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We describe a simple class of cosmological models called α attractors, which provide an excellent fit
to the latest Planck data. These theories are most naturally formulated in the context of supergravity
with logarithmic Kähler potentials. We develop generalized versions of these models which can
describe not only inflation but also dark energy and supersymmetry breaking.

1. INTRODUCTION

The results obtained by WMAP and Planck attracted
growing attention to a mysterious fact that several differ-
ent cosmological models proposed many years ago lead to
almost exactly coinciding predictions, providing the best
fit to most of the presently available observational data.
This includes the Starobinsky model [1], the first model
of chaotic inflation in supergravity proposed more than
30 years ago by Goncharov and Linde (GL model) [2, 3],
and Higgs inflation [4, 5]. During the two years since the
Planck 2013 data release, several broad classes of such
models have been found and implemented in the context
of supergravity and superconformal theory. We called
them the cosmological attractors [6–11].

-15 -10 -5 0 5 10 15 ϕ

0.2

0.4

0.6

0.8

1.0

�

FIG. 1. Blue, brown and green lines show the potentials of the
T-models αµ2 tanh2 ϕ√

6α
for α = 1, 2, 3 correspondingly. For com-

parison, the red line in the center shows the potential of the GL
model [2], which is an α attractor with α = 1/9. The potential is
shown in units of αµ2, the field is shown in Planck units. Smaller
α correspond to more narrow minima of the potentials.

One of the most general classes of such models are α-
attractors [6–8]. The reason why these models can be
interesting for cosmology becomes apparent when one
studies their simplest representative, the T-models [6, 8]

LE =
√
−g
[

1

2
R− (∂φ)2

2(1− φ2/(6α))2
− m2

2
φ2

]
, (1.1)

where α can take any positive value. In the large α limit,
this theory coincides with the simplest model of chaotic

inflation with a quadratic potential. A canonically nor-
malized field ϕ in this theory is related to the original
field φ as follows: φ =

√
6α tanh ϕ√

6α
. In terms of the

canonically normalized field ϕ, this theory has a poten-
tial shown in Fig. 1:

VT = αµ2 tanh2 ϕ√
6α

, (1.2)

where µ2 = 3m2.
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FIG. 2. Predictions of the simplest α attractor T-models with
the potential V = αµ2 tanh2 ϕ√

6α
cut through the most interesting

part of the Planck 2015 plot for ns and r [12]. They are shown
as a purple vertical line starting at the predictions of the simplest

quadratic model m
2

2
φ2 for α > 103 (red star), going down through

r ∼ 0.05 for α = 25, r ∼ 0.027 for α = 10, through the predictions
of the Starobinsky model r ∼ 0.003 for α = 1, the predictions of
the GL model r ∼ 0.0004 for α = 1/9, and continuing all the way
down to r → 0 for α→ 0 (blue star). This line is shown for N = 60.

In the leading order in the inverse number of e-foldings
1/N , for α � N , the slow roll parameters ns and r for
T-models are

1− ns =
2

N
, r =

12α

N2
. (1.3)
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For large α, the prediction for ns practically does not
change, but the growth of r slows down: r ≈ 12α

N(N+3α/2)

[8]. The exact interpolating values of ns and r for the the-
ory V = tanh2 ϕ√

6α
are plotted in Fig. 2 by a thick purple

vertical line superimposed with the results for ns and r
from the Planck 2015 data release [12]. This line begins
at the point corresponding to the predictions of the sim-

plest quadratic model m2

2 φ
2 for α > 103 (red star), and

then, for α <∼ 40, it enters the region most favored by the
Planck data. For α = 1, these models give the same pre-
diction r ∼ 12/N2 as the Starobinsky model, the Higgs
inflation model [4], and the broad class of superconformal
attractors [6]. Then the same vertical line continues fur-
ther down towards the prediction r ∼ 4/3N2 of the GL
model [2, 3] corresponding to α = 1/9. Then it goes even
further, all the way down to r → 0 in the limit α → 0.
The blue star in Fig. 2 covers simultaneously all above
mentioned models with α <∼ 1.

One can show that not only ns, but also the amplitude
of scalar perturbations in this class of models in the large
N limit does not depend on α; it depends only on N and
µ. For N = 60, this amplitude matches the Planck 2015
normalization if µ ≈ 10−5.

Moreover, for sufficiently small α <∼ O(1), the predic-
tions of α-attractors in the large N limit almost do not
depend on whether we take the potential tanh2 ϕ√

6α
, or

use a general class of potentials f2(tanh ϕ√
6α

) for a rather

broad set of choices of the functions f . This stability of
predictions, as well as their convergence to one of the
two attractor points shown in Fig. 2 by the red and
blue stars, is the reason why we called these theories the
cosmological attractors. The latest Planck 2015 result
ns = 0.968± 0.006 [12] almost exactly coincides with the
prediction of the simplest T-models for N = 60. These
properties of T-models are quite striking. Since their pre-
dictions can match any value of r from 0.14 to 0, see Fig.
2, these models may have lots of staying power.

As we already mentioned, the first model of this class
was found more than 30 years ago [2]. Later on, it was
nearly forgotten because the plateau potentials have not
been popular at that time. It took some time until the
original version of the Starobinsky model [1] was reformu-
lated as the theoryR+R2 and cast in the form with a very
similar plateau potential for ϕ > 0. It took even longer
until we learned several different ways to solve the prob-
lem of initial conditions for such models [13]. The general
class of T-models and their attractor behavior were dis-
covered only very recently. From the point of view of
the theory of fundamental interactions, it is interesting
that these models naturally appear in the context of con-
formal and superconformal theories. In this context, the
parameter α is related to the inverse curvature of the
Kähler manifold [7–9]. The attractor behavior resulting
in stability of predictions with respect to various defor-
mations of potentials is a result of a nontrivial structure

of the moduli space with a boundary [6, 8]. Equivalently,
one can interpret the existence of attractors as a conse-
quence of the existence of a pole in the kinetic term for
the inflaton field in (1.1) [11].

Now that inflationary predictions of α-attractors are
well understood, one may wonder whether one can take
a next step and generalize these models to achieve two ad-
ditional goals. First of all, the potentials V ∼ tanh2 ϕ√

6α

vanish in the minimum at ϕ = 0, but we would like
to describe a universe with a tiny but non-zero vac-
uum energy V0 ∼ 10−120. Secondly, many particle phe-
nomenologists assume that we live in the world with
weakly broken supersymmetry, with the gravitino mass
m3/2 ∼ 10−13 − 10−15 in Planck units. This assump-
tion of the low value of SUSY breaking will be tested at
LHC during the next few years. However in the simplest
supergravity versions of the T-models supersymmetry is
unbroken, m3/2 = 0.

This is not a real problem since the difference between
10−120, 10−13 and 0 is pretty small, so we are almost
there already. One can always make a small remaining
step by adding some new fields to the system, such as the
Polonyi fields, to break SUSY and uplift the potential, see
e.g. [14]. However, this would force us to study a com-
bined evolution of many moduli fields and strongly sta-
bilize the Polonyi field to avoid the cosmological Polonyi
field problem, which bothered cosmologists for more than
30 years.

An alternative solution is to utilize new possibilities
offered by the recent cosmological constructions involv-
ing a nilpotent chiral multiplet which describes a Volkov-
Akulov goldstino fermion [15–17] and has no fundamental
scalars, see [18–22] for cosmological applications.

This possibility can be studied for T-models models us-
ing canonical Kähler potentials such as (Φ − Φ̄)2. How-
ever, even though it is possible to reproduce T-models
in theories with such Kähler potentials, the main fea-
ture defining α-attractors (a singular boundary of the
moduli space) does not naturally emerge in this context.
Therefore in this paper we will concentrate on logarith-
mic Kähler potentials, which more naturally appear in
the context related to extended supergravity and string
theory and naturally lead to attractor models. In this
paper we will only briefly describe the main results of
our investigation, leaving many details for a subsequent
publication [23].

2. T-MODELS WITH UNBROKEN SUSY AND
VANISHING VACUUM ENERGY

Here we will describe a supergravity realization of a
T-model based on the theory of the field Φ coupled to
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the field S with the following Kähler potential:

K = −3 log
(

1− ZZ̄ +
α− 1

2

(Z − Z̄)2

1− ZZ̄
− SS̄

3

)
. (2.4)

The simplest T-model has a superpotential

W =
√
αµSZ(1− Z2) . (2.5)

The field S can be stabilized at S = 0 by adding to the
Kähler potential a term of the form (SS̄)2. Alterna-
tively, one can take a nilpotent superfield S, satisfying
S2(x, θ) = 0 condition. In both cases the potential of
the field z = Re Z in this theory expressed in terms of a
canonically normalized inflaton field ϕ is

V (z) = αµ2z2 = αµ2 tanh2 ϕ√
6α

, (2.6)

where z = tanh ϕ√
6α

. Vacuum energy vanishes and super-

symmetry is unbroken in the minimum of the potential
with S = 0, Z = 0.

A different supergravity embedding of the α-attractor
T model with an identical inflaton potential was given
earlier in [8]:

K = −3α log
(

1− ZZ̄ − SS̄

3α

)
(2.7)

and

W =
√
αµSZ (1− Z2)(3α−1)/2 . (2.8)

In some cases, one should add terms such as SS̄ (Z−Z̄)2

1−ZZ̄

or SS̄ (Z−Z̄)2

(1−ZZ̄)2
to the Kähler potential for stabilization of

the imaginary component of the field Z.

At the minimum at ϕ = 0 in this model supersymmetry
is unbroken, DZW = DSW = W = 0. This is fine if
the field S is stabilized at S = 0 in accordance with [8].
However, if one would like to use a nilpotent field S, one
should break SUSY at the minimum, which is what we
were planning to do anyway.

3. T-MODELS WITH BROKEN SUSY AND
NON-VANISHING VACUUM ENERGY

If we want to use the same class of models, but de-
scribe simultaneously two other effects, SUSY breaking
and non-vanishing cosmological constant, we should be
prepared to pay the price. One can use the same Kähler
potentials (2.4), or (2.7), but one should modify the su-
perpotential. Technically it means that W must contain
a term independent on S, in addition to the term lin-
ear in S, which was already present in inflationary mod-
els. Since we deal with α-attractors, one can make some

changes in the inflaton potential without altering the ob-
servational predictions. Therefore one can make the cor-
responding modification in several different ways. One
option is to achieve a modification which reproduces ex-
actly the same potential αµ2 tanh2 ϕ√

6α
in the limit of

small SUSY breaking. Yet another possibility is to allow
modifications of the potential which do not change the
observational predictions.

A. Preserving the inflaton potential

In order to reproduce the potential αµ2 tanh2 ϕ√
6α

(up

to term with susy breaking in de Sitter vacua), one can
take

W =

√
αµ

2
X3
(
X

3
√
α

2 − cX−
3
√
α

2

)(
S +

1

b

)
. (3.9)

Here X ≡ 1−Z2, and c = 1− 2M√
αµ

. For the special case

α = 1, the superpotential of our model takes a simple
form

W =
( µ

2
(X3 − 1) +M

)(
S +

1

b

)
. (3.10)

A way to derive these expressions will be explained in
a subsequent more detailed publication [23]; here we only
present our main results. Leaving only the leading terms
in the expansion in small parameters M and b2 − 3, one
finds the inflaton potential

V = αµ2 tanh2 ϕ√
6α

+M2(1− 3/b2) + ... (3.11)

The last term provides the required uplifting to a dS
vacuum with a cosmological constant V0 ∼ 10−120. This
term can be neglected during inflation. At the minimum
at ϕ = 0, supersymmetry is spontaneously broken,

DSW = M , DZW = 0 , m3/2 =
M

b
, (3.12)

and vacuum energy is non-zero,

V0 = M2 − 3m2
3/2 = M2

(
1− 3

b2

)
. (3.13)

Note that the uplifting is proportional to M2, so dS up-
lifting is possible only because supersymmetry is sponta-
neously broken at the minimum.

Thus the main difference between the earlier model
(2.5) and the new model (3.9) is in the structure of
the superpotential involving two new parameters, SUSY
breaking parameter M and the parameter b control-
ling the value of the cosmological constant Λ = V0 =
M2

(
1− 3/b2

)
. In earlier models of inflation in super-

gravity such as (2.5) the minimum of the potential typ-
ically was in a state with Λ = 0 and unbroken super-
symmetry with DW = 0 in all directions in the moduli
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space. The origin of the universal positive contribution
M2 canceling the negative gravitino term −3m2

3/2 in the

potential (3.13), is the consequence of the presence in our
models of the purely fermionic goldstino multiplet [15] of
the Volkov-Akulov type.

Alternatively, one may consider models with the
Kähler potential (2.7) and a slightly different superpo-
tential,

W =

√
αµ

2
X3α

(
X

3
√
α

2 − cX−
3
√
α

2

)(
S +

1

b

)
. (3.14)

Here, as before, X ≡ 1 − Z2, and c = 1 − 2M√
αµ

. SUSY

breaking is described by (3.12) and the potential is given
by eq. (3.13).

The inflaton potentials are the same in both cases, but
in (3.9) the stabilization of the inflationary trajectory
occurs automatically (i.e. without adding stabilization

terms such as SS̄ (Z−Z̄)2

1−ZZ̄ ) for small α, whereas in the

models (3.14) stabilization occurs automatically for large
α [23].

B. Modifying the inflaton potential while
preserving the cosmological predictions

Now we will consider a model with a different super-
potential with Kähler in (2.4):

W = X
(1

b
X + S

)
(
√
αµZ2 +M) , (3.15)

withX = 1−Z2. In this theory, just as in the model stud-
ied above, the magnitude of uplifting and SUSY breaking
parameters are given by (3.12), (3.13). Meanwhile the ex-
pression for the inflaton potential for b2 ≈ 3 and M � µ
is somewhat different:

V (z) =
µ2z2

9
(4− 16z2 + 3(7 + 3α)z4 − 9z6) , (3.16)

where z = tanh ϕ√
6α

. However, the height of the potential

at the boundary of the moduli space at z = 1 remains
the same as in the theory (2.6): V (1) = αµ2. Therefore
one can show that due to the magic of α attractors, the
observational predictions of this model remains the same
as in the simplest model (2.6). As we will show in a
separate publication, it happens not for all values of α,
but it does happen in the two most interesting cases, for
α = O(1) and for α � 1. An advantage of this version
of the model is that the superpotential is represented by
a rather simple function, and the Kähler potential does
not require any stabilization terms.

The same inflaton potential (3.16) can be obtained
also in the theory with the Kähler potential (2.7) with a

slightly modified superpotential:

W = X
3a−1

2

(1

b
X + S

)
(aµZ2 +M) , (3.17)

with the dS uplifting given by (3.13).

C. Models with logarithmic superpotentials

One can obtain the T-model with the simplest poten-
tial (2.6) using an alternative approach, which is based
on a Kähler potential containing both the logarithmic
and the power law part:

K = −3 log
(

1− ZZ̄ +
α− 1

2

(Z − Z̄)2

1− ZZ̄

)
+ SS̄ . (3.18)

This is achieved by using the superpotential which has a
ln(1− Z2) contribution

W = X
3
2

(√3α

2
µ b lnX +M

)(1

b
+ S

)
, (3.19)

where X = 1−Z2. The potential at the minimum at Z =
0, and the parameters describing SUSY breaking, as in
all of our models, are given by (3.12). Thus when b =

√
3

the cosmological constant vanishes. The axion field Z−Z̄
is heavy during inflation where the potential depends on
z = tanh ϕ√

6α
and the inflaton potential at b2 = 3 (i.e.

ignoring the uplifting) is described by equation (2.6). Yet
another way to reach the same goal is to use a different
Kähler potential,

K = −3α log
(

1− ZZ̄
)

+ SS̄ (3.20)

and a slightly different superpotential,

W = X
3α
2

(√3α

2
µ b lnX +M

)(1

b
+ S

)
. (3.21)

In both cases, the inflaton potential is simple, as in Sec-
tion 3 A, but the price for this simplicity is the “hybrid”
form of the Kähler potential involving both canonical and
logarithmic terms, and the presence of an unusual loga-
rithmic term in the superpotential.

4. E-MODELS

Yet another class of α-attractors is equally interesting.
Instead of explicit dependence on tanh2 ϕ√

6α
, the poten-

tial of such models depends on e−
√

2
3αϕ. Therefore in

this paper we will call them E-models. The potential in
the simplest class of such models is given by

VE = αµ2
(

1− e−
√

2
3αϕ
)2

. (4.22)
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For α = 1, this potential coincides with the potential
of the Starobinsky model. A consistent implementation
of E-models in supergravity for general α was found in
[7, 8]. Predictions of these models are shown in Fig. 3.
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FIG. 3. Predictions of E-models with V ∼ (1− e−
√

2
3α
ϕ

)2. They
are shown as a thick blue curve starting at the predictions of the

simplest quadratic model m
2

2
φ2 for α > 103, going down through

the predictions of the Starobinsky model r ∼ 0.003 for α = 1, the
predictions of the E-model generalization of the GL model (5.32)
r ∼ 0.0004 for α = 1/9 and continuing all the way down to r → 0
for α → 0. This line is shown for N = 60. The red circles, from
bottom up correspond to α = 10, α = 102 and α = 103.

As we see, predictions of T-models and E-models are
similar, but not identical. The difference follows from the
different shape of the inflationary potentials, see Fig. 1
and Fig. 4.

0 5 10 15 ϕ

0.2

0.4

0.6

0.8

1.0

�

FIG. 4. E-model potential αµ2(1−e−
√

2
3α
ϕ

)2 in units of αµ2 = 1
for α = 1, 2, 3, 4. Smaller α correspond to more narrow minima of
the potentials.

The simplest E-model (for b2 = 3 with V = 0 at the
minimum, for simplicity) has the Kähler potential [9]

K = −3 log
(
T + T̄ +

α− 1

2

(T − T̄ )2

T + T̄

)
+ SS̄ , (4.23)

and superpotential

W =

√
2T

3
(1 +

√
3S)
(

3µα (T lnT − T + 1) + 2MT
)
.

(4.24)
The inflaton potential in terms of the canonically nor-
malized field ϕ is given by (4.22). For the particular case
α = 1, this model was presented in [22]; its potential co-
incides with the potential of the Starobinsky model. Our
generalization of this model allows to describe all points
along the blue line in Fig. 3. As one can see from this
Figure, the predictions of these models are in very good
agreement with the Planck 2015 data for α <∼ 102.

Alternatively, one can use the purely logarithmic
Kähler potential (2.4) and the superpotential

W =
(√
αµZ2 +M

)( 1√
3

(1 + 2Z)(1−Z)2 +S(1−Z2)
)
.

(4.25)
The potentials of these models are more complicated than
(4.22), but they lead to the same observational predic-
tions as the simplest E-models (4.22) for α = O(1) and
for α� 1. An advantage of such models is the absence of
a rather unusual logarithmic term in the superpotential
(4.24).

5. A SPECIAL CASE: GONCHAROV-LINDE
MODEL WITH α = 1/9

We will conclude this paper with a discussion of the
GL model [2, 3]. From the point of view of the gen-
eral classification outlined above, this model represents a
single-field α-attractor with α = 1/9. Original formula-
tion of this model was based on the theory with

K = −1

2
(Φ− Φ̄)2 , W =

µ

9
sinh
√

3Φ tanh
√

3Φ .

(5.26)
This model has an interesting superconformal interpre-
tation to be discussed in a more detailed version of this
paper. The inflaton potential in this model is given by

V (φ) =
µ2

27

(
4− tanh2

√
3

2
ϕ
)

tanh2

√
3

2
ϕ . (5.27)

It has a minimum at ϕ = 0, where it vanishes, see Fig.
1. At ϕ >∼ 1, the potential coincides with

V (ϕ) =
µ2

9

(
1− 8

3
e−
√

6|ϕ|
)
, (5.28)
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up to exponentially small higher order corrections

O(e−3
√

6|ϕ|) [2]. These corrections can only lead to higher
order corrections in 1/N to ns and r, where N ∼ 60 is
the number of e-foldings. With our definition of the pa-
rameter µ, the potential of this model matches the nor-
malization of other α models in this paper, so that V
asymptotically approaches αµ2 = µ2/9. This model pre-
dicts ns = 1 − 2

N ≈ 0.967 and r = 4
3N2 ≈ 4 × 10−4 for

N ≈ 60, in excellent agreement with the Planck 2015
data. It can describe not only inflation but also dark
energy and SUSY breaking if one adds to it a nilpotent
chiral multiplet with superpotential [3].

Interestingly, the model with the GL inflaton potential
(5.27) can be also obtained in the context of α-attractors
with a single-field logarithmic Kähler potential

K = −3 log
(

1− ZZ̄ +
α− 1

2

(Z − Z̄)2

1− ZZ̄

)
(5.29)

with α = 1/9. The superpotential in this representation
of the GL model is particularly simple:

W =
µ

9
Z2 (1− Z2) . (5.30)

One can easily check that the inflaton potential of this
model coincides with the potential of the original version
of the GL model (5.27), which is a T-model shown by the
red line in Fig. 1.

GL model allows various generalizations [3], which look
especially simple in our approach. For example, if one
one multiplies the superpotential (5.30) by 1 + cZ with
|c| � 1, the height of the plateau of the inflaton potential
at ϕ > 0 will be different from its height at ϕ < 0.
Furthermore, if one takes

W =

√
2

3
µZ2 (1− Z) , (5.31)

one finds the potential of an E-model

V (ϕ) =
µ2

9

(
1− e−

√
6ϕ
)(

1− e−2
√

6ϕ
)
. (5.32)

Note that unlike the original GL model, the potential of
this model depends not on |ϕ| but on ϕ. This potential
blows up at large negative ϕ, has a minimum at ϕ = 0,
and approaches a flat plateau at large positive ϕ, just
as the family of potentials of E-models shown in Fig. 4.
This model has the same observational predictions as the
original GL model.

Note that the field S is not required for the consistency
of this family of models, which makes them most econom-
ical. However, the nilpotent field S helps to break super-
symmetry and uplift the minimum of the inflaton poten-
tial. This can be achieved, for example, by using the
Kähler potential (2.4) and adding a simple S-dependent
term to the GL superpotential (5.30):

W =
µ

9
Z2 (1− Z2) +M(S + 1/b) . (5.33)

This theory has the SUSY breaking parameters and the
vacuum energy given by (3.12), (3.13). Thus in this sim-
ple model one can simultaneously describe inflation, dark
energy/cosmological constant, and SUSY breaking of a
controllable magnitude.

6. DISCUSSION

In this paper we discussed simplest models belonging
to the general class of α attractors. These models lead to
cosmological predictions providing excellent match to the
latest cosmological data for a very broad range of α. We
described several different ways to implement such mod-
els in supergravity in a manner directly related to their
attractor nature. We also developed a set of α-attractors
describing not only inflation but also dark energy and
supersymmetry breaking of a controllable strength. A
more detailed description of our results will be given in
the subsequent publication [23].

The flexibility of the scale of supersymmetry break-
ing in these models may be important for considering an
interplay between the cosmological data and the future
data from LHC. The often made assumption of a small
scale of SUSY breaking usually requires small reheating
temperature, to avoid the cosmological gravitino prob-
lem. This constraint is removed if the gravitino mass is
sufficiently large, in the range of 102 TeV or above. In
its turn, the reheating temperature affects the required
number of e-foldings, and therefore the value of ns. This
effect is not large, but it may become noticeable with an
increase of precision of the measurement of the cosmolog-
ical parameters. In this way the results to be obtained at
LHC may help us to optimize our choice of inflationary
models based on supergravity.
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