ1 − 2ζ)asA(1 − 2sB)(1 − 2sC)

−4ζ2bsA(1 − 2sB)(1 − 2sC)

]

+
∑

C 6=B

GmC

rBC

[

(1− ζ)2(1 − 2sA) + (1− ζ)(4λ1 − ζ)(1 − 2sA)(1 − 2sB) + 4ζ(1− ζ)asA(1 − 2sB)

+ (8λ2
1 + 2ζλ1 − 2ζ2 + ζ)(1 − 2sA)(1 − 2sB)(1− 2sC) + 4ζ(2λ1 + ζ)asA(1− 2sB)(1− 2sC)

+4ζ(4λ1 − ζ)(1 − 2sA)asB(1− 2sC) + 16ζ2asAasB(1− 2sC)
]

}}

. (3.31)

The field integrals are evaluated using the same techniques as for the monopole moment. One specific integral is
worth discussing briefly. From τs,F2, we get

∫

M

P kl
2 U ,kl

s xid3x =

∫

M

d3x U ,kU ,l
∑

A

mA(1− 2sA)

[

−1

4
ΨA,kli +XA,(kδl)i − 1

2
XA,klxi

A

]

, (3.32)

where on the right-hand side we have already performed an integration using the change-of-variables technique. A
similar integral exists with P kl

2s in place of P kl
2 . Here ΨA ≡ |x − xA|3/3. This integral is a bit more difficult than

the similar one computed for the zero-index moment. Each piece can be integrated by parts multiple times. The
third term produces only vanishing surface integrals and integrals which can be turned into compact integrals. The
first and second produce other volume integrals; however, when the two terms are added, these unevaluated volume
integrals cancel. (A similar cancellation occurred within the integrals involving P ij

2 in Paper II.)
The final F1 contribution to the dipole moment is

Ii
s,F1 = G2ζ(λ1 − ζ)

∑

A

∑

B 6=A

mA(1− 2sA)mB(1− 2sB)

rAB

[

2xi
A − 1

2
v2Ax

i
A +

1

2
v2Bx

i
A − 1

2
(vA · n̂AB)

2xi
A

− 3

2
(vB · n̂AB)

2xi
A + (vA · xAB)v

i
A +

1

2
(aA · xAB)x

i
A − 3

2
(aB · xAB)x

i
A +

1

2
r2ABa

i
A

+(vA · n̂AB)(vB · n̂AB)x
i
A − (vA · vB)x

i
A − (vB · xAB)v

i
A

]

+G3ζ
∑

A

∑

B 6=A

mAmB

rAB
xi
A





∑

C 6=A

mC

rAC
[−2(1− ζ)(λ1 − ζ)(1 − 2sA)(1− 2sB)

+ (−12λ2
1 + 10ζλ1 + 2λ2)(1− 2sA)(1− 2sB)(1 − 2sC)− 8ζ(λ1 − ζ)asA(1− 2sB)(1− 2sC)]

+
∑

C 6=B

mC

rBC
[−2(1− ζ)(λ1 − ζ)(1 − 2sA)(1− 2sB)− 2(λ1 − ζ)(2λ1 + ζ)(1 − 2sA)(1− 2sB)(1− 2sC)

−8ζ(λ1 − ζ)(1 − 2sA)asB(1 − 2sC)]



 .

(3.33)

The F2 contribution is

Ii
s,F2 = G2ζ(1 − ζ)

∑

A

∑

B 6=A

mA(1− 2sA)
mB

rAB



− (vA · n̂AB)
2xi

A − (vA · n̂AB)
2xi

B + 2(vA · xAB)v
i
A + v2Ax

i
A + v2Ax

i
B
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+ (aA · xAB)x
i
A + (aA · xAB)x

i
B + r2ABa

i
A + 2(vA · n̂AB)(vB · n̂AB)x

i
A + 2(vA · n̂AB)(vB · n̂AB)x

i
B

− 2(vA · xAB)v
i
B − 2(vB · xAB)v

i
A − 2(vA · vB)x

i
A − 2(vA · vB)x

i
B − (vB · n̂AB)

2xi
A − (vB · n̂AB)

2xi
B

+ 2(vB · xAB)v
i
B + v2Bx

i
A + v2Bx

i
B

+
∑

C 6=B

GmC

rBC
[1− ζ + ζ(1− 2sB)(1− 2sC)]

[

n̂k
BC

rBC
xk
AB(x

i
A + xi

B) + 3
n̂i
BC

rBC
r2AB

]



 . (3.34)

This has been checked by starting from the h̃αβϕ,αβ term in (2.11) and applying manipulations similar to those that
led to Eq. (3.30).
The two-index (quadrupole) moment requires τs to 1.5PN order, or O(ρǫ3/2). This means we do not need to consider

τs,F2 in this or any further moments, since it begins at O(ρǫ2). It turns out that τs has no contributions at 1.5PN
order, so we essentially use it at 1PN order. The complete two-index moment is given by

Iij
s = Gζ

∑

A

mAx
ij
A







1− 2sA − 1

2
(1− 2sA)v

2
A

−
∑

B 6=A

GmB

rAB
[(1 − ζ)(1 − 2sA) + (4λ1 − ζ)(1 − 2sA)(1− 2sB) + 4ζasA(1− 2sB)]







+G2ζ(λ1 − ζ)
∑

A

∑

B 6=A

mA(1− 2sA)mB(1− 2sB)

rAB

[

2xij
A − r2ABδ

ij
]

.

(3.35)

The last line represents the F1 contribution. Note the presence of a δij term. We ignored such terms in Paper II
because they would not survive a TT projection; in the scalar case, we must keep all terms.
The three-index moment also uses τs to O(ρǫ). It is given by

Iijk
s = Gζ

∑

A

mAx
ijk
A







1− 2sA − 1

2
(1− 2sA)v

2
A

−
∑

B 6=A

GmB

rAB
[(1− ζ)(1 − 2sA) + (4λ1 − ζ)(1 − 2sA)(1− 2sB) + 4ζasA(1− 2sB)]







+G2ζ(λ1 − ζ)
∑

A

∑

B 6=A

mA(1 − 2sA)mB(1− 2sB)

rAB

[

2xijk
A − 3r2ABδ

(ijx
k)
A

]

.

(3.36)

The four-index moment needs τs to O(ρǫ1/2), which means that it just uses its lowest order compact piece,

Iijkl
s = Gζ

∑

A

mA(1− 2sA)x
ijkl
A . (3.37)

Similarly, the five-index moment is

Iijklm
s = Gζ

∑

A

mA(1− 2sA)x
ijklm
A . (3.38)

E. Two-body scalar moments

So far we have written down expressions for the scalar multipole moments which are fully general and can be
applied to a system with any number of compact objects. Now we convert the moments to the two-body case relevant
for compact binaries. We define the masses mA of the bodies as m1 and m2. They have positions x1 and x2 and
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velocities v1 and v2. We also define the usual quantities m ≡ m1 +m2, µ ≡ m1m2/m, η ≡ µ/m, and δm ≡ m1 −m2.
We note that (δm/m)2 = 1− 4η.
It will be useful to have the moments expressed in terms of relative variables, r = r12, x = x1 −x2, n̂ = n̂12 = x/r,

and v = v1 − v2. To make this transformation, we must first find explicit expressions for x1 and x2 in terms of
relative variables to 2PN order. In Paper II, we stopped at 1.5PN order, but here we require the 2PN pieces to plug
into the lowest order term of (3.31). We first define the center of mass,

XCM =
1

m

∫

M

τ00xid3x . (3.39)

This integral can be evaluated by the techniques of Sec. III C. Now if XCM satisfied the normal conservation statement
mXCM(t) = mXCM(0)+PCMt with a conserved PCM, we could choose a frame in whichXCM = 0 and use that equation
to solve for x1 and x2. However, the presence of dipole radiation reaction at 1.5PN order in the equations of motion
means that ẌCM is nonzero at this order, giving an apparent 1.5PN “kick” of the system’s center of mass. But it
turns out that the 1.5PN contribution to ẌCM is itself a double total time derivative which, when integrated twice,
can be absorbed into a 1.5PN correction of the definition of XCM. Since we need the transformations from x1 and x2

to x (and thus XCM) to 2PN order, we must include this 1.5PN correction term.
When solving for the bodies’ positions, we need to simultaneously solve for their velocities v1 and v2 in terms of

relative variables. We need these only up to 1.5PN order. The final results for the positions are

xi
1 =

m2

m
xi + δix , (3.40a)

xi
2 = −m1

m
xi + δix , (3.40b)

with

δix =
1

2
η
δm

m

(

v2 − Gαm

r

)

xi +
2

3
ηζS−

(

S+ +
δm

m
S−

)

Gαmvi

+ η
δm

m

[

3

8
(1− 4η)v4 +

(

19

8
+

3

2
η +

3

2
γ̄

)

v2
Gαm

r
+

(

−1

8
+

3

4
η

)

ṙ2
Gαm

r
+

(

7

4
− 1

2
η + γ̄

)(

Gαm

r

)2
]

xi

+ 2η2β̄−

(

Gαm

r

)2

xi − η
δm

m

(

7

4
+ γ̄

)

Gαmṙvi +O(ǫ5/2) .

(3.41)

We have defined

α ≡ 1− ζ + ζ(1− 2s1)(1 − 2s2) . (3.42)

The quantity Gα is the effective gravitational constant in the 0PN equations of motion; see Paper I. We also introduce
some redefined sensitivity parameters,

S+ ≡ α−1/2(1 − s1 − s2) , (3.43a)

S− ≡ α−1/2(s2 − s1) . (3.43b)

These represent the sum and difference of the bodies’ “scalar charges.” The first term in (3.41) is 1PN order, the
second 1.5PN order, and the rest 2PN order.
The velocities are given by

vi1 =
m2

m
vi + δiv , (3.44a)

vi2 = −m1

m
vi + δiv , (3.44b)

with
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δiv =
1

2
η
δm

m

[(

v2 − Gαm

r

)

vi − Gαm

r2
ṙxi

]

− 2

3
ηζS−

(

S+ +
δm

m
S−

)(

Gαm

r

)2

n̂i +O(ǫ2) . (3.45)

Here, the first term is 1PN order and the second term is 1.5PN order.
To simplify our expressions, we introduce other scalar-tensor parameters from Papers I and II,

γ̄ ≡ −2α−1ζ(1 − 2s1)(1 − 2s2) , (3.46a)

β̄1 ≡ α−2ζ(1− 2s2)
2(λ1(1− 2s1) + 2ζs′1) , (3.46b)

β̄2 ≡ α−2ζ(1− 2s1)
2(λ1(1− 2s2) + 2ζs′2) , (3.46c)

δ̄1 ≡ α−2ζ(1− ζ)(1− 2s1)
2 , (3.46d)

δ̄2 ≡ α−2ζ(1− ζ)(1− 2s2)
2 , (3.46e)

χ̄1 ≡ α−3ζ(1− 2s2)
3[(λ2 − 4λ2

1 + ζλ1)(1 − 2s1)− 6ζλ1s
′
1 + 2ζ2s′′1 ] , (3.46f)

χ̄2 ≡ α−3ζ(1− 2s1)
3[(λ2 − 4λ2

1 + ζλ1)(1 − 2s2)− 6ζλ1s
′
2 + 2ζ2s′′2 ] . (3.46g)

We also use the notation

ξ+ ≡ 1

2
(ξ1 + ξ2) , (3.47a)

ξ− ≡ 1

2
(ξ1 − ξ2) , (3.47b)

where ξ is one of β̄, δ̄, or χ̄. (This notation should not be confused with S+ and S−.) We also need expressions for
the accelerations to lowest post-Newtonian order,

ai1 = −Gαm2

r2
n̂i , (3.48a)

ai2 =
Gαm1

r2
n̂i . (3.48b)

Using all these expressions and definitions, we simplify the scalar moments (combining the C, F1, and F2 terms if
originally separated) to find the following two-body moments,

Is = Gζmα1/2

(

S+ +
δm

m
S−

)

+Gζµα1/2

{

−1

2

(

S+ − δm

m
S−

)

v2 +

[

−2S+ +
8

γ̄
(S+β̄+ + S−β̄−)

]

Gαm

r

+

[

−1

8
(1− 3η)S+ +

1

8

δm

m
(1− 9η)S−

]

v4

+

[

1

2
(1− 2η)

(

S+ − δm

m
S−

)

− 2

γ̄
(1 − 2η)(S+β̄+ + S−β̄−) +

2

γ̄

δm

m
(S−β̄+ + S+β̄−)

]

v2
Gαm

r

+

[(

−7

2
− η − 2γ̄

)

S+ +
1

2

δm

m
(1 + 2η)S− − 2

γ̄
(1− 2η)(S+β̄+ + S−β̄−)−

2

γ̄

δm

m
(S−β̄+ + S+β̄−)

]

ṙ2
Gαm

r

+

[(

−2− 2γ̄ + 3β̄+ − 3
δm

m
β̄−

)

S+ +
δm

m
(1 + β̄+)S− − β̄−S−

− 10

γ̄
(S+β̄+ + S−β̄−)−

2

γ̄

δm

m
(S−β̄+ + S+β̄−)

+
16

γ̄2

(

S+ +
δm

m
S−

)

(β̄2
+ − β̄2

−) +
4

γ̄
(S+χ̄+ + S−χ̄−)−

4

γ̄

δm

m
(S−χ̄+ + S+χ̄−)

](

Gαm

r

)2
}
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+G(λ1 − ζ)µγ̄

[

−1

2

Gαm

r
v2 +

1

2

Gαm

r
ṙ2 +

1

2

(

Gαm

r

)2
]

+Gζµα1/2

(

Gαm

r

)2

ṙ

{

8

3
ζS3

+ +
14

3

δm

m
ζS2

+S− +
4

3
(1 + η)ζS+S2

− − 2

3

δm

m
(1− 2η)ζS3

−

+
1

γ̄2

[

64

3
ζS3

+ +
112

3

δm

m
ζS2

+S− +
32

3
ζS+S2

− − 16

3

δm

m
ζS3

− + 16ζ2S5
+ + 32

δm

m
ζ2S4

+S−

−32
δm

m
ζ2S2

+S3
− − 16ζ2S+S4

−

]

β̄+

+
1

γ̄2

[

64

3

δm

m
ζS3

+ +
112

3
ζS2

+S− +
32

3

δm

m
ζS+S2

− − 16

3
ζS3

− + 16ζ2S4
+S− + 32

δm

m
ζ2S3

+S2
−

−32
δm

m
ζ2S+S4

− − 16ζ2S5
−

]

β̄−

− 64

γ̄3
ζS+

(

S2
+ + 2

δm

m
S+S− + S2

−

)

β̄2
+ − 64

γ̄3
ζS−

(

δm

m
S2
+ + 2S+S− +

δm

m
S2
−

)

β̄2
−

− 64

γ̄3

(

δm

m
ζS3

+ + 3ζS2
+S− + 3

δm

m
ζS+S2

− + ζS3
−

)

β̄+β̄−

+(λ1 − ζ)
1

α1/2

[

16

3
S2
+ + 4

δm

m
S+S− − 4

3

(

1− 8

3
η

)

S2
− − 16

γ̄

(

S+ +
δm

m
S−

)

(S+β̄+ + S−β̄−)

]}

, (3.49a)

Ii
s = Gζµα1/2

{

2S−x
i +

(

δm

m
S+ − ηS−

)

v2xi

+

[

1

2

δm

m
S+ +

(

−3

2
+ 2η

)

S− − 4

γ̄

δm

m
(S+β̄+ + S−β̄−) +

4

γ̄
(S−β̄+ + S+β̄−)

]

Gαm

r
xi

+
2

3
GζαmS−

(

S+ +
δm

m
S−

)2

vi

+

[

1

2

δm

m
(1 − 5η)S+ +

1

4
(1− 7η + 11η2)S−

]

v4xi

+

[

δm

m

(

15

8
+

7

4
η +

3

2
γ̄

)

S+ +

(

7

8
− 41

4
η − 3η2 +

1

2
(1− 12η)γ̄

)

S−

+
2

γ̄

δm

m
(1 + η)(S+β̄+ + S−β̄−)−

2

γ̄
(1− 3η)(S−β̄+ + S+β̄−)

]

v2
Gαm

r
xi

+

[

δm

m

(

15

8
+

7

4
η + γ̄

)

S+ +

(

−1

8
+

5

4
η − η2

)

S− − 2

γ̄

δm

m
η(S+β̄+ + S−β̄−)

− 2

γ̄
η(S−β̄+ + S+β̄−)

]

ṙ2
Gαm

r
xi

+

[

δm

m

(

5

4
+

1

2
η + γ̄ − β̄+ +

δm

m
β̄−

)

S+ +

(

−7

4
− 11

2
η + 2η2 − (1 + 4η)γ̄ + (1 + 2η)β̄+

−(1− 2η)
δm

m
β̄−

)

S− +
4

γ̄

δm

m
(1− η)(S+β̄+ + S−β̄−)−

4

γ̄
(1 + η)(S−β̄+ + S+β̄−)

+
32

γ̄2
ηS−(β̄

2
+ − β̄2

−)−
4

γ̄

δm

m
(S+χ̄+ + S−χ̄−) +

4

γ̄
(1 − 2η)(S−χ̄+ + S+χ̄−)

](

Gαm

r

)2

xi

+

[

δm

m

(

−7

4
− γ̄

)

S+ +

(

9

4
+ 7η + (1 + 4η)γ̄

)

S−

]

Gαmṙvi
}

+G(λ1 − ζ)µγ̄
δm

m

[

1

4

Gαm

r
v2xi − 1

4

Gαm

r
ṙ2xi − 1

2

(

Gαm

r

)2

xi +
1

2
Gαmṙvi

]

, (3.49b)
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Iij
s = Gζµα1/2

{(

S+ − δm

m
S−

)

xij

+

[

−1

2
(1− 3η)S+ +

1

2

δm

m
(1 + 3η)S−

]

v2xij

+

[

−(1− 2η)S+ +
δm

m
(1− 2η)S− +

4

γ̄
(1 − 2η)(S+β̄+ + S−β̄−)−

4

γ̄

δm

m
(S−β̄+ + S+β̄−)

]

Gαm

r
xij

}

+G2(λ1 − ζ)µαmrγ̄δij

+
8

3
G2ζ2α3/2µηmS2

−

(

S+ +
δm

m
S−

)

x(ivj) ,

(3.49c)

Iijk
s = Gζµα1/2

{[

−δm

m
S+ + (1− 2η)S−

]

xijk +

[

1

2

δm

m
(1 + η)S+ +

(

−1

2
+

1

2
η + 5η2

)

S−

]

v2xijk

+

[

δm

m

(

1− 5

2
η

)

S+ +

(

−1 +
9

2
η − 6η2

)

S− − 4

γ̄

δm

m
(1− η)(S+β̄+ + S−β̄−)

+
4

γ̄
(1− 3η)(S−β̄+ + S+β̄−)

]

Gαm

r
xijk

}

− 3

2
G2(λ1 − ζ)µαγ̄mr

δm

m
δ(ijxk) ,

(3.49d)

Iijkl
s = Gζµα1/2

[

(1− 3η)S+ − δm

m
(1− η)S−

]

xijkl , (3.49e)

Iijklm
s = Gζµα1/2

[

−δm

m
(1 − 2η)S+ + (1 − 4η + 2η2)S−

]

xijklm . (3.49f)

The final step is to take time derivatives. The equation for ΨN , (3.1), shows that we must take m derivatives of
the m-index moment. Along the way, we need to substitute the relative equation of motion for each acceleration ai.
We take this result from Paper I,

ai = −Gαm

r2
n̂i +

Gαm

r2
(APNn̂

i +BPNṙv
i) +

8

5
η
(Gαm)2

r3
(A1.5PNṙn̂

i −B1.5PNv
i) +

Gαm

r2
(A2PNn̂

i +B2PNṙv
i) . (3.50)

We keep it to 2PN order; however, the 2PN terms are not needed for finding the scalar waves. We will need them for
computation of the energy flux in Sec. VI. The coefficients APN, BPN, A1.5PN, B1.5PN, A2PN, and B2PN are given in
Paper I, Eqs. (1.5). Of these, APN, A2PN, and B2PN depend on time, while the others are constant. From xi = rn̂i,
we can also find

r̈ =
v2

r
− ṙ2

r
− Gαm

r2
+

Gαm

r2
(APN + ṙ2BPN) , (3.51)

where we have kept only the terms needed in this paper. We hold off on presenting the final results from the near-zone
integral until Sec. V.

IV. RADIATION-ZONE CONTRIBUTION TO THE SCALAR WAVEFORM

So far, our calculation of the scalar waveform has only considered the contribution from the near zone, ΨN . We
must also calculate the contribution from the radiation zone, ΨC−N . (Recall that C is the past null cone emanating
from a field point and that N is its intersection with the near-zone world tube. Then C − N denotes the remainder
of the past null cone, i.e., its intersection with the radiation zone.) The first step is to calculate the source τs in
the radiation zone. By definition, the radiation zone does not include the compact objects, so τs will consist only of
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field terms. Therefore, to find τs, we must first compute the fields h̃µν and Ψ in the radiation zone. The near-zone
contributions to these are found using

h̃µν
N (t,x) = 4

∞
∑

m=0

(−1)m

m!

(

1

R
Mµνk1···km(τ)

)

,k1···km

, (4.1a)

Ψµν
N (t,x) = 2

∞
∑

m=0

(−1)m

m!

(

1

R
Ik1···km

s (τ)

)

,k1···km

, (4.1b)

where

Mµνk1···km(τ) ≡
∫

M

τµν (τ,x)xk1 · · ·xkmd3x , (4.2)

so that M00M (τ) = IM (τ). Here M is again the intersection of the near-zone world tube with a hypersurface of
constant retarded time τ = t−R. Eq. (4.1a) reduces to the Epstein-Wagoner construction for the tensor waves when
µ = i, ν = j, and R ≫ R (so that only 1/R terms are kept). Similarly, Eq. (4.1b) reduces to (3.1) when R ≫ R. To

construct τs in the radiation zone, we require these more general expressions, which include all components of h̃µν as
well as terms which fall off faster than 1/R.
The evaluation of (4.1a) and (4.1b) was detailed in Paper II. The final result for the radiation-zone fields is

N = h̃00 = 4G(1− ζ)
m+ E

R
+ 2

(Iij

R

)

,ij

+ · · · , (4.3a)

Ki = h̃0i = −2

(

İij − ǫijaJ a

R

)

,j

+ · · · , (4.3b)

Bij = h̃ij = 2
Ïij

R
+ · · · , (4.3c)

Ψ = 2Gζ
ms +ms1

R
− 2

(Ii
s

R

)

,i

+

(Iij
s

R

)

,ij

+ · · · , (4.3d)

where the angular-momentum integral J iQ is defined in Paper I, Eq. (3.7b). We have split I = m+ E into its 0PN
piece, the time-independent m, and its 1PN piece E. Similarly, Is is split into its 0PN piece, the time-independent
ms, and its 1PN piece ms1. This split is made explicit because all of the other moments are only needed to lowest
post-Newtonian order. The scalar moments can be found in Sec. III, albeit to much higher order than we need at this
juncture. The regular moments are written out explicitly in Paper II.
In Paper II, we described the post-Newtonian orders of the terms in (4.3a)–(4.3d) only relative to one another. Here

we take a different approach and use the same explicit PN counting we use for the final waves. In this system, the
lowest order terms, those involving m and ms, are −1PN order. The next highest order terms are those in Ψ involving
the dipole. They are −0.5PN order; the pieces which scale like 1/R are the lowest order scalar waves generated by the
near-zone integral. Finally, all of the other terms are 0PN order. Note that in Paper II, we carried out this expansion
to one-half higher order (i.e., 0.5PN). Those higher-order terms were needed to find the 2PN tensor waveform. Since
we are only calculating the scalar waveform to 1.5PN order, we do not need them here.
The radiation-zone fields also include contributions from the radiation zone. It turns out that these pieces begin at

0.5PN order, one-half order higher than we express (4.3a)–(4.3d). Some of those pieces are the very scalar waves we
are looking to calculate. However, we do not need them to construct the source.
In any case, we can now use (4.3a)–(4.3d) to find an explicit expression for τs. We plug them into the generic field

sources (3.6b) and (3.6c). When doing so, we must be careful because the post-Newtonian counting is not the same
as in the near zone. For instance, Ki is 0.5PN higher order than N in the near zone but 1PN higher order in the
radiation zone. Furthermore, unlike in the near zone, time derivatives and spatial derivatives both increase a term’s
post-Newtonian order in the same way (adding one-half PN order).
Once we have the source, we can find the scalar waves using

ΨC−N (t,x) = 2

∫ τ

τ−2R

dτ ′
∫ 2π

0

dφ′

∫ 1

1−ξ

τs(τ
′ +R′,x′)

t− τ ′ − N̂′ · x
[R′(τ ′,Ω′)]2d cos θ′

+ 2

∫ τ−2R

−∞

dτ ′
∮

τs(τ
′ +R′,x′)

t− τ ′ − N̂′ · x
[R′(τ ′,Ω′)]2d2Ω′ .

(4.4)
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To express this in a more useful way, we note that the terms of the source all end up having the generic form

τs(l, n) =
1

4π

f(τ)

Rn
N̂ 〈L〉 . (4.5)

If we restrict ourselves to sources of this form, (4.4) can be rewritten as

ΨC−N =
2

R
N̂ 〈L〉

[

∫ R

0

f(τ − 2s)A(s,R) ds+

∫ ∞

R

f(τ − 2s)B(s,R) ds

]

, (4.6)

where

A(s,R) ≡
∫ R+s

R

Pl(ξ)

pn−1
dp , (4.7a)

B(s,R) ≡
∫ R+s

s

Pl(ξ)

pn−1
dp . (4.7b)

Here Pl(ξ) are the Legendre polynomials with argument

ξ ≡ R+ 2s

R
− 2s(R+ s)

Rp
. (4.8)

Thus the computation of the scalar waves reduces to the evaluation of various (l, n) integrals, all of which have
previously been calculated for use in Paper II. Note that (4.6) is valid for field points in the entire radiation zone. In
order to find the fields in the far-away zone, we ignore all terms which fall off faster than 1/R.
For simplicity, we will do the calculation order by order. At lowest order, τs consists solely of the (∇Ψ)2 term

in (3.6b). When evaluating the spatial derivatives, we remember that the moments are functions of retarded time,

τ = t−R, so that, for instance, ∂cIab = −İabN̂ c. Then we find

τs =
1

2π
G2ζ(λ1 − ζ)

m2
s

R4
+ · · · . (4.9)

This term requires evaluating the l = 0, n = 4 integrals. The result is the 0.5PN piece of Ψ which is written out in
Paper II, Eq. (6.23). It has no pieces proportional to 1/R and thus does not represent scalar waves in the far-away
zone.
At the next highest order, the (∇Ψ)2 term again contributes, this time a cross term between the monopole piece

of Ψ and the dipole piece of Ψ. In addition, we get a contribution from the term proportional to NΨ̈ in (3.6c); this
uses the monopole piece of N and the dipole piece of Ψ. The result is

τs = · · ·+ 1

4π

[

−4G(λ1 − ζ)
ms

R2
N̂ i

(

−2
Ii
s

R3
− 2

İi
s

R2
− Ïi

s

R

)

− 4G(1− ζ)
m

R2
N̂ i

(

Ïi
s

R
+

...
I i

s

)]

+ · · · . (4.10)

We have to evaluate (4.6) for l = 1 and n = 2–5. Performing these integrals and adding up the results, we find for
this piece of the scalar field

ΨC−N =
4G(1− ζ)m

R
N̂ i

[

Ïi
s +

∫ ∞

0

ds
...
I i

s(τ − s) ln
s

2R+ s

]

. (4.11)

As in Paper II, we have made a slight change of variable from (4.6): s → s/2. Note that only the F2 piece of the

source (the NΨ̈ term) contributes to the final answer.
The expression (4.11) is a 1PN contribution to the scalar waveform. Therefore, we only need to go one-half order

higher to find the 1.5PN waveform. In this case, the source will again include contributions from the (∇Ψ)2 term,
this time featuring monopole-monopole (i.e., ms–ms1), monopole-quadrupole, and dipole-dipole couplings. It also has
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a contribution from the NΨ̈ term, this time a coupling between the monopole piece of N and the quadrupole piece
of Ψ. In addition, we find that new terms contribute, specifically those proportional to Ψ̇2 (a dipole-dipole coupling,
from τs,F1) and BijΨ,ij (from τs,F2). Adding these up, and changing the products of unit vectors to STF tensors, we
find

τs = · · ·+ 1

4π

{

2G(λ1 − ζ)
ms

R2

[(

9
Iij
s

R4
+ 9

İij
s

R3
+ 4

Ïij
s

R2
+

...
I ij

s

R

)

N̂ 〈ij〉 + 2Gζ
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R2
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R
+

1

3

Ïkk
s
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+

1

3
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s
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]
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ζ
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sIj

s
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Ii
sİj

s
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İi
sIj
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sÏj

s

R4
+ 4

İi
sİj

s
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+ 4

Ïi
sIj

s
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+ 2

İi
sÏj

s

R3
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Ïi
sİj

s

R3

)

N̂ 〈ij〉

+4
Ik
s Ik

s

R6
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Ik
s İk

s

R5
+
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3

Ik
s Ïk

s

R4
+

10

3

İk
s İk

s

R4
+

4

3

İk
s Ïk

s

R3

]

− 2G(1− ζ)
m

R2

[(

3
Ïij
s

R2
+ 3

...
I ij

s

R
+

(4)

I ij
s

)

N̂ 〈ij〉 + 2Gζm̈s1 +
1

3

(4)

I kk
s

]

−6Gζ
ms

R4
ÏijN̂ 〈ij〉

}

+ · · · .

(4.12)

We must evaluate (4.6) for l = 0, n = 2–6; and l = 2, n = 2–6. The final result is

ΨC−N =
2

R
N̂ ij

{

G(1− ζ)m

[

3

2

...
I ij

s +

∫ ∞

0

ds
(4)

I ij
s (τ − s) ln

s

2R+ s

]

− 1

2
Gζms

...
I ij

}

+
2

R

{

G(λ1 − ζ)ms

[

−2Gζṁs1 −
1

3

...
I kk

s

]

+
2

9

λ1 − ζ

ζ
Ik
s

...
I k

s

+G(1 − ζ)m

[

−1

2

...
I kk

s + 2Gζ

∫ ∞

0

ds m̈s1(τ − s) ln
s

2R+ s

]

+
1

6
Gζms

...
I kk

}

.

(4.13)

In this case, both the F1 and F2 pieces of τs seem to contribute. However, we shall see in the next section that the
F1 piece (proportional to λ1 − ζ) cancels with a piece of the near-zone contribution to the waveform.

V. FINAL SCALAR WAVEFORM

To find the final scalar waveform, we add the contributions from the near and radiation zones. The near-zone
contribution is found by inserting the differentiated two-body scalar multipole moments into (3.1). We ignore the
−1PN contribution from the monopole moment, since it does not depend on time (and thus does not have a wavelike
character). For the radiation-zone pieces (4.11) and (4.13), we write the moments IM , IM

s , and their derivatives
explicitly in terms of relative two-body variables. However, unlike in Paper II, we do not bring all of the terms inside
the integrals.
The final scalar waveform can be written as a post-Newtonian expansion,

Ψ =
2Gζµα1/2

R
[Ψ−0.5 +Ψ0 +Ψ0.5 +Ψ1,N +Ψ1,C−N +Ψ1.5,N +Ψ1.5,C−N ] , (5.1)

where the subscripts denote the PN order of each term. For clarity, we have separated out the 1PN and 1.5PN
near-zone contributions (marked N ) from the radiation-zone contributions at the same order (marked C − N ). We
find

Ψ−0.5 = 2S−(N̂ · v) , (5.2a)

Ψ0 =

(

S+ − δm

m
S−

)[

−Gαm

r
(N̂ · n̂)2 + (N̂ · v)2 − 1

2
v2
]

+
Gαm

r

[

−2S+ +
8

γ̄
(S+β̄+ + S−β̄−)

]

, (5.2b)
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Ψ0.5 =

[

−δm
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2

Gαm

r
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(5.2c)

Ψ1,N =

[

(1− 3η)S+ − δm

m
(1− η)S−
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(5.2d)
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∫ ∞
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, (5.2e)
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Ψ1.5,N =
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ṙ

(

35

8
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+
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+
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(

−1 +
9

2
η − 6η2

)

S−

− 4

γ̄

δm

m
(1− η)(S+β̄+ + S−β̄−) +

4

γ̄
(1− 3η)(S−β̄+ + S+β̄−)
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+
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+
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(

25

8
− 13

4
η − 3η2 +
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(

−19

8
− 23

4
η − η2 − (1 + 4η)γ̄

)

S−

− 2

γ̄

δm

m
η(S+β̄+ + S−β̄−)−

2

γ̄
η(S−β̄+ + S+β̄−)

]

+

(

Gαm

r

)2 [
δm

m

(

3 +
1

2
η + 2γ̄ − β̄+ +
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+
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−
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−
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δm

m
S2
−

)

β̄2
−

− 64

γ̄3

(

δm

m
ζS3

+ + 3ζS2
+S− + 3

δm

m
ζS+S2

− + ζS3
−

)

β̄+β̄−

+(λ1 − ζ)
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Ψ1.5,C−N =
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+
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(

S+ − 2
δm

m
S−

)(

Gαm

r

)2

ṙ
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−
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(5.2g)

These expressions agree with previous results to 0PN order [19].
We saw in Paper II that the tensor waves differ from their general relativistic version only by a relatively small

number of parameters, ζ, α, γ̄, β̄±, δ̄±, χ̄±, and S±. We see here that the scalar waves depend only on this same
set of parameters (obviously in addition to the masses, positions, and velocities of the compact objects). Actually,
expressions (5.2a)–(5.2g) as given do not contain the parameters δ̄+ and δ̄−, though it may be possible to rewrite
certain pieces in terms of them. In Sec. VI, we will see the δ̄± parameters enter the energy flux through the equations
of motion.
The relative two-body moments (3.49a)–(3.49d) also contain terms which depend explicitly on the parameter λ1,

whereas in Paper II λ1 appeared only within the β̄± and χ̄± parameters. It turns out that most of these terms cancel

when the moments are contracted with the unit vectors N̂ i and summed together. Some terms depending on a “bare”
λ1 do survive until Eqs. (5.2). Terms of this form in (5.2f) arise from the 2.5PN monopole moment, while terms like
this in (5.2g) come from the τs,F1 contribution to the radiation-zone integral. Inspection of these terms reveals that
they differ by a sign and thus cancel. While there is no reason a priori to expect λ1 to only appear within β̄± and
χ̄±, these exact cancellations provide a nice sanity check for our results.
In Paper II, we discussed extensively the nature of the radiation-zone contributions to the tensor waves. We found

that they are made up of two types of terms, instantaneous and hereditary. Instantaneous terms only depend on the
state of the binary at the (retarded) time of interest, while hereditary terms depend on the entire integrated history
of the binary. In the case of tensor waves, there are two types of hereditary terms: ones with a logarithmic factor in
the integral and ones without. The terms with a logarithm arise from the scattering of radiation off the background
spacetime; these are known as “gravitational-wave tails.” In Paper II, we found that the same types of tail terms
appear in scalar-tensor theory as in general relativity, with only a slight modification to some coefficients. However,
new nonlogarithmic hereditary integrals also appear, at lower order than their first appearance in general relativity.
The term of this kind at 1.5PN order has a zero-frequency (DC) component which creates a “gravitational-wave
memory” effect.
The scalar waves, by contrast, have no nonlogarithmic hereditary terms. All hereditary terms are tail terms. The

first occurs at 1PN order, one-half order lower than in the tensor waves, and arises from a coupling between the regular
monopole and scalar dipole moments. By contrast, the lowest order tensor tail comes from a monopole-quadrupole
coupling. At 1.5PN order, the scalar waves feature two tail pieces, one from a (regular) monopole-scalar quadrupole
coupling and the other from a coupling between the 0PN regular monopole (m) and the 1PN scalar monopole (ms1).
When the system consists of two black holes (s1 = s2 = 1/2 and all sensitivity derivatives zero), almost all of

the scalar-tensor parameters vanish. In particular, S+ and S− vanish. Since all pieces of (5.2a)–(5.2g) depend on
either S+ or S−, this implies that binary black holes do not emit scalar radiation. This is consistent with results
from Papers I and II. Those papers showed that, in the case of binary black holes, the equations of motion and
tensor waveform are indistinguishable from those in general relativity, except for an unobservable mass rescaling. The
lack of scalar radiation is consistent with these findings. Effectively, we have shown that Hawking’s theorem that
isolated black holes are identical in GR and ST theory [27] can be extended to binaries. Our result, valid only to the
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post-Newtonian orders to which we have worked, has been supported by numerical results [28] and analytic results
valid to all post-Newtonian orders but only to lowest order in the mass ratio [29]. All of these results are, of course,
dependent on the assumptions we made, including the lack of a potential and the choice of a time-independent scalar
field at infinity. More complicated scalar-tensor theories can support scalar “hair” on black holes.
Another interesting case is a mixed binary, in which one object (say, body 1) is a neutron star, while the other

is a black hole (with s2 = 1/2). In Papers I and II, we showed that for this case, the equations of motion and the
tensor waves are identical to the general relativistic results (after a mass rescaling) through 1PN order. At 1.5PN
order and 2PN order (and 2.5PN order for the equations of motion), the deviations only depend on the parameter
Q ≡ ζ(1− ζ)−1(1− 2s1), where s1 is the sensitivity of the neutron star. It is straightforward to show that the scalar
waves in (5.1)–(5.2) are also significantly simplified in this case, at least up to 1PN order. Each mass is multiplied
by a factor G(1 − ζ), which can be absorbed through a mass rescaling. Then the 1PN waveform only depends on Q
(in the forms Q1/2 and Q3/2) and an overall factor of [ζ/(1 − ζ)]1/2. This remarkable simplification is the result of
the inability of the black hole to support its own scalar “hair.” This simplicity could be useful in using gravitational
waves to test scalar-tensor gravity. At 1.5PN order, the waveform is more complicated, with some terms depending
on λ1 and s′1 in addition to Q. These terms arise entirely from the 2.5PN scalar monopole moment. In Sec. VI, we
shall see that the 2.5PN monopole terms do not contribute to the 1PN flux. Thus the 1PN flux depends only on Q
(plus the mass rescaling factor and an overall amplitude correction).

VI. ENERGY LOST TO TENSOR AND SCALAR WAVES

In this section, we compute the total energy flux as a result of the tensor and scalar radiation from the compact
binary system. The flux from the tensor waves is given by [25]

dET

dt
=

R2

32π
φ0

∮

˙̃hij
TT

˙̃hij
TTd

2Ω , (6.1)

where the transverse-traceless projection of the tensor field is given by

h̃ij
TT =

(

P ikP jl − 1

2
P ijP kl

)

h̃kl . (6.2)

The projection tensor is

P ij = δij − N̂ iN̂ j , (6.3)

which obeys P ii = 2, P ijP ij = 2, and P ijP ik = P jk. From these, one can show

(

P ikP jl − 1

2
P ijP kl

)(

P imP jn − 1

2
P ijPmn

)

= P kmP ln − 1

2
P klPmn . (6.4)

This expression simplifies the calculation considerably. Performing the time derivatives, plugging into (6.1), and
evaluating the angular integrals (see Appendix B of Paper II), we find the tensor flux

dET

dt
=

8

15

G(1 − ζ)µ2

r2

(

Gαm

r

)2
{

12v2 − 11ṙ2

+
1

28

[

(785− 852η + 336γ̄)v4 − 2(1487− 1392η + 616γ̄)v2ṙ2
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m
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)

v2
Gαm

r
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m
β̄−

)

ṙ2
Gαm

r
+ 16(1− 4η)

(

Gαm

r

)2
]}

.

(6.5)
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In the limit ζ = γ̄ = β̄± = 0, this reduces to the GR result in Eqs. (6.12) and (6.13) of [15]. Following our convention
with the waveform, we call the lowest order piece of the tensor flux (6.5) “0PN.” It results from multiplying the 0PN

piece of
˙̃
hij
TT (i.e., the lowest order quadrupole contribution) by itself. At 0.5PN order, there is no tensor flux because

the product of the 0PN and 0.5PN ˙̃hij
TT has an odd number of unit vectors N̂ i. [See Paper II, Eqs. (7.2a)–(7.2b)].

The rest of the terms are at 1PN order, comprising 0PN–1PN and 0.5PN–0.5PN products. The 1PN
˙̃
hij
TT includes

contributions from both the 2-index moment (which gives zero N̂ i) and the 4-index moment (which gives two N̂ i).

Both of these can couple to the 0PN
˙̃
hij
TT.

The scalar flux is given by [25]

dES

dt
=

R2

32π
φ0(4ω0 + 6)

∮

Ψ̇2d2Ω . (6.6)

Carrying out this integral, we find that the total energy flux (including the tensor terms) can be written as

dE

dt
= Ė−1 + Ė0 + Ė0.5,C + Ė0.5,C−N + Ė1 , (6.7)

where
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−
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(6.8b)
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−
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∫ ∞
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+ (−2826− 1824η − 1904γ̄ + 4480β̄+)ζS2
+ + (−1404 + 2864η − 616γ̄ + 6160β̄+)

δm

m
ζS+S− + 560β̄−ζS+S−

+

(

2830 + 2452η− 720η2 + 1400γ̄ + 1008ηγ̄ − 3920β̄+ + 6160
δm

m
β̄−

)

ζS2
−

+
1

γ̄
(2800 + 13440η)ζS+(S+β̄+ + S−β̄−)

+
1

γ̄
(12656− 11312η)

δm

m
ζS−(S+β̄+ + S−β̄−) +

336

γ̄

δm

m
ζS+(S−β̄+ + S+β̄−)

+
1

γ̄
(−9072 + 2016η)ζS−(S−β̄+ + S+β̄−) +

1120

γ̄2
(7 − 16η)ζ(S+β̄+ + S−β̄−)

2

+
4480

γ̄2

δm

m
ζ(S+β̄+ + S−β̄−)(S−β̄+ + S+β̄−) +

1120

γ̄2
ζ(S−β̄+ + S+β̄−)

2

]

+ ṙ4
[

4122− 3720η + 3741γ̄ − 1860ηγ̄ + 840γ̄2

+ (3387 + 3924η+ 2520γ̄ − 6720β̄+)ζS2
+ + (1962− 3168η + 756γ̄ − 6720β̄+)

δm

m
ζS+S− − 3360β̄−ζS+S−

+

(

−2409− 2712η + 276η2 − 1176γ̄ − 1008ηγ̄ + 3360β̄+ − 6720
δm

m
β̄−

)

ζS2
−

− 1

γ̄
(3024 + 24192η)ζS+(S+β̄+ + S−β̄−)

+
1

γ̄
(−14784+ 11760η)

δm

m
ζS−(S+β̄+ + S−β̄−)−

336

γ̄

δm

m
ζS+(S−β̄+ + S+β̄−)

+
1

γ̄
(8064− 1008η)ζS−(S−β̄+ + S+β̄−) +

1

γ̄2
(−15120 + 33600η)ζ(S+β̄+ + S−β̄−)

2

−3360

γ̄2

δm

m
ζ(S+β̄+ + S−β̄−)(S−β̄+ + S+β̄−)−

1680

γ̄2
ζ(S−β̄+ + S+β̄−)

2

]

+ v2
Gαm

r

[

−5440 + 320η − 4736γ̄ + 160ηγ̄ − 1008γ̄2 − 2688β̄+ − 1344γ̄β̄+ + 2688
δm

m
β̄− + 1344γ̄

δm

m
β̄−

(

−960 + 320η − 336γ̄ − 448β̄+ + 448
δm

m
β̄−

)

ζS2
+ +

(

200 + 384η + 280γ̄ + 448β̄+

) δm

m
ζS+S−

− (448 + 2688η)β̄−ζS+S− +

(

−1830 + 46η + 90η2 − 2184γ̄ − 280ηγ̄ − 560γ̄2 − 1400β̄+ + 616ηβ̄+

−560γ̄β̄+ + 1400
δm

m
β̄− − 56η

δm

m
β̄− + 560γ̄

δm

m
β̄− +

8960

γ̄2
η(β̄2

+ − β̄2
−)

)

ζS2
−

+
448

γ̄
(1 − 3η)ζS+(S+β̄+ + S−β̄−) +

1

γ̄

(

4144− 1456η + 1120β̄+ − 1120
δm

m
β̄−

)

δm

m
ζS−(S+β̄+ + S−β̄−)

− 448

γ̄

δm

m
ζS+(S−β̄+ + S+β̄−) +

1

γ̄

(

−4144− 1008η − 1120β̄+ + 1120
δm

m
β̄−

)

ζS−(S−β̄+ + S+β̄−)

−1120

γ̄

δm

m
ζS−(S+χ̄+ + S−χ̄−) +

1120

γ̄
(1− 2η)ζS−(S−χ̄+ + S+χ̄−)

]
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+ ṙ2
Gαm

r

[

5872− 240η + 5176γ̄ − 120ηγ̄ + 1120γ̄2 + 2688β̄+ + 1344γ̄β̄+ − 2688
δm

m
β̄− − 1344γ̄

δm

m
β̄−

(

3128 + 2392η + 3360γ̄ − 12992β̄+ + 4032
δm

m
β̄− − 17920

γ̄2
(β̄2

+ − β̄2
−)

)

ζS2
+

+

(

1640− 3000η+ 168γ̄ − 3360β̄+ − 13440

γ̄2
(β̄2

+ − β̄2
−)

)

δm

m
ζS+S− + (−10080+ 13440η)β̄−ζS+S−

+

(

4682− 6402η+ 1550η2 + 4592γ̄ − 1624ηγ̄ + 1120γ̄2 + 3192β̄+ − 3920ηβ̄+ + 1120γ̄β̄+

−7672
δm

m
β̄− + 1680η

δm

m
β̄− − 1120γ̄

δm

m
β̄− +

4480

γ̄2
(1− 8η)(β̄2

+ − β̄2
−)

)

ζS2
−

+
1

γ̄

(

9632− 17024η+ 13440β̄+ − 13440
δm

m
β̄−

)

ζS+(S+β̄+ + S−β̄−)

+
53760

γ̄3
(β̄2

+ − β̄2
−)ζS+(S+β̄+ + S−β̄−)

+
1

γ̄

(

−17360 + 8624η − 1120β̄+

) δm

m
ζS−(S+β̄+ + S−β̄−) +

1

γ̄
(1120− 17920η)β̄−ζS−(S+β̄+ + S−β̄−)

+
53760

γ̄3
(β̄2

+ − β̄2
−)

δm

m
ζS−(S+β̄+ + S−β̄−)

+
2016

γ̄

δm

m
ζS+(S−β̄+ + S+β̄−) +

1

γ̄

(

5712 + 2352η + 1120β̄+ − 1120
δm

m
β̄−

)

ζS−(S−β̄+ + S+β̄−)

+
1

γ̄2
(−49280 + 31360η)ζ(S+β̄+ + S−β̄−)

2 − 4480

γ̄2

δm

m
ζ(S+β̄+ + S−β̄−)(S−β̄+ + S+β̄−)

− 4480

γ̄
ζS+(S+χ̄+ + S−χ̄−) +

3360

γ̄

δm

m
ζS−(S+χ̄+ + S−χ̄−)

+
4480

γ̄

δm

m
ζS+(S−χ̄+ + S+χ̄−) +

1

γ̄
(−3360 + 8960η)ζS−(S−χ̄+ + S+χ̄−)

+
13440

γ̄2
ζ(S+β̄+ + S−β̄−)(S+χ̄+ + S−χ̄−)−

13440

γ̄2

δm

m
ζ(S+β̄+ + S−β̄−)(S−χ̄+ + S+χ̄−)

]

+

(

Gαm

r

)2 [

32(1− 4η) + 32(1− 4η)ζS2
+ +

(

984− 176η + 280γ̄ + 896β̄+ − 896
δm

m
β̄−

)

δm

m
ζS+S−

+

(

5914 + 3112η− 22η2 + 5320γ̄ + 1120ηγ̄ + 1190γ̄2 − 140ηγ̄2 + 5264β̄+ + 1512ηβ̄+ + 2240γ̄β̄+

− 5264
δm

m
β̄− + 168η

δm

m
β̄− − 2240γ̄

δm

m
β̄− + 560β̄2

+ + 560(1− 4η)β̄2
− − 1120

δm

m
β̄+β̄− + 280(1− 2η)δ̄+

+280
δm

m
δ̄− − 6720

γ̄2
η(β̄2

+ − β̄2
−)−

4480

γ̄2
η(β̄2

+ − β̄2
−)− 560(1− 2η)χ̄+ + 560

δm

m
χ̄−

)

ζS2
−

+
1

γ̄
(−1008 + 448η)

δm

m
ζS−(S+β̄+ + S−β̄−) +

1

γ̄
(1008− 224η)ζS−(S−β̄+ + S+β̄−)

+
560

γ̄

δm

m
ζS−(S+χ̄+ + S−χ̄−)−

560

γ̄
(1− 2η)ζS−(S−χ̄+ + S+χ̄−)

]}

. (6.8e)

The tensor flux terms are easily spotted as the ones without factors of S+ or S−. To incorporate (6.5) into this
expression, we used the relation 1− ζ = α(1 + γ̄/2).
Since we have defined the tensor flux to begin at 0PN order, the lowest order piece of the total flux is actually at

−1PN order, resulting from multiplying the −0.5PN piece of Ψ̇ by itself. Thus scalar-tensor theory predicts an energy
flux contribution at lower post-Newtonian order than general relativity. This term is well-known and has been used
to set strong limits on the theory. It was also calculated in Paper I, Eq. (6.16), using the conserved energy E and the
equations of motion. Our result in (6.8a) agrees except for a choice of sign; Paper I considers the energy lost by the
system, while we consider the energy flux at infinity.
There is no contribution to the flux at −0.5PN order because the product of the −0.5PN and 0PN pieces of Ψ̇

has an odd number of N̂ i. At 0PN order, we have (−0.5PN)–(+0.5PN) and 0PN–0PN contributions from the scalar
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waveform, in addition to the contributions from the tensor waveform. Generally speaking, because the scalar waves
begin at −0.5PN order, the calculation of the N -th order flux requires at least some pieces of the (N + 1/2)-th order
scalar waveform. For the 0PN flux, we thus need Ψ0.5. We also need the 1PN correction to the time derivative of
Ψ−0.5. In general, calculating the N -th order flux requires knowing the (N + 1)-th order equations of motion for

purposes of evaluating Ψ̇.
The 0PN total flux was previously calculated by Will and Zaglauer [19], but they neglected to include any of the

(−0.5PN)–(+0.5PN) contributions. Thus their final expression [Eqs. (2.23)–(2.24) of [19]] is in error. When those
contributions are added to the Will-Zaglauer flux, the result is in agreement with (6.8b) [30]. On the other hand, the
0PN expression for the flux as determined by Damour and Esposito-Farèse [10] does include all necessary contributions
and, after considerable effort to translate notations, can be shown to agree with Eq. (6.8b).
The 0PN flux was also calculated in Paper I, Eqs. (6.19)–(6.20) using the conserved energy E. At this order,

comparing the two methods is a bit tricky. Our result (6.8b) depends on Gαm/r5, whereas the Paper I result does
not. In fact, we can extract from (6.8b) a term proportional to

v2

r4
− 4

ṙ2

r4
− Gαm

r5
, (6.9)

which is, to lowest order, the time derivative of ṙ/r3. Therefore, the time integral of the term can be absorbed into
the definition of E at 2.5PN order. Applying this redefinition and a few other minor simplifications, we find for the
0PN flux

Ė0 =
8

15

µη

r

(

Gαm

r

)3{

v2
[

12 + 5γ̄ − 5(3 + γ̄ + 2β̄+)ζS2
− +

10

γ̄
ζS−(S−β̄+ + S+β̄−)

+10
δm

m
ζS2

−β̄− − 10

γ̄

δm

m
ζS−(S+β̄+ + S−β̄−)

]

+ ṙ2
[

−11− 45

4
γ̄ + 40β̄+ + 5(17 + η + 6γ̄ + 8β̄+)ζS2

− − 90

γ̄
ζS−(S−β̄+ + S+β̄−)

−40
δm

m
ζS2

−β̄− +
30

γ̄

δm

m
ζS−(S+β̄+ + S−β̄−) +

120

γ̄2
ζ(S+β̄+ + S−β̄−)

2

]}

.

(6.10)

This agrees with Paper I. Note that if we use (6.10) for the 0PN flux instead of (6.8b), we must be careful to modify
(6.8e) by higher order corrections to d/dt(ṙ/r3).
There are two pieces of the flux at 0.5PN order. Both pieces arise from multiplying together the −0.5PN and 1PN

pieces of Ψ̇. However, in one case, the 1PN piece comes from the near-zone integral, while in the other, it comes from
the radiation-zone integral. These products integrate to a nonzero quantity because the 1PN Ψ̇ contains at least a
few terms with just one factor of N̂ i. (In fact, the entire radiation-zone piece depends on a single N̂ i.) By contrast,

no 0PN–0.5PN products survive the integration process. All 0PN pieces of Ψ̇ include an even number of N̂ i, while
all 0.5PN pieces have an odd number of these unit vectors.
The 0.5PN flux can also be simplified from the forms in (6.8c) and (6.8d) by absorbing total time derivatives into

the definition of E. In fact, all of (6.8c) is a time derivative, so we can write Ė0.5,N = 0. In (6.8d), the first piece
(which was generated by the instantaneous term of Ψ1,C−N ) is also a total time derivative. The second piece, involving
the tail term, can be integrated by parts, generating one more total time derivative and one surviving term,

Ė0.5,C−N = −4

3

1− ζ

ζ
m
...
I k

s

∫ ∞

0

ds
...
I k

s (τ − s) ln
s

2R+ s
. (6.11)

Written in this way, the radiation-zone contribution to the flux matches the form used in [15] (for the GR flux).

The 1PN piece of the flux comes from (−0.5PN)–1.5PN, 0PN–1PN, and 0.5PN–0.5PN products of Ψ̇, plus the
tensor contribution. Careful examination of these products reveals that neither Ψ1,C−N nor Ψ1.5,C−N contributes
to the flux at this order, hence the lack of tail integrals in (6.8e). Similarly, the monopole and quadrupole pieces

of Ψ1.5,N do not contribute. As always, the relevant issue is the parity of unit vectors N̂ i. One could attempt to
manipulate the form of (6.8e) by absorbing total time derivatives into the definition of E, but it is not clear that any
miraculous simplification would result.
It is useful to think about what we need to calculate further pieces of the energy flux. With the 2PN tensor

waveform, calculated in Paper II, we could easily compute the 2PN tensor flux. However, the 2PN scalar flux is not
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so easy. Computing it would require certain pieces of the 2.5PN scalar waveform, specifically those which have an
odd number of N̂ i. This set includes the contribution from the scalar dipole moment, meaning that we would need
to know Ii

s to relative 3PN order. As we discussed earlier, even the 3PN monopole moment requires a great deal of
effort to calculate. The 3PN dipole moment is even more difficult, due to the presence of xi in the integrals. We also
need the 3PN equations of motion in order to evaluate the time derivative of Ψ−0.5 to the appropriate order. Paper
I only computed the equations of motion to 2.5PN order.
With the energy flux and the conserved energy [Paper I, Eq. (6.4)], we can determine the evolution of the orbital

separation, frequency, and phase. These will allow the generation of “ready-to-go” templates for gravitational-wave
studies. From these templates, we can use parameter estimation techniques to study how well the advanced detectors
will be able to measure deviations from general relativity, as well as how the new complexity of the waveforms will
affect measurements of astrophysical parameters. This is the subject of future work.
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