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Inhomogeneities associated with the cosmological QCD and electroweak phase transitions produce
hydrodynamical perturbations, longitudinal sounds and rotations. It has been demonstrated by
Hindmarsh et al. [1] that the sounds produce gravity waves (GW) well after the phase transition is
over. We further argue, that, under certain conditions, an inverse acoustic cascade may occur and
move sound perturbations from the (UV) momentum scale at which the sound is originally produced
to much smaller (IR) momenta. Weak turbulence regime of this cascade is studied via Boltzmann
equation, possessing stationary power and time-dependent self-similar solutions. We suggest certain
indices for strong turbulence regime as well, into which the cascade eventually proceeds. Finally,
we point out that two on shell sound waves can produce one on-shell gravity wave, and evaluate the
rate of the process using standard sound loop diagram.

I. INTRODUCTION

We think that our Universe has been “boiling” at its
early stages at least three times: at the initial equi-
libration, when entropy was produced, at electroweak
and QCD phase transitions. On general grounds, these
should have produced certain out-of-equilibrium e↵ects.
It remains a great challenge to all of us to find a way
to observe their consequences experimentally, or at least
evaluate their magnitude theoretically.

Thirty years ago, in a very influential paper Witten
[3] discussed the bubble dynamics, assuming that cosmic
QCD phase transition is of the first order. Among other
things, he pointed out that bubble coalescence/collisions
produce inhomogeneities of the energy density, which
lead to the gravity waves (GW) production. These ideas
were soon further developed by Hogan [4] who identified
relevant frequencies and provided the first estimates of
the radiation intensity.

Hogan also was the first to mention the subject of this
work – generation of the GW from the sound. Unfortu-
nately, this idea was dormant for a very long time, being
recently revived by Hindmarsh et al. [1], who found the
hydrodynamic sound waves to be the dominant source
of the GW (see also a later work [2]). This paper had
triggered our interest to the subject. Hindmarsh et al.,
however, were performing numerical simulations of (vari-
ant of) the electroweak (EW) phase transition, in the
traditional first order transition setting. It makes clear
that previous calculations of the GW yield – such as, e.g.,
[5] for the QCD transition – need to be strongly modi-
fied, including the dynamics of the sound waves. We will
return to discussion of [1] in Section IVD.

Our paper refers to both QCD and EW transitions,
with emphasis on the former case, both because of favor-
able observational prospects and our background. The
main point of our paper is that, given a huge dynami-
cal range of the problem, it is clearly impossible to cover
it in a single numerical setting. We suggest to split the
problem into distinct stages, each with its own physics,
scales and technique. We will list them starting from

the UV end of the spectrum, with momenta of the or-
der of ambient temperature k ⇠ Tc and ending at the IR
end of the spectrum, k ⇠ 1/tlife, limited by the cosmo-
logical horizon (inverse to the Universe lifetime) at the
radiation-dominated era:

(i) production of sounds from inhomogeneities,
(ii) inverse acoustic cascade, focusing the sound waves

population toward small momenta
(iii) the final conversion of sounds into GW

The stage (i) remains highly nontrivial, associated with
the dynamical details of the QCD and EW phase transi-
tion. We will not be able to provide definite predictions
on it at this point, and only make some comments on
current status of the problem in Section VI.
The stage (ii) will be our main focus. It is in fact

amenable to perturbative studies of the acoustic inverse
cascade, consisting of sound decay/scattering events.
Those are governed by the Boltzmann equation which
has been already studied in literature on acoustic tur-
bulence to certain extent. The stationary attractor so-
lutions – known as Kolmogorov-Zakharov spectra – can
be identified, as well as some time-dependent self-similar
solution describing a spectrum profile moving across the
dynamical range. Application of this theory allows to see
how small-amplitude sounds at the UV get self-focused at
small k, tremendously amplifying the momentum density
nk there.
The final step (iii) can be treated directly via a stan-

dard on-shell process for the sound+sound ! GW tran-
sition, to be calculated in Section V via a sound loop di-
agram. Since it is proportional to squared density (nk)2,
it can be amplified by inverse acoustic cascade by a huge
factor.
Let us note that the studies of the QCD phase tran-

sition region, from the confined (or hadronic) phase to
the deconfined Quark-Gluon Plasma (QGP) now consti-
tute the mainstream of the heavy-ion physics. Experi-
ments, done mostly at the RHIC in Brookhaven and now
at CERN LHC, revealed that the matter above and near
the phase transition seems to be a nearly perfect liquid
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with a small viscosity. Hydrodynamic description of the
subsequent explosion – sometimes called the Little Bang
– turns out to be very accurate.

Furthermore, initial state fluctuations create hydrody-
namical perturbations of the Little Bang – the sounds.
The long-wave ones can survive till the freezeout time
without significant damping and are observed experi-
mentally, in the correlation functions of the secondaries.
These observations are in excellent agreement with the
hydrodynamics see, e.g., [9, 10], and this ensures ex-
istence of the sound in the near-Tc matter. (Shorter-
wave sounds, which do not survive till freezeout, were
not yet observed, although there are suggestions [16]
to use “magneto-sono-luminescence” processes phonon+
photon ! photon (or dilepton) to do so.)

There is, however, an important di↵erence between the
hydrodynamics in the heavy ion collisions (the “Little
Bang”) and the early universe. The Reynolds number for
QGP at RHIC is estimated [11] to be ReRHIC ⇠ 48⇡ with
the typical length scale RAu ⇠ 6 fm, radius of the gold
nucleus. Such a small Reynolds number would not allow
instabilities – creating the turbulence – to be developed.
In contrast, for the early universe, at, e.g., QCD phase
transition,

ReEU =
tQCD · c
RAu

ReRHIC ⇠ 1019 , (1)

where we take the cosmological horizon to be a typical
length scale (i.e. the Big Bang fireball is of order of 10 km
size). In this case the turbulence can be fully developed,
while the viscous forces are mostly irrelevant.

Thinking of other settings in nature, with a very large
Reynolds number and strong turbulence, one may take
an example of the Sun, or stars in general. In this case
the acoustic waves are generated by the convection. The
energy spectrum of the acoustic waves was obtained from
various models [12], and its most prominent feature is the
power spectrum with inverse power of momentum, except
a flat peak at its smallest values kIR.

The analogy between the early Universe and the Sun
cannot be used in a straightforward way, for several rea-
sons. First of all, Sun is near-stationary, with well defined
source and sink. Second, the Sun’s plasma is strongly in-
fluenced by long-range magnetic fields, forming flux tubes
described by magneto-hydrodynamics (MHD). The QGP
near Tc can be described as a plasma with both electric
and magnetic objects [14, 15]. However, the screening
length of both electric and magnetic fields is generally
close to the microscopic scale 1/T . Dynamics of the elec-
tric flux tubes do exist, near and below Tc, and it can
lead to “string balls” [13]. While those excitations can
lead to interesting phenomena, perhaps to sound gener-
ation, they clearly cannot be long range, i.e. important
at distance scales much larger than the micro scale 1/T .

Finally, let us also mention papers by Kovtun et

al. [17, 18] and subsequent works, which help us to
think about the sound interactions. A particular ef-
fect they calculated is the correction to the viscosity

due to sounds, i.e the “loop viscosity”, appearing techni-
cally as a sound loop in the energy-momentum correlator
Gxyxy(k↵). This e↵ect lead us to think about the sound
decay and/or GW formation (although their kinematics
is di↵erent from what we have considered).
We start by introductory discussion of the main cosmo-

logical parameters of both transitions, the expected fre-
quencies of gravity waves and methods of their potential
observations. The next section III contains preliminary
discussion of thermal radiation, identifying enhancement
parameters, and concludes that GW thermal radiation is
unobservable. In section IV we introduce inverse acous-
tic turbulent cascade, and then discuss the three-wave
or decay dynamics. (Experts in the corresponding sub-
jects can omit those sections.) The essential new material
starts in section IVB, in which we turn to four-wave ki-
netic equation, which leads to the inverse cascade. We
then consider possible stationary regimes of strong tur-
bulence in section IVC, proceeding to time-dependent
behavior in section IVD. In section V we turn to GW
generation rate, and conclude in section VII.

II. FREQUENCIES, OBSERVATIONAL
METHODS AND EXPERIMENTAL LIMITS ON

THE COSMIC GRAVITY WAVES

Let us briefly mention the numbers related to the QCD
and EW transitions. Step one is to evaluate redshifts
of the transitions, which can be done by comparing the
transition temperatures TQCD = 170MeV and TEW ⇠
100GeV with the temperature of the cosmic microwave
background TCMB = 2.73K. This leads to

zQCD = 7.6⇥ 1011, zEW ⇠ 4⇥ 1014 . (2)

At the radiation-dominated era, to which both QCD and
EW era belong, the solution to Friedmann equations
leads to a well known relation between the time and the
temperature [29]

t =

✓
90

32⇡3NDOF (t)

◆1/2 MP

T 2
, (3)

where MP is the Planck mass and NDOF (t) is the e↵ec-
tive number of bosonic degrees of freedom (see details in,
e.g., PDG Big Bang cosmology).
Plugging in the corresponding T one finds the the time

of the QCD phase transition to be tQCD = 4 ⇥ 10�5 s,
and electroweak tEW ⇠ 10�11 s. Multiplying those times
by the respective redshift factors, one finds that the tQCD

scale today corresponds to about 3⇥ 107 s = 1 year, and
the electroweak to 5⇥ 104 s = 15 hours.
The cosmological horizon provides a natural infrared

cuto↵ on the gravitational radiation wavelength. At the
radiation-dominated era it is inversely proportional to
the time, so the estimates above give a cuto↵ on the pe-
riods of the gravitational waves in the present time. GW
from the electroweak era are expected to be searched for
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by future space GW observatories such as eLISA: dis-
cussion of their potential sensitivity can be found else-
where. The observational tools for GW at the period
scale of years are based on the long-term monitoring of
the millisecond pulsar phases, with subsequent correla-
tion between all of them. The basic idea is that when
GW is falling on Earth and, say, stretches distances in a
certain direction, then in the orthogonal direction one ex-
pects distances to be contracted. The binary correlation
function for the pulsar time delay is an expected func-
tion of the angle ✓ between them on the sky. There are
existing collaborations – North American Nanohertz Ob-
servatory for Gravitational Radiation, European Pulsar
Timing Array (EPTA), and Parkes Pulsar Timing Ar-
ray – which actively pursue both the search for new mil-
lisecond pulsars and collecting the timing data for some
known pulsars. It is believed that about 200 known mil-
lisecond pulsars constitute only about 1 percent of the
total number of them in our Galaxy. We also note that
the current bound on the GW energy density for the fre-
quencies in interest, f t year�1, is [19]

⌦GW(f = 2.8nHz) · (h0/0.73)
2 < 1.3⇥ 10�9 , (4)

where ⌦GW is, as usually, the total energy density of GW
relative to the critical energy density and

⌦GW(f) = d⌦GW/d(ln f) . (5)

This bound should constrain possible models of the
GW production in the early Universe. (Note that at
the time of QCD (EW) transition ⌦rad is about 4 (15)
orders of magnitude larger due to its dependence on the
scaling factor a(t), so the aforementioned limit is weaker
for those times)

Rapid progress in the field, including better pulsar tim-
ing and formation of a global collaborations of observers,
is expected to improve the sensitivity of the method, per-
haps making it possible in a few year time scale to detect
GW radiation, either from the QCD Big Bang GW ra-
diation we discuss, or that from colliding supermassive
black holes.

III. PRELIMINARY DISCUSSION OF
SOUND-TO-GW TRANSITION

For comparison, let us start with the Little Bang –
heavy-ion collision. As one of us suggested many years
ago [20], production of penetrating probes – photons and
dileptons – not only provide a look inside the quark-gluon
plasma, but is even somewhat enhanced. The rate of,
e.g., photon production due to the strong Compton scat-
tering and annihilation qg ! q�, q̄g ! q̄�, q̄q ! g� is

dN�/d
4x ⇠ ↵↵sT

4 (6)

and thus the photon accumulated density normalized to
the entropy density of matter sQGP ⇠ T 3 is of the order

of
R
dtdN�/d4x

sQGP
⇠ ↵↵s(tlife T ) , (7)

where tlife is the fireball lifetime. Small QED and QCD
coupling constants in front are thus partly compensated
by large (tlife T ) � 1, called “macro-to-micro ratio”,
which will repeatedly appear below. This factor repre-
sents a long accumulation time of the photon production,
and it is about one order of magnitude in heavy ion col-
lisions.
Similar logic holds for the gravitational radiation from

matter constituents. The characteristic micro scale of
the plasma is its temperature T . At the thermal (the
high-frequency) end of the spectrum, ! ⇠ T , one finds
the fraction of GW radiation to the total energy density
T 00 ⇠ NDOFT 4 to be given by a similar expression,

⌦GW ⇠
✓

T

MP

◆2

(tlife T ) , (8)

where the first factor is the corresponding e↵ective grav-
itational coupling, which is very small since T/MP ⇠
10�20 � 10�17 in our case. The macro-to-micro factor
is a large enhancement factor, which can be readily ob-
tained from (3) and in fact contains an inverse of the
ratio just mentioned, so

t T ⇠ MP

T
· 1

N1/2
DOF

⇠ 1016 � 1019 . (9)

This fraction cannot, however, cancel all powers of MP

the the coupling factors, so the gravitational radiation
directly from plasma particles is strongly suppressed.
While matter is mostly made of various partons with

k ⇠ T , it also contains long wavelength collective modes,
the hydrodynamical sounds. Thermal occupations of
plasma partons are nk = O(1), but for sounds, even in
equilibrium, their occupation factors for small frequen-
cies are much larger, nk ⇠ T/k � 1.
Out-of-equilibrium phenomena we will study below

may produce much higher amplitudes of hydrodynamical
perturbations at small k, in the so called inverse acoustic

cascade. Since the sound momenta/frequencies are how-
ever limited from below, and thus the sound intensities
nk are limited as well. The most obvious infrared cuto↵
is by the inverse lifetime of the Universe, ! > 1/tlife:
more precise cuto↵ is due to a collision rate which we
will discuss below.
The sound conversion to GW happens via two-to-one

transition, and therefore its rate is enhanced quadratically

⇠ n2
k. The peak in the sound intensity squared will be

repeated in the GW spectrum. The more it moves to
the IR the stronger will be the GW signal, and better
chances we have to eventually observe it.
Summarizing this section: only strongly enhanced out-

of-equilibrium sounds may potentially produce observ-
able level of GW. The task is to estimate the sound level
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at the IR end of the dynamical range. To illustrate how
highly non-trivial it is, we recall that the loudest sounds
on Earth have nothing to do with the equilibrium condi-
tions, but with the thunderstorms or earthquakes.

IV. ACOUSTIC TURBULENCE

The idea of turbulence, either driven or free, started
from hydrodynamics of fluids. Kolmogorov proposed the
famous stationary power solutions. For the weak turbu-
lence, governed by the Boltzmann equation, such solu-
tions were developed by Vladimir Zakharov and collabo-
rators to many di↵erent problems, summarized in a book
[21]. A turbulent cascade in cosmology was suggested to
appear after the pre-heating stage of inflation [22]: that
was for a scalar field with quartic self-interaction. How-
ever, that cascade is direct, propagating into UV, towards
the large momenta k. Consideration of inverse cascade
to IR, similar to our case, was done for scalar theories
[23] as well as recently for gluons, see e.g. [25]. The
inverse acoustic cascade in strong turbulence regime, to
our knowledge, was never discussed before.

A. Scenario 1: binary decays allowed

The key feature of our theory are nonlinear corrections
to the sound dispersion law. We will use notations

Re!k = csk + �! (10)

and assume that

�! = Ak3 +O(k5) . (11)

The sign of constant A would lead to physically di↵erent
scenarios due to di↵erent sound cascades. Although the
coe�cient A is not known for the sound near the QCD
or EW phase transitions, it was derived for a strongly
coupled plasma of the N=4 super-Yang-Mills theory,
through the AdS/CFT correspondence. It is widely be-
lieved that those should be similar, at least qualitatively.
Not going into details, the known terms in the sound
dispersion curve, up to O(k6) accuracy, are [6]

!

2⇡T
= ± k̃p

3


1 +

✓
1

2
� ln 2

3

◆
k̃2 � 0.088 k̃4

�

� ik̃2

3


1� 4� 8 ln 2 + ln2 2

12
k̃2 � 0.15 k̃4

�
, (12)

where k̃ ⌘ k/(2⇡T ). The crucial observation is that the
O(k2) correction in the first bracket of (12) has a positive
coe�cient. This allows for three-wave 1 $ 2 transitions
between the sounds, in particular, a decay of a harder
phonon into two softer ones. Although this is in principle
known, for completeness let us remind the kinematics of
this process.

The momentum conservation ~k = ~k1 + ~k2 allows to
introduce a parameter x 2 [0, 1] and a vector ~q? such that
~k1,~k2 will have longitudinal components along ~k denoted

by ~kk1 = ~k · x, ~kk2 = ~k · (1 � x) and the transverse ones
~k?1,2 = ±~q?, where plus (minus) are for ~k1 (~k2). The
energy conservation,

!(k) = !(k1) + !(k2) , (13)

can be simplified using the fact that the dispersive cor-
rection is small in the range we are interested in,

p
Ak ⌧ 1 . (14)

Realizing that the transverse momentum is proportional
to it and thus it is also small, one may simplify energy
conservation further. The resulting value of the trans-
verse momentum, for a given value of longitudinal mo-
mentum fraction x, is

q?
k

= (
p
Ak)

p
6x(1� x) . (15)

One can further argue that, due to the Goldstone nature
of sounds, their interaction matrix element at small mo-
menta (IR) must be proportional to the product of all
momenta,

| V (k, k1, k2) |2IR= b · k · k1 · k2 , (16)

where b is a constant. Dynamical and even dimensional
arguments [21] confirm this result.
Having in mind this matrix element, the phase space

of the decay, one can write down a kinetic equation in-
cluding all 1 $ 2 transitions. The details can be found
in Ref. [21]. Let us present here only the final form of the
Boltzmann equation with the assumption of the isotropy
of spectra and the angle integrations performed,

1

4⇡b

@nk

@t
= (17)

Z k

0

dk1k
2
1(k � k1)

2[nk1nk�k1 � nk(nk1 + nk�k1)]

� 2

Z 1

k

dk1k
2
1(k � k1)

2[nknk1�k � nk1(nk + nk1�k)] .

In spite of relatively complicated form of the equation, it
has simple stationary power solutions, generally known
as Zakharov’s spectra [21],

nk ⇠ k�s, sdecay = 9/2 . (18)

This power solution is in fact a stable “attractor” solu-
tion. Numerical simulations, starting from a variety of
out-of-equilibrium distributions, have been shown to ap-
proach this spectrum rather rapidly, again see Ref. [21].
Unfortunately, the sign of the flux associated with this

cascade is such that it develops in UV direction, making
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it irrelevant for problem under consideration. Note that
the total energy density contained in the sounds,

✏sound =

Z
!knk4⇡k

2dk , (19)

is convergent at the UV end, which forbids an inverse
cascade.

B. Scenario 2: four-wave interactions

Now we discuss an alternative case, when the disper-
sive correction coe�cient in (11) is negative, A < 0, and,
therefore, the binary on-shell decays of sound waves are
forbidden. In this case one should consider the second
order processes, i.e. the scattering 2 $ 2, as well as
three-body decays 1 ! 3 and corresponding inverse pro-
cesses (which are always permitted by the conservation
laws).

For a relativistic scalar theory with triple ⇠ g�3 and
quartic ⇠ ��4 interactions, these processes stem ei-
ther from non-local diagrams O(g2) or local ones O(�).
When only the latter are present, derivation of the ki-
netic equation for weak turbulence is very straightfor-
ward, see e.g.[22]. Yet the former diagrams, O(g2), when
present, are dominant, since t-channel exchanges lead
to the small-angle and large impact parameter collisions
with large cross sections. This is known for gluons and
is also the case for sound waves.

The 4-wave scattering amplitude, the Boltzmann equa-
tion itself and its stationary solution are more compli-
cated, and we will not repeat here the material covered
in the book [21]. Let us only briefly mention the ideas
essential for the understanding of the weak turbulence.
The 2 $ 2 scattering amplitude is, schematically, a sum
of the type

X

i,j,l,m

V ⇤(ki ± kj , ki, kj)V (kl ± km, kl, km)

!(ki)± !(kj)� !(ki ± kj)
(20)

where i, j, l,m = 1..4 are 4 participating particles. For
small angles ✓i relative to the momentum k – the external
argument of Boltzmann equation – the denominators are

!(k)± !(kj)� !(k ± kj) ⇡
csk

kj
2|k ± kj |✓

2
j + �!(k)± �!(kj)� �!(k ± kj) . (21)

The scattering amplitude is substituted to the collision
integral of the Boltzmann equation, which is then solved
by means of the scaling analysis. The di�culty is that
the first term in (21) scales as the first power of momen-
tum, while the energy corrections have a di↵erent scaling
index,

�!(⇤k) = ⇤��!(k) , (22)

which we assume is � = 3. The issue was resolved by
Katz and Kontorovich, who suggested to complement

scaling transformation of momenta by an additional ro-
tation, such that the angles are rescaled by

✓0 = ⇤(��1)/2✓ . (23)

Now all terms in the denominators above have the same
index �. This transformation keeps (parts of) collision
integral invariant and ultimately leads to an isotropic sta-
tionary Kolmogorov-like power solution. For the inverse
(particle flow) cascade we are interested in the index s
of the momentum density nk ⇠ k�s, which satisfies the
constant flux equation,

� 3s+ 4m� 3� � 1� (� + 1) · d� 1

2

+ 3(� � 1) · d� 1

2
+ 4d = 0 . (24)

Here the index m is the index of the triple vertex,
m = 3/2. First two terms are obvious – there are 3
densities and 4 triple vertices (since we take a square
of the amplitude), the third one comes from the ener-
gies in the denominator of (21) and energy conservation
condition, the fourth (fifth) comes from the longitudi-
nal (transverse) momentum conservation condition, oth-
ers have to do with the phase space integration measure.
Note that one should take special care of the argument of
the energy conservation under Katz-Kontorovich trans-
formation and angular integrations: those produce the
last two � terms. Substituting the space dimension d = 3
and the index � = 3 of �!, one gets

snondecay = 10/3 (25)

(Another power solution of the Boltzmann equation – the
energy flux solution – has an opposite sign of the flow, to
UV, which we thus disregard.)
Since the obtained index is in the segment 3 < s < 4,

the energy integral (19) is dominated by the UV end and
is thus irrelevant, while the particle number

N =

Z
nk4⇡k

2dk (26)

is dominated by the IR end. Such cascades, driven by
particle number normalizations, are usually called the
“particle number cascades”.

C. Scenario 2: strong turbulence

This is not the end of the story, because growing parti-
cle density at small k eventually violates the applicability
condition of weak turbulence, nk ⌧ 1/�. So, at the IR
end, the physics is in the regime of strong turbulence, in
which consideration of higher order diagrams is required.
To our knowledge, this question was never considered in
the case of sounds.
The strong turbulence regime was studied in the case of

relativistic ��4 theory by Berges and collaborators [23,
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24], who derived a renormalized inverse cascade, with
modified indices. Important, those were confirmed by
direct simulations, in d = 3 and 4 spatial dimensions
[23].

The core of their theory is that the re-scattering di-
agrams can be included in a rather elegant way, via a
renormalized e↵ective self-interaction coupling,

�2
eff =

�2

(1 +⇧(�, k))2
. (27)

At small k, ⇧ � 1, so we can neglect 1 in the expression
above. Therefore, its scaling index �, defined by

⇧(k) = ⇠�⇧(⇠k, ⇠!k) (28)

enters the Boltzmann equation, expression for the parti-
cle flux and the final equation for the index. For d = 3
case we need, it is simply

� = s , (29)

i.e. the index of the density. (Density appears linearly in
⇧, other factors cancel). Omitting details, the equation
for the index reads then

�4� 2�+ 3s = 0 (30)

In weak turbulence regime, ⇧ ⌧ 1, and one should ex-
clude �. The index then is sweak = 4/3. However, in the
opposite strong turbulence case, one should use (29) and
the index is renormalized to another – much larger value

sstrong = 4 (scalar) (31)

It is the value which was indeed observed in numerical
simulations [23].

The case of gluon cascade o↵ers some further sugges-
tions and intuition. While it also has a triple vertex and
is dominated by the small-angle scattering, the impact
parameter in this case is dominated by the Debye screen-
ing length b2 < 1/M2

D produced by scattering of a virtual
gluon on the ambient plasma, and thus depending on the
gluon density.

Let us now try to apply the same logic for the acoustic
turbulence. The main physics idea is that due to the
particle forward scattering on others in the medium, in
gains an additional correction to its energy, which we will
denote by �0! (with a prime, to distinguish it from the
original �!). Its scaling index is denoted then by �0. In
the strong turbulence regime one expects the rescattering
e↵ect to become dominant, �0! � �!, and hence one
should replace � by �0 in the index equation.

Classical perturbation theory, as described in, e.g.,
chapter 1 of [21], starts from a Hamiltonian of the type

H = !bb⇤ +
V

2
V (b2b⇤ + b⇤2b) +

U

6
(b3 + b⇤3) + . . . (32)

including the wave amplitude b (for brevity we drop mo-
mentum indices here and below) and the triple vertices

V and U . In case of nondecay, the triple vertices are
irrelevant and can be eliminated by the canonical trans-
formation

b = c+
V

2!
c2 � V

!
cc⇤ � U

6!
c⇤2 +O(c3) , (33)

where c are new amplitudes. The new Hamiltonian is
then rewritten as

H = !cc⇤ � 3

4

V 2

!
c2c⇤2 +

V̄ 4

!3
c(cc⇤)2c⇤ +O(c7) , (34)

where V̄ 4 ⌘ (2V 2U2�3UV 3�27V 4)/18. The next step is
to use statistical description, eliminating rapidly varying
terms and leaving only slowly changing correlation func-
tions such as hckc⇤k0i = nk�(~k � ~k0). The second quartic
term in (34) gives the 2 ! 2 scattering amplitude, its
square appears in the corresponding kinetic equation.
For a generic triple vertex V , this second term also

gives rise to the forward scattering amplitude, Fig. 1(a),
which can be reinterpreted as a perturbative correction
to the wave energy due to the particle scattering on all
others,

�0! ⇠
Z

p

V 2

!
npdp (35)

(in spirit of an e↵ective potential for slow neutrons in or-
dinary or nuclear matter). The kinematics of the forward
scattering makes two momenta contributing to the vertex
to be identical and thus the remaining one being zero. So,
naively, if one of the momenta in Vkpq ⇠ p

k · p · q van-
ishes, then the amplitude of the process is zero. However,
the denominator in (20) also vanishes and, applying the
l’Hospital’s rule with q ! 0, one can show that the total
expression (the amplitude) is finite. We do not evaluate
the absolute magnitude of �0!, only its scaling index,

�0 = 2m� s� 1 + 3 = 5� s . (36)

Here the 2m corresponds to V 2, s to the density np, �1
to the scaling of the denominator, and hence q, in (20),
the last term comes from the integration measure over ~p.
Then we substitute it into the index equation (24) instead
of � and get a corrected index for the strong turbulence

sstrong = 4 , (37)

corresponding to a flat sound power spectrum.
Here we calculated the index of the diagram Fig. 1(a),

and not the diagram itself. In case there is a fine-tuning
of the parameters leading to a vanishing contribution of
this diagram (which we cannot exclude a priori), then
one should focus on the third term of (34). It generates
a nonzero forward scattering and correction to the energy
of the order V̄ 4

!3 n2, from a scattering on two particles, see
Fig. 1(b). The intermediate wave is not collinear with
the original one, so in this kinematics V and U do not
vanish. In this case the index for �0! will be

�0 = 4m� 2s� 4� + 2(2 + �) = 10� 2s , (38)
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(a) (b)

FIG. 1: Forward scattering diagrams corresponding to the (a) quartic and (b) sextic terms in the Hamiltonian (34).

where, again, the 4m corresponds to V̄ 4, 2s to two den-
sities, �4� to frequencies in the denominator and in the
energy conservation condition, and the last term comes
from the angular integral. We substitute it into the index
equation (24) instead of � and obtain even larger index

sstrong = 6 (subleading) (39)

At this point, since considering all competing mecha-
nisms and diagrams would go beyond the scope of this
paper, we just conjecture that 6 is the largest possible
index.

In summary, we suggest that the strong acoustic tur-
bulence can be considered similarly to the scalar and
gluon ones, with the impact parameters of scattering de-
termined self-consistently, by higher order rescattering
processes. Dedicated theoretical studies and numerical
simulations are required in order to check if the proposed
index (37) is correct. If so, or even if it is di↵erent but
still, say, large enough, 6 � sstrong � 4, that would en-
hance nk and increase the GW intensity by a huge factor.

D. Scenario 2: time evolution

In the regime when external sources/sinks are switched
o↵, the power Kolmogorov spectra are represented by
self-similar propagating solutions of the type

nk = t̂�qfs[t̂
�pk̂] = t̂�qfs[⇠] , (40)

where the t̂ and k̂ are dimensionless time and momenta,
respectively, normalized to the collision rate at some nor-
malization momentum k0 and k̂ = k/k0. With such nor-
malization the profile function fs[⇠] has a maximum at
⇠ ⇠ O(1).

For the inverse acoustic cascade with 4-wave interac-
tions, the indices are

p = �1, q = �3 , (41)

for derivation see chapter 4.3 of [21]. The negative sign
for the indices means that the profile fs, defining the

sound spectrum, moves toward small k in scale variables
log(k), log(t) at later time.
Note that the integral (26) is conserved for this solu-

tion, so it is a kind of a “soliton” made of N interacting
sound waves, propagating in the scale (logarithmic) vari-
ables. This particle number N is the only information
one needs to know from the early time when the sound
was generated.
This self-similar solution is valid for the weak turbu-

lence regime. As we already discussed, at su�ciently
small k, nk becomes so large that the regime must change
to the strong turbulence. Simple self-similar solution
should perhaps not be enough if the index sstrong � 4,
since in this case both integrals E (19) and N (26) will
be dominated by the IR scale: conservation of both by
a single self-similar solution is not possible: so we can-
not suggest a scenario for the time-dependent solution
at this time. Free propagation of sound waves, with all
sources/sinks switched o↵, in a strong turbulence regime
requires additional studies. Taken that the overpopula-
tion of the IR scale in scalar and gluonic cascades was
proposed to lead to the formation of a condensate, it
would be also interesting to study the latest stages of
the sound turbulence, which may (hypothetically) evolve
into a finite number of very loud long-wave sound waves.
Let us return to the discussion of the initial sound gen-

eration, with another look at the results of the numeri-
cal simulations done in Ref. [1]. Fig. 2, reproduced here
from this work, shows the spectrum of the fluid velocity
squared over the log of momentum, dV 2/d log k.
The first important statement stemming from these

spectra is that the hydro perturbations are dominated
by the sound modes (grey curves above), while the rota-
tional ones (solid curves below) are suppressed by several
orders of magnitude. It is not know how universal is this
feature, but let us accept it for now.
The spectra in Fig. 2 have a shallow maximum at

kT ⇠ 0.03 corresponding to characteristic dynamical
scale of the simulation, the distance between bubbles.
Should this calculation be extended to smaller k, we think
it is inevitable that the spectrum will be cut o↵ in IR ex-
ponentially. Spectra at subsequent time moments show
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FIG. 2: (From [1]) Power spectrum of the velocity squared
versus the (log of) the wave number k. The grey upper
curves are for sounds, from down up as time progresses,
t = 600, 800, 1000, 1200, 1400T�1

c . The black curves in the
bottom are for rotational excitations.

no visible tendency of movement of the maximum. We
attribute this to the fact that the total time of the sim-
ulation is simply not enough time for the sound cascade
– and self-similar solution – to develop.

Note that the typical magnitude of v2 in this simula-
tion is 10�4 (in relativistic units, with the speed of light
c = 1). Results of these simulations provide, in prin-
ciple, the initial sound power spectrum, from which the
inverse acoustic cascade may start evolving. Since we ex-
pect it to start as weak turbulence in a self-similar form
(40), we only need to know the conserved N . The energy
of the sound waves, to the second order, is the unper-
turbed density of matter times the fluid velocity squared
(✏+ p)0V 2. So one can relate this spectrum to the sound
wave occupation numbers via

(✏+ p)0
dv2

d log k
⇠ 4⇡!knkk

3 . (42)

Approximately flat l.h.s. observed means that the e↵ec-
tive initial value of the index is close to 4 (of course, only
in a limited range of scales and time). Then it is sup-
posed to become the weak turbulence, and the slope for
the curve would be sweak � 4 = �2/3, while the left end
of the curve, in the lower k region enters the strong tur-
bulence regime with the slope sstrong � 4 = 0, i.e. stays
flat. If sstrong �4 > 0, or even 2 as we included as a pos-
sibility, the energy spectrum will start growing toward
small k.

V. GENERATION OF GRAVITY WAVES

A. The spectral density of the stress tensor
correlator

General expressions for the GW production rate are
well known, and we will not reproduce them here, pro-
ceeding directly to the main object one has to calculate,
the two-point correlator of the stress tensors

Gµ⌫µ0⌫0
=

Z
d4x d4y eik↵(x↵�y↵)hTµ⌫(x)Tµ0⌫0

(y)i .
(43)

Note that while the Big Bang is homogeneous in space,
so 3-momentum can well be defined and conserved, but it
is time-dependent. We will however still treat it as qua-
sistatic, with well defined frequencies of perturbations,
with a cuto↵ at the lowest end ! < 1/tlife.
Using hydrodynamical expression for the stress tensor,

Tµ⌫ = (✏+ p)uµu⌫ + gµ⌫p , (44)

and expanding it in powers of a small parameter – the
sound amplitude – one can identify terms related to the
sound wave. Associating the zeroth order terms with the
matter rest frame, one introduces the first order velocities
by

uµ = (1, 0, 0, 0) + �uµ
(1) (45)

and one expands the stress tensor to the second order as

�Tµ⌫
(2) = (✏+ p)(0)�u

µ
(1)�u

⌫
(1) + (✏+ p)(2)�

µ0�⌫0 + p(2)g
µ⌫ .

(46)

The correlator is to be coupled to the metric pertur-
bations hµ⌫hµ0⌫0 and we are interested in indices cor-
responding to two polarizations of GW transverse to its
momentum k↵. Such components are only provided by
the term with velocities, and thus we focus on
Z

d4x d4y eik↵(x↵�y↵)h�uµ(x)�u⌫(x)�uµ0
(y)�u⌫0

(y)i ,
(47)

where we dropped the overall factor (✏ + p)2(0) and sub-

scripts “(1)” for the first order terms.
The next step is to split four velocities into two pairs,

for which we use the “sound propagators”,

�mn(p0, ~p) =

Z
d4x eipµx

µh�um(x)�un(0)i , (48)

where we changed indices to the Latin ones emphasizing
that those are only spatial. In these terms the correlator
in question is a loop diagram shown in Fig. 3(b). Similar
loop diagrams were derived and discussed in connection
to fluctuation-induced or loop corrections to hydrody-
namical observables: for a recent review of the results,
standard definitions and relations see [18].
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(a) (b)

FIG. 3: (a) Sketch of the collision of two sound waves (b) The diagram and the cut described in the text. External legs are
gravity waves (gravitons), and the sounds (phonons) are in the loop.

Time dependent Green’s functions can be chosen dif-
ferently depending on the assumed boundary conditions
on the time dependence. The most natural Green’s func-
tions for the sounds are the retarded one �R, which has
only poles in a half of the complex energy E = p0 plane,
corresponding to the sound dissipation, and the symmet-
ric one �S , which has all 4 possible poles. In equilibrium,
they are related to each other by the so-called Kubo-
Martin-Schwinger (KMS) relation (E = p0),

��S = (1 + 2nB(E))Im�R ⇡
E⌧T

2T

E
Im�R , (49)

where nB(E) is the equilibrium Bose distribution. This
expression shows that Im�R corresponds to a single
phonon quantum, and the �S to a wave with proper
occupation numbers. It also suggests generalization to
an out-of-equilibrium case we will use, i.e. introduction
of new rescaled function

��̃S = 2n(E)Im�R , (50)

containing out-of-equilibrium occupation number n(E),
which is assumed to be much larger than the quantum
term 1 in (49), which is therefore dropped. The explicit
expression to be used takes the form

�̃mn
R =

1

(✏+ p)(0)

pmpn

p2
E2

(E2 � p2c2s) + i�̃p2E
, (51)

where notations are 3-dimensional, e.g. p2 = ~p2. The
dissipation lifetime parameter is related to the shear vis-
cosity,

�̃ =
4

3
· ⌘

✏+ p
. (52)

Now one can perform the Fourier transformation and rep-
resent the correlator as a standard field theory loop di-
agram. The imaginary part of the correlator, as usu-
ally, corresponds to the unitarity cut of the loop into two

parts, or probability of the corresponding sounds merging
process,

ImGmm0nn0
(k)

(✏+ p)2(0)
= (53)

Z
d4p

(2⇡)4
n(p0) Im �̃mm0

R (p)n(k0 � p0) Im �̃nn0

R (k � p)

Multiplied by the Newton coupling constant and taken
on-shell k2↵ = 0 this will give us the rate of the sound+
sound ! GW process. Note, that the unitarity cut puts
also on shell both sound lines.

B. Sounds to GW: kinematics

One sound wave obviously cannot produce a GW: (i)
the dispersion relation for the sound is ! = csk, di↵erent
from that of the GW, ! = k; (ii) polarization of the
sound wave is a longitudinal vector, while it should be a
transverse tensor for GW.
Two on-shell sound waves can do it. Using notations

pµ1 +pµ2 = kµ one writes GW on-shell condition (kµ)2 = 0
as

c2s(p1 + p2)
2 = p21 + p22 + 2p1p2 cos(✓12) , (54)

where cs,✓12 are the sound velocity and an angle between
the two sound waves, respectively. In terms of such an
angle there are two extreme configurations. The first is a
“symmetric case”, p1 = p2, corresponding to a minimal
angle. For c2s = 1/3 this angle is ✓12 = 109�. The second,
“asymmetric case”, corresponds to anticollinear vectors
~p1, ~p2, ✓12 = 180�. Important di↵erence from the usual
textbook relativistic-invariant cases is that various ✓12
are allowed by kinematics in our case, not only ✓12 = 0�,
which is due to the fact that cs < 1.
Since the sources of sounds are of microscopic size

⇠ 1/T much smaller than time t of observations, sound
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waves from them have the form of spherical pulses ex-
panding with the speed of sound. A sketch of the inter-
section of two such sound spheres is shown in Fig. 3: it
is clear that the angle between the sound momenta runs
with time over the region allowed for the GW formation.

However, at least at the momentum range in which
sounds are weak and the lowest order process 2 ! 1
dominates the GW production, one may not think about
specific hydrodynamical configurations, but simply view
it as incoherent set of plane waves with certain occupa-
tion number nk.

C. GW generation rate

We proceed to calculation of the “unitarity cut” of the
stress tensor correlator, in which both sound propagators
are taken on-shell,

Ep = ±csp� i

2
�̃p2 . (55)

One can check that the viscous damping is small, �̃k ⌧ 1,
so it is only needed to go around a pole on the real axis
in a correct way. The matrix element is given by a sum
over the GW polarizations,

hImGi =
X

i=+,⇥
✏⇤mn
i ImGmm0nn0 ✏m

0n0

i , (56)

where the polarization matrices can be chosen to be

✏mn
+ =

1p
2

0

B@

0 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 0

1

CA , ✏mn
⇥ =

1p
2

0

B@

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

1

CA

in the transverse traceless gauge, for a plane wave propa-
gating along the third coordinate. Alternatively, one can
use a more general standard replacement for the sum,

X

polar.

✏⇤mn ✏m0n0 =
1

2
[(�mm0�nn0 + �mn0�nm0 � �mn�m0n0)

�
⇣
�mm0 k̂nk̂n0 + �mn0 k̂nk̂m0 � �mnk̂m0 k̂n0

⌘

�
⇣
�nn0 k̂mk̂m0 + �nm0 k̂mk̂n0 � �m0n0 k̂mk̂n

⌘

+k̂mk̂nk̂m0 k̂n0

i
. (57)

Next, the loop momentum integral is customary rewrit-
ten as

R
d4p1d4p2�4(p1 + p2 � k)..., and the integral over

the energies is taken first using the poles of the denomi-
nator. The pole residua are the numerator on shell (55)
divided by the usual 2Ep = 2csp as for a relativistic par-
ticle. Eliminating integral over ~p2 and 3 delta functions
one is left with a single delta function expressing conser-
vation of energy in the process,

�


k � csp1 � cs

q
p21 + k2 � 2p1k cos↵1k

�
, (58)

where ↵1k is an angle between the total (GW) momen-

tum ~k and ~p1. So far the steps are similar to a stan-
dard calculation of the phase space for particle decays,
in which one can go to c.m. frame, impose a constraint
on momenta from the energy conservation and reduce
the problem to simple angular integrals. Unfortunately,
in the problem at hand we deal with a massless gravi-
ton and we also lack relativistic invariance, which makes
this procedure useless. Therefore, all three integrals,
d3p1 = p21dp1d cos↵1kd�, should be done explicitly.

Let us first check the integration limits on p1. From
the equations on the energy and momentum conservation
one gets

cos(↵1k) =
1

2 p1

✓
k � k

c2s
+ 2

p1
cs

◆
, (59)

and demanding it to be within the range [�1, 1] one can
constrain the momentum p1 to be between the minimal
and maximal values,

pmax
1 =

1 + cs
2 cs

k, pmin
1 =

1� cs
2 cs

k . (60)

Zero of the argument of the delta function (58) falls into
this range, so one can simply replace all p1 by this zero.

After summing over two polarizations of the GW and
taking into account occupation numbers n(p) for the
sounds, the integral can be written as

hImGi =
Z

n(p1)n(k/cs � p1)p
2
1dp1 d cos↵1k d� · cs + 1/cs � 2 cos↵1k

2(cs cos↵1k � 1)2
· �


p1 � k(c2s � 1)

2cs cos↵1k � 1

�

⇥ c2sp
2
1

2csp1
· c

2
s(k/cs � p1)2

2(k � csp1)
· 1
2

�
1� cos2 ↵1k

�
"
1�

✓
k � p1 cos↵1k

k/cs � p1

◆2
#
, (61)
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where the first line contains the Jacobian for the delta-
function, and the second line comes from the sound prop-
agators (51) and the summation formula (57).

To make sense of the integral (61), which determines
the GW generation rate, let us consider three simple
cases. If the distribution is flat, n(p) = const, then the
integral (61) is proportional to the volume of the phase
space,

hImGip0 / ⇡k4(1� c2s)
2

120 c2s
. (62)

In the case of thermal equilibrium, n(p) / p�1, we get a
lengthy expression, which can simplified for cs = 1/

p
3,

hImGip�1 / ⇡k2

9

⇣p
3� 3 arccoth

p
3
⌘
. (63)

Finally, for the strong turbulence cases (37) and (39), the
integral is given by

hImGip�4 / 4⇡

81k4

⇣
�
p
3 + 5 arccoth

p
3
⌘
, (64)

hImGip�6 / 4⇡

1215k8

⇣
7
p
3 + 55 arccoth

p
3
⌘
, (65)

respectively.

VI. THE QCD PHASE TRANSITION AND
OUT-OF EQUILIBRIUM SOUNDS

In this section, we discuss briefly the status of the de-
bates on the order of the QCD phase transition. QCD
with massless quarks has chiral symmetry, but in the real
world finite quark masses make it only an approximate
symmetry. Therefore, the transition to the broken phase
does not need to be a real phase transition We know
from lattice gauge theory simulations that pure gauge
SU(3) theory has the first order deconfinement transition.
The other extreme – QCD with three massless quarks –
also has the first order transition, now due to the chiral
symmetry restoration. However, for the real QCD, with
physical values of u, d, s quark masses, the lattice results
indicate, indeed, a smooth crossover-type transition (for
current status of the problem see [7, 8] and references
therein).

However, the deconfinement is a more subtle story,
with the conclusion much less obvious. Following the
“dual superconductor” ideas of ’t Hooft and Mandel-
stam from 1980’s, the nature of confinement is the Bose-
Einstein condensation of certain magnetically charged
objects – color monopoles. Del Debbio et al. proposed an
operator inserting a monopole into the vacuum. This op-
erator has a nonzero vacuum expectation in the confined
phase, as shown by the direct lattice simulation [27]. The
behavior of the monopole Bose-clusters, which are inter-
change along the Matsubara circle – also indicate [28]
that these objects undergo Bose-Einstein condensation
at T < Tc. Thus, confinement indeed possesses certain

observable “order parameters”. (Although in the usual
“electric” formulation of the gauge theory those are non-
local, they are local in models attempting its “magnetic”
formulation.) Admittedly, two lattice works just men-
tioned are for pure gauge theories which do have phase
transitions, not for QCD-like theories with quarks. The
most accurate lattice simulations which focus on ther-
modynamical observables do show smoothening of the
critical behavior by quark masses, and for physical QCD
one finds so far only a cross-over transition, without any
visible singularity. (For a long time that was related to
the fact that pure gauge theory are ZN symmetric while
theories with fundamental quarks are not: but discovery
of confinement for gauge theories without center symme-
try nullified this argument.)
So, there is no clear answer to the question of whether

the deconfinement transition in physical QCD is a phase
transition in the strict sense. One possible resolution may
be a “cryptic” transition, in which there is a singularity
in the order parameter, which in thermodynamical ob-
servables is also present but too weak to be seen, with
current numerical accuracy.
Another option for sound/GW generation is that while

there is no first order transition in QCD, and there-
fore no mixed phase with macroscopically large bubbles,
there may still exist some metastable objects in the near-
Tc region with a lifetime large enough to cause out-of-
equilibrium phenomena and sound generation. We re-
cently studied dynamics of QCD strings and found [13]
that certain nonperturbative objects, so-called “string
balls”, can reach rather large mass in metastable states,
which under a certain slow cooling can experience rapid
collapse, similar to the gravitational collapse, due to
the attractive self-interaction of QCD strings. Such col-
lapse can also generate inhomogeneous energy distribu-
tion, “overcooling” and subsequent sound generation.
The freezeout in the Little Bang is happening very

close to the QCD phase transition region. Studies of ra-
pidity correlation among secondaries reveal existence of
clustering of secondaries, perhaps local remnants of QGP
phase. Study of this process leads to suggestion [26] – not
yet observed – that such QGP clusters should implode at
T < Tc, in what was called “mini-bangs”. Such process
may be a very e↵ective mechanism of transferring energy
into sounds.

VII. SUMMARY AND DISCUSSION

In this paper we discussed cosmological production of
gravity waves from the sound waves, originating in the
Big Bang phase transitions. While most of studies focus
on the electroweak transition, we emphasized the QCD
one. Current progress in pulsar timing/correlation tech-
nique may perhaps make a detection of cosmological GW
from it possible even earlier, than EW one, for which
large GW detectors has to be build in space.
As a function of momentum scale k, there should be
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three distinct stages of the process (i) initial generation
of the sound spectrum at the “UV root” scale k ⇠ T , (ii)
acoustic turbulent cascade followed by (iii) conversion of
sounds into GW. While (i) stage is highly nontrivial and
requires further studies, we argue that the intermediate
regime (ii) is reasonably well understood theoretically.

The possibility of inverse acoustic cascade is the main
point of this paper. If it happens, the momentum den-
sity of sound nk gets self-focused, from large to small
momenta k. Since the ratio of the UV and IR scales is as
large as 18 orders of magnitude, and the indices (powers
of the ratio) can be near 4 or larger, the enhancements
can by huge.

The possibility of having inverse acoustic cascade de-
pends on the sign of the sound dispersion curve correc-
tion (11): only the negative sign is suitable. Currently,
neither for the QCD nor for the EW plasma we do not
know this sign. So to say, we have two cases and perhaps
fifty-fifty chances in each: it may happen in one or the
other.

If the case when the inverse cascade does happen, its
index is known in the weak turbulence regime. Fur-
thermore, we expect the self-similar time-dependent so-
lution to represent time evolution. Eventually the inverse
acoustic cascade goes into so large nk that the evolution
goes into the regime of strong turbulence. We provide
an estimate for the index, imitating renormalization in
the scalar theory [23]. If true, it suggests large index
(37) and thus potentially very strong enhancement of the
sound wave density at small k. It also suggests that a sin-
gle self-similar time evolution would no longer possible.

Clearly dedicated studies of that are needed.

Another main result of the paper is evaluation of the
sound-to-GW transition rate. It is based on the real-
ization that its rate can be calculated using the one-loop
sound diagram for the stress tensor correlator using stan-
dard rules. Furthermore, this loop diagram can be cut by
unitarity, putting both sound waves on-shell. The only
needed additional ingredient remains the occupancy fac-
tors: the GW yield is proportional to its square at the
appropriate momenta.

A mechanism producing sounds is still not understood.
Out-of-equilibrium dynamics of QCD and EW phase
transition remains far from being understood. We argued
above that certain order parameter do jump at Tc, small-
latent-heat deconfinement transition of the first order is
still perhaps possible: if so, there would be mixed phase
and bubbles, alight with relatively small contrast in the
energy density between the phases. It was so far assumed
in literature that bubble walls must collide to produce
the sounds. However, there is another potential mecha-
nism, well known in hydrodynamical literature, namely
the Rayleigh-type collapse of the QGP clusters at T < Tc

[26]. One more possibility we mention is a crossover tran-
sition, with only microscopic metastable objects – e.g.
the string balls [13] – producing the out-of-equilibrium
sounds.
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