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Non-local bispectra from super cosmic variance

Bekir Baytaş,∗ Aruna Kesavan,† Elliot Nelson,‡ Sohyun Park,§ and Sarah Shandera¶

Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA

We present examples of non-Gaussian statistics that can induce bispectra matching local and
non-local (including equilateral) templates in biased sub-volumes. We find cases where the biasing
from coupling to long wavelength modes affects only the power spectrum, only the bispectrum or
both. Our results suggest that ruling out multi-field scenarios is quite difficult: some measurements
of the scalar correlations, including the shape of the bispectrum, can be consistent with single-
clock predictions even when cosmic variance from super-horizon modes is at work. Furthermore, if
observations of the density perturbations rule out single-clock inflation, we will face a serious cosmic
variance obstacle in drawing any further conclusions about the particle physics origin of the scalar
fluctuations.

PACS numbers: 98.80.Cq

I. INTRODUCTION

The primordial curvature perturbations are our pri-
mary source of information about the inflationary era of
the universe. Ideally, we would like to extract an under-
standing of the particle physics responsible for inflation
from the details of the correlations observed in the Cos-
mic Microwave Background (CMB) inhomogeneities and
the large scale structure. However, we observe only a fi-
nite volume of the universe and have no reason to expect
that the current size of that volume is anything special:
there are likely to be at least some super horizon modes
with more or less the same properties as those that have
already re-entered the horizon. That supposition is crit-
ically important in comparing statistical observations to
theory. In the case of exactly Gaussian fluctuations the
finite size of our Hubble volume is the origin of the famil-
iar cosmic variance uncertainties in the power spectrum
fit.

In non-Gaussian scenarios that couple Fourier modes
of very different wavelengths there is additional cosmic
variance from the possibility that all our observations
are biased compared to the mean predictions of some in-
flationary theory. The bias from super horizon modes is
completely unmeasurable, but the qualitative conclusions
we draw about the origin of fluctuations can change when
we allow for it [1–9]. Fortunately, no such mode coupling
has been detected within our universe yet, but current
observational limits (e.g., from the Planck satellite re-
sults [10] and the most recent constraints from quasars
[11]) do not rule out this possibility. Indeed, many in-
flation scenarios predict some degree of non-Gaussianity
and the details of the correlations would ideally provide
a means to distinguish qualitatively different primordial
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physics. In weighing observational evidence for or against
any inflation model that couples modes of different wave-
lengths we must include these “Super Cosmic Variance”
(SCV) uncertainties. In addition, if any non-Gaussianity
is detected, we must be sure we understand how to draw
robust conclusions about the set of primordial universe
models consistent with those measurements. This is a
non-trivial task because it is not clear if there are types
of non-Gaussianity inflation cannot generate and because
it is far from obvious how the statistics in biased sub-
volumes are related to those of parent distributions with
arbitrary non-Gaussian fluctuations.

Here we consider several scenarios motivated by predic-
tions from currently studied inflation models and demon-
strate how the presence of correlations beyond the bis-
pectrum can alter the shape of lower order correlation
functions in biased sub-volumes. We will demonstrate
that although observations could prove that the source of
the primordial fluctuations was not single-clock inflation,
constraints on or detections of the shape of the bispec-
trum can be consistent with single-clock predictions even
when super cosmic variance is at work.

A. The model

An attractive discriminating feature of inflation sce-
narios is the behavior of the squeezed limit of the pri-
mordial bispectrum: that is, how significantly it couples
two short wavelength modes to one long wavelength mode
(represented by a squeezed triangle in momentum space,
with side lengths k1 ≡ kl � k2 ≈ k3 ≡ ks) [12]. This
limit also indicates how significantly the bispectrum can
cause the power spectrum in biased sub-volumes to differ
from the global power spectrum (for a concrete example
entirely within our universe, see the discussion of non-
Gaussian halo bias [13, 14]). A bispectrum of the type
generated by single clock inflation, which primarily cou-
ples modes of the same wavelength, will give a negligible
shift to the power spectrum regardless of the realization
of the long wavelength modes. A local type coupling, on
the other hand, can give an interesting amplitude shift
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[2, 4].

Beyond the bispectrum, all higher order correlation
functions can contribute to the biasing of lower order
statistics when some modes have longer wavelengths
than the size of the spatial region of interest. Scenar-
ios where the non-Gaussian field is any local but non-
linear function of a Gaussian field have the nice prop-
erty that the bispectrum is of the standard local type
(up to at most logarithmic corrections) even in biased
sub-volumes. And, in sufficiently biased sub-volumes the
observed statistics of any local, non-linear function (poly-
nomial and without derivatives) of a Gaussian field will
be those of a field with the local ansatz [2].

Here, we explore the question of biased statistics for
scenarios with non-local bispectra. Our goal is to un-
derstand how observations of a necessarily limited set of
correlation functions can constrain the space of models
of the primordial universe. In particular, the single-clock
inflation consistency relations [12, 15–22] indicate how
one could rule out single clock inflation, but would a de-

tection of f local
NL = 0 and f equil

NL 6= 0 confirm single clock
inflation? To address this question we consider bispec-
tral shapes characterized by their degree of divergence
with the long wavelength mode, kl, in the squeezed limit,
including k−1

l (equilateral type), k−2
l (sometimes called

‘orthogonal’ type1), and k−3
l (local type).

To consider non-Gaussian scenarios with the desired
n-point correlations, we build the field Φ from a series of
nonlocal functionals of a Gaussian random field φ(x),

Φ[φ(x)] = φ(x) +fNLΦ2[φ(x)] + gNLΦ3[φ(x)] + · · · , (1)

where the subscript on Φn indicates how many copies of
the Gaussian field appear in the term. The Φn will gen-
erate the connected parts of the tree-level correlations at
order n+ 1 and higher, and we require 〈Φn〉 = 0. We as-
sume the Gaussian field is homogeneous and isotropic. Its
statistics are completely determined by the power spec-
trum, which we take to be scale-invariant for simplicity:

〈φ(k1)φ(k2)〉 = (2π)3δ3(k1 + k2)Pφ(k1) (2)

Pφ(k) = 2π2
∆2
φ

k3
. (3)

1 A different, also very useful definition of ‘orthogonal’ comes from
looking at possible scale-invariant shapes produced by single
clock inflation [23]. With that definition, the orthogonal tem-
plate diverges as k−1

l .

We will primarily work with the Fourier transform of Φ:

Φ(k) = φ(k) + fNLΦ2(k) + gNLΦ3(k) + . . .

= φ(k) +
fNL

2!

∫
d3p1

(2π)3

∫
d3p2 [φ(p1)φ(p2)

− 〈φ(p1)φ(p2)〉]N2(p1,p2,k)δ3(k− p1 − p2)

+
gNL

3!(2π)6

3∏
`=1

∫
d3p`

[
φ(p1)φ(p2)φ(p3)

−
3∑
i=1
k 6=j 6=i

φ(pi)〈φ(pj)φ(pk)〉
]
N3(p1,p2,p3,k)

× δ3(k−
3∑
`=1

p`) + · · · . (4)

The kernels Nn(p1,p2, . . . ,pn,k) are symmetric in the
first n entries. The subtracted terms inside the square
brackets maintain 〈Φn〉 = 0 and ensure that only con-
nected parts of the n-point functions are generated by
each term. Loop corrections to the power spectrum from
the non-Gaussian terms go like (fNL∆φ)2 and (gNL∆2

φ)2

and the one-loop correction to the bispectrum goes like
gNL∆2

φ (relative to the O(fNL) tree-level bispectrum).
Weak non-Gaussianity is defined by requiring those quan-
tities to be� 1, and if gNL . O(f2

NL) the loop correction
to the power spectrum from the three point function is
parametrically larger than that from the four-point.

To generate our full set of desired correlations, the Φn
must be non-local. It is notationally easier to first gen-
erate the appropriate set of terms in real space, so we
consider Φn of the form

Φn = ∂β2n−1(∂β2n−2φ(. . . (∂β2φ∂β1φ)))(x) , (5)

where the βi can be negative. To generate the corre-
sponding Fourier transformed terms, we define derivative
operators acting on φ(x) based on the corresponding mo-
mentum space behavior,2

∂nφ(x) ≡
∫

d3k

(2π)3
knφ(k)eik·x . (7)

A Φ2 that can generate the equilateral, orthogonal or
local bispectral templates was derived by Scoccimarro

2 Note that ∂n is not in general a genuine derivative operator be-
cause it does not obey the Leibniz rule,

[∂n(φ1φ2)](k) = kn
∫

d3p

(2π)3
φ1(p)φ2(k− p)

[φ1∂
nφ2 + φ2∂

nφ1] (k) =

∫
d3p

(2π)3
φ1(p)φ2(k− p)(pn + |k− p|n)

→ ∂n(φ1φ2) 6= φ1∂
nφ2 + φ2∂

nφ1. (6)

Our notation is related to the one used in Scoccimarro et al [24]
by: (∂2)here = (−∇2)there.
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et al in [24]. In the next section we review the choice
of quadratic terms, taking a slightly different perspec-
tive but arriving at the same Φ2 as [24]. In Section III
we generalize the procedure for generating the quadratic
terms and consider a Φ3 designed to induce only the
terms in Φ2 in biased sub-volumes. In Section IV we
examine subsets of the cubic terms that restrict the bis-
pectra induced in biased sub-volumes to local, equilat-
eral, or orthogonal type and consider the implications
for theory and observations. In Section V we conclude
and comment on how our analysis might be further de-
veloped.

II. QUADRATIC TERMS

In this section we derive an expression for Φ2 using
a procedure that can be easily generalized to the cubic
term, Φ3, and beyond. Although our motivation and
procedure are slightly different, the result reproduces the
expressions derived by Scoccimarro et al [24].

We limit our considerations to bispectra that diverge in
the squeezed limit as one, two, or three inverse powers of
the long wavelength momentum. Since a local quadratic
function, φ2(x), yields the most divergent bispectrum,
we need to include inverse derivative operators in order
to reduce the divergence. We therefore start with the
following family of terms quadratic in the Gaussian field

∂α3(∂α2φ∂α1φ), (8)

with restrictions on the αi:

• ∑αi = 0. This condition maintains scale invari-
ance.

• α1,2 ≥ 0. Together with the previous condition,
this automatically sets α3 ≤ 0. This condition
ensures that the infrared (IR) sensitivity to φl is
no stronger than that of local non-Gaussianity. In
other words, this rule ensures that the squeezed
limit of the bispectrum does not grow like k−4

l or
more for small kl.

• |αi| ≤ 2. This restriction generates the minimal set
of terms required to produce equilateral (k−1

l ), or-

thogonal (k−2
l ) or local (k−3

l ) type behavior (and
corresponds to to setting u = s = 0 in [24]).
However, there are certainly additional terms with
|αi| > 2 that will also generate bispectra with the
same squeezed limit behavior. We comment on re-
laxing this condition in Section V.

The generic quadratic functional with terms obeying
these constraints is

Φ2[φ(x)] = [a1φ
2 + a2∂

−1(φ∂φ) + a3∂
−2(φ∂2φ)

+ a4∂
−2(∂φ)2]− [E.V.] . (9)

where −[E.V.] indicates that the expectation values of
the terms should be subtracted. The corresponding N2

kernel (which in this case depends only on the magni-
tudes of the momenta) is

N2(p1, p2, k) = 2a1 +a2
p1 + p2

k
+a3

p2
1 + p2

2

k2
+ 2a4

p1p2

k2
.

(10)
A generic homogeneous and isotropic bispectrum for the
potential Φ can be written as

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ3(k1+k2+k3) B(k1, k2, k3).
(11)

Our ansatz gives a bispectrum

BΦ(k1, k2, k3) = fNLPφ(k1)Pφ(k2)N2(k1, k2, k3) + cyc.
(12)

where there are 2 additional cyclic permutations. Notice
that both the a2 and a3 terms in Eq.(10) generate terms
of the type P (k1)1/3P (k2)2/3P (k3) in the bispectrum.

We have already factored out an overall amplitude,
fNL, from Φ2. With the usual convention fNL ≡
6BΦ(k, k, k)/P 2

Φ(k), this leaves a normalization condition
for the coefficients of the individual quadratic terms:

a1 + a2 + a3 + a4 = 1 . (13)

The constraints on the αi so far allow us to restrict
consideration to a subset of possible non-Gaussian fields
based on the behavior of the bispectrum. However, any
quadratic term will also contribute to the power spectrum
of the full, non-Gaussian field

〈Φ(k1)Φ(k2)〉 = 〈φ(k1)φ(k2)〉+ f2
NL〈Φ2(k1)Φ2(k2)〉+ . . .

(14)
where the dots contain contributions from Φ3 and higher.
The contributions to PΦ(k) from the terms in Φ2 contain
an extra integral over momenta p and go like [N2(p, |k−
p|, k)]2. The contributions from the a3 and a4 terms go
like 1/k4 times a divergent integral over momenta p (this
is easiest to see by considering k � p). We can force
this badly behaved contribution to the loop to vanish by
setting

a4 = −a3 . (15)

We will impose this condition from now on to remove a4

from all expressions. Insisting on Eq.(15) is equivalent
to the choice of the coefficient t for the equilateral and
orthogonal cases in [24].
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A. Recovering the standard bispectral templates

Frequently used bispectral templates with fixed degree
of divergence with the long wavelength mode are

Blocal = 2f local
NL (Pφ(k1)Pφ(k2) + Pφ(k1)Pφ(k3)

+ Pφ(k2)Pφ(k3)) (16)

Bequil = 6f equil
NL [−Pφ(k1)Pφ(k2) + 2 perm.

− 2(Pφ(k1)Pφ(k2)Pφ(k3))2/3 (17)

+ Pφ(k1)1/3Pφ(k2)2/3Pφ(k3) + 5 perm.]

Borth = 6forth
NL [−3Pφ(k1)Pφ(k2) + 2 perm.

− 8(Pφ(k1)Pφ(k2)Pφ(k3))2/3 (18)

+ 3Pφ(k1)1/3Pφ(k2)2/3Pφ(k3) + 5 perm.].

The best constraints on the amplitudes fNL of these
templates come from the Planck satellite:[10], which limit

f local
NL = 2.7±5.8, f equil

NL = −42±75, and forth
NL = −25±39

at the 68.3% confidence level.
The ansatz in Eq.(9) clearly contains the local ansatz

Local Bispectrum : a2 = a3 = a4 = 0 . (19)

To see the conditions that recover the orthogonal and
equilateral templates, insert the N2 kernel from Eq. (10)
into the general expression for the bispectrum, Eq. (12),
and take the squeezed limit k1 ≡ kl � k2, k3 ≡ ks:

lim
kl�ks

B(ks, ks, kl) = fNLPφ(kl)Pφ(ks)
[
(4a1 + 2a2 + 2a3)

+(2a2 − 4a3)
( kl
ks

)
+ (2a2 + 2a3)

( kl
ks

)2

+ 2a1

( kl
ks

)3]
.

(20)

where we have already used a4 = −a3. The equilateral
bispectrum scaling k−1

l requires that the coefficients of

both the k−3
l and the k−2

l contributions vanish. Since

P (kl) ∝ k−3
l , these conditions are, respectively

4a1 + 2a2 + 2a3 = 0, (21)

2a2 − 4a3 = 0 . (22)

Including the normalization condition (13), these are suf-
ficient equations to uniquely fix the ai. The result exactly
recovers the equilateral template:

a1 = −3, a2 = 4, a3 = 2, a4 = −2 . (23)

The orthogonal bispectrum scaling k−2
l requires only

the coefficient of k−3
l to vanish, which is not sufficient

information to completely fix all the ai. That is reason-
able since the orthogonal shape was originally defined not
by its squeezed limit but by minimizing its overlap with
the other templates over a range of momentum configu-
rations. To generate the standard orthogonal template

we can add an additional condition, comparable to the
orthogonality condition required by [23],

aorth
1 = 3 aequil

1 , (24)

so that all the ai are fixed:

a1 = −9, a2 = 10, a3 = 8, a4 = −8 . (25)

In the next section we will introduce the long-short
wavelength split and see how the conditions in Eq.(22)
that fix the squeezed limit behavior of the bispectrum
can also be directly read off of the real-space expression
in Eq.(9).

B. The long-short wavelength split

We are interested in the effect of long wavelength back-
ground modes on the statistics measured in spatial sub-
volumes. To that end, we split the field Φ in Fourier
space at a scale k∗,

Φs(k) = Φ(k)Θ(k − k∗)
Φl(k) = Φ(k)Θ(k∗ − k) , (26)

where Θ is the step function. This is only an approxima-
tion to splitting the field with a top hat in real space, but
our results will not depend on this distinction. Also, in
what follows, we will mainly consider momenta far away
from the scale k∗, and ignore complications arising from
those close to k∗. Applying the Θ-function on the right
hand side of Φ(k), defined in Eq.(4), gives

Φs(k) = φs(k) + fNLΦ
(s)
2 (k) + . . . (27)

Φl(k) = φl(k) + fNLΦ
(l)
2 (k) + . . . (28)

where φs(k) and φl(k) are defined analogously to
Eq.(26). Writing out the effect of the Θ-function on the
quadratic term gives, for the short wavelength quadratic
piece,

Φ
(s)
2 (k) =

1

2!(2π)3

∫
d3p1 d

3p2N2(p1,p2,k)[φ(p1)φ(p2)

− [E.V.]] δ3(k− p1 − p2)Θ(|p1 + p2| − k∗)

=
1

2!(2π)3

∫
|p1+p2|>k∗

d3p1d
3p2N2(p1,p2,k)

[φs(p1)φs(p2) + 2φs(p1)φl(p2)− [E.V.]]

× δ3(k− p1 − p2) . (29)

Here, the second line is obtained from by considering the
separate momentum regimes for p1 and p2 that satisfy
the step function: Θ(|p1 +p2|−k∗) = [Θ(p1−k∗)Θ(p2−
k∗)+Θ(p1−k∗)Θ(k∗−p2)+Θ(k∗−p1)Θ(p2−k∗)]Θ(|p1 +

p2| − k∗). In the same manner we can write Φ
(l)
2 (with
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some redundancy) as

Φ
(l)
2 (k) =

1

2!(2π)3

∫
|p1+p2|<k∗

d3p1 d
3p2N2(p1,p2,k)

[φs(p1)φs(p2) + φl(p1)φl(p2)− [E.V.]]

× δ3(k− p1 − p2) . (30)

Notice that in the first term of Eq.(30), the angle between
short scale modes p1 and p2 must be nearly π so they
sum to a long mode with magnitude k below the splitting
scale.

C. The field observed in biased sub-volumes

We now examine the difference in the global and lo-
cal statistics of the power spectrum when the quadratic
terms above are included. Very generally, the observed
field, restricted to points x within a sub-volume VS , will
take the form

Φobs(x)|x∈VS
= (φ+ ΦSCV

1 ) + fNL(Φ2 + ΦSCV
2 )

+ gNL(Φ3 + ΦSCV
3 ) . . . , (31)

where the contributions from the Super Cosmic Variance
(SCV) terms, ΦSCV

n , vanish in sub-volumes where all long
wavelength modes take their mean value (0). Since an
observer with access to only a single sub-volume cannot
separate the mean contributions from the SCV contribu-
tions it is more natural to write the right hand side of
the equation above in terms of the observer’s linear field,
χ(x), and kernels, and amplitudes:

Φobs[χ(x)]|x∈VS
= χ(x)+f̃NLΦ̃2[χ(x)]+g̃NLΦ̃3[χ(x)] . . . ,

(32)
Note that the standard way of defining the normaliza-
tions f̃NL and g̃NL only works for scale-invariant contri-
butions from the SCV terms.

For the set of quadratic terms we are considering here,
using the kernel N2 from Eq.(10) in the expression for
the short wavelength field, Eq.(29) gives

Φs(k) ≈ φs(k)

{
1 + fNL

[
(2a1 + a2 + a3)φl

+ (a2 − 2a3)∂φl
1

k
+ a3∂

2φl
1

k2

]}
+

fNL

2!(2π)3

∫
p1,p2>k∗

d3p1d
3p2N2(p1, p2, k)

×
[
φs(p1)φs(p2)− [E.V.]

]
δ3(k− p1 − p2), (33)

where the approximation comes because we have taken
k − p2 ' k in the φs(p1)φl(p2) term in Eq.(29). The

functions of the long wavelength modes are

φl ≡
∫ k∗

Λ

d3p

(2π)3
φ(p), ∂φl ≡

∫ k∗

Λ

d3p

(2π)3
pφ(p),

∂2φl ≡
∫ k∗

Λ

d3p

(2π)3
p2φ(p), (34)

where Λ is an infrared scale corresponding to the longest
wave mode that exited the horizon during inflation. We
will treat the quantities in Eq.(34) as constants in any
particular sub-volume. While this is not exactly true,
since a nonzero gradient ∂φl implies non-constant φl(x),
we show below that this difference is small compared to
the effect of the average value of φl.

The observed linear term in a biased sub-volume is
shifted from the original φ(k) by a term whose amplitude
and scale-dependence depends on the bispectrum and the
bias:

χG(k) ≡ φs(k)[1 + fNLΦSCV
1 (k)]

= φs(k)

{
1 + fNL

[
(2a1 + a2 + a3)φl

+ (a2 − 2a3)∂φl
1

k
+ a3∂

2φl
1

k2

]}
. (35)

Then, using the observed linear field everywhere, the ob-
served non-Gaussian field is

Φobs(k) = χG(k) (36)

+
fNL

2!(2π)3

∫
d3p1 d

3p2N2(p1,p2,k)

× [χG(p1)χG(p2)− [E.V.]]δ3(k− p1 − p2)

[1 + fNLΦSCV
1 (p1)][1 + fNLΦSCV

1 (p2)]
.

(37)

The power spectrum and bispectrum observed in sub-
volumes can be computed as usual from this expres-
sion, and will differ in amplitude and scale-dependence
(shape) from the corresponding quantities in unbiased
sub-volumes.

The observed power spectrum is shifted from the input
power spectrum by (assuming weak non-Gaussianity)

P obs
Φ ≈ P obs

χ (k) = Pφ(k)

{
1 + fNL

[
(2a1 + a2 + a3)φl

+ (a2 − 2a3)∂φl
1

k
+ a3∂

2φl
1

k2

]}2

.

(38)

This effect was discussed and quantified in detail for the
case of local non-Gaussianity in [4]. There it was shown
that the correction proportional to φl can be large and
interesting. The other terms here, proportional to ∂φl
and ∂2φl are sensitive to only a very small range of modes
beyond the horizon. If the universe was inflating for Ne
e-folds before the mode of scale k∗ exited the horizon,
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the super cosmic variance contributions from non-local
bispectra are of order

〈(∂φl)2〉
k2
∗

=
1

k2
∗

∫ k∗

Λ

dk k∆2
φ(k)

=
∆2
φ(k∗)

(ns + 1)

(
1− e−(ns+1)Ne

)
,

〈(∂2φl)
2〉

k4
∗

=
1

k4
∗

∫ k∗

Λ

dk k3 ∆2
φ(k)

=
∆2
φ(k∗)

(ns + 3)

(
1− e−(ns+3)Ne

)
. (39)

Here we have assumed for simplicity that the super
horizon power spectrum is ∆2

φ = A0(k/k∗)
ns−1 with con-

stant spectral index ns and used Ne = ln(k∗/Λ). Notice
that with k∗ = H0 the second quantity in Eq.(39) is of
the order of the contribution of fluctuations to the spatial
curvature, 〈Ω2

k〉.
Figure 1 shows that the quantities in Eq.(39) are very

small, of order 10−5. As expected, there is no ap-
preciable cosmic variance shift to the power spectrum,
Eq.(38), from non-local bispectra. Figure 1 assumes
that the power spectrum is consistent with the cur-
rent best fit from the Planck satellite (Planck+WP) [25]
(∆2

Φ(k) = 3.98772 × 10−9(k/k∗)
ns−1, ns = 0.9619) and

uses k∗ = 0.05 Mpc−1 as the reference infrared scale. (H0

is the appropriate scale for considering our current uni-
verse.) The strong suppression with extra powers of k
in the integrands makes these quantities insensitive to
small variations in the spectral index. Specifically, there
is no considerable difference between flat spectral index
(ns = 1) and ns = 0.9619 (in contrast to the significant
enhancement 〈φ2

l 〉1/2 receives from a red tilt over suffi-
ciently many super horizon e-folds).

Although these terms have a substantial scale depen-
dence, the maximum shift to the spectral index at the
CMB pivot point is of order 10−4, which is within the
current 68% confidence interval from measurements by
the Planck satellite. (Notice that allowing mild scale- de-
pendence in a1, a2 or a3 would generate interesting shifts
to the spectral index. The example of scale-dependent
a1 was discussed in [5].)

The bispectrum observed in biased sub-volumes is also
shifted. For the exact local ansatz, the change in the
observed level of non-Gaussianity was discussed in [2,
4]. When the super cosmic variance shifts to the power
spectrum are scale-dependent, the shape of the observed
bispectrum changes:

Bobs(k1, k2, k3) = Pχ(k1)Pχ(k2)

× fNLN2(k1, k2, k3)

[1 + fNLΦSCV
1 (k1)][1 + fNLΦSCV

1 (k2)]

+ cyc. (40)

However, as with the scale-dependent corrections to the
power spectrum, the changes in shape are too small to

be observationally relevant. We will find much more in-
teresting effects from the inclusion of cubic terms in the
ansatz for the non-Gaussian field, which we turn to next.

III. CUBIC TERMS

In this section we establish a method to generate cubic
terms that induce the four quadratic terms of Eq.(9) in
biased sub-volumes.

A. Generation of cubic terms

In general, we consider cubic terms that take the form

∂β5(∂β4φ∂β3(∂β2φ∂β1φ)) . (41)

Similarly to the rules we used to limit the quadratic
terms, we consider only cubic terms that satisfy the fol-
lowing restrictions:

1.
∑
βi = 0 to maintain scale-invariance,

2. β1,2,4 ≥ 0 to ensure that the induced quadratic
terms do not depend on ∂−1φl or higher inverse
derivatives, controlling sensitivity to the infrared
(IR) scale.

3. |βi| ≤ 2 restricts to a minimal set of terms to con-
sider. Note that conditions 1-3 imply β5 ≤ 0.

4. β1 + β2 + β3 ≥ 0 to ensure that the induced linear
terms are no more sensitive to the IR scale than in
local non-Gaussianity (logarithmic sensitivity).

5. At least one of β1, β2, or β4 must be zero and the
{β1, β2} pairs should be drawn from the same set of
values as the {α1, α2} pairs in Eq.(9). This ensures
that all the leading order quadratic terms induced
in biased sub-volumes are one of those in Eq.(9).

As a guide to understanding the origin of these restric-
tions, an example of the quadratic terms induced in bi-
ased sub-volumes by a cubic term is given in Appendix
B. There are 18 cubic terms, listed in Appendix A, which
satisfy these five rules. As with the quadratic terms, it
is certainly possible to consider a larger set of terms that
have interesting behavior in biased sub-volumes. In Sec-
tion IV we discuss the consequences of the minimal set
of terms and also comment on the role of some terms we
have discarded. Appendix A also gives the cubic kernel,
N3(p1,p2,p3,k), from these 18 terms.

The addition of this cubic functional adds a leading
order trispectrum to the model:

〈Φ(k1)Φ(k2)Φ(k3)Φ(k4)〉 = (2π)3δ3
D(k1 + k2 + k3 + k4)

× TΦ(k1,k2,k3,k4)

TΦ(k1,k2,k3,k4) = gNLPφ(k1)Pφ(k2)Pφ(k3)

N3(k1,k2,k3,k4) + cyc. (42)
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FIG. 1: Graph of the RMS amplitude of long-wavelength super cosmic variance terms from non-local bispectra, 1
k∗
〈(∂φl)

2〉1/2

and 1
k2
∗
〈(∂2φl)

2〉1/2. This plot assumes that the power spectrum on scales larger than k∗ = 0.05 Mpc−1 remains consistent with

Planck satellite observations: ∆2
Φ(k) = 3.98772 × 10−9(k/k∗)

ns−1 with ns = 0.9619 [25]. Notice that the plotted quantities
are not sensitive to more than about an e-fold of inflation and remain O(10−5) so, as expected, only the local bispectrum can
generate a significant super cosmic variance contribution to the power spectrum.

where there are three additional terms in the +cyc. No-
tice that our definition of gNL as the amplitude of the
trispectrum goes beyond the usual definition. The typi-

cal conventions for defining the amplitudes of trispectra
in various momentum configurations are [26, 27]:

gstandard
NL ≡ 1

6
lim
k1→0

TΦ(k1,k2,k3,k4)

PΦ(k1)PΦ(k2)PΦ(k3)
, τNL ≡

1

4

9

25
lim

|k1+k2|→0

TΦ(k1,k2,k3,k4)

PΦ(|k1 + k2|)PΦ(k1)PΦ(k3)
. (43)

Because we have imposed |βi| ≤ 2 (and specifically
β3 ≥ −2), all of our trispectra have τNL = 0. Current
constraints on the trispectrum from Planck satellite data
are (allowing both standard shapes to be non-zero) τNL =
0.3± 0.9× 104, gstandard

NL = −1.2± 2.8× 105 [28] at 68%
CL, or assuming only one non-zero template at a time
τNL < 2800 at 95% CL [10], gstandard

NL = −1.3± 1.8× 105

at 68% CL [28].

B. Constraints on cubic terms from their
contributions to the power spectrum

As with the quadratic terms, we impose additional re-
strictions based on the behavior of (classical) loop correc-
tions from the cubic terms, requiring that UV divergences
are not stronger than the log divergence of the tree-level
case.

The cubic field Φ3 contributes to the power spectrum
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at order g2
NL (from 〈Φ3(k1)Φ3(k2)〉):

δPΦ3(k) = g2
NL

∫
d3p1

(2π)3

d3p2

(2π)3
d3p3N

2
3 (p1,p2,p3,k)

× P (p1)P (p2)P (p3) δ3(k− p1 − p2 − p3) .
(44)

Since this contribution has two momentum integrals (two
classical loops), there are several different momentum
configurations to consider. The resulting constraints (de-
tails appear in Appendix C) are

b10 = b14 = b16 = b18 = 0 ,

b3 + b4 = 0 ,

b6 + b7 = 0 ,

b12 + b13 = 0 ,

b11 + b15 + b17 = 0 ,

2(b5 + b8) + b6 + b9 + b12 = 0 . (45)

After imposing these restrictions, we are left with a 9
parameter set of cubic terms to explore. Corrections
to the bispectrum from the cubic term (proportional to
fNLgNL at lowest order) do not give any additional con-
straints that are not covered by conditions imposed on
the quadratic term.

C. The field observed in biased sub-volumes

To work out the statistics observed in biased sub-
volumes of a field described by Eq.(1) and the cubic func-
tional from the previous section, we again split Φ(k) into
long and short wavelength components:

Φs(k) = φs(k) + fNLΦ
(s)
2 (k) + gNLΦ

(s)
3 (k) (46)

Φl(k) = φl(k) + fNLΦ
(l)
2 (k) + gNLΦ

(l)
3 (k) , (47)

where

Φ
(s)
3 (k) =

1

3!

∫∫∫
d3p1

(2π)3

d3p2

(2π)3
d3p3N3(p1,p2,p3,k)

δ3(k− p1 − p2 − p3) Θ(|p1 + p2 + p3| − k∗)[
φ(p1)φ(p2)φ(p3)−

3∑
i=1
k 6=j 6=i

φ(pi)〈φ(pj)φ(pk)〉
]

+ cyc. (48)

Φ
(l)
3 (k) =

1

3!

∫∫∫
d3p1

(2π)3

d3p2

(2π)3
d3p3N3(p1,p2,p3,k)

δ3(k− p1 − p2 − p3) Θ(k∗ − |p1 + p2 + p3|)[
φ(p1)φ(p2)φ(p3)−

3∑
i=1
k 6=j 6=i

φ(pi)〈φ(pj)φ(pk)〉
]

+ cyc. (49)

The step function in Eq.(48) allows several different
types of terms (analogous to the two terms in Eq.(29)).
In particular, there is a term with all three fields φs which
ensures that all sub-volumes have the same cubic term
as the parent volume. There is also a term with a sin-
gle φl that contributes to the quadratic term in biased
sub-volumes. In other words, the quadratic term that
describes the non-Gaussian field in the sub-volume (see
Eq.(31)) is

(fNLΦ2)obs = fNL(Φ2 + ΦSCV2 ), (50)

where

fNLΦSCV2 = gNL

{
φl

[
(3b1 + b2 + b3 + b8 + b17)φ2

s + (b2 + b13)∂−1(φs∂φs) + (b3 + b6 + 2b11 + b13 + 2b17)∂−2(φs∂
2φs)

+(b4 + b7 + b12 + 2b15)∂−2(∂φs)
2

]
+ ∂φl

[
(b2 + 2b4)φs∂

−1φs + (b5 + 2b7 + b15)∂−1(φ2
s) + b9∂

−1∂φs∂
−1φs

+(b9 + 2b12)∂−2(φs∂φs) + b13∂
−2(∂2φs∂

−1φs)

]
+ ∂2φl

[
b3φs∂

−2φs + b6∂
−1(φs∂

−1φs) + b11∂
−2(φ2

s)

+b13∂
−3(φs∂φs)

]}
− [E.V.].

(51)

Here the subscript ‘SCV’ indicates that this is a super
cosmic variance contribution to the quadratic term and

we have used the conditions from Eq.(45) to remove some
of the original 18 bi. By design, the largest cosmic vari-
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ance terms (those terms proportional φl) regenerate the
four quadratic terms which span the local, equilateral,
and orthogonal bispectra types. The contributions pro-
portional to ∂φl or ∂2φl are subleading, and likely to be
unobservably small (although we will comment further
on those terms in the next section). Focussing on the
leading contributions, we can more clearly make contact
with our discussion of bispectral shapes (Eq.(9)) by writ-
ing

ΦSCV2 =
gNLφl
fNL

{
[A1φ

2
s +A2∂

−1(φs∂φs) +A3∂
−2

(φs∂
2φs) +A4∂

−2(∂φs)
2] + · · · − [E.V.]

}
. (52)

There is also a term in Eq.(48), Φ
(s)
3 , with a single φs: the

cubic terms also contribute to the linear term in biased
sub-volumes. Including the shift to the linear term from
Φ2 (see Eq.(35)), the induced linear term is

ΦSCV
1 = fNL

{
φs

[
(2a1 + a2 + a3)φl + (a2 − 2a3)∂φl

1
k

+a3∂
2φl

1
k2

]}
+ gNL

{
φs

[
(3b1 + b2 + b3 + b5

+b6 + 2b8 + b11 + 2b17)φ2
l + (b2 + b9 + b13)

∂−1(φl∂φl) + b3∂
−2(φl∂

2φl) + b4∂
−2(∂φl)

2

]
+∂−1φs

[
(b2 + 2b4 + 2b5 + 2b7 + b9 + 2b12

+2b15)(φl∂φl) + b6∂
−1(φl∂

2φl) + b7∂
−1(∂φl)

2

+[b8 + b15]∂(φ2
l )

]
+ ∂−2φs

[
(b3 + b6 + 2b11

+b13)(φl∂
2φl) + (b9 + b12)(∂φl)

2 + b17∂
2(φl)

2

]
+∂−3φs

[
b13(∂2φl∂φl)

]}
− [E.V.]. (53)

All the terms inside the first set of curly brackets in
the gNL term generate SCV of the same order (that is,
〈(φ2

l )
2〉 ∼ 〈(∂−1(φl∂φl))

2〉, etc), while the terms on the
fourth line and below give contributions that are signif-
icantly smaller. Furthermore, since the individual terms
inside each set of gNL curly brackets have the same di-
mension, there is no way to distinguish them. The only
relevant feature is the degree of scale-dependence of the
prefactor.

Finally, notice that the short-wavelength field con-
tains terms where, for example, p1, p2, p3 > k∗ but
|p1 + p2| < k∗. This momentum range allows us to con-
sider the limit of correlation functions where momentum
modes accessible in a sub-volume sum up to a long wave-
length mode. The information in that limit is about the
variation of lower order correlations over spatial distances
the size of the long wavelength mode [17, 27].

IV. FAMILIES OF CUBIC TERMS FROM THE
SUPER COSMIC VARIANCE POINT OF VIEW

In this section, we point out various interesting special
cases of the general formulae from the previous section.
In each of the subsections below we impose additional
constraints (beyond the loop correction considerations)
that restrict the super cosmic variance contributions to
the bispectrum and power spectrum. That is, we impose
constraints on the various combinations of the bi param-
eters in Equations (51) and (53).

A. General results

Before considering the results of the previous section
organized by the squeezed limit behavior of the bispec-
trum, we first note some general features of the possible
super cosmic variance consequences from our cubic terms.

• We find cubic terms that shift the bispectrum at
order φ` but that give no shift to the power spec-
trum at order φs (the terms in Eq.(53) proportional
to φ2

l , ∂
−1(φl∂φl), ∂

−2(φl∂
2φl) and ∂−2(∂φl)

2 in-
dividually vanish). This set of cubic terms only
generates ΦSCV

2 where the {Ai} are linear combi-
nations of {1, 0,−2, 2} and {1,−2, 0, 0}.

• We find cubic terms that shift the power spectrum
at order φs but that generate no significant shift to
the bispectrum (all terms proportional to φ` in the
induced quadratic term individually vanish). The
ΦSCV

1 generated by any terms in this set are indis-
tinguishable at order φs. Some can, in principle, be
distinguished by the relative amplitude of the sub-
leading terms (proportional to ∂−1φs and ∂−2φs).

• We find cubic terms that generate neither a shift
proportional to φ` in the induced quadratic term,
Eq.(51), nor a shift proportional to φs in the in-
duced linear term, Eq.(53). From an observational
point of view, these cubic terms generate no super
cosmic variance of an interesting size. One of these
induces no sub-leading shift to the power spectrum
and at most a ∂2φl shift to the bispectrum and so is
a candidate for a trispectrum template consistent
with single clock inflation. The kernel and trispec-
tra for this case can be found in Appendix D.

To summarize, our set of cubic terms demonstrates
that it is possible to find examples with significant cos-
mic variance in the bispectrum but not the power spec-
trum, in the power spectrum but not the bispectrum. As
may be expected, our set also contains terms that gen-
erate no interesting cosmic variance. Furthermore, there
is, in general, a degeneracy in the induced lower order
terms: Multiple cubic terms (eg, terms that give different
trispectra) can generate indistinguishable ΦSCV

1 , ΦSCV
2 .
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f equil,obs
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FIG. 2: Assuming that a single sub-volume measurement of fequil
NL = 10, this plot shows the probability distribution for the

value of fequil
NL that could be present in the (mean statistics of the) parent volume. Both curves assume the parent volume has

a power spectrum consistent with Planck satellite observations and gequil
NL = 5× 103 (where gequil

NL is defined as the amplitude of
the non-local cubic term specified in Eq.(IV B)). If there are no further SCV effects from higher order terms, any sub-volume

will have the same power spectrum and gequil
NL as the parent volume. The solid (blue) curve considers a parent volume larger

than the sub-volume by a factor of 50 extra e-folds. The dotted (black) curve show a parent volume larger by a factor of 100
extra e-folds. For the best fit Planck power spectrum and Ne = 50, 100, the RMS variance of the long wavelength modes is√
〈φ2

l 〉 ≈ 0.0008 and 0.0022 respectively.

B. Cubic terms that induce equilateral type
bispectra in biased sub-volumes

If we impose the conditions 4A1 + 2A2 + 2A3 = 0, and
2A2−4A3 = 0, the SCV induced quadratic term will gen-
erate a bispectrum of the equilateral shape (the condition
A3+A4 = 0 is already enforced by the loop constraints on
Φ3). Most cubic terms satisfying those constraints shift
the power spectrum at leading order. However, there
are cases that generate an equilateral bispectrum but no
leading order shift to the power spectrum (no term pro-
portional to φs in Eq.(53)). This case may, in principle,
be distinguished from a purely equilateral bispectrum by
a sub-leading term (proportional to ∂φl), although in
practice that contribution is quite small. There is also
a cubic term whose SCV contribution gives an equilat-
eral bispectrum at leading order and no contributions to

the bispectrum of size ∂φl (although this solution does
affect the power spectrum at order φs).

We can define an equilateral family of statistics by
those Φn whose SCV contributions induce only an equi-
lateral shape bispectrum at leading order and shift the
power spectrum by at most terms proportional to ∂−2φs
(the same effect that an equilateral bispectrum gives).
Note that although this family is distinct from the set of
correlations with no SCV at all, it is not observationally
distinct if only the power spectrum and the shape of the
bispectrum have been measured. A set of non-zero {bi}
for the cubic term that induces the equilateral bispec-
trum but no significant shift to the power spectrum is
b1 = −5/3 , b2 = 2 , b5 = 3 , b9 = −4 , b12 = −2 , b13 = 2.
The field observed in biased sub-volumes in this scenario
(assuming only an equilateral bispectrum in the mean
statistics) takes the form

Φobs(k) = φ(k) +
(f equil

NL + gequil
NL φl)

2!(2π)3

∫
d3p1d

3p2 [φ(p1)φ(p2)− 〈φ(p1)φ(p2)〉]N equil
2 (p1,p2,k)δ3(k− p1 − p2)

+
gequil

NL

3!(2π)6

3∏
`=1

∫
d3p`

[
φ(p1)φ(p2)φ(p3)−

3∑
i=1
k 6=j 6=i

φ(pi)〈φ(pj)φ(pk)〉
]
N equil

3 (p1,p2,p3,k)δ3(k−
3∑
`=1

p`).
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where N equil
2 is Eq.(10) with {ai} = {−3, 4, 2,−2} (see

Eq.(23)) and N equil
3 is Eq.(A5) with the set of {bi} from

Eq.(IV B). Figure 2 shows an example quantification of
the qualitatively important result for this scenario: there

is a range of values of f equil
NL in the mean or parent statis-

tics that are consistent with a particular value of f equil,obs
NL

in sub-volumes. Note that the parent volume can have

an input f equil
NL of either sign. Appendix D contains more

details of some of the interesting cubic terms that induce
an equilateral bispectrum in biased sub-volumes.

C. Cubic terms that induce local type bispectra in
biased sub-volumes

If we impose the conditions A2 = A3 = A4 = 0,
the SCV induced quadratic term will generate a local
shape bispectrum. All such cubic terms also shift the
power spectrum at order φs and most also give sub-
leading shifts. If we define the local family as the set Φn
whose SCV contributions induce only a local bispectrum
and only shift the power spectrum as φs (no sub-leading
terms, to match the behavior of the local bispectrum),
our ansatz contains several cubic terms in the family. If
we are more restrictive and insist that the induced bis-
pectrum has no piece proportional to either ∂φl or ∂2φl
in the bispectrum, the only solution is bi = 0 except for
i = 1 (the local gNL term). Super cosmic variance from
a local cubic term and beyond was previously considered
in [2, 26].

D. Cubic terms that induce orthogonal type
bispectra in biased sub-volumes

If we impose the conditions 2A1 + A2 + A3 = 0, the
SCV induced quadratic term will generate a bispectrum
with a squeezed limit that diverges as 1/k2

l (the condi-
tion A3 + A4 = 0 is already enforced by the loop con-
straints on Φ3). All such cubic terms in our set gen-
erate no shift to the power spectrum at leading order.
Notice that this does not insist on the orthogonal tem-
plate, only the squeezed limit behavior. However, it is
possible to have the exact orthogonal template bispec-
trum induced with or without also inducing a shift to
the power spectrum. As in the local and equilateral case,
we can define the orthogonal family as the set of terms in
Φ[φ(x)] = φ(x) + fNLΦ2[φ(x)] + gNLΦ3[φ(x)] + · · · that
has no stronger than φs/k SCV in the power spectrum
and maintains a bispectrum with only 1/k2

l divergence.

V. DISCUSSION

In this work we have considered non-Gaussian fields
built from non-local real space expressions with up to cu-
bic dependence on a Gaussian field. This ansatz, Eq.(1),

can generate a variety of tree-level bispectra and trispec-
tra, including shapes consistent with either single-clock
or multi-field inflationary models. By examining the
ways in which statistics in spatial sub-volumes can differ
from the mean statistics of the parent volume we draw
the following important conclusions:

• Terms at order n in non-local expression for a non-
Gaussian field Φ(x) can generically shift the ampli-
tudes, momentum dependence of the power spec-
trum and correlations up to order 〈Φ(k1)...Φ(kn)〉
in biased sub-volumes, but need not shift all of
them.

• More specifically, super cosmic variance effects can
induce bispectra in biased subvolumes to match any
of the equilateral, orthogonal, or local templates.
The amplitude and sign of the induced bispectrum
depends in a degenerate way on the background
over- or under-density of the sub-volume as well as
the amplitude and sign of the mean trispectrum.
Depending on the specific form of the trispectrum,
the power spectrum may or may not display a de-
pendence on background density within the sub-
volume.

Mathematically, our results are very reasonable: non-
Gaussian statistics at each order are independent, so of
course measuring the 3-point function alone constrains
neither the shape nor the amplitude of higher order cor-
relations. Furthermore, different n-point correlations can
induce indistinguishable contributions to lower order cor-
relations in biased sub-volumes. When neither the bias
nor the higher order correlations can be measured, there
is a large degeneracy of correlation functions (and so in-
flation models) that can be consistent with just a few
measurements. Specifically, we have demonstrated that
a limited set of measurements of the primordial density

correlations (e.g., a detection of f local
NL = 0 and f equil

NL 6= 0)
could be consistent with single-clock inflation or a multi-
field scenario. Measurement of a purely equilateral bis-
pectrum does not in and of itself imply that there can
be no super cosmic variance at work. To rule out su-
per cosmic variance (at least, to rule it out of observa-
tional relevance) we must also constrain any correlation
between statistics measured within smaller regions of our
own Hubble volume and the background density of those
regions.

We have hardly covered the space of non-Gaussian
statistics: our set of examples was chosen to be a minimal
set that allows us to explore the possible implications of
cosmic variance from super horizon modes for non-local,
scale-independent bispectra3. We see no obstruction to

3 There are many other terms one might wish to include to study
further aspects of this problem. At the level of the quadratic
terms, for example, we have not been sufficiently general to cover



12

extending our results to find quartic terms in the non-
local expansion that could bias, for example, the trispec-
trum but not the bispectrum. One might complain that
super cosmic variance that evades detection in the sim-
plest measurements (e.g., in the power spectrum) but
biases higher order terms (e.g., the trispectrum) would
require too much of a conspiracy to be realistic. Address-
ing this discomfort systematically requires a measure on
the space of super cosmic variance effects from multi-field
inflation models. It would be interesting to find an infla-
tion model that contains trispectra of the sort we have
found or to prove that no model can generate them, nor
their higher order generalizations.
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Appendix A: Cubic terms and the cubic kernel

The functional Φ3[φ(x)] built from the 18 terms de-
rived in Section III A is4

Φ3(x) = b1φ
3 + b2φ∂

−1(φ∂φ) + b3φ∂
−2(φ∂2φ) + b4φ∂

−2((∂φ)2) + b5∂
−1(φ2∂φ) + b6∂

−1(φ∂−1(φ∂2φ))

+b7∂
−1(φ∂−1((∂φ)2)) + b8∂

−1(φ∂(φ2)) + b9∂
−1(∂φ∂−1(φ∂φ)) + b10∂

−1(∂φ∂−2(φ∂2φ)) + b11∂
−2(φ2∂2φ)

+b12∂
−2(φ(∂φ)2) + b13∂

−2(∂2φ∂−1(φ∂φ)) + b14∂
−2(∂2φ∂−2(φ∂2φ)) + b15∂

−2(∂φ∂(φ2))

+b16∂
−2(φ∂(φ∂φ)) + b17∂

−2(φ∂2(φ2)) + b18∂
−2(∂φ∂−1(φ∂2φ)) . (A1)

To compute the kernel associated with Φ3(x), we need to
take the Fourier transform of each term. As an example,

consider the Fourier transform of the 13th term:

∂−2(∂2φ∂−1(φ∂φ))(k) =

∫
d3x

1

k2

{∫
d3p1

(2π)3
p2

1φ(p1)eip1·x
∫

d3q

(2π)3

1

q

[ ∫ d3p2

(2π)3

∫
d3p3δ

3(q− p2 − p3)

φ(p2)p3φ(p3)
]
eiq·x

}
e−ik·x =

∫
d3p1

(2π)3

∫
d3p2

(2π)3

∫
d3p3

∫
d3q δ3(k− p1 − q)δ3(q− p2 − p3)

p2
1p3

k2q
φ(p1)φ(p2)φ(p3).

(A2)

We can use a Dirac delta function to integrate over any
of the four momenta (p1,p2,p3 or q) but to make the

calculations more transparent we will treat these possi-
bilities symmetrically and write

∂−2(∂2φ∂−1(φ∂φ))(k) =
1

3!

∫
d3p1

(2π)3

∫
d3p2

(2π)3

∫
d3p3δ

3(k− p1 − p2 − p3)φ(p1)φ(p2)φ(p3)

×
[

p1p
2
3

k2|p1 + p2|
+

p2p
2
3

k2|p1 + p2|
+

p1p
2
2

k2|p1 + p3|
+

p2
2p3

k2|p1 + p3|
+

p2
1p2

k2|p2 + p3|
+

p2
1p3

k2|p2 + p3|

]
(A3)

Now we can read off the contribution to the cubic ker-
nel from the 13th term:
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N13th
3 (p1,p2,p3, k) ≡ p1p

2
3

k2|p1 + p2|
+

p2p
2
3

k2|p1 + p2|
+

p1p
2
2

k2|p1 + p3|
+

p2
2p3

k2|p1 + p3|

+
p2

1p2

k2|p2 + p3|
+

p2
1p3

k2|p2 + p3|
. (A4)

Applying this procedure to each term gives the full cubic
kernel N3(p1,p2,p3, k):

N3(p1,p2,p3, k)

= 6b1 + b2

[
p1 + p2

|p1 + p2|
+

p1 + p3

|p1 + p3|
+

p2 + p3

|p2 + p3|

]
+ b3

[
p2

1 + p2
2

|p1 + p2|2
+

p2
1 + p2

3

|p1 + p3|2
+

p2
2 + p2

3

|p2 + p3|2
]

+2b4

[
p1p2

|p1 + p2|2
+

p1p3

|p1 + p3|2
+

p2p3

|p2 + p3|2
]

+ 2b5

[
p1 + p2 + p3

k

]
+b6

[
p2

1 + p2
2

k|p1 + p2|
+

p2
1 + p2

3

k|p1 + p3|
+

p2
2 + p2

3

k|p2 + p3|

]
+ 2b7

[
p1p2

k|p1 + p2|
+

p1p3

k|p1 + p3|
+

p2p3

k|p2 + p3|

]
+2b8

[ |p1 + p2|
k

+
|p1 + p3|

k
+
|p2 + p3|

k

]
+ b9

[
p3(p1 + p2)

k|p1 + p2|
+
p2(p1 + p3)

k|p1 + p3|
+
p1(p2 + p3)

k|p2 + p3|

]
+b10

[
p3(p2

1 + p2
2)

k|p1 + p2|2
+
p2(p2

1 + p2
3)

k|p1 + p3|2
+
p1(p2

2 + p2
3)

k|p2 + p3|2
]

+ 2b11

[
p2

1 + p2
2 + p2

3

k2

]
+ 2b12

[
p1p2

k2
+
p1p3

k2
+
p2p3

k2

]

+b13

[
p2

3(p1 + p2)

k2|p1 + p2|
+
p2

2(p1 + p3)

k2|p1 + p3|
+
p2

1(p2 + p3)

k2|p2 + p3|

]
+ b14

[
p2

3(p2
1 + p2

2)

k2|p1 + p2|2
+

p2
2(p2

1 + p2
3)

k2|p1 + p3|2
+

p2
1(p2

2 + p2
3)

k2|p2 + p3|2
]

+2b15

[
p1|p2 + p3|

k2
+
p2|p1 + p3|

k2
+
p3|p1 + p2|

k2

]

+b16

[
(p1 + p2)|p1 + p2|

k2
+

(p1 + p3)|p1 + p3|
k2

+
(p2 + p3)|p2 + p3|

k2

]
+2b17

[
|p1 + p2|2

k2
+
|p1 + p3|2

k2
+
|p2 + p3|2

k2

]
+ b18

[
(p2

1 + p2
2)p3

k2|p1 + p2|
+

(p2
1 + p2

3)p2

k2|p1 + p3|
+

(p2
2 + p2

3)p1

k2|p2 + p3|

]
. (A5)

Appendix B: Example of finding the quadratic terms
induced by a cubic term in biased sub-volumes

We again use the 13th term, ∂−2(∂2φ∂−1(φ∂φ)), to
illustrate how to read off the induced quadratic terms
from the limit of a cubic term when one momentum is

much smaller than the other two. Choosing any one of
the three momenta (e.g., p3) as the long wavelength mode
kl and the other two (p1, p2) as the short wavelength
modes ks, and using the fact that the kernel is symmetric
in the pi:

∂−2(∂2φ∂−1(φ∂φ))(k) = 3× 1

3!

∫ k∗

Λ

d3p3

(2π)3
φ(p3)

∫ kmax

k∗

d3p1

(2π)3

∫ kmax

k∗

d3p2

δ3(k− p1 − p2)φ(p1)φ(p2)

{
p2

1

k2
+
p2

2

k2
+ p3

[
p2

1

k2p2
+

p2
2

k2p1

]
+ p2

3

[
p1

k3
+
p2

k3

]}
≡
[
φl∂
−2(φs∂

2φs) + ∂φl∂
−2(∂2φs∂

−1φs) + ∂2φl∂
−3(φs∂φs)

]
, (B1)
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where Λ is the largest scale in the problem (eg, corre-
sponding to the mode that first exited during inflation)

and k∗ is the scale that defines the size of the sub-volume.
The corresponding procedure in real space is

∂−2(∂2φ∂−1(φ∂φ)) =
[
∂−2(∂2φl∂

−1(φs∂φs)) + ∂−2(∂2φs∂
−1(φl∂φs)) + ∂−2(∂2φs∂

−1(φs∂φl))
]

=
[
∂2φl∂

−2(∂−1(φs∂φs)) + φl∂
−2(∂2φs∂

−1(∂φs)) + ∂φl∂
−2(∂2φs∂

−1(φs))
]

=
[
φl∂
−2(φs∂

2φs) + ∂φl∂
−2(∂2φs∂

−1φs) + ∂2φl∂
−3(φs∂φs)

]
. (B2)

Note that to go from the first line to the second, all the
long modes φl, ∂φl and ∂2φl are treated as constants.

Appendix C: The contribution to the power
spectrum from the cubic field Φ3

In this Appendix we derive the constraints on the terms
in Φ3 from their contribution to the power spectrum:〈

Φ3(k′)Φ3(k)
〉
≡ δPΦ3

(k) δ3(k′ + k)

=

(
gNL

3!

)2 3∏
`=1

∫
d3p`
(2π)3

3∏
m=1

∫
d3qm
(2π)3

N3(p1,p2,p3,k)

N3(q1,q2,q3,k
′)δ3(k′ −

3∑
m=1

qm)δ3(k−
3∑
`=1

p`)

×
〈[

φ(p1)φ(p2)φ(p3)−
3∑
i=1
k 6=j 6=i

φ(pi)〈φ(pj)φ(pk)〉
]

×
[
φ(q1)φ(q2)φ(q3)−

3∑
i′=1

k′ 6=j′ 6=i

φ(q′i)〈φ(q′j)φ(q′k)〉
]〉

= g2
NL

∫
d3p1

(2π)3

d3p2

(2π)3
d3p3N

2
3 (p1,p2,p3,k)

P (p1)P (p2)P (p3) δ3(k− p1 − p2 − p3) . (C1)

In order to obtain the constraints on the terms in N3

we need to find those that give divergent integrals in the
expression above. The divergences are in the UV, where
some of the internal momenta are large, and there are
several configurations to consider:

For k � |p1 + p2|, p1; k � p2:

b14 = 0, b10 + b18 = 0,

b3 + b4 + b6 + b7 + 2b11 + b12 + b13

+ b14 + 2b15 + b16 + 2b17 + b18 = 0. (C2)

For k � |p1 + p2|, p1, p2:

b12 + b13 + b16 = 0,

b11 + b14 + b15 + b17 + b18 = 0.

(C3)

For k � p1, p2; k � |p1 + p2|:

b16 = 0, (b11 + b15 + b17) + (b12 + b13 + b16)

+ (b11 + b14 + b15 + b17 + b18) = 0,

b6 + b7 + b18 = 0,

(2b5 + b6 + 2b8 + b9 + b10 + b12)

+ (b12 + b13 + b16) = 0 . (C4)

We have verified that other loop corrections (e.g., to
the bispectrum) do not give additional constraints.

Appendix D: Examples of special cubic kernels and
the corresponding trispectra

A cubic kernel that gives no cosmic variance contribu-
tions stronger than ∂2φl to the power spectrum or bispec-
trum has {b1 = 1, b11 = 3, b17 = −3}. This is a candidate
for a single-clock inflation trispectrum:

N3(k1,k2,k3,k4) = 6 + 6

[
k2

1 + k2
2 + k2

3

k2
4

]
−6

[ |k1 + k2|2 + |k1 + k3|2 + |k2 + k3|2
k2

4

]
. (D1)

Recall that the trispectrum is related to the cubic kernel
by

TΦ(k1,k2,k3,k4) = gNLPφ(k1)Pφ(k2)Pφ(k3)

N3(k1,k2,k3,k4) + cyc. (D2)

For the kernel above, the trispectrum has no factors of
|ki + kj | in the denominator and limki→0 TΦ = 0.

A cubic kernel that induces an equilateral bispectrum
and a leading order (∝ φs) SCV shift to the power spec-
trum is {b1 = −3, b2 = 4, b3 = 2, b4 = −2}. We start
writing the non-Gaussian field up to cubic order with
implementing our parameter set for the cubic terms

Induce equilateral bispectrum and shift PS:
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N3(k1,k2,k3,k4) = −18 + 4

[
k1 + k2

|k1 + k2|
+

k1 + k3

|k1 + k3|
+

k2 + k3

|k2 + k3|

]
+ 2

[
k2

1 + k2
2

|k1 + k2|2
+

k2
1 + k2

3

|k1 + k3|2
+

k2
2 + k2

3

|k2 + k3|2

]

−4

[
k1k2

|k1 + k2|2
+

k1k3

|k1 + k3|2
+

k2k3

|k2 + k3|2

]
. (D3)

One can see directly from the trispectrum that this term
induces the equilateral bispectrum:

k3
4 lim
k4→0

TΦ(k1,k2,k3,k4) = P (k1)P (k2)[
− 6 + 4

k1 + k2

k3
+ 2

k2
1 + k2

2

k2
3

− 4
k1k2

k2
3

]
+ perm. (D4)

The cubic term with {b1 = −5/3, b2 = 2, b5 = 3, b9 =
−4, b12 = −2, b13 = 2} also induces the equilateral bis-
pectrum but does not shift the power spectrum at leading
order (∝ φs). This kernel is

N3(k1,k2,k3,k4) = −10 + 2

[
k1 + k2

|k1 + k2|
+

k1 + k3

|k1 + k3|
+

k2 + k3

|k2 + k3|

]
+ 6

[
k1 + k2 + k3

k4

]
− 4

[
k3(k1 + k2)

k4|k1 + k2|
+
k2(k1 + k3)

k4|k1 + k3|

+
k1(k2 + k3)

k4|k2 + k3|

]
− 4

[
k1k2 + k1k3 + k2k3

k2
4

]
+ 2

[
k2

3(k1 + k2)

k2
4|k1 + k2|

+
k2

2(k1 + k3)

k2
4|k1 + k3|

+
k2

1(k2 + k3)

k2
4|k2 + k3|

]
.

(D5)

In this case the trispectrum again satisfies Eq.(D4) but
in addition

No shift to power spectrum :

k3
1k

3
2 lim
k1,k2→0

TΦ(k1,k2,k3,k4) = 0 . (D6)

In the above examples, we have not normalized the
coefficients bi. However, for some template definitions it
may be useful to require

∑
i bi = 1, which can be easily

done.
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