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This paper gives a complete characterization of the location of resonant orbits in a Kerr spacetime
for all possible black hole spins and orbital parameter values. A resonant orbit in this work is
defined as a geodesic for which the longitudinal and radial orbital frequencies are commensurate.
Our analysis is based on expressing the resonance condition in its most symmetric form using
Carlson’s elliptic integrals, which enable us to provide exact results together with a number of
concise formulas characterizing the explicit dependence on the system parameters. The locations of
resonant orbits identify regions where intriguing observable phenomena could occur in astrophysical
situations when various sources of perturbation act on the binary system. Resonant effects may
have observable implications for the in-spirals of compact objects into a super-massive black hole.
During a generic in-spiral the slowly evolving orbital frequencies will pass through a series of low-
order resonances where the ratio of orbital frequencies is equal to the ratio of two small integers. At
these locations rapid changes in the orbital parameters could produce a measurable phase shift in
the emitted gravitational and electromagnetic radiation. Resonant orbits may also capture gas or
larger objects leading to further observable characteristic electromagnetic emission. According to
the KAM theorem, low order resonant orbits demarcate the regions where the onset of geodesic chaos
could occur when the Kerr Hamiltonian is perturbed. Perturbations are induced for example if the
spacetime of the central object is non-Kerr, if gravity is modified, if the orbiting particle has large
multipole moments, or if additional masses are nearby. We find that the 1/2 and 2/3 resonances
occur at approximately 4 and 5.4 Schwarzschild radii (Rs) from the black hole’s event horizon.
For compact object in-spirals into super-massive black holes (~ 106M@) this region lies within
the sensitivity band of space-based gravitational wave detectors such as eLISA. When interpreted
within the context of the super-massive black hole at the galactic center, Sgr A*, this implies that
characteristic length scales of 41pas and 55uas and timescales of 50min and 79min respectively
should be associated with resonant effects if Sgr A* is non-spinning, while spin decreases these
values by up to ~ 32% and ~ 28%. These length-scales are potentially resolvable with radio VLBI
measurements using the Event Horizon Telescope. We find that all low-order resonances are localized
to the strong field region. In particular, for distances r > 50Rs from the black hole, the order of
the resonances is sufficiently large that resonant effects of generic perturbations are not expected to
lead to drastic changes in the dynamics. This fact guarantees the validity of using approximations
based on averaging to model the orbital trajectory and frequency evolution of a test object in this
region. Observing orbital motion in the intermediate region 50Rs < r < 1000R; is thus a “sweet
spot” for systematically extracting the multipole moments of the central object by observing the
orbit of a pulsar — since the object is close enough to be sensitive to the quadruple moment of the
central object but far enough away not to be subjected to resonant effects.

PACS numbers: 98.35.Jk, 98.62.Js, 97.60.Lf, 04.20.Dw

I. INTRODUCTION

Super-massive black holes such as Sgr A* at the center
of our galaxy are at zeroth order mathematically ide-
alized as Kerr black holes. In practice this description
is not complete due to a plethora of small perturbing ef-
fects which slightly alter the spacetime geometry. In gen-
eral these perturbations are small and well accounted for
with canonical perturbation theory. In the special case
that the perturbation excites one of the intrinsic reso-
nant structures of the spacetime’s orbits, the effect may
be larger than expected due to an anomalous transfer of
energy and angular momentum that occurs during such

a perturbation. Resonance phenomena are ubiquitous in
any multi-frequency system. In celestial mechanics they
strongly influence satellite dynamics and ring formation.
Examples include the gaps in the asteroid belt between
Mars and Jupiter [1] and the gaps in the rings of Saturn
[2-4]. Resonances are further intimately connected with
the onset of dynamical chaos [5].

As radio telescopes increase in sensitivity and collect-
ing area they will be able to resolve length-scales typical
of resonant phenomena in the spacetime of the black hole
at the center of our galaxy. The Event Horizon Telescope
is one such observational tool currently under develop-
ment [6]. Space based gravitational wave detectors such



as eLISA may observe shifts in the phasing of the gravi-
tational waves emitted during the in-spiral of a compact
object as it passes through the various resonant bands.
X-ray, optical and infrared telescopes do not have the
resolving power to image Sgr A* directly, but can po-
tentially record flux variations from this region that may
display timescales characteristic of resonant events.

This paper investigates resonant orbits in the Kerr
metric expanding on the discussion in [7]. The aim is
to provide a complete characterization of the parameter
space where resonant orbits occur as a function of black
hole spin and the orbital parameters. Since geodesic or-
bital motion in Kerr is completely integrable, it is akin to
geodesic flow on a two-dimensional torus in phase space.
Generic orbits are ergodic and sample the entire surface
of the torus after a sufficiently long time. Low order reso-
nant orbits however only trace out a simple, co-dimension
one, curve on the torus. Some of the features of reso-
nant orbital trajectories are illustrated in [8-12]. By the
Kolmogorov-Arnold-Moser (KAM) theorem which is dis-
cussed in Sec. II, low order resonant orbits are most likely
to exhibit the non smooth anomalous behavior associated
with a rapid change in the constants of motion and the
breaking of the resonant torus. Test particles entering a
low order resonance often display subsequent dynamics
with a sensitive dependence on initial conditions.

To date a number of authors have studied resonant ef-
fects in Kerr-like metrics in the context of various forms
of perturbations. The effect of perturbations originat-
ing from adding a quadruple moment to the Kerr metric
has been quantified by exploring orbital motion in the
Manko-Novikov metric [13-17]. Perturbations from the
presence of a disk were considered in Ref. [18], and the
effects of the small mass’ spin in [19-21]. The features of
traversing a resonance during an in-spiral, where the per-
turbation arises from the small mass’ gravitational self-
force, have been explored by [22, 23], and the possibility
of sustained resonance has been considered in [24]. Res-
onances involving one of the fundamental frequencies of
the motion on the torus and the orbit’s rotational fre-
quency were studied in the context of enhanced gravi-
tational recoil [25, 26], and isofrequency orbits were dis-
cussed in [27].

Most of these studies have focused on a particular or-
bital trajectory or a small subset of parameters in a spe-
cific perturbed setting. The idea of this paper is to refrain
from specializing to a particular perturbation and instead
provide insights that apply to all types of resonant be-
havior. We will use tools such as the results of the KAM
theorem that hold true regardless of the source of pertur-
bation. The results obtained here are thus robust in the
sense that the time and length-scales of resonance effects
for astrophysical applications are to be associated with
properties of the underlying Kerr metric and resonance
location rather than the details of the effect causing the
perturbation. The aim of this paper is to make the typ-
ical resonance time and length-scales accessible to the
larger astrophysics community by means of easily evalu-

ated formulas and tabulated results.

To explore the resonance effects we describe the orbits
in the Kerr metric using a set of variables adapted to
the orbital geometry [28] that reduce to the Keplerian
orbital parameters in the Newtonian limit rather than
the constants of motion associated with the spacetime’s
Killing fields. The properties of the Keplerian constants
will be reviewed in Sec. IIT A. Plotting the location of
resonances in terms of these variables immediately allows
us to interpret the result as a physical location in the
actual spacetime.

The resonances considered in this paper arise due to
the libration frequencies associated with the longitudi-
nal and radial motion around the black-hole discussed
further in Sec. IIT A. These two frequences are particu-
larly important for the systematic study of the break up
of resonant tori in systems where the azimuthal Killing
vector is maintained. In this case the ¢-motion and as-
sociated frequency, wg, is computed once the librational
motions have been determined and plays a passive role
in the dynamics. The two libration frequencies further
play a dominant role in the computed gravitational wave
phase shift during resonant passage in an extreme mass
ratio inspiral. The wgy frequency only contributes to the
phase shift at higher order in mass ratio [29]. In the
context of the resonances observed in quasi-periodic os-
cillations (QPOs), Torok et. al. [30] argue that it is more
difficult to find a plausible explanation involving the wg
frequency than a mechanism involving the libration fre-
quencies, although such possibilities do exist. Discussions
of resonant effects associated with the wy frequency can
be found in [12, 26, 31].

A resonant orbit in this work, occurs if the ratio of the
characteristic radial, w,, and longitudinal, wy, frequen-
cies is a rational fraction, w, /wy = n/m where n, m € N.
Most of the technical aspects of this paper deal with
how to efficiently examine this expression and extract
the physics. Closed form analytic expressions for the fre-
quencies in terms of elliptic integrals have been presented
by [28, 32] which serve as companions to this work. Here,
however, we opt in Sec. IV to take advantage of a more
symmetric representation of the elliptic functions appear-
ing in the resonance condition and write them in terms
of Carlson’s integrals [33-35]. This allows us to identify
the important parameters in the problem and exploit the
identities associated with Carlson’s integrals to manip-
ulate the expressions. In Sec. V we consider solutions
to the resonance condition. We first specialize to the
weak field limit where we introduce the key properties of
a “resonant surface” in the parameter space. We then
give a number of exact analytic solutions to the reso-
nance condition that can be used to describe resonances
in the strong field region near the black hole. Finally,
several low order (small n 4+ m value) resonant surfaces
such as the 1/2, 2/3 and 3/4 are evaluated numerically
and compared to the analytic results and approximate
formulae.

The breakdown of integrability around a resonance in



“almost”-Kerr spacetimes is often quantified by numeri-
cally generating Poincaré maps for a fixed energy E and
angular momentum component L,. Associated with each
Poincaré plot is a rotation curve which characterizes the
frequency ratio as a function of initial condition given
a fixed £ and L,. In Sec. VII we give a representative
example of orbital breakdown around the 2/3 resonance
and analytically compute Kerr’s rotation curve. We fur-
ther provide expressions for finding the F and L, values
associated with a particular resonance.

The exact nature of a perturbed system’s response in
the region of a resonance depends on the source of per-
turbation. In Sec.VIII we heuristically discuss how one
would estimate the size of a perturbation required to see
a dramatic change in dynamics. It is important to note
that the KAM theorem does not guarantee the break-
down of integrability at any particular resonance. It
merely states that if integrability breaks down it will oc-
cur first at the location of a low order resonant orbit *.
Since this is true of all possible sources of perturbation,
the cumulative effect of many sources of perturbation
could result in a Saturn ringlike structure (see Fig. 16)
being established around the black hole. This and other
potentially observable effects due to resonances are dis-
cussed in Sec. IX. We focus in particular on the galactic
center, Sgr A*, as a possible observational realization of
an extreme mass ratio in-spiral (EMRI). We note which
detectors will be sensitive to resonant orbits as well as the
implications of regions were we can guarantee the absence
of low-order resonances and in which we expect orbits
to be approximately integrable. Regions that only con-
tain high order resonances we consider to be the “sweet
spot” for observationally determining the higher order
multipole moments of the super massive black hole in
the Milky way.

II. KAM THEOREM AND IMPORTANCE OF
RESONANT ORBITS

Bound geodesic motion in the Kerr spacetimes is in-
tegrable [36] since the Hamiltonian Hx = 1/2¢% pupu,
where g} is the inverse Kerr metric and p,, the test par-
ticle’s four momentum, admits a full set of isolating in-
tegrals. Two of these integrals result from the absence
of explicit time and azimuthal dependence in the Kerr
metric functions, the third is due to the conservation
of rest mass and the fourth integral is known as the
Carter constant [36]. Integrability implies that action-
angle variables can be defined. The phase space is foli-
ated by invariant level surfaces of the actions with the

* Integrability could also break down at a homoclinic orbit, e.g.
the last stable orbit discussed in the Appendix A. However,
this is of less observational interest than the resonances because
it marks the transition to the plunge, where the nature of the
motion changes drastically.

AB2 = 211%

FIG. 1. The orbits in an integrable system with two degrees
of freedom can be visualized as trajectories wrapping around
a two dimensional torus in phase space with characteristic fre-
quencies wi and wa, relating to the angular advances in 6; and
0. For rational values of w2 /w1 = m/n the orbital trajectory
will trace out a distinct path, wrapping n times around the
01 axis and m times about the 0> axis. For irrational values
of wa /w1 on the other hand a trajectory will fill the surface of
the torus densely.

compact dimensions of these surfaces diffeomorphic to a
torus. Geodesic motion in an integrable system is thus
akin to geodesic flow on a torus.

To illustrate this idea for the Kerr metric, consider the
reduced Hamiltonian, which is constructed by replacing
the conjugate momenta associated with the time and az-
imuthal symmetries by their constant values to obtain
an integrable two degree of freedom system with an ef-
fective potential [16]. The main features of geodesic flow
for such a system are sketched in Fig. 1. The trajectory
on the torus is described by two characteristic frequen-
cies, associated with the angles 6; and 65, labeled w; and
wo, which in the Kerr metric correspond to the radial
and longitudinal motions. For rational values of wa/wq
the orbit will sample only a finite region of the torus be-
fore retracing its own path, while for irrational values of
ws /wy a trajectory will fill the torus densely. Orbits with
rational frequency ratios involving large integers are very
similar to irrational ones, it is only those with small inte-
ger ratios that are substantially distinct from the ergodic
case.

When describing the astrophysical environment
around a black hole such as Sgr A* we need to take into
account a number of corrections to the mathematically
idealized vacuum Kerr metric. In this case we are inter-
ested in the Hamiltonian

H=Hg + e¢H, (1)

where H; is the perturbing Hamiltonian and € is a di-
mensionless parameter characterizing the strength of the
perturbation. #H; contains information about a possi-
ble accretion disk [37-39], other sources of matter [40]
or dark matter [41, 42], structural deviations of the cen-
tral black hole away from the Kerr metric (i.e. Bumpy
Black hole effects [43-47]), the influence of modified grav-



ity [48, 49], or effects of the multipoles of the small mass
[19, 50, 51]. The exact nature of the perturbation does
not concern us here. In what follows we simply assume
these modifications to be small and represent this by con-
sidering the case where € < 1.

To quantify the effect of an arbitrary perturbation on
the orbital motion and to find the regions where the
impact of the perturbation will be greatest, we make
use of the Kolmogorov—Arnold-Moser (KAM) theorem
[52, 53]. The KAM theorem investigates the stability of
near-integrable systems and suggests that a torus associ-
ated with a rational ratio of frequencies will be destroyed
in the presence of perturbations. However, provided that
the perturbation is small enough, tori for which the ratio
of associated characteristic frequencies are sufficiently ir-
rational will remain stable and persist, although slightly
deformed, in the perturbed Hamiltonian [54, 55]. More
specifically, consider the vector of frequencies w in the
unperturbed Hamiltonian and a vector of integers k, and
let d denote the dimension of these vectors. The condi-
tion for resonance is w -k = 0, which can generally be
satisfied to arbitrary accuracy by choosing large integers
for k. When sufficiently large integers are necessary to
satisfy the resonance condition the tori will be preserved,
where the definition of sufficiently is such that Arnold’s
criterion holds [52, 53]

4 —(d+1)
- k| > K(e) (Z |ki|> . (2)
i=1

We will henceforth call Oy = Zle |k;| the order of the
resonance. The factor K (e) in Eq. (2) approaches zero
as the perturbation vanishes, i.e. lim.o K (¢) — 0, but
its functional form depends on the nature of the pertur-
bation. In a non-integrable Hamiltonian system, when
e < 1, Eq.(2) suggests a hierarchy of resonant orbits
of increasing order whose stability cannot be guaran-
teed. These are the low-order resonances 1, 1/2, 1/3,
2/3, 1/4, 1/5, 3/4, 2/5, 1/6. We expect these tori to
be destroyed first if the Hamiltonian is perturbed, how-
ever, from Eq.(2) we cannot guarantee their destruction
either. Changing the Kerr metric’s spin parameter is an
example of a Hamiltonian perturbation to an integrable
Hamiltonian for which none of the lower order resonant
tori are broken.

The destruction of resonant tori corresponds to the
physical idea that energy transfer takes place most
rapidly if the frequency of the driving force coincides with
multiples of the internal frequencies of the system. Sim-
ilarly, even without a direct input of energy, if a system
is deformed the modes that could potentially be altered
most are those whose frequencies are rationally related to
other modes and which thus have the greatest potential
to exchange energy and interact among themselves.

The study of torus destruction is not the subject of
this paper. We do however give a heuristic discussion on
how to estimate the size of the perturbation required for
the onset of strongly chaotic dynamics in Sec. VIII. The

detailed calculation will differ depending on the charac-
teristics of the perturbation. The main focus in the fol-
lowing sections is to identify the regions in parameter
and physical space where resonant dynamics are likely
to occur. If they do occur the KAM theorem limits the
impact to low-order resonances.

III. GEODESIC MOTION IN THE KERR
METRIC

A. Physically motivated constants of motion

The orbital motion of a bound trajectory of two bod-
ies in Newtonian gravity is described completely by an
ellipse restricted to a plane. The manner in which this
ellipse is traversed is characterized by a single frequency,
we. A schematic representation of a typical elliptic orbit
and the Keplerian variables used to describe it is given in
Fig. 2. By contrast in the Kerr metric bound orbits are
not restricted to a plane but are confined to a toroidal re-
gion whose shape is characterized by the constants of mo-
tion, the energy F, the z—component of angular momen-
tum L, and Carter constant ). For geodesics in Kerr, the
rotational frequency wy describing the rotational motion
in the azimuthal direction is augmented by two libration-
type frequencies w, and wy which characterize motion in
the radial and longitudinal directions respectively. The
bottom panel in Fig. 2 gives a schematic representation
of the origin of the w, and wy frequencies associated with
the orbit.

In the subsequent sections we will explore the location
of the resonances for the w, and wy frequencies in Boyer-
Lindquist coordinates. Instead of using the constants of
motion {E/u, L./p, Q/p?}T we will describe the or-
bits using variables analogous to the Keplerian variables
of classical celestial mechanics, namely the eccentricity
(e), sine of the maximum inclination angle (sin . = cosf,)
and semi-latus rectum (p) as illustrated in Fig. 2. These
are defined by writing the periastron or point of clos-
est approach to the central object as r, =p/(1+e),
the apastron or furthest point the trajectory reaches as
re = p/(1 — e) (both in units of the black hole mass) and
the turning point of the longitudinal motion as #,.. The
typical frequency of oscillations between 7, and r, is de-
scribed by w,., whereas the longitudinal oscillations about
the equatorial plane, —(7/2—6.) < < 7/2—0,, are de-
scribed by wy.

B. Equations of motion
For a test mass in orbit around a Kerr black-hole the

equations governing the radial and longitudinal motion,

T The rest mass of the probe, y, is introduced here to ensure the
constants of motion are dimensionless.
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FIG. 2. Top Keplerian orbital parameters. The eccentricity, e, is
a measure of how elliptic the orbit it is. When e = 0, the orbit is
circular e = 1 the trajectory becomes parabolic. The semi-latus
rectum, p, can be defined in terms of the eccentricity and the semi-
major axis of the ellipse as is show in green in the figure. The
point of closest approach 7, is called the periastron, while the most
outlying point the orbit reaches is the apastron denoted by 7.
Bottom The orbital trajectory as shown in three dimensions. The
third orbital parameter, namely the maximum inclination angle
L = m/2 — O, is the angle with respect to the black hole’s equatorial
plane and 65 is the minimum Boyer-Lindquist 6 value attained.

expressed in Boyer-Lindquist coordinates (¢,r, 0, ¢), are

36]
(%)2 = R(r), (%)2 =6(2),  (3)

where z = cos(f) and we have chosen to parameterize
the orbit in terms of a non-affine evolution parameter
A = [dr/(r® + a®cos? ), rather than the proper time
T, so that the radial and longitudinal equations decouple
(this in fact just corresponds to working in the extended
phase space). The radial and longitudinal potentials can
respectively be expressed as

R=[(r* +a*)E —aL.]” = A [p>* + (L. —aE)* + Q
(
(5

],
1)
O=Q(-22) - [ - B)®(1-2)+ 2] % (5)

where A = r2 — 2M7r + a? and a = S/M is the spin per
unit mass. (We will henceforth use units where M = 1.)
The R and © potentials are quartic polynomials of their
respective arguments and can equivalently be expressed
in factored form as

R= Lo —me—r) @
0 =p%(2% - 2%)(2* - zi) (7)

where 3% = (u? — E?)a®. In Eq. (6) we label the roots so
that 7y > ro > rg > ry and in Eq. (7) so that z, > z_.
For bound orbits, Eq. (3) dictates that the 7(\) and z(\)
functions describing the orbital motion oscillate between
two of the roots of Eqs. (6) and (7) respectively. The
generalized Keplerian variables are defined in terms of
the roots of the potential functions as:

p P
2 1+8,

z_ = cos(6y) ()

When quantifying the resonance behavior in the subse-
quent sections we would like to express the results en-
tirely in terms of the variables {p, e, z_} rather than
using {F, L., Q}. The fact that the roots r3, r4, and
zf_ cannot be viewed as independent functions but rather
must be interpreted as functions of the set of independent
variables {p, e, z_} complicates the calculation. By com-
paring Eqgs. (5) and (7) we can find 2% is given explicitly
in terms of {E, L., @} as follows

(L2+Q+ %) £ V(L2 +Q+p%)? —4Qp?
232 '

2=

9)

Equating the coefficients of r in the two expressions
for the radial equation, Egs. (4) and (6) allows us to
obtain the following expressions relating the constants
{E, L., Q} to the roots of the factorization

E? 201 — ¢?)

= 11— 7

2 2+ (1— ) s

L2 2p(p+2wy) —2a% (1 - €?)
p2 2p+(1—e?)wy

2 (a2 (1 - 62) - p2) Wy
a?@p+ (1— ) )
Q 2pwa

2T E @t (- @) wy) (10)

3

where we have set wy = r3 + 74 and wyx = r3ry. In
addition the condition

QGELZ _ a2 T 2 (WX — 2@2) (1 - 62) — QPWX
p? (2p+ (1 —€?)wy)
—p? (W —2) + 4pwy
@+ (- ws)

(11)



must also hold. Squaring Eq. (11) and then substituting
in the expressions for E? and L?, Eq. (10) results in a
quadratic equation for wy and w_ in terms of p and e:

@iw [p(L= ) (p+4—a?) +p2(p—4) —a® (1= ¢)’]

@) o+~ 1)] +

+w [p—l—e —1} + 2pw« [(p—
%wi [a4 (1—62) (l—eQ)pp—l—éL + p—4)2p2}
+pwy [a® (1 - 62) (a® +p) —a’p(p+4) — (p — 4)p°]
+p? (> —p)° =0. (12)
If 22 # 0 we can use Egs. (9) and (10) to rewrite 2% as

2
) Py

= — . 13

“+ at(l —e2)22 (13)

We will always treat the z2 = 0 or @ = 0 limit of orbits
restricted to the equatorial plane separately. Using Eqs.
(9), (10) and (13) we can further show that

20°pw 22 = (a® (1 —€®) 22 —p?) (a®22 —wy). (14)

Eq. (14) is a linear condition in w4 and wy which, in
conjunction with (12), implicitly determines w (p, e, z_)
and @y (p, €, z%) and thus the roots r3 and ry in terms
of {p,e,z_}. Substituting Eq. (14) into (12) eliminates
w4 and yields a quadratic equation in wy. As a result
a closed form expression can easily be found for wy and
subsequently w,. We will not give the expressions here
and continue to work with the implicit quantities w
and wy, substituting their actual values only at the end
of the calculations. The two solutions that result from
the quadratic equation can be interpreted as test masses
that either co-rotate or counter-rotate with respect to the
spin, a, of the black-hole. Orbits that co-rotate with the
black-hole (L, has the same sign as a) are called prograde
and those that counter-rotate (L. has the opposite sign
to a) are retrograde orbits. For a given {p, e, z_} the pro-
grade orbit’s angular momentum is higher than that of
the retrograde orbit. On the other hand prograde orbits
have lower orbital energy than their retrograde counter-
parts [28].

One special set of orbital parameters is the case when
the roots satisfy r3 = ro, which corresponds to the in-
nermost stable orbit (ISO) separating stable bound or-
bits from those that plunge into the black-hole. For
a given eccentricity and longitudinal parameter z_ the
semi-major axis satisfying this condition demarcates the
smallest value of p at which a stable bound orbit can ex-
ist. We shall explicitly solve for the ISO for all values
of a, e and z_ in Appendix A and use it as a compara-
tive benchmark for the location of resonant orbits in the
subsequent sections.

IV. THE RESONANCE CONDITION

In this section we begin to characterize the orbits which
will exhibit resonant behavior. We are interested in the

parameter values for which w, and wy are commensurate.
Given relatively prime integers m and n we seek the sur-
face in the three dimensional parameter space spanned
by p, e and z_ where

mw, = Nwy. (15)

This is equivalent to saying that the time it takes the lon-
gitudinal motion to traverse exactly n times between its
turning points is equal to the time it takes the radial mo-
tion to traverse m times between its turning points. For
Kerr geodesics m > n since the radial frequency is always
the smallest of the three frequencies. This translates into
the following integral condition

= dz "o dr
—=n —.
.. VO » VR

Substituting Egs. (6) and (7) we find that this is equiv-
alent to the condition

(16)

an/ dr _
r V=) —r2)(r — ) — 1)
Z- dz
—-m . (17)
L V& =22 =22 1

The subject of the rest of the paper is to characterize
the solutions to this equation. The strategy is to express
both the radial and longitudinal integrals in their most

symmetric form using Carlson’s integrals [33-35] . Carl-
son’s integral of the first kind is defined to be
1 [~ dt
RF(aaﬂa’Y) =35 . (18)
2Jo V{t+a)t+p)(t+7)

In Appendix B we list a number of identities and rapidly
converging approximation techniques that make Carl-
son’s integrals a valuable analytic tool for characterizing
the resonant surfaces. Using Eq. (B2) of Appendix B we
can rewrite Eq. (17) as

anRp(0, (ro —r3)(r1 —ra), (ra —14)(r1 —13)) =

_mRF(Oa (Z* + ZJr)Qa (Z* - Z+)2)' (19)
This expression can be further simplified using the iden-
tity (B8) to rewrite the right hand side and the fact that

the equations are homogeneous (B6) to absorb the con-
stant factor. We shall refer to the resulting equation,

Rp(0, (r = r3)(r1 = 14), (r2 = r4)(r1 —7r3)) =
Rp(0,ka*(25 — 2%),ka®z3),  (20)
as the resonance condition and explore its properties by
studying various limiting cases. In this expression we

have defined the parameter 0 < k < 1 to indicate which
resonance we are considering,

K=—. (21)



In the subsequent section we will explore all the qual-
itative features of a resonance by examining an easily
evaluated approximation to Eq. (20) for large p. We
then give a number of formulae valid in the region near
the blackhole in special cases.

V. SOLUTIONS TO THE RESONANCE
CONDITION

When seeking solutions of Eq. (20) it is convenient to
rewrite it in terms of a rapidly converging series. This
series allows us to identify the three important parame-
ters in the problem. The first sets the overall scale and
a rough location of the resonance. The remaining two
are expansion parameters < 1 that determine the more
subtle structure of the resonance surface. We give ex-
plicit expressions for theses parameters in terms of the
variables introduced in Sec. IIIB. Next, we evaluate
the series in the large p limit to obtain a simple analytic
model which illustrates the important features of any res-
onance. We then turn to the astrophysically more inter-
esting strong field region where the low-order resonances
occur and give a number of exact analytic formulas for
special cases. We conclude the section by numerically
computing the detailed behavior of the 2/3 resonance
and compare our analytic results and approximations to
the numerical solutions.

A. General series expansion

The resonance condition (20) can be rewritten in the
form

Rp(0,y1 + 01,91 — 1) = Rp(0, k(y2 + 02), k(y2 — d2))-

(22)
where
2
p° —p(rs +ra) _ep(ra —r3)
v = 1—e2 + 73Ty, 51_?’
2 2.2
yg—%(22}_2’_—22), 52:_@;_. (23)

It will be shown below Eq. (25) that §;/y; < 1 for all
physically interesting parameters. As a result, each side
of Eq. (22) can be expanded in §; < y;, using the rapidly
converging seriesof Eq. (B10). Squaring the resulting
expansions, moving all the terms containing the small
parameters d; /y; to one side, and re-expanding the result,
we obtain the equation

yo_q, 3 (ﬁ_§> _ 946153
kY2 8\wi ¥/ O64yiys
123 (61 of 5°

=2 ) o). 24

"5 <yil yi‘>+ (yﬁ) (24)

In terms of the variables introduced in Sec. IIIB, the
three quantities that enter the expansion of the resonance
condition (24) are,

o 20222 ((1 —e?)wy + p? —pw+)
Y2 (a*(e2 — 1) 22 + 2p?wy)

5 —epy /w3 — 4wy

i (1—e?)wx +p* —pwy’
oy (1 — 62) a*zt

y2  (1—e?atzl —2pPwy

(25)

The first term y; /y» ultimately sets the overall scale of p
at which a particular resonance occurs. Recall that the
parameters {z_, e, a, k} € [0,1]. By examining Eq. (25)
one can further verify that the ¢;/y; terms are always
less than unity ensuring the convergence of the series in
Eq. (24). The parameters 01 /y; and d2/y2 vanish when
e = 0 and z_ = 0 respectively. The special limiting
case when both these conditions hold, allows us to find
an exact analytic result that is valid in all regions of the
spacetime. We shall examine this special case in Sec. V C.
However before we do so, it is instructive to examine the
properties of resonances that occur at large p values. The
features we explore in this limit qualitatively capture the
characteristics of resonances in general.

B. Anatomy of a resonance in the weak field limit
P — 00

In the weak field limit, when p — oo, the dominant
terms in the expansion of wy and wy found by solving
Eqs.(14) and (12) are,

/(1 _ .2
P p3/? p?

8 + 2a2(1 — 22

L8420 =20
P
1— 2
- (1 + 9) +0 (%) . (26)
P P P

Substituting Eq. (26) into Eq. (25) and simplifying the
result gives the dominant behavior of the three essential
parameters in the resonance condition

+ 4a
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FIG. 3. Graphical representation of the approximate resonance condition (29) or equivalently (32) plotted for the x = (9/10)? resonance.
The eccentricity dependence is shown in the three plots on the left. The top left plot displays the typical arch shape seen for all resonances.
Here the arch is centered around p* =~ 31.6 reaching a maximum value of z_ = 1 at p = ppoier given in Eq. (33) and indicated by a
dark line on the plot. The lines where arch intersect the z_— = 0 plane are indicated in magenta (right) and cyan (left) and show the
maximum (retrograde) and minimum (prograde) values p attains for a fixed e. Note that the resonance shape for a fixed spin is very
weakly dependent on the eccentricity of the orbits. The spin dependence of the approximate resonance condition is shown in the three
plots on the right for e = 1/10 and e = 9/10. Observe that as a — 0 the arch pinches off to a line at p = ppoiar, Eq. (33). The maximum
arch width occurs for a maximally spinning black hole a = 1 as predicted by Eq. (34).

@__Mw(i). (28)

Y2 2p?

The small §;/y1 and d3/y2 parameters scale with 1/p
and 1/p? respectively indicating that they become almost
negligible for large p and reaffirming the choice of J; as a
expansion parameter.

To illustrate the basic properties of the resonance con-
dition we substitute Egs. (27) and (28) into Eq. (24) and
keep terms up to O(p~2). The resulting approximate res-
onance condition,

+24a,/p(1 — 22) = 2p*(k — 1) + 12(p + @®) + 3e*k

—3a*2% (*(k — 1) +5),
(29)

is valid for large p values only. However, this weak field
approximation demonstrates all the qualitative proper-
ties of resonant surfaces and gives a good approximation
even relatively close to the black-hole. The precise man-
ner in which Eq. (29) breaks down for low order reso-
nances is numerically explored in Sec. VE.

To build our intuition of the typical features of res-
onant surfaces and their dependence on the parameters
a,e,z_, Kk and p we analyze Eq. (29) in detail. For quasi-
circular orbits and vanishing black-hole spins (a,e) — 0,

the resonances occur at

6
p*:p(a:O7€:O7Z7’I{): 1_[{/'

(30)

For a given &, this value of p* sets the general mean radius
in physical space (measured in units of GM/c?) about
which all the interesting features of a resonance occur.
This is a robust result that remains an exact analytic
solution even in the region near the horizon, as we will
prove in Sec. V C. For a fixed integer m, resonances with
k= [(m — 1)/m]” correspond to the maximum resonance
radius given by p = 6m?/(2m —1). Resonances with n <
m—1 occur at a radius less than that associated with n =
m — 1. The maximum p associated with a denominator
m thus scales linearly with m for large values of m.

In the limiting case a — 0 the dependence on eccen-
tricity is

* *_ 6
p(a:O,e,z_,m):% 1+\/1+€2 (p - ) . (31)
p

Since e < 1 and p* > 6 we see that the effect of eccentric-
ity on the resonance location is small. We also observe
that in the case a — 0 the location of the resonance be-
comes independent of z_.

We now examine the general spinning case. Squaring
both sides of Eq. (29) results in a polynomial condition




that is quartic in p and quadratic in z2. We choose

to analyze the solution surface by specifying the z2 =
22 (a,e,p, k) for a fixed k rather than explicitly working
with the quartic roots associated with p. The appropriate

expression for 22 is

4a% + €? — —682;;4102 12p (282 + 1)

I
2 6e2
a _ be?
(5-5)

a? (5 — @)2
o

2 _ .2 662(170,2)4»4;02 2 _ 6e2
 [omee =] ()

O]
(32)

This function is depicted in Fig. 3 for a fixed spin param-
eter of a = 9/10 and integer ratio x = (9/10)2. It has the
shape of a parabolic arch centered around p* &~ 31.6. Fur-
thermore, the qualitative features that will be discussed
here are characteristic for all resonances. The function
given in Eq. (32) has a maximum value of 22 = 1 which
occurs when ppoer = p(a, e, z— = 1, k) has the value

2 _ 42 A2 2
ppoiar:l 14 1+(8 *CL)_G(I *C2L)8 '
D 2 D D
(33)

22 =

Since {e, a} € [0,1] and p* > 8, the maximum only de-
viates by a few percent from the p* value as the spin and
eccentricity deviate from zero. The analytic value of the
maximum given by Eq. (33) is plotted as a dark line in
Fig. 3. When 22 < 1 there are two possible values of p
that lie on the resonance sheet for a given eccentricity:
the resonance for a retrograde orbit p_ > pporar and the
resonance for a prograde orbit which occurs closer to the
black hole p+ < ppotar. The sign in the naming conven-
tion of retrograde and prograde orbits relates to the sign
of the product of the angular momentum and the spin of
the black hole (aL.), and not the orbit’s relative position
with respect to ppoiar-

As z_ decreases and the resonance surface moves from
the polar towards the equatorial region, the influence of
spin becomes increasingly important and the distance p_
to p4 monotonically increases. The expression for p_
and p4 can easily be found in closed form by substituting
z_ = 0into Eq. (29) and solving the resulting quartic for
p. However, since the results are messy and add little to
the discussion we do not give the general results explicitly
and merely plot these curves in Fig. 3. To benchmark
the size of the arch we consider the limit of vanishing
eccentricity and inclination and obtain

e = 1 4 2
p+(a,e =0,z O,Ii)_§<1+ 1T a:F a)l

P vp* o Vp*
(34)
The maximum span of the arch occurs for a maxi-

mally spinning black hole, a = 1. For lower spin val-
ues a good approximation of the span of the arch is

(p— —py) = 4ay/p* (1 +a?/p*). The lowest order cor-
rection to Eq. (34) with respect to eccentricity is
e?(p* — 6)/(4p*?) and is the same for both pro and ret-
rograde orbits.

Having thus explored the basic features of a resonance
for a given spin parameter a and observed the weak de-
pendence of these features on eccentricity, we will now
choose a representative eccentricity and then study the
spin dependence. The right-hand three panels of Fig. 3
show the x = (9/10)? resonance surface for eccentricity
values of e = 9/10 and 1/10 as a function of black hole
spin and p. As predicted by Eq. (34) the arch-width
exhibits a strong spin dependence. The arch’s inverted
'U’ profile pinches off to a single column "I’ profile at
D = Ppolar (Eq. (33)) when a — 0. This indicates that
resonances in the nonspinning limit become independent
of inclination because the longitudinal frequency degen-
erates to the ¢-frequency in this case. As the black-hole’s
spin increases from zero the opening width of the arch be-
tween the pro- and retrograde branches increases until a
maximum arch-width is attained at a = 1. The result
is a 'V’-shaped footprint of the arch in the p — a plane,
with the 'V’ profile’s vertex corresponding to a = 0. The
inclination dependence of the resonance surfaces can sim-
ply be characterized as the monotonic closing off of the
'V’ profile’s pro-and retrograde branches with increasing
inclination until they merge into a single line forming the
arch’s spine at ppolqr-

This completes our discussion of resonances in the
weak field limit. The features described here and the
'U" ="' V' =" I transitions are characteristic of all reso-
nances. The actual values of the resonant surface of the
true resonance condition begin to deviate from our weak
field model as the black hole is approached. The largest
deviation occurs in the equatorial limit, where the effect
of spin is most marked. In the polar regions, the weak
field resonance condition remains a remarkably accurate
approximation to the true resonance surface. In Sec. VE
we numerically characterize several low order resonances
and provide a quantitative comparison with the approx-
imate results obtained in this section.

As we shall see next, in the strong field region it is
possible to obtain exact analytic results for the 'V’ equa-
torial footprint for e = 0. Since the resonant surface
depends very weakly on e this result is a good indicator
for all resonant behavior.

C. Exact solutions to the resonance condition in
special cases

In this section we explore easily evaluated exact solu-
tions to the resonance condition of Eq. (20) that can be
used to characterize the resonant behavior near the black
hole. The case we will consider first is the limit of circular
equatorial orbits, i.e. ¢ — 0 and z_ — 0. As remarked in
Sec. V A this case sets the parameters d1/y; = d2/y2 =0
in Eq. (22) and thus a valid solution to the resonance
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FIG. 4. The location of orbits with resonant frequencies in the limiting case of e = 0 and z— = 0 as a function of spin, a and
semi-latus rectum, p [7]. Resonances are labeled at their vertex by the rational ratio n/m. All resonances with m < 7 are
shown. For a = 0 the prograde and retrograde branches are degenerate at p = p*, as the spin increases the retrograde branch
leans right (copper tinge) and the prograde branch leans left (blue tinge). In general lower order resonances are colored more
darkly than their higher order counterparts. Note the accumulation of resonances as the strong field region is approached

|Resonance |Location [GM/CZ] | Spin splitting |Period [GM/C“} |Galactic center: Sgr A* |
VE=n/m| p*=6/(1—r) |[Max[(p1—ps)/p]| T =2mp™? |px [pas] T [min] f 10" Hz]
ISCO 6 1.33 92.3 30.6 32.7 5.10
1/2 8 1.22 142.1 40.9 50.3 3.31
1/3 27/4 = 6.8 1.29 110.2 34.5 39.0 4.27
2/3 54/5 = 10.8 1.10 223.0 55.2 78.9 2.11
1/4 32/5 =64 1.31 101.7 32.7 36.0 4.63
3/4 96/7 = 13.7 1.00 319.1 70.1 1129 1.48
1/5 25/4 =6.3 1.32 98.2 31.9 34.7 4.80
2/5 50/7=17.1 1.27 119.9 36.5 42.4 3.93
3/5 75/8 = 9.4 1.16 180.4 47.9 63.8 2.61
4/5 50/3 = 16.7 0.92 427.5 85.1 151.3 1.10
1/6 216/35 = 6.2 1.32 96.3 31.5 34.1 4.89
5/6 216/11 = 19.6 0.86 546.7 100.3 193.5 0.86
i/7 19/8 = 6.1 133 95.2 313 33.7 194
2/7 98/15 = 6.5 1.30 104.9 33.4 37.1 4.49
3/7 147/20 = 7.4 1.26 125.2 37.5 44.3 3.76
4/7 98/11 = 8.9 1.18 167.1 45.5 59.1 2.82
5/7 49/4 = 12.3 1.05 269.4 62.6 95.3 1.75
6/7 294/13 = 22.6 0.80 675.8 115.5 239.1 0.70

TABLE I. Time and length-scales associated with low-order resonances depicted in Fig. 4 . This table gives the values for the
e =0,a =0, z— =0 vertices seen in Fig. 4, first in dimensionless units and subsequently in physical units for the special case
of the Galactic center, Sgr A*. Lower order resonances, shown in bold in this table, are most likely to have observationally

detectable dynamics.

condition is found when
Y1

" (35)

= K.
Note that in evaluating this case we will not be resort-
ing to Eq. (25) that was derived using Eq. (13) which
assumed that 22 # 0. Instead we return to Eq. (9) and
observe that z_ = 0 if and only if @ = 0. By Eq. (10) we
see that @ = 0 implies wyx = 0. The simplified version

of Eq. (10) is
E? 2
1

w

L2

2a2+3p2
p+wy’

— . 36
2p + wy (36)

Substituting Eq. (36) into Eq. (9) gives an expression for
Bt

> _ p(p+2wy)
Z+— T

(37)



Setting wx = 0 in Eq. (11) results in a quadratic equa-
tion for w,; which has the following roots,

2p(a + \/5)2

T M- T dap %)

We are now in a position to evaluate Eq. (35) which
becomes

i _plp—wy) _ p-wy

Yo a?z? (p+2w4) (39)

Inserting the value for wy from Eq. (38) leads to

—6)p—3a2 £ 8
o = Op = 3a” £8ayp (40)
p? + 3a? F 4a\/p

where the upper (lower) sign corresponds to prograde
(retrograde) orbits. This result can alternatively be ob-
tained from the frequencies of linear perturbations to cir-
cular equatorial orbits [56, 57]. An equivalent way of ex-
pressing Eq. (40) is in terms of the quartic polynomial:

[p(p — p*) — a®(p* — 3)]” — 4ap(p* —2)2=0. (41)

In the above expression we chose to use p* = 6/(1—&) to
identify the resonance rather than s itself. This choice
makes it obvious that in the non-spinning limit p = p* is
an analytic solution to the resonance condition.

Eq. (41) is a key result of this paper because it charac-
terizes the exact 'V’ profile of all resonances for z_ — 0
as a function of spin. As discussed in Sec. VB on the
weak field limit, eccentricity has very little effect on the
resonance surface and inclination merely deforms the 'V’
profile into a line as z_ — 1. This single formula thus
allows us to characterize all resonant effects of arbitrarily
spinning black holes.

To efficiently evaluate Eq. (41) it is useful to view it as
a quadratic polynomial in a? instead of a quartic poly-
nomial in p. Solving for a? in terms of p and p* leads
to

PPt =3)+p(p*?—5p*+8)

2
a*(p) - (p* _ 3)2
Lm0 =)Vl —3) —p 44 (12)
(p* —3)?
We use Eq. (42) to plot the spin dependence of the 'V’
profile for z_ = 0 for several low-order resonances in
Fig. 4.

The maximum splitting of the retrograde and prograde
branches of the 'V’ occurs when a = 1 in this case the
relevant roots of Eq. (41) are,

pr =p" —1F2/p*—2. (43)

The maximum opening distance of the 'V’ profile is then

(p— —py) =4y/p* —2. (44)
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Even though Eq. (41) can readily be solved for p, the
expression is complicated and it is often difficult to iden-
tify which roots correspond to the retrograde and pro-
grade branches, we thus provide a useful series expansion.
For low spin values, the solutions to Eq. (41) admit the
expansion

. 2a(p*—2) a? (p*2 —5p* + 8)
= :l: —
TR P
a3(p* —2) (2p™? — 11p* +20)
+ 2 +0(a").  (45)

Table I summarizes the numerical values associated with
the low-order resonances depicted in Fig 4, both in di-
mensionless and physical units for the special case of the
Galactic center, Sgr A*. Lower order resonances, shown
in bold in this table, are likely to have observationally
detectable dynamics. According to the KAM theorem
these tori, when perturbed, are most likely to be dis-
rupted and the ensuing rapid changes in the orbital pa-
rameters should have a dramatic effect when compared
to the systematic smooth distortion of perturbation in-
duced effects away from resonant orbits. We will discuss
this further in Sec. IX. In Sec. VE we give a numer-
ical characterization of several of the lower order reso-
nances introduced here. However before we turn to the
numerical solution we analytically quantify the effect of
eccentricity in greater detail.

D. Quantifying the effect of eccentricity

To quantify the effect of eccentricity, we consider the
limiting case of polar orbits with

2
2 _ _ Q_Q_ P wx
z —1, LZ—O, Z_,’_—E—m (46)

This choice puts us at the top of the inverted ‘U’ where
the effects of spin are minimal. In this case we can solve
Egs. (12) and (14) for wyx and w_. Since L, is zero
Eq. (12) reduces to a linear equation. As a result, only
one solution exists as is expected because the retrograde
and prograde branches should coincide for polar orbits.

Here to illustrate the effect of eccentricity we only give
the results in the @ = 0 limit, since the expressions for
a # 0 are unwieldy, so that

wy = ——. (47)

wXZO,

Substituting these values into Eq. (25) gives expressions
for the parameters that enter into the series expansion of
Eq. (24),

—6 ) 2 )
p_rpmo L 2 2 (48)
Y2 D Y1 p—06 Y2




FIG. 5. Numerically computed surfaces for the 2/3 resonance.
Prograde orbits are shown in blue (left) for spin values (a) 0.99,
(b) 0.5 and (c) 0.2. Retrograde orbits are shown in red (right) for
spin values (d) 0.2, (e) 0.5 and (f) 0.99.

We now re-expand the series in Eq. (24) and substitute
Eq. (48) to obtain an explicit expression for &,

3e? 5let
k= (1-6/p) (1 T3 —6)? 320 —0) + 0(66)> .

Inverting this series expansion we find that the dominant
behavior of the resonance’s dependence on eccentricity is,

e? et(4p* —17)

p=p < Y1 =06 " 6w —op

- 0(66)> . (49)

The expansion given in Eq. (49) is valid in the strong
field region. Note that as the resonant surfaces approach
the ISCO (p = 6) the effects of eccentricity become in-
creasingly important.

E. Detailed numerical characterization of low order
resonances

Having studied the resonances in limiting cases, we
now provide a full numerical characterization of the prop-
erties of the low-order resonances and a comparison with
the analytic formulas. We quantify the error in using
the weak field approximation of Sec. VB for low order
resonant surfaces and confirm the veracity of the exact
analytic solutions found for special cases in the strong
field regime.

We calculated the location of the resonances numer-
ically by means of two methods. The first method di-
rectly uses the closed-form general expressions for the
fundamental frequencies presented by Schmidt [28] (see
for example Eqs. [33] and [34] where the frequencies are
given in terms of elliptic integrals). These formulas are
not well defined for the limiting cases e =0 and z_ =1
which require explicit modifications [28]. The integrals
also become indeterminate when reducing to a = 0 or
a = 1. A careful numerical treatment in the limiting
cases (e = 0, z_ = 0), where the numerical values are
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calculated using the procedure presented in Appendix B
of [28], recovers the analytic values predicted by Eqs. (42)
and (49) to within < 0.01% over the entire range of the
remaining parameters. The accuracy of the agreement in
these cases are limited by the numerical procedure, e.g.
taking a = 0.005 and z_ = 0.99995 instead of 0 and 1
respectively.

The second semi-analytic scheme that we implemented
exploits the analytic development of Sec. (IIIB) and (IV)
to reduce the computational cost in the following way.
The resonance condition Eq. (22) is recast in terms of
the three parameters that appear in the series expansion
of Eq. (25) as

Rp(0,1+22,1— %2
Yr_ Jr= L ( vz gf). (50)

wo Ve Re(0, 14+ 21—

For a given a, e, 22 > 0 we calculate the values of p that
lie on the resonance surfaces by first finding an expres-
sion for wy in terms of wy using Eq. (14) and substi-
tuting this into Eq. (12). Solving the resulting quadratic
for wy yields two choices for @y (p), corresponding to
the prograde and retrograde solutions. Having expressed
wyx and thus wy in terms of p we can write the three
parameters in Eq. (25) as explicit functions of p. The
right-hand side of Eq. (50) can be evaluated for a given
p by repeatedly applying the relation (B8) which tends
to make the two arguments in the Rz (0,22, y?) function
equal (5 iterations usually suffice to reach machine preci-
sion) and then using (B7) to yield the result; alternately
one can use Eq. (B12) to express Carlson’s Ry functions
as elliptic integrals of the first kind. A line search method
can then be used to find a value p that solves (50) for a
given k, using p = px as the first guess. This method has
yielded accurate results for all parameter values except
in the equatorial case z_ = 0. The cases e =0, z_ =1,
a =0 and a = 1 do not require special treatment, in con-
trast to the first direct numerical method. The special
case of z_ = 0 can be treated analytically, as was shown
in the previous sections. The results computed with this
semi-analytical method are in complete agreement with
those obtained by the direct numerical method. This
serves as an independent check of our computations. We
note, however, that the computational costs for the semi-
analytic method are substantially lower than for the di-
rect method.

In the numerical investigation shown in Figs. 5 and 6
we sample the parameter space by choosing several val-
ues of e and z_ in the range (0,1) and numerically solve
the equation w, /wy = 1/2, 2/3 or 3/4 for p, given a fixed
spin value a. Fig. 5 shows several surfaces or sheets cor-
responding to different black hole spins. The sheets are
plotted on the {e,p, 22 } coordinate axis to make the cor-
respondence to Fig. 3 clear. The blue sheets (a)—(c) in-
dicate the location of prograde orbits. The spin value
is decreased from sheet (a) to (¢). The red sheets indi-
cate retrograde orbits with spin values increasing from
(d) to (f). The higher the eccentricity, the further out
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FIG. 6. The numerically computed location of the 1/2, 2/3 and 3/4 resonances for fixed eccentricity, e = 0.6 for the spin values
a=0.2, 0.5, 0.99. (These are the same spin values used in Fig. 5.) The resonances for prograde orbits are shown in solid lines
and those for retrograde orbits in dashed lines. The resonances appear centered around the corresponding p* values given in
Table I, with the 1/2-resonance (cyan) centered around p* = 8, the 2/3 resonance (blue and red) centered around p* = 10.8
and the 3/4 resonances (magenta) around p* = 13.7. The features of these plots agree qualitatively with those of Fig. 3.

in p, the resonances occur. The more inclined the or-
bital plane, the further out (closer in) the resonances
for prograde (retrograde) orbits occur. These qualita-
tive features are the same as those identified in the weak
field limit in Sec. VB. Since the value of the orbital
eccentricity has the smallest impact on the location of
the resonance, we subsequently choose a representative
eccentricity and explore the spin dependence for several
low order resonances. In Fig. 6 the 1/2, 2/3 and 3/4
resonances are shown for prograde and retrograde orbits
with e = 0.6 around a Kerr black hole for several dif-
ferent spin values. We see that the typical shape of the
resonances shown in Fig. 5 is preserved. Prograde reso-
nances with larger spin values are closer to the black hole
in comparison to the point p* whereas retrograde reso-
nances associated with higher spin values occur further
outward. The shapes of these resonances are in qual-
itative agreement with the weak field 'U’-'I’ transition
discussed with respect to Fig. 3.

A quantitative comparison between the numerically
computed position for the 2/3, 6/7, 14/15 and 29/30
resonance and the weak field approximation developed
in Sec. VB is given in Fig. 7. The analytic result is ob-
tained from Eq. (32), with e = 0.6 and varying spin val-
ues. The weak field approximation provides a good fit for
high orbital inclination (22 = 1) even when p < 20. The
weak field approximation deviates more strongly from
the analytic results as the spin value increases, such that
the orbits with a = 0.2 exhibit a better fit than those
for which a = 0.99. For a given spin value the approx-
imation fits the retrograde orbits (higher p) better than
the corresponding prograde orbits (lower p). This is to
be expected since in the approximation of Sec. VB we
used a quadratic approximation to the resonance condi-

tion valid only for p — oo and included spin effects only
up to O(a?/p?). Fig. 7 also shows the analytic solution
on the equatorial plane as calculated from the roots of
Eq.(41) with the added second order correction for non-
zero eccentricity p*e?/4(p* — 6) given in Eq. (49). These
equatorial solutions are in very good agreement with the
numerical results. They provide an easily computed in-
dicator of where the weak field approximation strongly
departs from the analytically computed surfaces.

VI. THE LOCATION OF RESONANT
SURFACES TERMS OF FE, L. PARAMETERS

When conducting numerical investigations of orbits in
spacetimes that are more general than Kerr it is often
useful to plot a Poincaré map at fixed ' and L. as a
diagnostic tool to explore the break down of KAM-tori.
This method of surveying the parameter space is not as
well suited for describing the physical location of the or-
bit, but it unambiguously generalizes to metrics where a
Carter constant (@ does not exist. In this section we de-
velop some intuition for the features of resonant surfaces
in E, L, space. This picture will be invaluable as we dis-
cuss departures from integrability and torus breakdown
in the next section.

In Fig. 8 we show the 2/3 resonant surface for a maxi-
mally spinning black-hole, a = 1, computed using the sec-
ond numerical method of Sec. VE. In this figure the dots
correspond to computed points on the resonance surface.
The lines indicate fixed values of eccentricity and longitu-
dinal angles at which the sampling took place: horizontal
lines correspond to 22 = {0,sin(7/8),1/v/2, cos(n/8), 1},
the bent arches correspond to e = {0,1/4,1/2,3/4,1}.
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FIG. 7. Quantitative comparison between the numerically calcu-
lated resonance surfaces and weak field approximation of Sec. VB
for the 2/3, 6/7, 14/15 and 29/30 resonances. The eccentricity is
fixed at e = 0.6. The weak field approximation is computed using
Eq. (32) and is shown for spin values a = 0.2 in red (inner arch),
a = 0.5 in blue (middle arch) and a = 0.99 in magenta (the outer
arch). The analytic results on the equatorial plane are shown in
matching colored dots, with the numerical solutions overlayed using
black dashing.

For each point (p, e, 22) on the resonant surface, the

corresponding E, and L, values were computed using
Egs. (10) and (11). Care was taken to compute the ap-
propriate wy root associated with the retrograde p_ or
prograde p4 branch of the resonant surface under consid-
eration. The outcome is shown in Fig. 9. Note the large
asymmetry about the L, = 0 line that is due to the fact
that the black hole is maximally spinning. The low en-
ergy spike that coincides with prograde orbits close to the
equatorial plane with low eccentricity is easy to miss nu-
merically when exploring the parameter space in terms of
E, L, parameters. This spike constitutes a set of param-
eter values that potentially have important astrophysical
implications: Most particles in thin astrophysical discs
around rapidly spinning black holes are expected to be
prograde and on nearly circular equatorial orbits. As the
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FIG. 8. The 2/3 resonant surface for a maximally spin-
ning black hole a = 1 represented in terms of (p, e, zz) co-
ordinates. Horizontal lines indicate longitudinal values of
22 = {0,sin £,1/v/2,cos £, 1}, the bent arches indicated ec-
centricities of e = {0, 1,1,3,1}
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FIG. 9. The 2/3 resonant surface for a = 1, u = 1 projected
onto E, L. coordinates [7]. Lines indicate constant values
of 22 ={0,sin Z,1/v/2,cos £,1}, and e = {0, 1, 5, 2,1} cor-
responding to those in Fig. 8. The large asymmetry across
the L. = 0 line is indicative of the large spin value under

consideration.

spin of the black-hole decreases the resonance footprint
on the E, L, plane will become increasingly symmetrical
as is shown in Figs. 10 and 11

In Fig. 12 the E, L, projection of the 3/4 resonance
surface is given for a black-hole with spin a = 0.5. The
higher order resonance surface has features that are qual-
itatively similar to that of the 2/3 resonance of equal spin
shown in Fig. 10. For the higher order resonances how-
ever the F values are slightly higher and the L, values
span a marginally larger range.

From the figures in this section it should be clear that
the representation of orbital parameters in terms of the
(p, e, 2%) coordinates is better adapted to the geometry of
the resonant orbit, making it generally easier to quantify
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FIG. 10. The 2/3 resonance for a = 0.5 in E, L. coordinates
for 22 ={0,sin 5 1//2, cos 5,1}, and e= {0, i, %, %, 1},
with units 4 = M = 1. Note the decrease asymmetry across
L. = 0 line when compared to Fig. 9 which is maximally

spinning.
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FIG. 11. The 2/3 resonance for a = 0.1 in E, L. coordinates
for 2% ={0,sin % 1/4/2, cos %1}, and e={0, %, %, %, 1}.
Since the spin is almost vanishing the figure is much more
symmetrical about the L. axis than Fig.10 and 9.
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FIG. 12. The 3/4 resonant surface for a = 0.5 projected
onto E, L. coordinates, for z2 = {0,sin 55 1//2, cos 515,
and e = {0, 1, 3,2, 1}. The main difference between the pa-
rameter space covered by the 2/3 and 3/4 resonance in Fig.10
is that slightly lower energies are reached for the lower order
resonance and for the higher order resonance the L. values
have a marginally larger span, the other features remain qual-
itatively similar.
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FIG. 13. A Poincaré map generated for the Manko-Novikov
metric. The inlay shows a close-up of one of the islands in the
Birkhoff chain of multiplicity three. This island is associated
with the breakdown of the 2/3 resonance as indicated using
the rotation curve in Fig.14 The spin value for this simulation
was chosen to be a = 0.9 and the dimensionless quadrupole
deviation parameter ¢ = 0.95 was chosen to be very large.
The other orbital parameters are £ = 0.95, L, = 3 and rest
mass (= 1.

the resonance surfaces using these variables. Once ob-
tained the resonant surfaces projected onto the E, and
L, orbital variables can potentially be used to aid nu-
merical exploration into Kerr-like spacetimes discussed
in the next section.

VII. ROTATION CURVES AND THE
BREAKDOWN OF KAM TORI

A number of groups have numerically explored the
breakdown of integrability in stationary axisymmetric
vacuum metrics such as the Manko-Novikov metric that
reduces to the Kerr metric for a certain choice of param-
eters [13-15, 17, 58]. One of the tools used to explore the
non-Kerr spacetimes numerically is to plot the Poincaré
map of the orbital motion for a fixed choice of energy (E)
and angular momentum (L,). An example of a Poincaré
map exhibiting broken tori is given in Fig. 13. Each
closed curve in the Poincaré map corresponds to an orbit
that was started on the equatorial plane and given an ini-
tial momentum out of the plane. Each intersection of the
orbit with the equatorial plane generates a point on the
Poincaré map. The radial coordinate (here p) and corre-
sponding radial momentum (p,) of these piercing points
are plotted. The closed curves in this Poincaré map in-
dicate that for most initial conditions geodesic motion
in the Manko-Novikov metric remains integrable or reg-
ular. However, among the closed curves, a Birkhoff chain
of islands can be seen (enlarged in inset), which indicates
that for certain initial conditions the regularity of orbits
break down. This breaking of regular structure is as-
sociated with resonances in the fundamental frequencies
describing the orbit as predicted by the KAM theorem.
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FIG. 14. The rotation curve is obtained by calculating the rotation
number of each orbit from the Poincaré map given in Figure 13.
The rotation number, vy, which is equal to the ratio of orbital
frequencies, wr/wg, is plotted as a function of the initial radial
coordinate of the orbit. The rotation curve is generally smooth and
monotonically increasing. However, corresponding to the Birkhoff
chains of islands seen in the Poincaré map, there is a plateau in the
rotation curve for which w,/wg = 2/3 is resonant.

The second diagnostic tool that gives insight during
a numerical exploration is the rotation curve. This is a
plot of the frequency ratio w, /wp as a function of initial
conditions for the Hamiltonian potential being studied.
For an integrable system the rotation curve is a smooth
function of initial conditions. In systems for which the
KAM tori have broken, there are plateaus in the rotation
curve where the numerically computed rotation number
[59, 60] remains roughly constant. This situation is de-
picted in Fig. 14.

In the numerical investigation of the Manko-Novikov
metric, the breaking of low-order resonant tori is ob-
served most dramatically at the 2/3 resonance. The ap-
parent dominance of the 2/3 resonance over other integer
ratios could heuristically be explained by the fact that
in these studies, the deviation from Kerr was mainly a
quadrupole perturbation and thus roughly proportional
to cos20. This geometric dependence of the perturba-
tion indicates that any 2/m resonance is expected to be
strongly excited. Integers other than n = 2 would arise
from the nonlinear coupling between the angle variables
and the coordinates, which is a higher order effect. Since
wy < wp for Kerr we always have that m > n, so 2/3 is
the resonance with the lowest order integer ratio. It is
thus expected to dominate the breakdown of integrability
for a system subjected to a quadrupole perturbation.

The numerical explorations of the breakdown of KAM
tori has to date been limited to a very small subset of
the allowed parameter space. To guide future studies
covering the entire parameter space associated with the
2/3 and 3/4 resonances discussed in Sec. VI, we now
describe how to use the machinery developed in this pa-
per to analytically compute the rotation curve for the
Kerr metric. An important caveat to bear in mind when
exploring large deviations from the Kerr metric is that
although the torus structure is not destroyed it may be
distorted and the breakdown of quasi-periodic orbits may
be shifted from the exact location of the resonance pre-
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FIG. 15. The rotation curves for geodesics with £ = 0.95u, in
a Kerr black hole spacetime with spin a = 9/10. The differ-
ent curves correspond to different L. values uniformly spaced
between L. = 2.482u (lower curve) and L. = 3.343u (upper
curve). For reference purposes, the 2/3 resonance value is in-
dicated by the central red-line, the 1/2 resonance by the lower
black-line and the 3/4 resonance by the upper black-line. The
radius (r) refers to the radius of closest approach of the orbit
to the black hole, i.e. its periastron r2 given in Eq.(8).

dicted by the rotation curve for orbits in Kerr spacetime.
To zeroth order, however, the Kerr rotation curve pro-
vides an indication of the interesting regions in the pa-
rameter space.

For the Kerr metric the rotation curve is computed by
evaluating Eq. (50) for a fixed E and L, using the pa-
rameters defined in Eq. (25). A representative example
is given in Fig. 15. For a given F and L., bound orbital
motion is usually restricted to a small region of physical
space. Equatorial orbits (QQ = z_ = 0) have the largest
radial extent while circular orbits (e = 0) have the largest
longitudinal reach, z_max = z—(e = 0). These two ex-
treme points define the boundaries of the rotation curve.
We examine them more closely by first computing the
variables {p, e, z_} and subsequently the ratio w, /wy.

On the equatorial plane, z_.q = 0 and the radial po-
tential Eq. (4) has one zero root, thus wy = 0. The
largest two roots of the remaining cubic determines peq
and eqq. First consider the effect of eccentricity e.q where
the two extreme cases for bound orbits are e.q = 0 and
€eq = 1. Making use of Eq. (40) we have that if ecq = 0
the rotation curve reduces to single dot at

—6)p —3a2+8a
wnfuop = | 2 _ I . VP (51)
p* + 3a® F 4a\/p

If the E and L, values have been chosen to lie on the 2/3
resonance, this value would correspond to either the lower
rightmost or lower leftmost points in Figs. 9, 10 and
11 depending on the spin of the black-hole and whether
the retrograde (left) or prograde (right) orbit is under
consideration. Eq. (51) in conjunction with Egs. (36)
and (38) can be used to estimate the characteristic E and
L, associated with the s resonance in the non-spinning
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For the 2/3 resonance this evaluates to E = 0.95879p
and L, = £3.86702u. If the spin is maximal, a = 1, the
prograde branch has E = 0.88009u, L, = 2.26471u, p =
3.86704 while the retrograde branch has E = 0.971899,
L, = —4.6614pu, p = 15.733. These values can be com-
pared to the lower corner points in Fig. 9.

For parabolic equatorial orbits, eeq — 1 and E = p.
This case corresponds to the largest possible radial ex-
tent a marginally bound orbit can have. For the 2/3
resonance these values are indicated by the upper left-
most and upper rightmost points on Figs. 9, 10 and 11.
We define the dimensionless angular momentum param-
eter [, = L,/u and note that on the equatorial plane,
wyx =0, wy = 1,/2. Using Egs. (10) and (11) implies
that the values of p are restricted to

12 4  4a 4  4a
e (1228 (12222 ).
g 2( \/< ree) (1 z2>> 53)

The factor under the square root is positive only if
l,>2(1++vV1—a)orl, < —=2(1++1+a). The smallest
value of p that can be attained for equatorial parabolic
orbits is thus p1 = 2(1 + /1 F a)? for prograde (p) and
retrograde (p_) orbits respectively.

The parameters that enter into Eq. (24) for equatorial
parabolic orbits are

D R
Yo 212

= s = O,
U1 l? —3p Y2

(54)

Evaluating Eq. (50) we find that /k is a monotonically
increasing function of p or equivalently /.. In the limit
of a spin zero black hole the resonance v/ = 2/3 occurs
when p = 11.3273, [, = 4.18461. Parabolic orbits with
larger |I.| will not sample the 2/3 resonance regardless
of inclination. For a maximally spinning black hole, the
2/3 resonance occurs at p_ = 16.2914, [, = —5.01845 for
retrograde orbits and at p; = 4.14634, [, = 2.53177 for
prograde orbits (see Fig. 9).

Finally we consider the maximal vertical extent an or-
bit can have. This occurs for circular orbits given a fixed
EFEand L,. Ife=0,61/y1 =0and wy = —2p+ %
Eq. (11) gives wx to be

a® (1 —~ 25—3) +2a% 1. +p (E—Z(p —3)p—(p— 2)2)
(p—1) (5_22 - )

Wx = ’

(55)

which can be substituted back into L? in Eq. (10) to
give a polynomial in p that can be solved to find pe—q for
the given F and L.. Substituting these results into the
remaining expansion parameters of Eq. (25) and eval-
uating Eq. (50) yields the maximum value the rotation
curve attains.
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VIII. ESTIMATING THE SIZE OF THE
PERTURBATION THAT RESULTS IN A
DRAMATIC CHANGE OF DYNAMICS DUE TO
TORUS BREAK DOWN

The KAM criterion for the possible destruction of tori
can be augmented by further estimates. A generic ana-
lytic perturbation F'(r, 0, p., pg, ps) to geodesic quantities
such as the energy can be written as a Fourier expansion
of the form

oo

F(Tvovprvp97p¢) = Z Fn(eapvzf)ein.qa

n=—oo

(56)

where q are the angle variables corresponding to the fre-
quencies via

dq

v + O(e). (57)
For most orbits, all the Fourier components in Eq. (56)
with n # 0 will be oscillatory and their contribution ap-
proximately averages out over an orbit. The orbit’s lead-
ing order secular evolution is driven by the component
with n = 0. However, at a resonance where k-w = 0 the
Fourier components in Eq. (56) that involve the resonant
combination (k - q) momentarily cease to be oscillatory
since their phase becomes stationary. These components
thus generically contribute order unity corrections to the
secular evolution over the resonance time, except when
the amplitude of these components is O(e) or smaller.
Since for analytic functions the Fourier amplitudes Fi
fall off exponentially with k, we expect the resonance to
have an appreciable effect on the dynamics only when

Ok = Z kil S O(|In(e)])- (58)

This criterion on k in (58) for “essential” resonances [61]
refines the bound for sufficient irrationality discussed in
Eq. (2) for the special case of analytic perturbations.
For EMRIs with the only source of perturbation being
the gravitational self-force, even the low-order resonances
are expected to be weak in the sense that the dominant
dissipation Fp is generically larger than the resonance
potential related to Fkx. The resonances will therefore
appreciably modify but not destroy the object’s contin-
ued in-spiral. Now, however, consider the case of addi-
tional perturbations that lead to very strong resonance
modifications, where heuristically Fix > Fy. Chirikov’s
resonance overlap criterion [62] specifies the conditions
under which the complete loss of quasi-periodic motion
is expected to occur as follows. Each strong resonance
captures orbits in its vicinity and is thus surrounded by
an oscillation region similar to the Birkhoff islands shown
in Fig. (13) and manifests as a plateau in the frequency
evolution similar to that in Fig (14). The onset of full-
blown chaos occurs when these Birkhoff chains associated
with nearby resonances become large enough that they



touch. More precisely, Chirikov’s criterion states that the
transition to stochastic behavior arises when two neigh-
boring strong resonances overlap in the sense that the
frequency width of their oscillation regions is larger than
their spacing in frequency. An estimate for the width of
the resonance regions is [62, 63|

Alk - w|~ Ve /|(k-w),, Faxl, (59)
where J, = (e,p,z_) and F,x are the forces such that
Jo = €F, 4+ O(¢?) and F, is Fourier expanded as ex-
plained above. Overlap occurs for two resonances associ-
ated with lattice vectors k and k’ respectively when

Awfk) + Awgk/) > |wk — w%‘/| (60)

for each of the frequencies w; evaluated at the resonances
of the unperturbed system. This estimate of the criterion
for overlap is only a crude indicator for the transition to
stochasticity, and in cases of interest the local dynamics
must be systematically analyzed [64, 65].

For most systems explored numerically to date, the
plateaus in the rotation number curve remain small, and
thus do not satisfy Chirikov’s criterion. This indicates
that we expect at most weak chaos in the sense that
torus disruption, if it occurs, is limited to a small region
in phase space.

IX. ASTROPHYSICAL IMPLICATIONS

For astrophysical processes near super-massive black
holes the Kerr geometry usually provides the background
stage on which several small perturbation effects play
their part. In select regions of the spacetime correspond-
ing to low-order resonant orbits the smooth distortion
due to perturbation induced effects is disrupted. The
background spacetime geometry largely sets the location
of these resonance induced disruptions imprinted on the
dynamical structures of the perturbed system, while their
details depend on the properties of the perturbations.

Generally these effects are expected to be small, al-
though persistent and robust. They are induced by all
non-integrable perturbations of the Kerr metric. If the
perturbation is not too large resonant effects occur at
the locations quantified in this paper irrespective of the
source of the perturbation. Table I indicates the charac-
teristic length and timescales associated with resonances
in dimensionless units and as well as in units charac-
teristic of the region around Sgr A*. In Fig. 16 we
have plotted all the low order resonances with order
O, = n+m < 15 superimposed on an embedding di-
agram for a non-spinning black hole. This plot gives an
indication of how strongly the spacetime for a particular
resonant surface is curved and the relative extent of the
regions of influence of the low-order resonances. Note
the accumulation of resonances near the ISO which can
also be observed in Fig. 4 and persists for the spinning

18

Event Horizon

FIG. 16. The location of low order resonances around a black
hole [7]. Here low order resonances are plotted superimposed
on a embedding diagram to give an indication of how strongly
the spacetime in their vicinity is curved. The line-width in
each case is scaled with 3/0, where O, = m + n to give an
indication of the relative importance of a particular radius.
This image gives an over estimate of the importance of higher
order resonances since the correct scaling according to Eq. (2)
is K/O3.

case. In Fig. 16 we have scaled the width of the lines
demarcating each resonance by K(e)/O, with an arbi-
trary choice of K = 3 to result in good rendering. Recall
that Arnold’s criterion, in Eq. (2), governing the per-
sistence of tori scales as K/O32. Higher order resonances
are thus likely to be strongly suppressed compared to the
schematic representation given here.

The three lowest order resonant tori, 1/2, 1/3, 2/3
whose parameters are indicated in bold in Table I are
mathematically most likely to break. Of these it is
likely that astrophysically the 2/3 resonance will have the
greatest probability of being directly observable based on
the following arguments: (i) For an EMRI, the impact of
the broken resonance is likely to be larger if the perturb-
ing object remains in the vicinity of the resonance for
a considerable amount of time. The 1/2 and 1/3 reso-
nances lie at 4Rg and 3.4Rg respectively, close the ISO
at 3Rg where the radiation reaction force is large and the
orbit is transitioning to the plunge phase. The time and
number of orbits that an in-spiralling object of mass pu
spends near a given radius roughly scale as t ~ p*/(u/M)
and N ~ p°/2/(u/M), thus the influence of the 2/3 res-
onance can accumulate longer than for the 1/2 and 1/3
resonances. See also Ref. [9] for more precise estimates.
(ii) For electromagnetic observations, the fact that the
1/2 and 1/3 resonances lie in the region of high curva-



ture and possibly near or on the edge of the accretion
disc is likely to confuse any distinct signal originating
from this region. The 2/3 resonance on the other hand is
located at roughly 5.4 Rg further out of the potential well,
making it easier for electromagnetic radiation to escape.
(iii) The final reason for expecting the 2/3 resonance to
dominate is akin to the discussion in Sec. VII where it
was argued that quadrupolar gravitational potential per-
turbations will preferentially excite the 2/3 rather than
lower order resonances.

If the resonance condition is satisfied the particle mo-
tion either passes through the resonance, or, when the
resonance dominates over dissipation so that Fi > Fp in
Eq.(56) holds and depending on the initial conditions, the
object can temporarily be captured in the resonance. For
captured particles the resonance effectively fixes the or-
bital frequency ratio of the object’s orbit which manifests
as a plateau in its rotation curve, as seen in Fig. 14. This
is indicative of a stable, attracting resonance. Repelling
resonances, typified by an inflection point or jump in the
rotation curve, are associated with unstable periodic or-
bits [59, 66] and will be short-lived in the presence of dis-
sipative effects. The detailed study of the dynamics when
a small mass enters the resonance region under various
forms of perturbation is the subject of future work and
has been studied in a particular Newtonian case in [67].
In the event of resonant capture the orbital parameters
will linger within the resonance surface, possibly altering
constants of motion because of the interchange of energy
and angular momentum between the perturbation and
the orbit. When the gravitational radiation reaction is
significant, the dissipation will most likely cause the orbit
to evolve towards a lower energy state, i.e. increasingly
circular equatorial configurations, corresponding to the
lower right-hand corner of Figs. 8 and 9.

Now consider a collection of particles in a low-density
accretion disk around an astrophysical black-hole. As
explained in the introduction, their orbits will be influ-
enced by a number of small perturbations which could
cause them to become captured by a resonance, since
the gravitational dissipation is small for low mass ratios.
The evolution towards prograde circular equatorial orbits
during resonance will limit the collisional interaction of
the swarm of trapped particles, potentially creating a
cohesive structure. It is thus possible that the charac-
teristic structure associated with the resonances, such as
the resonance zones visualized in Fig. 16, will be im-
printed on any thin disk surrounding a black-hole in the
form of density inhomogeneities in much the same way
as the resonant structures imprinted on Saturn’s rings
[4]. Unlike the rings of Saturn where matter largely re-
mains captured indefinitely, the black-hole rings will be
dynamical because radiation reaction will alter the res-
onant structures and enable escape from resonance (as
can be quantified using e.g. the methods in [68]). In
this scenario, when a trapped over-density becomes mas-
sive enough for the radiation reaction force to become
important the black-hole ring will partially disintegrate,
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depositing an over-density of matter on the next inward
ring in the disk. There, the matter will again be trapped
for some time before continuing the in-fall. Thus in one
related catastrophic event the whole ring structure will
re-adjust, with the emitted radiation carrying an imprint
of the particular resonances involved. Provided the accre-
tion rate is slow enough the ring structure will reform af-
ter each radiation reaction dominated ring collapse event.
Since the radiation reaction force scales with mass ratio
it is further expected that there will be a segregation
in the particle sizes found in each ring. The tendency
for captured orbits to evolve to a more circular, equato-
rial configuration is expected to minimize the ejection of
simultaneously captured particles due to collisional inter-
actions.

Another mechanism that could excite the resonant ring
structure and lead to a distinct signature in the emitted
radiation is the collision of a compact object with the
matter in successive rings. The resulting collisional hot
spot of excited gas will rotate with an azimuthal fre-
quency set by the characteristic resonance surface. A
detailed study of the possibility of a ring structure, its
dynamics and observational signatures is left for future
work.

We now conduct a very precursory search for phenom-
ena that could possibly be associated with the resonant
structure around black holes. The closest super-massive
black hole at the center of our galaxy presents an inter-
esting test-bed. Recent monitoring of Sgr A* with the
1.3mm VLBI showed time-variable structures on scales
of ~ 4 R, [69, 70]. The physical origin of this structure
is not yet clear, but it is interesting to note that the
scale is similar to that of the low-order resonances given
in Table I. As discussed above it is possible that tempo-
rary capture of material or gas near the resonance loca-
tion could lead to a time-varying signature in the photon
emission. For argument’s sake, suppose that the origin
of the structure at ~ 4Rg = 8M is in fact the 2/3 res-
onance but displaced from the non-spinning value listed
in Table I because Sgr A* has spin. Using Eq. (45) the
spin displacement of the prograde 2/3 resonant surface is
p+ = 10.8—5.36a. From the amount of spin displacement
of the resonance needed to match the observed structure
one could then infer that Sgr A* has a = 0.5. The plausi-
bility of identifying this structure with the 2/3 resonance
could be confirmed if the variability has characteristic
timescales of slightly less than an hour. The increase in
sensitivity of the VLBI measurements will enable resolv-
ing more of the horizon scales, and it will be fascinating
to see if the resonance structure can be revealed. Table I
provides a quick reference for the possible characteristic
time and length-scales. Note that because the coefficients
in Eq. (45) differ for different resonances, observing more
than one resonant structure places an independent check
on the veracity of this method of determining the spin,
since the displacement of both resonances due to spin
must be consistent.

Another example of a phenomenon that could poten-



tially be associated with the orbital resonances is the
quasi-periodic oscillations (QPOs) observed in the X-ray
spectra of several black hole candidates. Four stellar
mass black hole systems exhibit quasi-periodic variability
with peaks at harmonic pairs of frequencies in a 2/3 ra-
tio, one also shows an additional 3/5 ratio [71]. Recently,
QPOs have also been identified in a super-massive black
hole [72] and in a tidal disruption event [73]. A definitive
physical explanation for the origin of the QPOs is cur-
rently lacking. Numerous models have been proposed,
including orbital resonances of any combination of the
three orbital frequencies and their corresponding beats
[31, 74], accretion disk oscillations with nonlinear effects
[75-77], or variations in the geometry of the accretion
flow [78]. For the case where both the 2/3 and 3/5 ratios
are observed, it is very interesting to note from Table I
that these two resonances are in fact nearest neighbors
in p, with the 3/5 occurring at just slightly smaller p
values than the 2/3 resonance. A disruption event at
the 2/3 resonance could excite an event at the 3/5 res-
onance because of their physical proximity. Measuring
the frequencies of the observed resonances in QPO’s will
give further clues as to whether they can correctly be
attributed to orbital resonances around Kerr or whether
other physics dominate over the orbital dynamics.

The concentration of low order resonances near the
black hole and their absence further out has important
implications for the key science objective of testing the
no-hair theorems using a super-massive black hole such
Sgr A*. The no-hair theorems state that, provided the
cosmic censorship and causality axioms hold, if the black
hole’s mass and spin are known the quadrupole moment
is fixed. Liu et al. [79] have shown that recording the
time of arrival signals of a pulsar orbiting Sgr A*, with
orbital period ~ 4 months, for several years with the
Square Kilometer array (SKA) will enable us to measure
the mass of Sgr A* to a precision of 1076, the spin 1073
and the quadrupole moment to 1072. This will allow
a definitive test of the no-hair theorems. The detection
of a pulsar even closer to the central object could allow
the extraction of additional multipole moments through
long term monitoring, thus mapping out more and more
details of the structure of the central black hole.

The analysis in this paper assures us that orbits around
Sgr A* with a period of the order of weeks to months are
sufficiently far from the low-order resonances that the
KAM theorem guarantees quasi-periodic motion and the
persistence of invariant tori under perturbations. This
result implies that frequency drifts computed using per-
turbative methods based on averaging, as done in [80],
accurately describe the physical system that is effectively
free of stochastic motion. It also ensures that tracking the
regular motion of a pulsar will reflect a map of the grav-
itational potential it samples. We conclude this section
by mentioning in passing the relevance to future gravita-
tional wave detectors such as eLISA and their potential
to directly probe resonant dynamics. A detector sensitive
to the frequency band ~ 10~* — 10! Hz observing an
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EMRI near SgrA* Mgy, 4. ~ 4 x 105M¢, [81], can probe
mean radial distances ranging from the event horizon to
~ 50M [17]. This overlaps with the region where the
strongest resonances occur (see Table I ). The potential
direct detection of gravitational wave emission from a res-
onance transit is an exciting possibility. It does however
underscore the necessity to carefully model and incorpo-
rate resonant effects in the search templates. The loss of
phase coherence as the small mass object passes through

a resonance could potentially make parameter estimation
difficult.

X. SUMMARY AND DISCUSSION

In this paper we have computed the location and asso-
ciated timescales of resonant orbits in the Kerr spacetime
and commented on the observational and mathematical
implications. We have considered resonances between the
two fundamental frequencies corresponding to the radial
and longitudinal motion, which are the key quantities rel-
evant to phenomena associated with the underlying phase
space of the system. Our results provide a complete sur-
vey of the parameter space of resonant orbits, together
with simple expressions for locating the resonances valid
in the strong field region. If resonant phenomena are ob-
served these expressions could provide and easy way of
determining the spin of the central black hole. We con-
sidered several examples of electromagnetic observations
at different wavelengths that could be related to the cap-
ture and escape of material from resonances.

We have computed the resonant surfaces both in terms
of generalized Keplerian variables (related to the orbital
geometry) as well as projected onto the F and L. pa-
rameter space (related to the spacetime symmetries) to
help identify promising choices of parameters for numer-
ical investigations of torus breakdown in resonance re-
gions. We have further found an analytic expression for
the rotation curve associated with the Kerr metric as a
function of E and L, that can be used for comparing
to numerically computed rotation curves associated with
Poincaré maps. We expect low order resonances such as
the 2/3 and 1/2 resonances to have the strongest observ-
able effects on orbital motion, electromagnetic emission
and the phase of emitted gravitational waves. These res-
onances occur in the strong field regions of the spacetime
at a distance of < 5.4 Ry from the black hole and are
fairly widely spaced by ~ 1.4 R, in the limiting case of a
non-spinning black hole.

According to the KAM theorem low order resonances
indicate where in a dynamical system the transition to
chaos is likely to occur first. Such a transition requires a
sufficiently large perturbation that could arise from vari-
ous sources such as the non-Kerr nature of the spacetime,
the internal structure of the probe, alternative theories of
gravity or the presence of other bodies or gas. We sum-
marized the KAM estimate and additional arguments by
Arnold and Chirikov to assess which resonant tori are



expected to survive under the perturbation and where
dramatic changes in the dynamics could occur. Com-
bining these general bounds with our results for the reso-
nances indicates that there is a large region for mean radii
50 Rs < p < 1000 Rs where resonance effects are negligi-
ble but where the spacetime curvature is sufficiently high
that multipoles of the central object have an observable
effect on the motion. This will enable tests of the no-hair
theorem unimpeded by drastic changes in the dynamics.

More stringent bounds than discussed in this paper
on the occurrence of strong resonances and the transi-
tion to stochastic behavior require detailed studies of the
dynamics near resonant tori for the different kinds of per-
turbations. We noted in Sec. VIII that for EMRIs the
gravitational radiation reaction force, which is important
in the region where low-order resonances occur, sets an
approximate scale for the strength of the perturbation
required to destroy the tori. In future work we intend to
study the details of the breakup of the tori and quantify
the strength of the perturbation required for observable
consequences in each case.

Regions where lower order resonances occur also ear-
mark the most likely positions in phase space where av-
eraging methods must be modified to account for the res-
onances. If an orbit passes through a resonance it effec-
tively acquires a sudden change in the frequencies whose
magnitude depends on the initial conditions. For suf-
ficiently strong resonances, orbits can enter a resonance
region, linger near it and subsequently escape. This man-
ifests as a plateau in the frequency evolution similar to
that seen in the rotation curve of Fig. 14 but tilted be-
cause of radiation reaction. More work will be needed to
determine how well the frequencies must be resolved to
detect such a plateau and exploit the measurements to
determine the system parameters with LISA.

In addition to exploring the parameter space of res-
onances in this paper, we characterize in the Appendix
the locations of the innermost stable orbit beyond which
geodesics plunge into the black hole. This provides a use-
ful benchmark for the resonance locations and also indi-
cates the region where zoom-whirl behavior would occur
and where higher order resonances accumulate.
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Appendix A: Location of the Innermost Stable Orbit

In this appendix we explore the location of the inner-
most stable orbit (ISO) using the notation and variables
given in Sec. III B. Observationally this is an important
location in the black hole spacetime since it demarcates
the radius from which the test mass will enter the plunge
phase of its orbit. Near the ISO a non-circular orbit ex-
hibits zoom-whirl behavior as the radial frequency goes
to zero while wy and wy remain finite. The test mass will
linger near its periastron for many periods of the ¢ and
6 motion, then rapidly zoom out to apastron and back,
giving rise to a characteristic signature in the emitted
gravitational waves. When tracking the frequency evo-
lution of a particular orbit, this determines the final set
of wg, we frequencies that will be recorded before the
test mass begins its plunge into the black hole. When
discussing resonant orbits of a spinning black hole it is
often useful to view their location relative to the location
of the ISO for the same spin, inclination and eccentricity.
The ISO surface (where w, vanishes) shares many of the
qualitative features of the resonance surfaces (where the
combination of frequencies mw, —nwy vanishes) discussed
in the main body of the text and both are related to de-
generate structures in the phase space that are broken
under small perturbations.

The ISO occurs when the potential barrier in the radial
potential no longer shields the orbit from the singularity.
Mathematically the condition that defines this orbit is
that the middle two roots of Eq.(4) coincide,

b (A1)

7’3:T2:1+e.

This allows us to express the w and wy variables as.

T4 P
= . A2
@ 1+e (A2)

W+ZT4+1+6,

Eq. (14) allows us to find an expression for 22 in terms
of T4,

o _p(ra(e—=3) —(e+3)p)
- 2a2(e — 1)(e +1)2
p\/(e — 3)2 742 +2(e2 + 7)pry + (e + 3)2p2

2a2(e — 1)(e +1)2 ’
(A3)

+

where we have set 7, = (14¢€)r4 to yield a more compact
expression. Eq. (12) provides a quadratic equation for
r4 that allows us to determine its value in terms of p and
e. The solution can be written down in the form,

T4 = (_B’r‘4 + AT‘4)/AT45 (A4)

with
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FIG. 17. Graphical representation of ISO surface constructed using Eq’s. (A3)(A4). The ISO surfaces displayed in the top two
images shows the same qualitative ‘U’ —' V' —' I’ transitions as the resonant orbits. Smaller images in the bottom row give
the top view of the resonant surfaces for various spins and eccentricities. The top left and the two images on the bottom left
display the eccentricity dependence for different spin values. The ISO is linearly dependent on eccentricity (as opposed to the
quadratic dependence observed in resonant surfaces). The spin dependence at various fixed eccentricities is illustrated in the
right three plots where the typical 'V’ profile is obvious irrespective of eccentricity.

Ay =64e+ )P’ p—(e =1 @-Dlp+ (-1 @+lp-(c+ 1)@+ p+(+1) @1,
Ay =d'(e—1)(e+1)' —4a’(1—e)3—e)(e+ 1)°p+2(e + 1)%p* (a®*(3+€)(e — 1) + 2(e — 3)?)
— 4+ T7)(e+ 1)p* + (e + 3)*p",
B, =a*(e=3)(e —1)(e +1)°p — 4a®(e + 1) (¢* — 2e + 3) p* + 2(e + 1)p° (a*(e® — 5) + 2¢* + 14)
—4(e® +2e+3) p* + (e + 3)p°. (A5)

We have set @ = v/1 —a?. In Eq. (A4) we chose the ‘+’  behavior of 22 as a function of p is described by,
root of the quadratic to yield the correct behavior for z2.

The ISO surface exhibits many of the characteristics seen 2 p? (—3\/5 +2/3p+2p+3— 3) A6
in the resonance surfaces studied in Sec. V. These include 1T 3yp—1 : (A6)

the fact that as inclination increases the p values of the
prograde/retrograde ISO’s respectively increase/decrease Furthermore when e =1, a =1,
until the two branches coincide for z2 = 1. This behav-

ior is due to the fact that polar orbits are less influenced 2 8v2p™/? — 3p* — 4p® + 4p? (AT)
by the spin of the black hole. Also note that for 22 = 1, ! 4(9p% +4p+4)

dz? /dp = 0. A graphical representation of the ISO sur- )

face is given in Fig. 17 On the equatorial plane z— = 0 and 74 = 0. Just as

for the resonances the strongest spin dependent effects

can be observed here. The behavior of the ISO can be

well characterized by merely examining the behavior on

We now give a number of easily evaluated formulae the equator. As inclination increases, the location on the
for special parameter values. For circular orbits around ISO will lie between the extremes of the prograde and
a maximally spinning black hole (e = 0, a = 1), the retrograde values found on the equatorial plane. The



characteristic V'~ /I’ transition seen in the resonances
occurs for the ISO as well. If r4 = 0 only the constant
term (with respect to r4) in Eq. (12) with Eq. (A2) sub-
stituted remains. This term results in a quartic equation
for p that implicitly defines the location of the ISO on
the equator, as also found in [82],

(p =6 —2¢)°p* +a'(1 +¢)*(3 —¢)?
0.

—2a*(1+e)p [2(e* +7) + (3—e)p] = (A8)
If the black hole is non-spinning, a = 0, then p = 6 + 2e.
If it is maximally spinning, ¢ = 1, there are 3 roots to
Eq. (A8), namely p = 5 + e £ 4y/1 + ¢ and a double
root at p = 1+ e. Of these the correct limiting cases
for the retro and prograde ISO orbits are p— =5+ e +
44/1 + e and p4 = 1+ e respectively. Thus the maximum
splitting between the pro and retrograde branches on the
equatorial plane is p_ —p; =4(1 + /1 +e).

If a # 0 the ISO can be found by solving the quartic.
(For plotting purposes it is easier to consider Eq. (A8) to
be a quadratic equation for a? and plot the square root
of the result as a function of p.) For convenience, the
leading order spin dependence is also given here,

1+e
ps =6+ 2¢e+4ay (2 (3+6> +0(a?). (A9)

Appendix B: Properties of Carlson’s integrals

Carlson [35] [33] [34] has provided us with a number
of symmetric, rapidly convergent schemes to evaluate el-
liptic integrals both numerically and analytically. This
appendix summarizes the identities and properties asso-
ciated with Carlson’s integrals used in the body of the
paper. Carlson showed that any elliptic integrals of the
form

v dt
h:/
v /(o1 + Bit)(ag + Bat)(as + Bst) (s + Pat)
(B1)
can be expressed as
I = 2RF(U1227 U1237 U124)7 (B2)
where
Uij = (XiX;YiYm + YiY; X0 Xon) /(z — v),
Xi = (i + Bix)' %, Y = (i + Biy)'/?
(B3)
and

1 [ dt
Arto0.9) =3 | Jrat ey Y
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This symmetric representation greatly reduces the num-
ber of parameters from 10 in Eq. (B1) to the three argu-
ments in Eq. (B4). All integrals have the same boundary
conditions and the arguments enter only in the denomi-
nator of the integrad. An added advantage of using Carl-
son’s integrals is that they obey a number of identities
that make manipulation of the parameters that enter as
arguments possible without necessarily evaluating the in-
tegral. These identities include the duplication theorem,

Rp(a,8,7) = 2Rr(a+ A B+ A7+ ), (B5)

where A = (af)'/? 4 (ay)'/? + (87)/?; the fact that

Carlson’s function is homogeneous of degree —%,

RF(Ao‘a Aﬂa )\FY) = A_1/2F€F(O[7 ﬂv FY)) (BG)

for any A and a number of special symmetric cases that
can easily be evaluated,

Re(8.8,8) = 672, Rr(0,8,8) = 287/%  (BY)

If the first argument is @@ = 0 a restricted version of
the duplication theorem also holds: for z > 0, y > 0,
z=(x+vy)/2,

Rp(0,2°, ) = Rp(0, 2y, 2°). (B8)

For small deviations from the symmetric case it is pos-
sible to construct a rapidly converging series. We now
derive this series for Rp(0,y + 6,y — J). Start with the
integral representation of Rp, Eq. (B4) in the special
case,

dt

l/“
2J0 Vtt+y+o)(t+y—9)
(B9)

RF(07y+67y_6):

and make a Taylor series expansion of the integrad in
terms of §. Integrate the result term by term to yield,

™ (14 362 N 10564
27 16y2 ' 1024y*

115556 22522558
. +0(59)) .
2./7 \ 163845 " 4194304y°
(B10)

RF(07y+57y_5) =

Since only quadratic terms in the parameter 6 /y appear
this series converges very rapidly. To complete the dis-
cussion on Carlson’s integrals and mainly for comparison
with other work we now give the relationship between
Carlson’s integrals and some of the elliptic functions,

R;(0,1 -k, 1) = K(k),
Rp(0,a,8) = B2K(\/1—a/B).

Here K (k) is the complete elliptic integral of the first
kind.

(B11)
(B12)
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