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Abstract
We set conservative, robust constraints on the annihilation and decay of dark matter into various

Standard Model final states under various assumptions about the distribution of the dark matter in

the Milky Way halo. We use the inclusive photon spectrum observed by the Fermi Gamma-ray Space

Telescope through its main instrument, the Large-Area Telescope (LAT). We use simulated data to

first find the “optimal” regions of interest in the γ-ray sky, where the expected dark matter signal is

largest compared with the expected astrophysical foregrounds. We then require the predicted dark

matter signal to be less than the observed photon counts in the a priori optimal regions. This yields

a very conservative constraint as we do not attempt to model or subtract astrophysical foregrounds.

The resulting limits are competitive with other existing limits, and, for some final states with cuspy

dark-matter distributions in the Galactic Center region, disfavor the typical cross section required

during freeze-out for a weakly interacting massive particle (WIMP) to obtain the observed relic

abundance.
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1. INTRODUCTION

The Fermi Gamma-ray Space Telescope (Fermi), through its main instrument, the Large

Area Telescope (LAT) [1], has been surveying the γ-ray sky since August 2008 in the energy

range from 20 MeV to above 300 GeV (with detected events up to ∼ 1 TeV). In addition to

γ rays produced by known astrophysical sources, the Fermi-LAT can detect photons from

postulated decay or annihilation of dark matter (DM) to Standard Model (SM) particles.

The possibility that DM can annihilate is particularly motivated by the “WIMP miracle” [2].

Here one hypothesizes the existence of weakly interacting massive particles (WIMPs) with

few-GeV to few-TeV masses and weak-scale annihilation cross sections. These WIMPs would

have been in thermal equilibrium with the SM sector in the early Universe and they generally

produce the observed relic abundance of DM from thermal freeze-out. This suggests that

WIMPs could still be annihilating today to SM particles. The annihilation could produce

various SM particles, which can either radiate photons, further decay to other SM particles

including photons, or inverse Compton scatter (ICS) off background light, producing high-

energy γ rays. Those photons that arrive at the Fermi-LAT could then be used to infer

properties of the DM particles and their distribution around us.

Many WIMP searches have been performed using Fermi-LAT data. Analyses by the

Fermi-LAT Collaboration and outside groups have searched for monochromatic γ-ray

lines [3–9] and continuum γ-ray excesses in the diffuse spectrum from different target

regions e.g., dwarf spheroidal galaxies [10–16], clusters of galaxies [17–19], the Galactic

halo [13, 20–22], the Inner Galaxy [23–36], the Smith cloud [37, 38], and the extragalactic

γ-ray background [39–42]. No undisputed signal of DM has been detected thus far, and the

cross-section upper limits from these analyses for DM masses mDM . 10 GeV are approach-

ing the typical cross section required during freeze-out for a WIMP to obtain the observed

relic abundance, namely 〈σv〉relic ∼ 3× 10−26 cm3 s−1.

While DM is often thought of as being a stable particle, viable DM candidates only

need to be stable on cosmological time-scales. In particular, DM lifetimes of the order

of the age of the Universe or longer (τDM > 1017 s) can typically evade cosmological and

astrophysical bounds more easily than annihilating DM, such as constraints from Big Bang

Nucleosynthesis [43], the extragalactic γ-ray background [44], and re-ionization and the

Cosmic-Microwave-Background [45–50]. The more relaxed constraints on decaying DM are
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a result of the DM decay rate being linear with ρDM, as opposed to quadratic with ρDM in

the case of annihilation.

In this paper, we will provide conservative DM cross-section upper limits and decay-

lifetime lower limits from the Fermi-LAT inclusive photon spectrum. The inclusive spectrum

is presumably dominated by astrophysical foregrounds in the Milky Way, though DM could

contribute to it. We make no attempt at subtracting foregrounds and simply require that

any putative DM signal contribute less than the observed flux. A similar idea has been

used in other papers to derive conservative constraints [20, 22, 23], where the DM signal is

maximized until saturating the observed flux. The approach in this paper differs from such

previous analyses in several ways, resulting in stronger constraints on DM. Firstly, we restrict

our regions of interest (ROIs) to have a particular symmetric shape determined by only a

few free parameters, and we optimize over these parameters. Secondly, we also optimize the

energy range that we use for deriving the constraint. Thirdly, we optimize with respect to

the constraint itself and not, for example, the signal-to-noise ratio, and last, we optimize our

constraints on 10 simulated data sets, not on the measured data. After finding the optimal

ROI on simulated data, we use the real data from that same ROI to find the constraint. We

derive constraints in this fashion for various DM-halo shapes and for various annihilation

and decay final states. The resulting constraints, while being robust and conservative as

no foregrounds have been subtracted, are competitive with other existing constraints and

stronger than other conservative bounds obtained by [20, 22, 23].

The paper is organized as follows. In §2 we discuss the calculation of the expected γ-

ray flux from DM annihilation and decay. In §3 we discuss the event selection, method,

simulated data sets, and ROI selection. §4 discusses the resulting constraints, while our

conclusions are in §5. In Appendix A we use our method to calculate the limits on DM-

annihilation models that have been invoked to explain an excess of γ rays from the Galactic

Center (GC) and Inner Galaxy region. Appendix B presents the optimal ROIs together with

the corresponding count spectra for several DM channels. Appendix C discusses the effect

on our results of source masking and choosing front-/back-converting events. Appendix D

describes the astrophysical assumptions affecting the results that include contributions from

ICS. Finally, Appendix E provides more details on the simulated data sets that we use, and

Appendix F compares the limits obtained from our simulated data sets with those derived

from real data.
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2. EXPECTED DARK MATTER SIGNAL

Gamma rays from DM annihilation or decay to SM final states can be produced in two

dominant ways. The first possibility, which we refer to as prompt, is from either final-state

radiation (FSR) produced by Bremsstrahlung by SM particles or from the decay of hadrons

that arise in hadronic final states. The second possibility is from electrons and positrons

(produced either directly or at the end of a cascade decay chain) that inverse Compton scatter

off background ambient light, which primarily consists of starlight, the infrared background

light, and the Cosmic Microwave Background (CMB). This ICS process boosts the energy

of the background light to produce γ rays. Unlike prompt radiation, ICS depends on various

unknown astrophysical parameters discussed below. Although a sizable contribution to the

energy lost by the electrons propagating through the Galaxy consists of synchrotron radiation

due to acceleration by the Galactic magnetic field, we note that the synchrotron radiation

does not make up a noticeable fraction of the γ rays in the energy range under study, as

we only consider DM particles with mass below 10 TeV [51, 52]. We thus do not include it

in this study. Moreover, the DM signal can receive additional sizeable contributions due to

Galactic substructure, particularly for annihilations [53], but we do not include this effect in

our study. This makes our analysis more conservative and model independent in this regard.

We now outline the calculation of the DM-initiated γ-ray flux.

2.1. Prompt radiation

The differential flux, dΦγ/dEγ, of prompt photons coming from DM annihilation within

the Milky Way halo is given by

dΦγ

dEγ
=

1

8π

〈σv〉
m2

DM

dNγ

dEγ
r� ρ

2
� Jann , (1)

where 〈σv〉 is the thermally averaged DM annihilation cross section, mDM is the DM mass,

and dNγ/dEγ is the photon spectrum per annihilation. We assume ρ� = 0.4 GeV/cm3 is the

DM density at the Sun’s location in the Galaxy [54, 55] 1, and r� = 8.5 kpc is the distance

1 A range of values between 0.2 and 0.85 GeV/cm3 are possible at present though [54–58]. Note that a
different value for the local DM density would shift up or down our predictions for DM annihilation and
decay by a factor proportional to ρ20 and ρ0, respectively for annihilations and decays.
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between the Sun and the GC [59]. The “J-factor” is given by

Jann ≡
∫

ROI

db d` ds
cos b

r�

[
ρ (r(s, b, `))

ρ�

]2

, (2)

which depends on the distribution of DM in the Milky Way halo, ρ(r), where r ≡ r(s, b, `)

is the Galactocentric distance, given by r =
√
s2 + r2

� − 2sr� cos ` cos b, where ` and b are

the Galactic longitude and latitude, respectively, and s is the line-of-sight distance. The

integral is over a particular ROI. For decays we can replace 〈σv〉ρ2
�/2m

2
DM with ρ�/τmDM

in Eq. (1), where τ is the DM decay lifetime, with the J-factor

Jdec ≡
∫

ROI

db d` ds
cos b

r�

ρ (r(s, b, `))

ρ�
. (3)

Moreover, for decays the dNγ/dEγ should be interpreted as the photon spectrum for indi-

vidual DM particle decays.

We consider four popular DM density profiles: the Navarro-Frenk-White (NFW) [60, 61],

Einasto [62, 63], Isothermal [64],2 and “contracted” NFW (NFWc) [56, 67] with slope values

taken from [5].

ρIsothermal(r) =
ρIso

0

1 + (r/rs,iso)
2 (4)

ρNFW(r) =
ρNFW

0

r/rs (1 + r/rs)
2 (5)

ρEinasto(r) = ρEin
0 exp {−(2/α) [(r/rs)

α − 1]} (6)

ρNFWc
(r) =

ρNFWc
0

(r/rs)
1.3 (1 + r/rs)

1.7 . (7)

We set α = 0.17, rs = 20 kpc [63, 67], and rs,iso = 5 kpc [64]. The normalization ρ(r�) = ρ�

fixes ρIso
0 ' 1.56, ρNFW

0 ' 0.35, ρEin
0 ' 0.08, and ρNFWc

0 ' 0.24 in units of GeV/cm3. Our

choice of the functional form and parameters in Eq. (7) is a representative example of the

possibility that, due to adiabatic contraction from the inclusion of baryonic matter, the DM

profile might have a central slope steeper even than that of the NFW or Einasto profiles

(although note that high-resolution observations of the rotation curves of dwarf and low-

surface-brightness galaxies favor cored distributions [68, 69]). The four profiles are shown
2 Another popular parametrization of a “cored” profile is the Burkert profile [65]. Adopting the best-fit
parameters in [66] yields a distribution that is very close to the Isothermal one for radii . 10 kpc. We will
see that the optimal ROIs for the Isothermal profile for DM annihilation are contained with this region,
and therefore the limits for the two cored distributions would be very similar. Thus we not explicitly
consider the Burkert profile in our analysis. 6
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Figure 1. Left: Dark-matter density profiles versus distance from the Galactic Center (GC). We
use the Isothermal (green), NFW (red), Einasto (blue), and a “contracted” NFW (NFWc, orange,
with ρ ∝ 1/r1.3 for r → 0) profile. Right: Prompt γ-ray spectra produced in the annihilation of
1 TeV dark matter to e+e−, µ+µ−, τ+τ−, bb̄, W+W−, uū, gg (g = a gluon), and φφ, where φ
decays either only to e+e− (with mφ = 0.1 GeV), or only to µ+µ− (with mφ = 0.9 GeV), or to
e+e−, µ+µ−, and π+π− in the ratio 1 : 1 : 2 (with mφ = 0.9 GeV).

in Fig. 1 (left).

The (prompt) photon spectra, dNγ/dEγ have been generated with Pythia 8.165 [70]

or are based on formulas in [71–74]. They are the same as in DMFIT [75] after the latest

update described in [12]. We will consider the ten different final states e+e−, µ+µ−, τ+τ−,

bb̄, W+W−, uū, gg (g = a gluon), and φφ, where φ decays either only to e+e− (with

mφ = 0.1 GeV), or only to µ+µ− (with mφ = 0.9 GeV), or to e+e−, µ+µ−, and π+π− in

the ratio 1 : 1 : 2 (with mφ = 0.9 GeV) (the latter ratio is motivated if φ is a dark photon

that kinetically mixes with the SM hypercharge gauge boson). Other SM final states are of

course possible but they would yield constraints very similar to the channels we consider in

our analysis. The annihilation channels to φφ are motivated by DM models [76, 77] that

attempt to explain the rising positron fraction measured by PAMELA [78], Fermi [79], and

AMS-02 [80, 81]; the φ can also facilitate an inelastic transition between the DM ground state

and an excited state [76, 82] to explain e.g., the 511 keV line anomaly [83]. For DM decays,

the φ channels can be viewed as “simplified models” that can capture how the constraints

change when there is a cascade, e.g., [52]. We will sometimes refer to these scalar-mediated

processes as “eXciting Dark Matter” (XDM). These spectra are shown in Fig. 1 (right) in

the case of annihilating DM and mDM = 1 TeV. We do not consider other popular DM

7



candidates like axions and gravitinos.

We note that the observed differential photon flux can also be written as

dΦγ

dEγ
≡ dNγ

ttot Aeff dEγ
≡ 1

E
dNγ

dEγ
, (8)

where we have now explicitly included Aeff , the effective area (which is a function of energy),

ttot, the LAT’s total live time, and E , the LAT’s exposure. Given the photon spectra, the

number of photons from a DM annihilation signal in a spatial region Ωi, with J-factor J iann,

and energy range [Ek, Ek+1] is given by

N i,k
γ =

1

8π

r� ρ
2
�

m2
DM

〈σv〉 J iann E i,k
∫ Ek+1

Ek

dEγ
dNγ

dEγ
, (9)

where E i,k is the exposure averaged over Ωi and calculated at the midpoint of [Ek, Ek+1]

(since the variation of the exposure over a single energy bin is very small). For decays the

predicted counts are

N i,k
γ =

1

4π

r�ρ�
mDM

1

τ
J idec E i,k

∫ Ek+1

Ek

dEγ
dNγ

dEγ
. (10)

The approximately homogeneously distributed DM in the Universe could provide an extra-

galactic contribution to the observed photon flux. However, the observed γ-ray spectrum

will be different than that expected from Galactic DM interactions since the photons redshift

as they propagate to us and there is a finite optical depth — the result of interactions of

the γ rays with low-energy photons that compose the extragalactic background light (EBL).

This yields the following expected extragalactic photon intensity for decaying DM [84, 85]

d2Φγ

dEγdΩ
=

1

4π

ΩDM ρc,0
τmDM

∫ ∞
0

dz
e−τ(Eγ(z),z)

H(z)

dNγ

dEγ
(Eγ(z), z) . (11)

Here, ΩDM ' 0.267 is the present DM energy density, ρc,0 ' 4.7 × 10−6 GeV/cm3 is

the critical density today, Eγ(z) = Eγ(z + 1) is the energy of the emitted photon,

H(z) = H0

√
Ωm(1 + z)3 + ΩΛ, where Ωm ' 0.317 and ΩΛ ' 0.683 are the total matter

and cosmological-constant energy densities [86], respectively, and we assume a flat Universe

with Ωm+ΩΛ = 1. The optical depth is given by τ (Eγ, z), and we use the parameterizations

found in [84]. We note that, for annihilating DM, the smooth extragalactic contribution is
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subleading compared to the Galactic one and we ignore it, whereas for decays it is a factor

of order . 1 as large as its Galactic counterpart and we include it in our analysis.

2.2. Inverse Compton Scattering

We include the flux generated by ICS for the cases where DM annihilates/decays to

e+e−, µ+µ−, τ+τ−, as well as φφ channels. In all cases we end up with high-energy electrons

and positrons. These propagate within the Galaxy and can lose energy through ICS off

starlight, infrared background light, or CMB photons, or via synchrotron radiation in the

Galactic magnetic field. The ICS process (e±′γ′ → e±γ) can produce high-energy γ rays

that are observed by the LAT. The synchrotron-radiation contribution in the Fermi-LAT

energy range is subdominant for the DM masses and models that we consider [52] and thus

we neglect it when we derive our limits. However, it must be included when calculating the

ICS γ-ray signal, since it determines how fast the electrons and positrons cool. In fact, the

cooling time is strongly dependent on the Galactic magnetic field, whose values at different

locations in our Galaxy are not known very accurately. This leads to large uncertainties in

the ICS signal. Moreover, the calculation of the ICS signal requires additional assumptions;

for example, we assume, as generally done, that the density of electrons and positrons

after propagation follows a steady-state solution. However, phenomena such as the Fermi

bubbles [87], pointing to a dynamical event in the Milky Way’s recent history, might make

this assumption not fully justified. We also assume that the steady-state propagation of the

electrons/positrons only occurs inside a cylindrical region of the Galaxy that has a maximum

radius Rh and half-height zh. The steady-state diffusion equation is given by (e.g., [88])

−Dxx (E ′e)∇2 dne
dE ′e
− ∂

∂E ′e

[
b (r, z, E ′e)

dne
dE ′e

]
=

 1
2

(
ρ(r,z)
mDM

)2

〈σv〉 dNe
dE′e

, annihil.
1
2

2ρ(r,z)
mDM

1
τ

dNe
dE′e

, decays
. (12)

Here dne/dE
′
e ≡ dne(r, z, E

′
e)/dE

′
e is the energy-dependent differential electron+positron

density at a given point in the Galaxy, (r, z), where r and z are the cylindrical coordinates

of the electron/positron in the Galaxy. The right-hand side of Eq. (12) is the source term

and contains the DM density profile, ρ(r, z) (a function of cylindrical coordinates) and

the electron+positron energy spectrum, dNe/dE
′
e; also, there is a factor 1/2 for Majorana

fermions, otherwise 1 for Dirac fermions. The first term on the left-hand side accounts for
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the spatial diffusion and is characterized by an energy-dependent coefficient,

Dxx (E ′e) = D0

(
E ′e
E0

)δ
. (13)

The second term is the energy-dependent loss and is given by

b (r, z, E ′e) ≡ −
dE ′e
dt

=
4σT
3m2

e

E ′2e

[
uB(r, z) +

3∑
i=1

uγi(r, z)Ri(E
′
e)

]
, (14)

where σT = 8πr2
e/3, with re = αem/me, is the Thomson cross section, and uB (r, z) = B2/2

is the energy density of the Galactic magnetic field B, chosen to have the form [89]

B ≡ B(r, z) = B0 e
−[(r−R�)/Rb+z/zb] , (15)

where Rb = 10 kpc and zb = 2 kpc. The uγi (r, z) are the energy densities of the three relevant

light components in the Galaxy, i.e.: CMB, infrared light, and starlight. The factors Ri(E
′
e)

take into account relativistic corrections. The γ-ray differential flux at energy Eγ, resulting

from ICS off an electron is

d2Φγ

dEγdΩ
=
α2

em

2

∫
ds

∫∫
dE ′γ dE ′e

fIC (q, ε)

E ′γ
2E ′2e

dne
dE ′e

(r, z, E ′e)
duγ
dE ′γ

(
r, z, E ′γ

)
, (16)

where s is the line-of-sight distance, and

fIC(q, ε) ≡ 2q log q + (1 + 2q)(1− q) +
1

2

(εq)2

1 + εq
(1− q) , (17)

q ≡ ε

Γ(1− ε)
, ε ≡ Eγ

E ′e
, Γ ≡

4E ′γE
′
e

m2
e

. (18)

We calculate the ICS contribution with GALPROP V50 [90]. We use a version of GALPROP V50

that was modified by the authors of [91] to include various DM annihilation and decay final

states. We fix δ = 0.33, E0 = 4 GeV, and take the cylindrical geometry to have a maximum

radius Rh = 20 kpc and a maximum half-height zh = 4 kpc. As mentioned above, the

greatest source of uncertainty is due to the Galactic magnetic field, B. To capture some of

this uncertainty, we vary B0 between 1− 10 µG, when showing our results in §4. We fix the

spatial diffusion coefficient parameter to be D0 = 4.797 × 1028 cm2/s (6.311 × 1028 cm2/s)

for B0 = 1 µG (10 µG). (See Appendix D for sources for these values.) In Appendix D we
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show how our results are affected when varying zh and Rh, in addition to D0 and B0; we

find that the largest effect on the results comes from the variation of B0.

3. DATA SETS AND METHODS

We aim to set conservative, robust constraints on the annihilation and decay of DM into

various SM final states. We consider the inclusive photon spectrum observed by the Fermi-

LAT, and use simulated data to first find the “optimal” ROI in the γ-ray sky, i.e. the one

that yields the strongest constraint. We then require the DM signal to be less than the

observed photon counts. We note that our approach does not allow us to search for the

existence of a DM signal.

In this section we describe the event selection, how we use the simulated data sets in

our analysis, the ROI choice, and how we construct optimal upper bounds on the DM

annihilation cross section and lower bound on the DM decay lifetime. We also provide a

detailed example of our procedure.

3.1. Event Selection

The data set used for this study consists of ∼ 5.84 years of Fermi-LAT data (from

August 2008 until June 2014) in the energy range 1.5 − 750 GeV. We select photons using

the P7REP_CLEAN event-class selection [92], to minimize contamination by residual cosmic

rays. We also require the zenith angle to be smaller than 100◦ to remove photons originating

from the bright Earth’s Limb. Details on the Fermi-LAT instrument and performance

can be found in [1, 93]. All data reduction and calculation of the exposure maps were

performed using the Fermi-LAT ScienceTools, version v9r34p1 [94]. As for the Fermi-LAT

instrument response functions (IRFs), we use P7REP_CLEAN_V15 for both MCs and data.

As described in Appendix C, the results shown in this paper are obtained after masking all

known point sources identified in the 5-year Fermi catalog (3FGL) [95], using a PSF (point

spread function)-like masking radius, except for those photons coming from within the inner

2◦ × 2◦ square at the GC. Moreover, we include both front- and back-converting events. In

Appendix C we show that, although this choice is generally optimal, our results are not

significantly affected if we mask only the brightest sources, or no sources at all, and if we

11



include only front- or only back-converting events.

3.2. Simulated (Monte Carlo) Data Sets

For our study, we use 10 Monte Carlo (MC) data sets, each a statistically independent

∼ 5.84-year representation of the γ-ray sky. The same event selection described above is

applied to MC data. We use the simulated data sets to select “optimized” ROIs, indepen-

dent of the real data, as described below in §3.3. By finding optimal ROIs based on the

MC simulations, we avoid the possibility of accidentally obtaining a strong constraint due

to statistical fluctuations in the data. We describe the details of the simulated data in Ap-

pendix E. Note that the MC simulations contain photons with an energy range of 0.5 GeV

to 500 GeV (as opposed to 1.5 GeV to 750 GeV in the data). We account for this difference

by extrapolating the MC data up to 750 GeV as described in Appendix E.

3.3. ROI Choice

We take the ROI for annihilating DM to have the dumbbell shape as shown in Fig. 2

(left). This shape depends on three parameters: the radius from the GC to the edge of the

ROI, R, the width in latitude of the Galactic Plane (GP) that is to be excluded from the

ROI, 2∆b, and the width in longitude of the GC region that is to be included in the ROI,

2∆`. The motivation for choosing such shape is that the DM distribution is approximately

spherically symmetric (hence the choice of a circular region, parametrized by R), but the

Galactic foregrounds are largest in the GP region, which we then remove. However, we

include the GC in our ROI as this is where the DM signal peaks as well, dramatically so for

cuspy profiles (since Nγ,DM ∝ ρ2
DM).

For decaying DM, our choice of ROI will consist of the two high-latitude regions shown in

Fig. 2 (right), and depends on only one parameter: the width in latitude from the Galactic

poles to the edge of the ROI, ∆bd. In contrast to annihilation, the decaying DM signal is

expected to be much less concentrated in the GC, since Nγ,DM ∝ ρDM.
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Figure 2. Left: The choice of ROI (shaded) in the γ-ray sky for dark-matter annihilation. The
ROI depends on 3 parameters, as indicated. Right: The choice of ROI for dark-matter decays
(shaded), which depends on one parameter, as indicated.

3.4. Optimizing the ROIs and Energy Ranges using Simulated Data

A particular DMmodel or Theory Hypothesis, TH = [mDM, ρ, annihilation/decay, channel],

is characterized by the DM mass (mDM), the DM density profile (ρ), whether it is annihi-

lating/decaying DM, and the annihilation/decay final state. Given any ROI and a photon

energy range, [ROI, ∆E], we obtain a constraint on either the DM annihilation cross section,

〈σv〉, or decay lifetime, τ , for a given TH by requiring that the number of DM events, Nγ,DM,

in [ROI, ∆E] does not exceed the observed value, Nγ,O. More precisely, to set a limit with

a confidence level (C.L.) of 1−α, we vary 〈σv〉 or τ until the probability that Nγ,DM > Nγ,O

is α; in equations, the bound on 〈σv〉 or τ is obtained by solving

Nγ,O∑
k=0

Poisson (k |Nγ,DM) = 1− α, (19)

where as usual

Poisson(k |λ) =
λk e−λ

k!
. (20)

For each TH , we find the optimal ROI and optimal photon energy range, [ROI, ∆E]O, which

provides the best limit on 〈σv〉 or τ . If we simply scan over all [ROI, ∆E] in the data, this

would subject our constraints to statistical fluctuations. Instead, we use the 10 simulated

data sets to find [ROI, ∆E]O as follows. For the i-th ROI and energy range, [ROI, ∆E]i,

and j-th simulated data set, we calculate the bound on the cross section or lifetime, 〈σv〉i,j
or τi,j, as described above in Eq. (19). We then average the resulting expected limit across

13



the 10 simulations, i.e.

〈σv〉i =
1

10

10∑
j=1

〈σv〉i,j , (21)

τ i =
1

10

10∑
j=1

τi,j . (22)

We then find [ROI, ∆E]O by scanning over all [ROI, ∆E]i’s and selecting the one that yields

the minimum 〈σv〉i (maximum τ i), i.e.

〈σv〉 = min
i
〈σv〉i , (23)

τ = max
i

τ i . (24)

We then use [ROI, ∆E]O on the real data to calculate the limits on 〈σv〉 or τ for the given

TH .

The ROIs used in our optimization are given in §3.3. We bin each simulated data

set into 0.18◦ × 0.18◦ rectangular pixels in Galactic latitude and longitude and N = 127

logarithmically-uniform energy bins between 1.5 − 750 GeV. We then vary the ROI shape

parameters described in §3.3 in steps of 0.5◦ for R, steps ∼ 1◦ for ∆b and ∆`, and 2.5◦ for

∆bd. For each choice of ROI, we scan over all (N − 1)(N − 2)/2 = 8064 choices of adjacent

bins in energy, assuming a minimum of three adjacent bins. In Appendix B we show a

sample of the resulting optimized ROIs and energy ranges.

We note that for large enough Nγ,DM or Nγ,O, the statistical distributions are approx-

imately Gaussian, and we would obtain a 95% C.L. bound by requiring Nγ,DM < Nγ,O +

1.64
√
Nγ,O ' Nγ,O. Even our smallest optimal ROIs with the highest optimal energy ranges

contain at least O(10) photons. Our method thus does not produce constraints that are

susceptible to Poisson fluctuations of the number of events in [ROI, ∆E]O, and, as a con-

sequence, our constraints are not expected to improve significantly with more data (some

small improvements may arise from, e.g., a better rejection of backgrounds).

We also note that since [ROI, ∆E]O was selected using simulated data, other choices

of [ROI, ∆E] may provide a stronger constraint on the data. Also, the simulated data is

not a perfect representation of the data. Indeed, there are certain regions in the sky where

the simulations do not model the data perfectly, and the “expected” limits using MC data

14



may differ from the limit obtained on the real data (see Appendix F). One notable example

is in the GC and in the Inner Galaxy region, which has led to claims of a γ-ray excess,

see Appendix A. However, an imperfect modeling of the sky does not affect the validity

of our constraints. We use the simulations as a tool to pick [ROI, ∆E] in an unbiased

way. Even if the simulations were a totally inaccurate representation of the real data, it

would not invalidate our limits, although other choices of [ROI, ∆E] would provide stronger

constraints.

We note that for prompt radiation we include the effects of the Fermi-LAT’s PSF, by

performing its convolution with the J-factors, using the Fermi-LAT ScienceTools. For the

constraints that include prompt and ICS, however, convolving the PSF for the DM signal

calculation is computationally intensive, so we do not account for these effects. To see by

how much this could potentially affect our limits, we constrained the ROIs to have a shape

which is safe w.r.t. the PSF containment radius at the lowest energies considered. If the

ROI includes a portion of GC (i.e. ∆` > 0◦), then we require the width of this window to be

at least 6◦ (i.e. ∆` > 3◦); for the width of the top and bottom of the ROI shape (resembling

crescents) we require that R < ∆` (so the ROI is a circle), R <
√

∆b2 + ∆`2 (so the two

crescents have no tips), and R > 4◦ + ∆b (so the two crescents are thick enough). The

upper bounds thus obtained are only degraded by at most ∼ 20− 40% with respect to the

unconstrained-ROI case. This is a small number; especially in view of the fact that the

largest uncertainty for the DM ICS signal comes from the value of the magnitude of the

local magnetic field, see Appendix D.

We note that systematic effects of the PSF are not included in our analysis, as they are

much smaller than the other sources of systematic uncertainty considered, such as in the

ICS signal and DM density profile.

3.5. Illustration of Procedure

An illustration of our method is shown in Fig. 3. The left plot shows the count spectrum

from one of the MC data sets for the ROI shown in the inset. The green triangles show the

spectrum for a 1.5 TeV DM annihilating to bb̄, assuming isothermally distributed DM, with

the cross section set at the 95% C.L. upper limit. This limit is derived by requiring that

the number of signal events in the optimal energy range from 68 GeV to 142 GeV (vertical

15
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Figure 3. Left: Count spectrum from one of the MC data sets for the ROI shown in the inset.
The green points show the spectrum for 1.5 TeV DM distributed according to the Isothermal profile,
annihilating to bb̄, with a cross section chosen such that the number of signal events in the energy
range from 68 GeV to 142 GeV (vertical brown lines) is larger than the number of events in the MC
data (at 95% C.L.), as given by Eq. (19). Since the simulated data only contains photons up to
460 GeV, we extrapolate it to 750 GeV (red points), using a power-law fit to the photon spectrum
above ∼ 6.2 GeV. See Appendix E for more details. Right: The best cross-section limit averaged
over all ten MC data sets is shown with a green solid line, while the individual cross-section limits
for each of the 10 MC data sets are shown with dashed gray lines. As explained in §3.5, the average
cross-section limit is used as a figure of merit for our ROI/energy range optimization.

brown lines) be larger than the number of events in the MC data as given by Eq. (19), where

we set α = 0.95. The number of events in this ROI and energy range will fluctuate from

one MC data set to another, and we calculate the average cross-section limit for all ten MC

data sets. We show the best average cross-section limit as a function of DM mass with a

green solid line in Fig. 3 (right), together with the cross-section limit for the ten individual

MC data sets (dashed gray lines). In Fig. 3, we masked all point sources and included both

front- and back-converting events.

We now have all the ingredients put in place for calculating constraints from the γ-

ray sky observed by the Fermi-LAT. In the next section we give the 95% C.L. bounds on

the annihilation cross section (upper bound) and on the DM lifetime (lower bound) for

annihilations and decays into various SM modes, respectively.
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4. RESULTS AND DISCUSSION

In this section we give the results from the optimization procedure described in §3. We

emphasize that the constraints obtained in this study are conservative and robust, since they

do not depend on the modeling and subsequent subtraction of astrophysical foregrounds.

In §4.1 (§4.2) we discuss the constraints on annihilating (decaying) DM. Additionally, in

Appendix A we use our method to derive bounds on models invoked to explain a putative

γ-ray excess at the GC [25–36]. The effect on our constraints due to different choices of

source-masking, and due to the variation of ICS parameters is discussed in Appendix C and

Appendix D, respectively.

4.1. Constraints on Dark Matter Annihilation

The constraints on the DM-annihilation cross section as a function of DM mass are

presented in Fig. 4 for annihilation to e+e−, µ+µ−, τ+τ−, and φφ, where φ decays either

only to e+e− (with mφ = 0.1 GeV), or only to µ+µ− (with mφ = 0.9 GeV), or to e+e−,

µ+µ−, and π+π− in the ratio 1 : 1 : 2 (with mφ = 0.9 GeV). Fig. 5 shows the results for

the final states bb̄, W+W−,3 uū, and gg. In all cases we present the results for four different

assumptions about the DM profile ρ(r) introduced in §2.1. We note that each DM mass for

each spatial distribution and final state choice has been separately optimized, and an optimal

ROI, ROIo,i, and photon energy range, ∆Eo,i, were obtained to set the 95% C.L. constraint.

In Appendix B we illustrate how the optimal ROI and energy range change for various DM

density profiles and for different DM masses (see Figs. 9 and 10).

The constraints disfavor the thermal WIMP cross section for low DM masses and for

the cuspiest profiles (mostly the NFWc profile). For those cases in which the final states

contain high-energy electrons, i.e. Fig. 4, there is a contribution from prompt radiation from

FSR as well as ICS. The latter, while more uncertain, considerably strengthens the bounds,

especially for high DM masses. In Fig. 4 the shaded band denotes the constraint from ICS as

the magnitude of the Galactic magnetic field at our Solar System’s location, B0 is varied from

1 µG to 10 µG and correspondingly the diffusion coefficient D0 from 4.797× 1028 cm2/s to
3 Note that limits for the W+W− channel extend to mDM < mW . In this region, the W+W− final state
is not produced on-shell, but instead the annihilation is to a three- or four-body final state consisting of
leptons and/or quarks through off-shell W±. (The expected cross-section in any concrete DM model for
the off-shell process would be highly suppressed compared to the on-shell process.)
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Figure 4. 95% C.L. upper limits on DM annihilation cross section vs. DM mass from Fermi-LAT’s
inclusive photon spectrum for the indicated final states. Each plot shows constraints for the Isothermal
(green), NFW (red), Einasto (blue), and NFWc (orange) DM density profiles. Solid lines show constraints
from the inclusion of only the prompt radiation from the annihilation, while the bands include the ICS
off background light, with the Galactic B-field varying within 1 − 10 µG and D0 within D0,min − D0,max

(bottom-top of band). When available, we show the limits from the P7REP analysis of 15 dwarf spheroidal
galaxies with a cyan dashed line [12]. For the XDM models we show the approximate regions (gray) in
which annihilating DM could account for the PAMELA/Fermi/AMS-02 cosmic-ray excesses. The best-fit
parameters from [96] are shown as black dots. 18
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Figure 5. 95% C.L. upper limits on DM annihilation cross section vs. DMmass from Fermi-LAT’s inclusive
photon spectrum for the indicated final states. Each plot shows constraints for the Isothermal (green), NFW
(red), Einasto (blue), and NFWc (orange) DM density profiles. Solid lines show constraints derived from
including only the prompt radiation produced in the annihilation process (i.e. final-state radiation or in the
decay of hadrons). When available, we show the limits from the 4-year P7REP analysis of 15 nearby dwarf
spheroidal galaxies with a cyan dashed line [12].

6.311× 1028 cm2/s (see §2.2). The propagation was performed as described in §2.2, i.e. over

a cylindrical geometry with radius Rh = 20 kpc and half-height zh = 4 kpc. With ICS

included and for cuspy profiles, DM annihilation to leptonic final states, particularly for

electrons, can be probed well into the annihilation-cross-section regime of a thermal relic

that freezes out early in the Universe, 〈σv〉relic ≈ 3 × 10−26 cm3/s. The inclusion of extra

particle content in DM annihilations, namely the particle φ, is motivated by the best fit to

the PAMELA, Fermi, and AMS-02 cosmic-ray positron and electron data [78–81], if those

excesses are interpreted as coming from DM annihilation. Fig. 4 shows the approximate
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regions (shaded gray) in the cross-section–versus–mass plane, in which annihilating DM

could offer an explanation for these excesses. These regions are meant to be illustrative only

and chosen so that they contain the parameter choices found in [96], shown with black dots.

(See also [97].) The inclusion of ICS severely constrains the favored parameter regions for

all profiles except isothermal, while including only the prompt signal challenges the favored

regions only for the cuspy NFWc profile.

The constraints from [12], which, using 4 years of P7REP data, analyzed 15 dwarf

spheroidal satellite galaxies (dSph) of the Milky Way to set robust constraints on DM,

are shown in Fig. 4 with a cyan dashed line. Due to the dSph’s proximity, high DM content,

and lack of astrophysical foregrounds, they are excellent targets to search for annihilating

DM. Moreover, the available data on the velocity distribution of the stars in the dSph al-

lows one to predict rather accurately the expected γ-ray flux from DM annihilation. This

prediction is not subject to the same uncertainties as the expected flux in the Milky Way

halo, which suffers from large uncertainties in the DM density profile. Our constraints are

stronger than the dSph constraints over much of the DM mass range and for several of the

DM profiles that we consider, especially at high energies. For DM masses . 10 GeV, our

constraints are stronger than the dSph constraints for the NFWc profile, and comparable in

strength for the Einasto profile, although weaker for the NFW and isothermal profiles. New

results using P8 data to perform a similar analysis of the dwarf galaxies are expected soon

and are somewhat more stringent than the P7REP results.

Notice that some of the ICS-inclusive limits are actually weaker than the ones with prompt

radiation only. This might seem puzzling, as for a given ROI and energy range, the signal

that includes prompt and ICS is obviously larger than the one with prompt only and should

lead to more stringent constraints. However, our ROI and energy range used to derive the

limits from the data are dictated by the optimization of the average MC limit, such that the

optimized ROIs and energy ranges for prompt+ICS and prompt-only might differ from each

other. If one considers this along with the fact that the simulated data sets are not perfect

representations of the real sky, the limit that includes ICS can be weaker on occasion than

the prompt-only limit.

It is useful to compare our limits with those obtained from similar analyses in the liter-

ature where no attempt was made to model the astrophysical foregrounds. These analyses

usually differ in their choice of DM-profile parameters, their procedure for constructing the
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limits (Gaussian error on flux versus Poisson limit on counts), their choice of propagation

models for the ICS signal, and the data energy range utilized. Nevertheless, we can try

to single out the effect of our ROI and energy-range optimization method alone by rescal-

ing these other results to compensate for the different choices mentioned above. In [21],

the limit was also constructed by scanning over a few differently shaped and located ROIs.

Consequently our results are only within a factor of 1-2 stronger than theirs, across all chan-

nels. In [22], the construction of the bound is quite different from ours, and our results are

around 2 times more stringent than theirs. In [20], an optimization procedure is performed

on ROIs that look very different from ours, and a less extensive optimization is done on the

energy window. For annihilations we improve on these limits by a factor of 1–20, depending

on channel and profile, and by a factor 2–4 when including ICS. In [23], the ROI is opti-

mized using the signal-over-background ratio as a figure of merit. For harder spectra, our

improvement is between a factor of 3–8, while for softer spectra, the improvement is a factor

of 1–4.

4.2. Constraints on Dark Matter Decays

While a favorite target for the DM annihilation rate comes from the thermal freeze-out

of a thermal relic, which gives the correct present-day abundance, for decaying DM no

such “favored” lifetime exists — the DM lifetime only has to be larger than the age of the

Universe. One possible target comes from explaining the rising fraction in the cosmic-ray

positron spectrum with DM decays to final states that produce high-energy electrons and

positrons, with the preferred DM lifetime being in the range 1026 − 1027 s, depending on

the precise final states and astrophysical assumptions [21, 52, 99–105]. Such lifetimes do

not only have a phenomenological motivation, but also arise naturally for TeV-scale DM

particles that decay via a dimension-six operator generated near the scale of Grand Unified

Theories (GUT’s), M ∼ 1016 GeV, namely

τ ∼ 8π
M4

m5
DM

∼ 2× 1026 s

(
1 TeV

mDM

)5 (
M

1016 GeV

)4

. (25)

For example, in [99] DM decaying via dimension-six operators in supersymmetric GUT’s

were posited to explain the cosmic-ray data from PAMELA.
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Figure 6. 95% C.L. lower limits on DM decay lifetime vs. DM mass from Fermi-LAT’s inclusive photon
spectrum for the indicated final states. Shown are constraints for the NFW profile (the other profiles are
virtually identical). Solid lines show constraints derived from including only the prompt radiation produced
in the annihilation process (i.e. final-state radiation or in the decay of hadrons), while the bands include the
ICS off background light, with the Galactic B-field varying within 1−10 µG and D0 within D0,min−D0,max

(bottom-top of band, when visible). For some models we show the approximate regions (gray) in which
decaying DM could account for the PAMELA/Fermi/AMS-02 cosmic-ray excesses. The best-fit parameters
from [98] are shown as black dots. 22
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Figure 7. 95% C.L. lower limits on DM decay lifetime vs. DM mass from Fermi-LAT’s inclusive photon
spectrum for the indicated final states. Shown are constraints for the NFW profile (the other profiles are
virtually identical). The constraints are derived from including only the prompt radiation produced in the
annihilation process (i.e. final-state radiation or in the decay of hadrons).

The results for DM decays to leptonic and φφ final states are included in Fig. 6, whereas

those decays to bb̄, uū, gg,W+W− are shown in Fig. 7. We only show the constraints for

the NFW profile, as the other profiles lead to virtually identical constraints. As in the case

for DM annihilation, we include ICS for decaying DM for the leptonic final states only.

The additional ICS component, while very sensitive to the value of the Galactic magnetic

field, can enhance the constraints significantly, as in the case for annihilating DM. Note

that the bounds from prompt radiation start to deteriorate near DM masses of 1.5 TeV due

to the maximum-energy selection of 750 GeV used in this study. Our constraints compare

favorably with existing constraints in the literature; for example, they are a factor of 2–3
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stronger compared to [20–22].

While the DM decay lifetime can span an enormous range consistent with all astrophysical

data, there are many scenarios that are being probed by the constraints presented in this

analysis. In particular, Fig. 6 shows with a gray shaded parallelogram the approximate

preferred regions in which decaying DM can explain the cosmic-ray positron and electron

data. Black dots indicate the best-fit regions found in [98], although note that these results do

not include the latest data release from AMS-02 [81] (a more careful analysis of the preferred

regions is beyond the scope of this paper); nevertheless, we expect that the preferred regions

would not shift significantly, and our regions are meant to be taken as a useful but rough

qualitative guide only. We see that decays to τ+τ− are thoroughly disfavored, but our

constraints for other channels are not strong enough to probe the relevant parameter regions.

5. CONCLUSIONS

This paper presented a conservative method for setting constraints on γ rays originating

from DM annihilation and decay, which does not rely on modeling of astrophysical fore-

grounds when setting a limit. Optimal regions in the sky and energy were obtained by using

simulations of the γ-ray sky, and a constraint was found by only requiring that the DM

signal does not over-predict the observed photon counts.

For models of both annihilating and decaying DM, this method allows us to constrain

theoretically-motivated parameter regions. For example, for cuspy enough profiles (e.g., con-

tracted NFW), our method is able to disfavor the thermal-relic cross section for some leptonic

and hadronic final states. Also, for steep-enough profiles, our constraints disfavor various

annihilating DM scenarios designed to explain the PAMELA/Fermi/AMS-02 cosmic-ray

positron and electron data. For decaying DM, a wide range of lifetimes are excluded for

various SM final states, including the preferred parameter regions for DM decaying to τ+τ−

to explain the PAMELA/Fermi/AMS-02 data. The conservative constraints obtained in

this study are often competitive with, and in many cases stronger than, other available

constraints in the literature.
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d’Études Spatiales in France.

A. Constraints on DM Models invoked to explain γ Rays from Inner Galaxy

In this appendix we address claims made by several groups in recent years regarding a

γ-ray excess from ∼ 300 MeV to ∼ 5 GeV, peaking in the 1–3 GeV window, in the Inner

Galaxy [25–36]. While modeling uncertainties are large and the excess may very well have

a non-DM origin, we use our method to set constraints on DM scenarios that have been

invoked to explain the excess. Since we perform no foreground subtraction, a priori we do

not expect the limits derived with our method to disfavor the best-fit DM scenarios found

in the literature; nevertheless, it is worthwhile to perform a careful check.

The best fit for WIMP DM found in [32, 33] is for ∼ 30 − 40 GeV DM annihilating

predominantly to bb̄. Furthermore, the spatial distribution of the putative signal is best fit

by a generalized NFW profile,

ρNFW, γ(r) =
ρ0

(r/rs)
γ (1 + r/rs)

3−γ , (A1)

with a χ2 best fit obtained for γ ≈ 1.26, although any γ in the range ∼ 1.1− 1.4 allows for

a reasonable fit. Analyses by other groups give results that are broadly consistent with the

findings in [32, 33]. In [35], it was found that DM annihilating dominantly to bb̄ but with

some admixture of τ+τ− also provides a good fit. Other annihilation channels may also be

possible [106].

In Fig. 8 we show the results of our optimization procedure applied to generalized NFW,

Eq. (A1), with parameters chosen from best fits found in [31, 33, 36] (which differ in part

from the assumptions made in §4.1). The authors of [33] ([36]) exclude from their analysis a

band around the GP defined by |b| < 1◦ (2◦), thus not specifying a specific DM distribution

within this latitude. We therefore use our usual ROIs shown in Fig. 2, but mask a square

centered on the GC of side 2◦ (4◦). We show DM annihilating to bb̄ (left plot) and τ+τ−

(right plot). Unsurprisingly, the bounds that we obtain on the annihilation cross section

are still a factor of ∼ 3 or more from probing the best-fit regions shown with open or closed

contours in Fig. 8. As a reference for the reader, adopting all the assumptions in [33], for

annihilation into bb̄, and choosing mDM = 25 GeV, the optimal ROI found with our method
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Figure 8. 95% C.L. annihilation cross section upper limits on DM annihilating to bb̄ (left) and
τ+τ− (right) for an NFWc profile with various inner slopes and local DM densities (note that the
assumptions made in deriving these limits differ in part from those made in §4.1). Also shown are
the preferred regions from [31, 33, 36] for DM to fit the claimed Galactic-Center γ-ray “excess”. The
constraints have been computed with the same model assumptions as the best-fit regions (including
masking a square centered on the GC of side 2◦ or 4◦ for analyses that excluded a band around the
GP with the same thickness – see text for details). We also show with a cyan dashed line the limit
obtained from the 4-year P7REP analysis of 15 nearby dwarf spheroidal galaxies [12].

is determined by the following parameters: R = 2◦, ∆b = 1.98◦, ∆` = 0.54◦, while the

optimal energy range is 1.9 GeV. E . 4.0 GeV.

B. Dependence of Optimal ROI and Energy Range on DM Profile and DM Mass

The optimal ROI and photon-energy range are found separately for each choice of DM

spatial distribution, mass, and final state. In this section, we briefly illustrate the generic

features of the optimal search region and its dependence on the theory hypothesis. Fig. 9

shows the obtained ROI and energy range for DM annihilation to bb̄ for each of the four

spatial distributions studied, and for a fixed DM mass of 25 GeV. For this final state, with

the exception of NFWc, where it is beneficial to look near the GC, the optimal regions

in the sky involve semi-circular regions, symmetric in latitude b, with the GC removed.

Furthermore, we find narrower optimal energy ranges for NFWc-distributed DM.

For the bb̄ final state, the effect of varying the DM mass is addressed in Fig. 10, where the

optimal regions are shown for two different masses: 350 GeV and 7 TeV, assuming NFWc-

distributed DM. As the DM mass is increased, the strongest optimal regions are obtained
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Figure 9. Count spectrum for 25 GeV DM annihilating to bb̄ for various DM density profiles. The vertical
(brown) lines show the optimal energy range for each DM model assumption. The inset shows the optimal
ROI. Note that PSF-convolution effects were included for the DM signal. The quoted 〈σv〉 is the annihilation
cross section that saturates the 95% C.L. from the data.

by including semi-circular regions in latitude, in addition to a rectangular area around the

GC. We note that finite-resolution effects were included, by convolving the instrument’s PSF

with the J-factors, in the DM signal for all of the results in Fig. 9 and Fig. 10.

C. Effect of Source Masking and Choice of Front-/Back-converting events on Limits

In this appendix we investigate the effect on the DM-cross-section upper limits when

masking known point sources and using front- and/or back-converting events.

Masking known sources reduces the observed counts in an ROI and can strengthen the
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Figure 10. Count spectrum for 350 GeV (left) and 7 TeV (right) DM annihilating to bb̄, assuming an
Einasto profile. The vertical (brown) lines show the optimal energy range for each DM-model assumption.
The inset shows the optimal ROI. Note that PSF-convolution effects were included for the DM signal. The
quoted 〈σv〉 is the annihilation cross section that saturates the 95% C.L. from the data.

DM constraints, assuming that the masking does not also remove much of a potential DM

signal. This is the case if the ROI is large, as it is expected to be for decaying DM, or for

annihilating DM with shallow DM density profiles (e.g., isothermal). Since astrophysical

point sources at very large energies (> 20 GeV) typically exhibit a small flux, their masking

is expected to improve the limits for lower DM masses. For very cuspy profiles the ROIs tend

to be small and concentrated around the GC region, where the number of known sources is

also large; in this case, masking all the point sources would remove most of the DM signal

as well and will thus not likely lead to stronger limits.

The amount of sky that needs to be masked to remove a point source depends on the

Fermi-LAT PSF, which depends on the energy and on where the photon converts in the

detector. In particular, photons that convert to an e+e− pair in the front part of the Fermi-

LAT (consisting of the first 12 layers of thin tungsten foil) have a better angular resolution

(smaller PSF) than those photons that convert in the back (next 4 layers of thick tungsten

foils). For very cuspy profiles the choice of including only front- or only back-converting

events, or both, could potentially have important effects on the constraints.

We obtain the point-source coordinates from the 3FGL catalog [95] and exclude all the

photons contained in pixels whose center lies within an angular radius of 2 θ68(E) from any

point source; here θ68 is an approximation of the energy-dependent P7REP 68% point-source
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Figure 11. Ratio of expected cross section upper limits vs. DM mass from simulated MC data
for DM annihilation to bb̄ for isothermal (left) and NFWc (right) profiles. The denominator of
the ratio, 〈σv〉F+B,s.m., is the cross section upper limit obtained when masking all known point
sources in the 5-year Fermi-LAT point-source catalog, outside a 2◦ × 2◦ square centered at the GC
and including front- and back-converting events. The numerators of the ratios, 〈σv〉i, are the cross
section upper limits obtained when masking all known point sources outside the 2◦× 2◦ GC square
(solid lines), masking only those sources detected at more than 10σ (outside the same 2◦ × 2◦ GC
square) (dashed lines), and masking no sources (dotted lines). In each case we either include both
front- and back-converting events (blue lines), only front-converting events (red lines), and only
back-converting events (green lines).

containment angle,

θ68(E)[◦] =

√
c2

0 (E/1 GeV)−2β + c2
1 , (C1)

and the parameters for (front-, back-) converting events are c0 = (0.645, 1.103) , c1 =

(0.0821, 0.166), and β = (0.762, 0.750). No source masking is performed within the in-

ner 2◦ × 2◦ square at the GC, where the density of sources is very high and the expected

DM signal peaks.

The effect on the cross-section upper limits versus DM mass, when masking known point

sources, and when including front- and/or back-converting events, is shown in Fig. 11 on

simulated data sets. The left (right) plot assumes DM annihilation to bb̄ for our choice of

an isothermal (NFW-contracted) density profile. We choose a shallow and cuspy profile to

see how the results depend on having either large or small optimized ROIs, respectively.

For each DM mass, and for each choice of source masking and inclusion of front-/back-

converting events, we optimize the ROI choice and derive the average limit obtained from
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the ten simulated MC data sets. In Fig. 11, we show a ratio of expected cross section upper

limits versus DM mass: the denominator of the ratios, 〈σv〉F+B, s.m., is the cross section upper

limit obtained when masking all known point sources as described above and including front-

and back-converting events; the numerators of the ratios, 〈σv〉i, are the cross section upper

limits obtained when masking all known point sources (outside the 2◦×2◦ GC square) (solid

lines), masking only those sources detected at more than 10σ (outside the same 2◦ × 2◦ GC

square) (dashed lines), and masking no sources (dotted lines). In each case we either include

both front- and back-converting events (blue lines), only front-converting events (red lines),

or only back-converting events (green lines).

We see from Fig. 11 that, at least for the two annihilation models considered in this

section, the expected limits are the same within O(10 − 30%). Moreover, the strongest

constraints are generically obtained when masking all point sources. For DM masses below

∼ 50 GeV and cuspy profiles, the inclusion of only front-converting events is expected to

provide the strongest constraints, but only marginally so. Above ∼ 50 GeV, the inclusion of

both front- and back-converting events is best, since the photons produced in the annihilation

of DM have such high energies that the PSF effects are negligible, and the inclusion of as

much data as possible leads to stronger expected limits.

Based on this, we conclude that the effect of source masking and choice of front-/back-

converting events is not large on our results. We also note that the inclusion of both event-

conversion types and the masking of point sources (blue solid line in Fig. 11) is expected

to give constraints that are among the best. We thus make this our standard choice when

showing the results in §4.

D. Inverse Compton Scattering

In this appendix we discuss how the results from §4 depend on the parameters in the

ICS computation performed in GALPROP. The amount of ICS radiation depends sensitively

on various key propagation parameters whose values are not known to a satisfactory degree.

Here we describe the effect on our constraints from varying these parameters in order to

capture some of the systematic uncertainties associated with the DM-generated ICS signal.

We study how different models of propagation impact our results. We use, as a start-

ing point, the Fermi-LAT results from [107], in which various propagation models are fit
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Figure 12. Ratios of cross-section upper limits from simulated data on DM annihilation to e+e−

for an NFW profile, including prompt and ICS radiations, for different values of the Galactic
magnetic field (left) and different combinations of other propagation model parameters (right).
The magnetic field has the largest effect on our analysis.

to cosmic-ray spectra for various choices of the region of containment of the cosmic rays

(parametrized with a cylindrical geometry of half-height zh and radius Rh). In our study,

we vary zh and Rh, and two other important parameters that have a big effect on the DM

ICS signal, namely the Galactic magnetic field value in the Solar System, B0, and the spatial

diffusion coefficient D0. The values used in our study are:

1. zh = 4, 6, 8, 10 kpc

2. Rh = 20, 30 kpc

3. D0 = D0,min, D0,max, where D0,min and D0,max are the minimum and maximum values

of D0 spanned by the various GALPROP models studied in [107] for a given (zh, Rh).

4. B0 = 1, 5, 10 µG

As an illustration of the dependence of the DM ICS signal on these parameters, Fig. 12

shows the constraint on DM annihilation to e+e−, assuming an NFWc DM profile. The

greatest effect on the uncertainty of the DM ICS signal originates from the variation in the

magnitude of B0, as clearly shown in the left plot. Varying the other parameters (right plot)

has less of an effect on the DM ICS signal. We are therefore allowed, when showing the

results in §4, to fix zh = 4 kpc and Rh = 20 kpc; whereas we show the variation of our results
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with B0 and correspondingly D0 = D0,min = 4.797× 1028 cm2/s for B0 = 1 µG (parameters

yielding the strongest constraints) and D0 = D0,max = 6.311 × 1028 cm2/s for B0 = 10 µG

(parameters yielding the weakest constraints).

E. Details on the Simulated data sets

The optimization procedure described in §3.4 to find the optimal ROIs and energy ranges,

[ROI, ∆E]O, is performed on ten simulated data sets, each a 5.84-year representation of the

γ-ray sky. Here we provide a few more details on the simulations.

The generation of mock Fermi-LAT observations was carried out with the gtobssim

routine, part of the Fermi Science Tools package v9r34p1. Its output is a list of MC-

simulated γ-ray events with relative spatial direction, arrival time and energy, distributed

according to an input source model and IRFs.

A number of model elements were put into gtobssim (see [108]). These include the Fermi-

LAT Collaboration’s model of the diffuse Galactic component,4 the isotropic component

(derived for Pass 7 Reprocessed Clean front and back IRFs),5 and the 3FGL source catalog

for point and small extended sources [95].

In addition, the full-sky simulations were calculated through gtobssim with the actual

pointing and livetime history (FT2 file) of the Fermi-LAT for the first 5.84 years of the

scientific phase of the mission. The source model simulated did not contain the Earth’s

Limb emission, which is negligible at energies above 1 GeV, compared to the celestial γ-ray

signal, when a zenith angle < 100◦ cut is applied. The gtobssim tool convolves the flux

components mentioned with the Fermi-LAT’s response, i.e. PSF, energy dispersion, and

effective area.

Ten instances of the MC gtobssim-generated data were run, each with an independent

starting seed and the same source model; thus obtaining ten statistically independent in-

stances of the γ-ray sky. The same event selection criteria were used for the MC data sets

as for the real data. One important difference between the simulated data sets and the real

data is the energy range. Each simulated data set was calculated in an energy range of

0.5 GeV to 500 GeV (as opposed to 1.5 GeV to 750 GeV for the actual data). The upper

bound of 500 GeV in the gtobssim simulations is the upper limit in the energy map of the
4 gll_iem_v05_rev1.fit
5 iso_clean_front_v05.txt and iso_clean_back_v05.txt
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Figure 13. Comparison between average MC-based expected (dashed) and real-data (solid) 95%
C.L. annihilation cross section upper limits on DM annihilating to bb̄ (left) and e+e− (right) for the
Isothermal (green), NFW (red), Einasto (blue), and NFWc (orange) DM density profiles (we only
consider prompt photons). The population standard deviations of the limits from the 10 individual
MC simulations are also shown as shadings around the dashed lines.

interstellar diffuse model [108]. To deal with this mismatch, we simply fit a power-law curve

to each of the ten simulated data spectra for 6.2 GeV< E < 460 GeV that we obtain for

each ROI, and extrapolate it to 750 GeV. (The lower value of 6.2 GeV is low enough to

have enough photons to perform a meaningful fit even for small ROIs, and high enough for

a single featureless power law to provide a reasonable fit to the spectra. The upper value of

460 GeV is low enough to avoid count leakages due to finite energy resolution on the sharp

500 GeV input-energy cutoff.) We then populate each bin above 460 GeV with a random

number of events chosen from a Poisson distribution whose expectation value equals the

extrapolated value in a given bin. The subsequent optimal ROI and energy range for each

theory hypothesis TH is found using the original plus extrapolated spectra.

F. Comparison of limits between simulated and real data

In this appendix we compare the results derived from the real data with those derived

from simulated data. Since our simulated data is of course not a perfect representation of

the real data, we do not expect that the limits derived on the real data will agree perfectly

with the limits derived on simulated data.

Fig. 13 compares the simulated and observed limit on DM annihilation to bb̄ (left plot)
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and e+e−, including only prompt photons, (right plot), for the four different DM density

profiles introduced in §2.1. Since the simulated data used in this study consists of 10

statistically independent realizations of the γ-ray sky, we present the arithmetic mean of

the 10 limits (dashed lines) and the standard deviation of the population (shaded bands),

as well as the observed limits (solid lines). We see that the limits derived using real versus

simulated data agree over a wide range of masses and profiles.
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