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I. INTRODUCTION

Despite the various astrophysical observations in support of its existence [1, 2], the nature of
dark matter still remains an open question. Of the various candidates for dark matter, one of the
most compelling is the Weakly Interacting Massive Particle (WIMP) [3-7], with a mass ranging
from a few GeV to 10 TeV. In fact, when the WIMP annihilation rate falls below the Hubble
expansion rate, the chemical equilibrium between WIMPs and the primordial plasma is no longer
maintained, and the number of WIMPs per comoving volume naturally fixes to the value required
for explaining the present abundance of cold dark matter. Although chemical equilibrium at
this stage is no longer maintained, kinetic equilibrium between dark matter and the plasma is still
achieved through a high momentum exchange rate [8-16]. Eventually, when the Hubble rate equates
the scattering process rate, WIMPs kinetically decouple from the plasma and flow with a given free-
streaming velocity. This velocity sets the lowest value for the size of protohalos, which determines
the subsequent evolution of primordial structures [17-23]. In particular, Bringmann [13] defined
the temperature of the kinetic decoupling Tjq in the standard cosmological scenario, while Gelmini
and Gondolo [21] defined Tiq in the Low-Temperature Reheating (LTR) cosmology following a
dimensionality reasoning.

In this paper, we present a full solution of the evolution equation governing the process of the
kinetic decoupling, and we generalize the definition of the temperature of kinetic decoupling and
the average kinetic energy of WIMPs in a generic non-standard cosmological model. This paper is
organized as follows. In Sec. II, we solve the evolution equation for the WIMP kinetic energy in
a generic cosmological background, and we apply our results to the standard radiation-dominated
scenario in Sec. 111, to a power-law cosmology in Sec IV, and to a broken power law cosmology in
Sec. V. In particular, we discuss the Low Temperature Reheating (LTR) scenario in Sec. VB and

the kination scenario in Sec. V C. We summarize our results in Sec. VI.

II. GENERAL SOLUTION OF THE TEMPERATURE EQUATION FOR DARK
MATTER IN A THERMAL BATH

The scattering process between plasma at temperature 7" and WIMPs of mass M, > T can
be described by a Brownian motion in momentum space. The momentum transfer Ap and the

average momentum of the dark matter particles p are related by

p= /N Ap, (1)



where NN, is the number of collisions required to change the momentum by p. Since p ~ /M, T
is much larger than the average momentum transfer Ap ~ T, the number of collisions required
to appreciably change the momentum of WIMP is N, = (p/Ap)? ~ M, /T > 1. The momentum
exchange rate I' is suppressed with respect to the elastic collision rate I'qy by a factor T/M,,.
Thermal decoupling of WIMPs occurs at a temperature Tiq approximatively given by H (Tyq) ~ T,
where H = H(T) is the Hubble expansion rate at temperature 7. A more precise way to define
Tkq consists in using Boltzmann’s equation [8, 10-14, 16], which does not require the dark matter
to be treated as a perfect fluid. In particular, Ref. [14] discussed the Boltzmann equation under
the generic assumptions of a heavy dark matter particle with M, > T and with small momentum
transfer per collision Ap < p, obtaining a Fokker-Planck equation for the dark matter particle
occupation number f, = fX(pX),
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The momentum relaxation rate y(7T') is defined in terms of the scattering cross section between the
WIMP and each relativistic species in the plasma at temperature 7', see Eq. (2) in Ref. [16]. Here
we are not interested in the specific form of v(T"), since we are interested in a general solution to
Eq. (2). We only assume that v(7") monotonically increases with 7.

Defining the WIMP kinetic temperature Ty as 2/3 of the average kinetic energy of the dark

matter particle,
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and using the Fokker-Planck Eq. (2) with the approximation 1 & f, ~ 1 and the Hubble rate

H = a/a, it can be shown that T satisfies the differential equation [14, 16]

dT. 2y(a)
ad—6;<+2TX:— 7 (D= T). (4)

Eq. (4) is the central equation we consider in this paper. Refs. [12] and [13] present analytic
solutions to Eq. (4) in the standard cosmology and for v(7") proportional to a power of T, while
in Ref. [16] Eq. (4) is solved numerically in the standard cosmology and in the presence of quark
interactions. Here, we solve Eq. (4) in terms of analytic expressions for a generic cosmological
model.

The scattering of the WIMP particles off the plasma is regulated by the function

T(T) = % (5)



in terms of which we rewrite Eq. (4) as
drT
a—=+ 20+ 0(T)) Ty, =2X(T)T. (6)

The general solution for 7\ must satisfy the following boundary conditions. For ~(7) > H(T),

WIMPs are tightly coupled to the plasma and the kinetic temperature approaches
aT), = constant, (7)

from which, using Eq. (6), we obtain the behavior

T
T—TXQT(XT)—)O, or T\, ~T, forT — oo. (8)

In the opposite limit v(T") < H(T'), WIMPs decouple from the plasma, and Eq. (4) reduces to

dT.
a d—aX + 27, =0, (9)
with solution
a® Ty, = const. (10)

A. Analytic expression for the kinetic temperature T,

We solve Eq. (6) by the method of undetermined coefficients, by first considering the homoge-

neous equation associated with it,

(hom)
T,
D

S+ 2[1+ T(T)] Ttom) =g, (11)

whose solution from the initial value of the scale factor a; to a is

h _ plhom) (3i\? _Glaa,
7o) (q) = T, <E> e~ Glaai), (12)
Here, Ti(hom) =T éhom) (a;) is a constant temperature that will disappear from the full solution, and

we have defined the function
a d "
Gla,d') = 2 / 1 % (13)

which satisfies the relation

G(a,d’) = G(a,d") + G(a",d"), fora<ad” <d. (14)



Notice that, when expressed as a function of time, Eq. (13) is simply given by

Gt,t)=2 /t y(t") dt". (15)

The particular solution to Eq. (6) is obtained by using the method of undetermined coefficients,

TP (a) = T8O (a) i(a), (16)
where the function 4(a) satisfies
a Thom) (q) dz(aa) = 27(a) T(a), (17)
The solution to Eq. (17) is
TP (q) = % / e @)Y (a') T (d') a da. (18)

The complete solution to Eq. (6) that satisfies the condition T\ (a;) = Ty, is the sum of the

homogeneous and particular solutions,
_ ai\? —G(a,a;) 2 ¢ —G(a,a’) / N1
Ty(a) =Ty (—) e 7% + — e )Y (a')T'(a')a' da'. (19)
a a* Ja,
Eq. (19) provides the value of the kinetic temperature T} as a function of the temperature of the
Universe T for a generic cosmological model. Integration by parts of Eq. (19) using de=Clad) —
e~ G2 (a/)da' /o’ gives the alternative form

aiz—aa- a—aa’d a/2
Ty(a) = T(a) + (Tyi — T;) (—) e~ Gl 1)_/. e~ Gl )@ [<—> T(a')

a

Here T; = T'(a;) is the initial plasma temperature.

Another alternative form of the solution is obtained by introducing the indefinite integral

s =2 [ 2% (21)

a

which is defined apart from a constant that disappears from the solution. The integral in Eq. (13)

can then be written as
G(a,d') = s(a) — s(d’). (22)

Eq. (19) in terms of the variable s = s(a) is rewritten as

a;\ 2 A /
T, =Ty (;) e’ % — / <—> e* T (s')ds, (23)

a

where s; = s(a;).



When the initial condition a; — 0, the exponential term in the homogeneous solution of Eq. (19)

drops to zero, while the product a; T; remains constant because of the limit in Eq. (8), yielding

2 @ /
Ty(a) = ) /0 e~ @A) v ()T (d) d dd’, if a; — 0. (24)

Equivalently from Eq. (20), using 7); = T; at very small a;,

T\(a) = T(a) — /Oa e~ Glaa’) % [(%)2 T(a")

Since a’ T'(a’) — const for a’ — 0, the derivative in the integrand remains finite in the limit of tight

da/,  ifa; =0, Tyy=T,. (25)

coupling, while the exponential term drops to zero because of the limit in Eq. (8). Thus, T\ = T

in the tightly coupled limit.

B. Temperature of kinetic decoupling

The temperature of kinetic decoupling Tyq expresses the temperature of the plasma at which

the kinetic decoupling of WIMPs occurs. Here, we use the definition [16],

¥(Tka) = H(Tka), (26)

where H(Tyq) is the Hubble expansion rate when WIMPs decouple kinetically from the primordial
plasma. In the literature, different definitions of the temperature of kinetic decoupling can be
found. In Bertschinger [12], the definition of the temperature 7}2 differs from our Eq. (26) by a

factor of two,
1T = 2 H(T), (27)

while another definition of Ti4 is given by equating the rate of heat transfer equal to the Hubble
expansion rate, 2v(Txq) = H(Tikq)-
Bringmann and Hofmann [13] define the temperature of kinetic decoupling as

T2
TEH = = (28)
X 1T—0

Although the four definitions for Tiq yield the same dependence on T, up to a numerical constant,
there are some conceptual differences between them. The definition in Eq. (28) depends in principle
on the moment at which the temperature of KD is computed, and requires knowledge of the
evolution of the universe at late times, far after kinetic decoupling. Instead, the definition we
adopted in Eq. (26) and Eq. (27) depend on the properties of the WIMP-radiation coupling only,
through +(7"), and on the cosmology through H(T'). As we show below, these expressions can be

generalized to the case in which the cosmology is not in the form of a power-law model.



III. STANDARD COSMOLOGY

In the standard radiation-dominated cosmology, it is common to parametrize the total energy
density p(T') and the total entropy density s(7) in the universe with the so-called energy and
entropy degrees of freedom ¢(T') and g,(T'), respectively, defined so that

w2 472
=TT s(T) = T a1 T

90 (29)

p(T)

The Friedman equation and entropy conservation then give the relations

3
H(T) = H™Y(T) = T%/ 4Z5G9(T), a®T3g,(T) = const, (30)

where H™(T) is the Hubble rate in the radiation-dominated cosmology. The scale factor depends

on temperature as

1dln g,
« T <1+§dlnT>' (81)

It follows that

N w45 Ty LdIng (T")\
G(T,T) = G(a,a) = 7T3G/T Tﬂg\/m 1+ gW dr”. (32)

and the WIMP kinetic temperature is

T29(T)*?  _camy (7 —cary T2gs(T)*3 2dIngs(T") /
Iy=T+ (I — T3) T2, (T2 © ’ —/T e T'2gs(T')2/3< AT >dT.

(33)
We have presented these formulas as they may be useful when implementing these expressions in

dark matter numerical codes like DarkSUSY [24] and micrOmegas [25].

IV. POWER-LAW COSMOLOGICAL MODEL

In this section we consider models in which the Hubble rate H, the scale factor a, and the
momentum relaxation rate v have a power law dependence on the plasma temperature T'. More

specifically, we consider a dependence of the Hubble rate on temperature of the form

H(T) = H; <%>U (34)

where v is a positive constant, and T; and H; are the temperature of the plasma and the expansion
rate at the time at which we start considering the cosmological model. For the dependence of the

scale factor on the temperature we write

a®T = const. (35)



Equating Egs. (34) and (35), we obtain the relation

H(a) = H; (%)"“ (36)

where a; is the scale factor at temperature 7T;. Notice that, in the radiation-dominated cosmology
for which ¥ = 2 and a = 1, the temperature of the plasma drops as T o a~', while the WIMP
temperature drops at a faster rate T} o a~2. For the momentum relaxation rate ~v(T') we assume

a power-law function of the form

YT) = <£>4+n : (37)

where v; = v(T;). In some models, the exponent n is related to the low relative velocity v of the

Miorward off harticles in the plasma,

forward WIMPs scattering amplitude
|mborvard|2 — congt o™, (38)

Finally, in power-law models, Eq. (5) is given by

44+n—v
vy T a;\ «(4+n—v)
T=2_—1, <f> _ (-) , (39)

where Y; = v, /H;.

A. Kinetic temperature

Using the definition in Eq. (21) in the power-law model, we find

ZTZ i a(44+n—v)
ﬁ(l—) , ford+n+#v,
s(a) = ad+n—v a (40)
—27; In <£> , ford+n=w.

In the first line, we have fixed the arbitrary constant in the definition of s(a) so that s(a) is a power

law. It is interesting to observe that for 4 +n # v

2 Y
s:mﬁ. (41)

Plugging Egs. (36), (35), and (22) into Eq. (23), computing the integrals, using the identity
Fl1+rz)=rl(rz)+a"e ", (42)

and defining

2 —«
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we find
Ty=Ts"e [T (1—\s)+AD(=\s)], for 4 +n # v, (44)
and
a;\2+27; 27, T a;\2+2Ti—a B

To the best of our knowledge, the expressions in Eqgs. (44-45) have never been derived for the case
of an arbitrary power-law model. In Appendix A, we show how to obtain the result in Eqs. (44-45)
from solving the differential Eq. (6) directly.

If the initial scale factor a; is taken so far back in time that the WIMPs are initially tightly

coupled to the primordial plasma, then v; > H; and s; — +00, and we obtain
Ty =Ts*e T(1—-\s). (46)

Eq. (46) is a generalization of the relation obtained in Ref. [12] for any cosmological power-law

model and for any value of the partial wave number n.

B. Tkq in the power-law model

Using the expressions in Eqs. (34) and (37) and the definition of the temperature of the plasma
at which the WIMP decouples kinetically, Eq. (26), we obtain for 4 + n # v,

a1
Twa=T; 7T, """ (47)

while in the case 4 + n = v we find the constraint v; = H;, for which no solution for Tiq exists
if this condition is not satisfied at all temperatures. In the literature, different definitions of the
temperature of kinetic decoupling can be found. If we were to use the definition in Eq. (27), we

would obtain

Eq. (53) below shows that the definition in Eq. (48) is obtained by setting the variable s = 1 in
the standard cosmology, for the case of a p-wave.

Finally, the definition in Eq. (28) applied to the power-law model discussed in this section gives
T 151H = 0, unless in the particular case a = 1 to which radiation-dominated cosmology belongs to.

For this reason, we suggest to modify the equivalent definition in Eq. (28) as

2
T2 [T\«
TVE = 2L <—> , 49

T—0
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Plugging Eq. (46) for T}, valid for 4 +n # v, in the definition in Eq. (49), gives

e set | st g (50)
T T —=Ns)|pye ¢ TA—X)"

where s; is a temperature-independent quantity defined by the relation in Eq. (51) as

2

T ;. (51)

54

As anticipated in Sec. II B, the three results in Egs. (60), (48), and (50) have the same dependence
on T;, up to a numerical constant. However, the definition in Eq. (49) depends in principle on the
moment at which the temperature of KD is computed, unlike the definition we adopted in Eq. (26)
which only depends on the properties of the WIMP-radiation coupling through +(7") and on the
cosmology through H(T'), and can be generalized to the case in which the cosmology is not in the

form of a power-law model.

C. Radiation-dominated cosmology

In the standard radiation-dominated model & = 1 and v = 2, Eq. (43) gives A = 1/(2 + n).
Using the identity in Eq. (42), the limit for 7}, expressed in Eq. (46) gives the same result as Eq. (4)
in Ref. [13],

= 1+n 1 e 1
T, =Tsp esRI‘<2+n,sR> =T [1—2_1_71631?8}2%+ F<—2+—n,83>:|, (52)
where the variable s defined in general through Eq. (21) reduces in the radiation-dominated cos-

mology to

2
24n

SR = (53)

|-

In addition, when we consider p-wave scattering (n = 2) in a radiation-dominated model, then

sgp =/2H, and we obtain Eq. (12) in Ref. [12],

T, =Ts/*enT (Z sR> : (54)

D. Late time behavior

When the plasma temperature is much smaller than T;, the late-time behavior of Eq. (44) gives

Ty, =T; s} <%>§ L(1-X\). (55)
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In a cosmological model that approaches the radiation-dominated scenario where o = 1 and v = 2,

Eq. (55) reads

1
T? (20, \% _ (1+4n
T, = — T .
T <2+n> <2+n> (56)
We compare this result with the theoretical behavior [13]
1
T? 2\ (1
Tiasta \2+n 24n

where Tiqstq is the temperature of kinetic decoupling in the radiation-dominated cosmology,

H™(T;) ) o (58)

Tiasta = T; (
Vi
and H'™(T) has been defined in Eq. (30). This latter equation can be stated in terms of the

function Y; in Eq. (60) as
1
Ty = Tkasta Y. (59)

This relation is also obtained by comparing the result in Eq. 56 with the theoretical Eq. (57). We
rewrite Eq. (59) in terms of the temperature of kinetic decoupling Tyq by using the relation in

Eq. (60) in the form

T 44+n—v
T; = - , 60
(1) (60)

as

1 1
T2 N\ T mrad () dFnv
Tiq = <L_Std> - T <M> ] (61)
Vi

Eq. (61) gives the temperature of the WIMP kinetic decoupling in a generic cosmological model,
which might differ from the radiation-dominated scenario at the time of decoupling. Notice that,

in the particular case in which the decoupling occurs in a radiation-dominated scenario (v = 2),

Eq. (61) gives
Tia = Tid std- (62)

In the following, we discuss the decoupling of WIMPs in a broken power law cosmological
model, where a generic pre-BBN cosmology takes place before T}, after which standard radiation-

dominated cosmology begins.
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V. BROKEN-POWER-LAW COSMOLOGICAL MODEL

A. Generic pre-BBN cosmology

The relic density and velocity distribution of WIMPs depend on the characteristics of the
Universe before Big Bang Nucleosynthesis (BBN), which occurred at temperature above TppN ~
1 MeV. Since this is an epoch from which we have no data, it is possible that the expansion rate
of the Universe prior BBN differed from that of the radiation-dominated period, with the transit
between the two cosmological models occurring at a reheating temperature Try which must lie

above [26-30]
T > 4 MeV. (63)

For this reason, in this section we generalize the power-law model discussed in the previous section
by considering a generic scenario in which the Universe is dominated by some form of energy
before cooling down to a reheating temperature TRy, after which standard radiation-dominated
cosmology takes place. For this, we assume a dependence of the Hubble rate on temperature in
the form

7\
| , for T > TRy,
H(T) = Hru (TRH)

(%)2 , for T < IRnu, o

where v is a positive constant, Try is the reheating temperature, and Hry = H(Tgrpu). In this
scenario, the dependence of temperature on the scale factor is a power law of the form

(aRTH)a, for a < agrmy,
T(a) = Tru (65)

ARH
~a for a > aRH,

where ary is the scale factor when 7' = Try. In the radiation-dominated cosmology the tempera-
ture of the plasma drops as T' o< a~ ', while the WIMP temperature drops at a faster rate T, x a2
Equating Eqs. (64) and (65), we obtain the relation for the Hubble rate in terms of the scale factor,

(“%)Va, for a < agrmy,
H(a) = HRH (66)

(GRTH)2, for a > army,

Incidentally, a relation between Yryg = v(Tru)/H (Tru) and Tiq is obtained using the definition

for the temperature of kinetic decoupling introduced in Eq. (26), in the form Y (Tyq) = 1, and with
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Egs. (37) and (64),

T 44+n—v
Tl , for Tiq > TrH,
Tru = o (24 (67)
(%) s for Tiq < TrH-
Plugging Eqgs. (65-66) into Eq. (25) we find, for a < arn,
Ts*eST(1—)\,s), ford+n#v,
T, = (68)
724_22%1‘;‘}5&, for4+n=v,
where s has been defined in Eq. (41) and X in Eq. (43). After reheating a > arp, we obtain
7 = L engzn [p (Lt N Lo (69)
= e S S
X TRH R 2+ n’ R n|o»
where sg has been defined in Eq. (53), we set
2 2
Sp=—T §=———-7T 70
R o RIS a(d+n—v) R (70)
and where the constant matching the two cosmologies at a = ary is
A 7TR 63 . l1+n
Cp=38"3"e " FT(1-\,5)—-T ,8r ), ford+n#v, (71)
2+n
and
=1 a2 2TRH 1 + n
Cp=538"e" R —————  T'|—-05 for 4 =v. 72
"=k Y T —a <2—|—n’8R>’ orstn=v (72)

For high temperature T}, ~ T, Eq. (68) shows the limit discussed in Eq. (46). When the plasma

temperature approaches T' — 0, Eq. (69) gives

T2 1 1+n
T, =—35§3" |T 'l
- [<2+n>+c] (73)

Comparing the result in Eq. (73) with the theoretical expression in Eq. (57) gives

_1 C’
Tru = Tkdsta Yri |1+ ﬁ
r(st)

This expression is similar to Eq. (59), with the additional inclusion of the matching constant C,

(74)

which comes from the extra pre-BBN cosmology.
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B. Low temperature reheating cosmology

In the Low Temperature Reheating (LTR) scenario [31-34], the energy density of a massive
scalar field ¢ dominates the evolution of the Universe in the pre-Big Bang Nucleosynthesis (BBN)
epoch, after which standard radiation-dominated cosmology begins. The evolution of the Universe
during the LTR stage is non-adiabatic: in fact, in the LTR model, the Universe is constantly
reheated by the decay of the massive particle ¢. This scenario is modeled by the Hubble rate in
Eq. (64), with v = 4, and by the scale factor in Eq. (66), with o = 3/8. In the LTR scenario,
Eq. (74) for the reheating temperature as a function of Ygry, with the constants in Egs. (71)
and (72), reads

13 ~
T 1 1 $3n e° 3n —13 1
LGP S i eA r<" ,§>—r< tn §R> . forn #0,

Tid,std r (;iz) §12%+n SR 3n 24n’
(75)
and
Tru 1/2 1 1 2T RrH <1 . >
=7 1+ -I'l=,s , form=0.
Tid,std RH r (%) gé i 2+ 2TRH — @ R
(76)

Fig. 1 shows the value of the temperature of kinetic decoupling Tiq as a function the reheating
temperature Try in the LTR cosmology, obtained from solving Egs. (75) and (76). Both temper-
atures are given in units of Tiq sq. We considered the case of a dominating s-wave (blue), p-wave
(blue), or d-wave scattering (red). Gelmini and Gondolo [21] recovered a relation between Tiq and

Tru in the case of the LTR cosmology and for p-wave scattering (see their Eq. (6) in Ref. [21])

T2
kd,std f
or Tiqsta > TRH
GG _ Tru S )
Tya = (77)

Tiasta, for Tigsea < Tru-

where Tiqgsta has been defined in Eq. (58). Within the framework of the present paper, using
Eq. (75) with n = 2 gives

2
T2
kd,std |:1 + F(1 ) 02:| , for Tiq > TrH,

Tru

] 0ol

Tiq = (78)

Tia std [1 + ﬁ 02} ,  for Tig <TRrn.
4

The main difference between Egs. (77) and (78) stands in the appearance of the constant Co. In

Fig. 2, we show the relation between Tiq and Try for a dominating p-wave WIMP particle, using
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v=4,a=3/8

Tkd / Tkd.std

1072 1071 10°

Trr / Tkdsd

FIG. 1. The temperature of kinetic decoupling Tiq as a function of the reheating temperature Tgry in the
LTR cosmology. Both temperatures are given in units of Tiq sta. We show results from Eqgs. (75) and (76)

for s-wave (black), p-wave (blue), and d-wave scattering (red).

the Gelmini-Gondolo model in Eq. (77) (blue dashed line), and our result in Eq. (78) (blue solid

line).

C. Kination cosmology

In the kination cosmology scenario [35], the expansion of the Universe before the standard
radiation-dominated cosmology begins is driven by the kinetic energy of a scalar field. We model
the kination scenario by setting the values for the pre-BBN cosmology o = 1 and v = 3 in Eqs. (64)
and (66). With these values, the condition 4 + n # v is always satisfied for all n > 0, and the

reheating temperature in Eq. (74) in the kination cosmology is

L 1 §T+n @8 n 14+n .
Tru = Tkdsta Tri § 1+ e — I <1 ey 8> =T <—2 ey 8R> . (79)
O(b5) Lo e

Fig. 3 shows the value of the temperature of kinetic decoupling T4 as a function the reheating

temperature Try in the kination cosmology, obtained from solving Eq. (79). Both temperatures
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1 2 [ “J T T ]
0 Se v=4, a=23/8
\\ n=2
\
\
N
\\\ — Thiswork
N —-——Gemini-Gondolo

> 1 AN
.gi 10 B ~ -
~ N\
= N
S AN
= N

100 o

1072 1071 10°

Tre / Tkdstd

FIG. 2. The temperature of kinetic decoupling Txq as a function of the reheating temperature Ty, for a
dominating p-wave mode in the pre-BBN LTR cosmology. Both temperatures are given in units of Tkq sta-
Results are shown both using the Gelmini-Gondolo model in Eq. (77) (blue dashed line), and the results
derived in this paper from Eq. (78) (blue solid line).

are given in units of Tiqsqa. We considered the case of a dominating s-wave (black), p-wave (blue),

or d-wave scattering (red).

VI. SUMMARY

In Eq. (24), we presented a general expression that gives the value of the WIMP kinetic temper-
ature T, in terms of the temperature of the Universe T'. This generic result has been specialized
to the case of the standard cosmology in Sec. III, in view of possible future applications to nu-
merical models. In addition, we have presented the expression for T, in the case of a power-law
cosmology in Sec. IV, and for a broken power-law model in Sec. V. In Sec. V B, we have discussed
the numerical results in the case of the LTR cosmology, and we have compared our results with
those obtained in Ref. [21] results, finding a discrepancy between our values of Tiq as a function of
Tru for low values of Trg. We have imputed this discrepancy to the appearance of the constant

Cp in Eq. (74), which come from the matching conditions between the LTR and the standard
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FIG. 3. The temperature of kinetic decoupling Tiq as a function of the reheating temperature Tgry in the
kination cosmology. Both temperatures are given in units of Tyqsta. We show results from Eq. (79) for

s-wave (black), p-wave (blue), and d-wave scattering (red).

cosmologies. Results for the kination cosmology have been discussed in see Sec. V C.
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Appendix A: Direct solution of Eq. (6)

In the scenario described in Sec. IV, we solve the differential Eq. (6) by first writing T}, as a

function of the plasma temperature T,

i_f % 42 (H+~(T)) Ty = 2v(T)T. (A1)

Here, dT'/dt is obtained by taking the time derivative of 7" in Eq. (35) and using Eq. (34),

dT T v+1
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Using the result in Eq. (A2) and Eq. (37), Eq. (A1) reads
T 44n—v ZTZ T 44+n—v
1+7; | = T — = 0. A
+1: (1) 2 (T 0 (A3)

T;
When 4 + n # v, we switch to the variable s defined in Eq. (40), expressed in terms of the

dT, 2

dT aT

temperature instead of the scale factor,

oo s(T) = —2Li <%>4+H. (A4)

Rearranging Eq. (A3), we obtain
1

dr 2 a(d+n—v)s| v

k. QU O SN 7 AW O kGl 0 =0, A5

ds [a(4—|—n—u)s+ ] x [ 27, ] (45)
whose general solution is

S\
T,=T <s_> e 4T [D(1—Ns)—T(1—\s), (A6)
Eq. (A6) is identical to Eq. (44) once the identity in Eq. (42) is used.
When 4 +n = v, Eq. (A3) reads

dT, 2 27,
d—T—a—T(1+TZ)TX+ - =0, (A7)

and the solution is given by Eq. (45),

a;\ 2+27; 207, T a;\ 22T i—«a
rem, ()N 2Ty As
X a +2+2Ti—a [ a (A8)

To sum up, the solutions expressed in Egs. (A6) and (AS8), obtained by solving the differential
Eq. (A1), are equivalent to Eq. (44) and (45) respectively, obtained by solving the integral Eq. (19).
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