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Gravitational waves are excellent tools to probe the foundations of General Relativity in the
strongly dynamical and non-linear regime. One such foundation is Lorentz symmetry, which can be
broken in the gravitational sector by the existence of a preferred time direction, and thus, a preferred
frame at each spacetime point. This leads to a modification in the orbital decay rate of binary
systems, and also in the generation and chirping of their associated gravitational waves. We here
study whether waves emitted in the late, quasi-circular inspiral of non-spinning, neutron star binaries
can place competitive constraints on two proxies of gravitational Lorentz-violation: Einstein-Æther
theory and khronometric gravity. We model the waves in the small-coupling (or decoupling) limit
and in the post-Newtonian approximation, by perturbatively solving the field equations in small
deformations from General Relativity and in the small-velocity/weak-gravity approximation. We
assume a gravitational wave consistent with General Relativity has been detected with second- and
third-generation, ground-based detectors, and with the proposed space-based mission, DECIGO,
with and without coincident electromagnetic counterparts. Without a counterpart, a detection
consistent with General Relativity can only place competitive constraints on gravitational Lorentz
violation when using future, third-generation or space-based instruments. On the other hand, a
single counterpart is enough to place constraints that are 10 orders of magnitude more stringent
than current binary pulsar bounds, even when using second-generation detectors. This is because
Lorentz violation forces the group velocity of gravitational waves to be different from that of light,
and this difference can be very accurately constrained with coincident observations.

I. INTRODUCTION

Here be dragons. This is the warning that medieval
cartographers would use to signal a region in their maps
that had not yet been explored, to signal the frontiers of
human knowledge. One of today’s frontiers in physics is
the strongly dynamical and non-linear regime of the grav-
itational interaction. We choose to believe that General
Relativity (GR) is the correct description of Nature in
this regime, when black holes collide and neutron stars
(NS) merge into each other. This choice, of course, is
very sensible, as it is rooted in the fantastic success of
GR in describing low energy phenomena, such as physics
in the Solar System, and certain strong field physics, such
as in binary pulsars [1]. However, assuming that GR is
also valid in the dynamical and non-linear regime may
be a dangerous extrapolation that must be verified.

Perhaps one of the most exotic of these “dragons”, one
of the most interesting proposals to modify GR, is the
violation of Lorentz symmetry in gravity. Lorentz sym-
metry, i.e. that experimental results are independent of
the inertial frame used to carry them out, is a pillar of
Special Relativity and many other field theories. Viola-
tions of Lorentz symmetry in matter interactions is very
well-constrained by observations and experiments [2, 3],
but such tests do not strongly constrain Lorentz viola-
tions that are dominantly active only in the gravitational
sector. Observational constraints on the existence of a
preferred gravitational frame are not strong, except per-
haps for certain Solar System constraints and the very
recent constraints placed with binary pulsars [4, 5] and
with cosmological observations [6]. The dynamical and
non-linear regime has yet to be explored as a possible
source for further constraints, and perhaps, experiments

that can sample this regime may be the best “sword” to
slay such dragons.

The Standard Model Extension [7–12] has been pro-
posed as a model-independent way to map various ob-
servations to tests of Lorentz invariance. Alternatively,
Einstein-Æther theory [13, 14] and khronometric grav-
ity [15, 16] can be used as representative models of
theories that break Lorentz symmetry in gravity [4, 5].
Einstein-Æther theory accomplishes this by coupling the
metric to a vector field of everywhere unit magnitude
at the level of the action. The latter contains the most
generic correction to the Einstein-Hilbert term that has
a unit timelike vector and quadratic combinations of its
first derivative. Khronometric theory instead contains
a globally preferred frame selected by a khronon scalar
field, which is responsible for globally breaking Lorentz
symmetry. Such a theory is realized as the low-energy
limit of a UV complete, power-counting renormalizable
theory [17]. For a more detailed discussion of these the-
ories, see [2, 5, 13–15, 18, 19]

The strength of Lorentz violations is encoded in the
magnitude of the coupling parameters of the theory. So-
lar System observations have forced Einstein-Æther the-
ory and khronometric gravity to effectively depend only
on two combinations of coupling parameters, (c+, c−)
and (βKG, λKG) respectively. Recent constraints with bi-
nary pulsar observations [4, 5] and cosmological obser-
vations [6, 20] have forced these parameters to satisfy
c+ . 0.03 and c− . 0.003 for Einstein-Æther theory and
βKG . 0.005 and λKG . 0.1 for khronometric gravity.

Binary pulsar constraints are particularly strong be-
cause one of the signatures of gravitational Lorentz vi-
olation is the excitation of dipole radiation due to the
presence of propagating vector and scalar modes. Dipole
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radiation modifies the rate of change of the orbital period
in binary systems, which radio telescopes have observed
to be in agreement with GR to exquisite levels. Thus,
binary pulsar observations can strongly constrain the ex-
istence of such Lorentz-violating effects, and thus, the
magnitude of the coupling parameters of Einstein-Æther
theory and khronometric gravity.

Such orbital decay is an inherently non-linear and dy-
namical effect, and thus, not just binary pulsars, but
rather all astrophysical observations that can sample this
regime may have a shot at constraining gravitational
Lorentz violation. One such observation is the detec-
tion of gravitational waves with ground-based interferom-
eters, such as Advanced LIGO (aLIGO) [21, 22] and Ad-
vanced Virgo (aVirgo)[23, 24]. These second-generation,
gravitational wave detectors will be operating at design
sensitivity in the next few years, hopefully detecting from
a few to tens of NS and black hole binaries per year
with signal-to-noise ratios (SNRs) in the 10s. Third-
generation detectors, such as LIGOIII [25] and the Ein-
stein Telescope (ET) [26, 27], are also being planned for
the next decade with the aim to detect hundreds of events
per year with SNRs in the 100s. Japan’s proposed space-
based mission, DECIGO [28, 29], is expected to detect
signals with even larger SNR at lower frequencies.

Gravitational waves and binary pulsar astrophysics
are at quite different stages of development. Radio
astronomers detected the first signals almost 40 years
ago [30] and have continued to monitor these systems
ever since. By now, the pulsar community has detected
many tens of pulsars in binaries at varying levels of pre-
cision. On the other hand, the gravitational wave com-
munity has not yet made a detection, with the first ones
expected to arrive in the next few years and to be ex-
tremely weak. What matters here is that pulsar observa-
tions can do data analysis with a combined SNR that is
much higher than what gravitational wave analysts will
have available in the first decade of gravitational wave
astrophysics.

The above suggests that binary pulsars may have a
better handle at constraining the existence of Lorentz-
violating effects in gravity than gravitational wave obser-
vations. Indeed, this has been predicted to be the case for
the presence of dipolar radiation, with both a Fisher anal-
ysis and Bayesian model-selection tools [31]. Nonethe-
less, one may wonder (i) whether this generic predic-
tion holds true for other Lorentz-violating effects, such as
the modification of the graviton propagation speed and
modifications to propagating, quadrupole tensor modes,
and (ii) if it does hold true, how far out would grav-
itational wave constraints be from binary pulsar ones.
Once these questions are answered, one could determine
whether future, third-generation detectors would be able
to place bounds comparable with current binary pulsar
ones. Note that this does not answer the question of
whether gravitational wave detectors will overtake bi-
nary pulsar observations in the future, as binary pulsar
measurements will only improve with increased observ-

ing time. Rather, we use current binary pulsar results
as a benchmark with which to compare the abilities of
current and future gravitaional wave detectors.

These questions are the main theme of this paper.
We address them by studying gravitational waves in
Einstein-Æther theory and khronometric gravity, emitted
by non-spinning NSs in their late, quasi-circular inspiral
phase, i.e. when the gravitational waves emitted are at
frequencies higher than 1–10 Hz, or equivalently when
their separation is smaller than 103 km. We neglect the
merger phase, as this occurs at frequencies above 1 kHZ
for binary NSs, where detectors are much less sensitive.
We calculate how gravitational Lorentz violating effects
propagate into the response function of a detector given
an impinging gravitational wave, both in the time and
frequency domains. The latter is treated in the station-
ary phase approximation (SPA), the leading-order term
in the method of steepest descent employed to solve gen-
eralized Fourier integrals [32].

Such an analysis is carried out through certain ap-
proximations. First, we use a small-velocity/weak-field
approximation (the so-called post-Newtonian (PN) for-
malism [33]) to model the orbital dynamics and gravi-
tational wave generation in the inspiral phase. Second,
we use a small-deformation approximation (the so-called
decoupling limit), where Lorentz violating effects are as-
sumed to lead to small corrections to GR predictions.
This approximation is justified in Einstein-Æther the-
ory and khronometric gravity, given the stringent con-
straints already placed through binary pulsar observa-
tions [4, 5]. These two approximations make the calcula-
tion of the gravitational wave response function analyti-
cally tractable.

With the response function at hand, we carry out a
Fisher analysis [34], assuming a gravitational wave detec-
tion consistent with GR with aLIGO (second-generation
detector), LIGOIII/ET (third-generation detectors), and
the proposed space-based DECIGO mission. We find
that second-generation detectors alone will not be able to
place constraints on gravitational Lorentz violation that
are more stringent than current binary pulsar bounds,
assuming signals from NS binaries. This is because
the leading-order modifications to the gravitational wave
phase enter at −1PN order1 due to dipole radiation and
at 0PN (or Newtonian order) due to modifications to
quadrupole radiation. The dipole correction, however,
is proportional to the square of the difference of the NS
sensitivities (related to the Lorentz-violating field’s self-
energy), and thus to the square of the NS mass differ-
ence, which is small for NS binaries. The quadrupole
correction is partially degenerate with the chirp mass,
which also enters at 0PN order in the gravitational wave
phase. All of this combines to lead to projected con-
straints with second-generation detectors that are at least

1 A correction to some leading order expression that is propor-
tional to v2N is said to be of NPN order.
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FIG. 1. Projected constraints on c+ and c− (Left), and βKG and λKG (Right) assuming a gravitational wave observations from
the quasi-circular inspiral of non-spinning NSs consistent with GR, at a luminosity distance of 270 Mpc. This corresponds to
SNRs 10 and 130 for aLIGO and ET respectively, averaging over sky location. The region below and to the left of the contours
are the allowed regions for the respective coupling parameters. The purple shaded region is the allowed region from binary
pulsar and cosmological observations, as calculated in [4, 5], and the lighter shaded region is the allowed region from stability.
As a representative case we show here contours produced given a detection with aLIGO and with ET. In the khronometric
gravity case, the constraint from aLIGO is outside the scale of the plot.

2 orders of magnitude weaker than current binary pulsar
bounds. Third-generation ground and space-based detec-
tors, however, would be able to place constraints that are
comparable, and in some instances, stronger than current
bounds by a factor of roughly 2.

Figure 1 shows projected and current constraints on
the coupling parameters of Einstein-Æther theory and
khronometric gravity. This is an exclusion plot, so the
area under (over) the curves are coupling parameter
space regions that are still allowed for Einstein-Æther
theory (khronometric gravity). The area bounded by the
black thin line (cyan region) and the solid thick line (pur-
ple region) are the currently allowed regions after stabil-
ity constraints and binary pulsar/cosmology constraints
respectively [4–6]. The area to the left of the red curve
and bounded by blue curves are the new, projected al-
lowed regions after a gravitational wave detection with
second-generation and third-generation detectors respec-
tively. Observe that in the Einstein-Æther case (left
panel), ET detections would be required to cut into the
current allowed region. In the khronometric gravity case
(right panel), the aLIGO constraint is outside the scale of
the figure, and we see that not even ET detections would
suffice to place constraints comparable to current ones.

But what if a gravitational wave detection occurs si-
multaneously with an electromagnetic (e.g. gamma ray
or x-ray) observation? This could, for example, happen
if short gamma-ray bursts are produced by the merger of
binary NSs, or if a supernovae explosion is detected both
in the x-rays and gravitationally. In the former case, one
would also need the geometry of the NS remnant to be
such that the burst is along Earth’s line of sight. In the

latter case, one would need the supernovae to occur suf-
ficiently close to Earth for detection. The probability of
simultaneously detecting either is not high, but a sin-
gle coincident detection would here suffice to carry out a
stringent test of GR.

Given such a coincident detection, one can then con-
strain the propagation speed of gravitational radiation
relative to the speed of light by measuring the time delay
between photon or neutrino arrivals relative to the gravi-
tational wave arrival [35]. The mapping between times of
arrival and propagation speed requires knowledge of the
distance to the source, which would here be provided by
the gravitational wave measurement. Even though the
latter is not expected to be accurately determined, one
can still place stringent constraint on the gravitational
wave propagation speed. Since Lorentz-violating theo-
ries generally modify this speed, we find that a coincident
detection would allow us to constrain c+ and βKG 10 or-
ders of magnitude more stringently than current binary
pulsar bounds. Although no constraint can be placed on
the other coupling parameters of the theory (like c− in
Einstein-Æther theory and λKG in khronometric gravity),
such stringent constraints on c+ and βKG greatly restrict
the coupling parameter space.

The remainder of the paper deals with the details
of this calculation. Section II gives a brief review of
Einstein-Æther theory and khronometric gravity, includ-
ing the current bounds placed on the coupling parameters
through binary pulsar constraints. Section III constructs
the response function for a general modified gravity the-
ory. Sections IV and V construct the specific response
functions for Einstein-Æther theory and khronometric
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gravity, respectively. Section VI carries out a Fisher anal-
ysis and predicts the bounds that we could place on these
theories, given a gravitational wave detection consistent
with GR. Section VII calculates the bounds given co-
incident gravitational wave and electromagnetic signals.
Section VIII gives a brief summary and provides some
closing remarks.

Henceforth, we follow the conventions of [36] in
which Greek letters signify spacetime indices and Latin
letters represent purely spacial indices. We use the
diag(−1, 1, 1, 1) signature and geometric units in which
GN = 1 = c. Here, GN is the gravitational constant that
enters Newton’s third law in the weak-field.

II. REVIEW OF LORENTZ-VIOLATING
THEORIES

In this section, we review the basics of Lorentz-
violating gravity, focusing on Einstein-Æther theory [13]
and khronometric gravity [15]. We present only some
basic information, and defer any details to the excellent
reviews in [2, 5, 18, 19, 37]. We here mostly follow the
descriptions in [5].

A. The ABC of Einstein-Æther

Einstein-Æther theory violates Lorentz symmetry
gravitationally by introducing a vector field, Uµ, of ev-
erywhere unit magnitude, that provides a “preferred di-
rection” to gravitation. Up to quadratic terms in first
derivatives of the field, the most generic action with such
a field is [5]:

SÆ = − 1

16πGÆ

∫
d4x
√
−g(R+Mδσ

µν∇δUµ∇σUν)

+ Smat(ψ, gµν) , (1)

where Smat is the matter action, which depends on mat-
ter fields ψ that couple directly to the metric gµν . In the
gravitational action, GÆ is the bare gravitational con-
stant in Einstein-Æther theory, g is the determinant of
the metric, R is the Ricci scalar, and,

Mδσ
µν ≡ c1gδσgµν + c2δ

δ
µδ
σ
ν + c3δ

δ
νδ
σ
µ + c4U

δUσgµν , (2)

with δµν the Kronecker delta.
Einstein-Æther theory is an interesting model, as it is

the most general parity-preserving but Lorentz-violating
theory that includes up to (quadratic) first derivatives in
the vector field. Thus, a study of Einstein-Æther the-
ory can be extended, via an appropriate choice of map-
pings, to many other, perhaps more restrictive, Lorentz-
violating gravity theories. Lorentz symmetry has, in
some special cases, been shown to be a mechanism for
renormalization of gravity [38], which makes these theo-
ries particularly interesting to study.

The strength of any Einstein-Æther modifications to
GR depends on four coupling parameters c1, c2, c3 and
c4. For convenience, we define the following (by now
standard) combinations of these parameters:

c14 ≡ c1 + c4 , c123 ≡ c1 + c2 + c3 , (3)

c+ ≡ c1 + c3 , c− ≡ c1 − c3 . (4)

Other useful combinations of these parameters are

αppN,EA

1 = −8(c23 + c1c4)

2c1 − c+c−
, (5)

αppN,EA

2 =
αppN,EA

1

2
− (c1 + 2c3 − c4)(2c1 + 3c2 + c3 + c4)

(2− c14)c123
,

(6)

which control the magnitude of weak-field, preferred-
frame effects in the parametrized post-Newtonian (ppN)
formalism [1]. These quantities can be inverted to express
the cn’s as functions of αppN,EA

1,2 and c+,−, but the resulting
expressions are long and unilluminating, so we will not
present them explicitly here. Any linearly independent
set of 4 of these quantities is enough to span the coupling
parameter space of Einstein-Æther theory, but in this pa-
per we will work with the set (αppN,EA

1 , αppN,EA

2 , c+, c−).
Einstein-Æther theory passes all tests performed, pro-

vided its coupling parameters are small enough. Some of
the most strict constraints come from Solar System ob-
servations and restrict the sizes of αppN,EA

1,2 [1, 37]. This,

together with binary pulsar constraints [4, 5], force

|αppN,EA

1 | . 10−4 , |αppN,EA

2 | . 10−7 , (7)

c+ . 10−2 , c− . 10−3 . (8)

Writing the cn’s as functions of these quantities and sat-
urating the bounds from the equations above, one finds

c1 . 10−2 , c2 . 100 (9)

c3 . 10−2 , c4 . 10−2 . (10)

Many of the modifications to GR induced in Einstein-
Æther theory depend on the sensitivities of the bodies
in question [19]. The sensitivity s is a measure of the
gravitational binding energy of a given body. In the weak
field limit, these sensitivities reduce to [5, 19],

sEA = −
(
αppN,EA

1 − 2

3
αppN,EA

2

)
C∗
2
, (11)

where C∗ is the compactness of the star. For the purposes
of this paper, we use the numerically calculated sensitiv-
ities of [5], which are valid for strongly self-gravitating
objects.

The conservative motion of massive objects is modified
in Einstein-Æther theory from the GR prediction [19], as
we will see explicitly in Sec. IV. The dominant effect is
that the constant G that enters Kepler’s third law in a
binary system is not the same as the constant GN that
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enters Newton’s third law in a Cavendish-type measure-
ment, which in turn is different from the bare constant
GEA that enters the Einstein-Æther action [5, 19]. These
constants are related, by

GEA = GN (1− s1)(1− s2) , G =
2GN

2− c14
, (12)

where si are the sensitivities. Since, by convention, we
choose units in which GN = 1, saturating the current
bounds on the ci’s,using the weak-field approximation
from Eq.(11) for s1, s2 and noting that C∗ < 1/2, we see
that GEA − 1 ≤ 10−2 and G − 1 ≤ 10−4 for NSs.

Finally, in Einstein-Æther theory, the metric perturba-
tion has five propagating degrees of freedom: two tensor
modes, two vector modes, and one scalar mode [18]. The
propagation of the scalar and vector modes is responsible
for dipole energy and angular momentum loss in binary
systems. The propagation speeds of the scalar, vector
and tensor modes in this theory is [39]

wEA

0 =

[
(2− c14c123)

(2 + 3c2 + c+)(1− c+)c14

]1/2

, (13)

wEA

1 =

[
2c1 − c+c−

2(1− c+)c14

]1/2

, (14)

wEA

2 =

(
1

1− c+

)1/2

, (15)

respectively. Note that the tensor propagation speed
is different from the speed of light by a factor of (1 −
c+)−1/2, since we also work in units in which c = 1.
Note also that in order to avoid gravitational Cherenkov
radiation and to enforce energy positivity, wEA

0 , wEA
1 and

wEA
2 must all be greater than or equal to one (see [3] and

references therein).

B. The ABC of Khronometric Gravity

Khronometric gravity is another Lorentz-violating the-
ory, very similar to Einstein-Æther theory, except that in
the former the Lorentz-violating vector field is required
to be orthogonal to hypersurfaces of a preferred time, de-
fined through a foliation scalar T (the “khronon”). This
orthogonality condition reduces the parameter space of
the theory, which now only depends on three coupling
parameters (λKG, βKG, αKG). The theory is then formally
defined through the action

SKG =
1− βKG

16πGÆ

∫
d3x dT N

√
h

(
KijK

ij − 1 + λKG

1− βKG

K2

+
1

1− βKG

(3)R+
αKG

1− βKG

aia
i

)
+ Smat(ψ, gµν) ,

(16)

where again Smat is the matter action, while h is the
determinant of the induced metric hµν on the hypersur-

faces, (3)R is the Ricci scalar associated with this metric,

Kij is the extrinsic curvature, and ai = ∂iN is the ac-
celeration of the lapse N , which is simply the preferred
time component of the Æther co-vector field.

Khronometric gravity is interesting because it can be
shown to be the low-energy limit of Horava gravity [17].
The latter has been proposed as a quantum gravity model
that is power-counting renormalizable [38, 40]. In this
paper, we focus only on the version of Horava gravity
introduced in [15, 16], because here Minkowski spacetime
is a ground-state and it reduces exactly to khronometric
gravity at low energies. Einstein-Æther theory reduces
to khronometric gravity in the limit as c− → ∞ (while
keeping all other parameters finite) and with the mapping
λKG = c2, βKG = c+ and αKG = c14 [41].

A useful combination of the coupling parameters of
khronometric gravity is

αppN,KG

1 = 4
αKG − 2βKG

βKG − 1
, (17)

αppN,KG

2 =
αKG − 2βKG

(βKG − 1)(λKG + βKG)(αKG − 2)

× [−β2
KG + βKG(αKG − 3) + αKG

+ λKG(−1− 3βKG + 2αKG)] , (18)

which, as before, controls the magnitude of weak-field,
preferred-frame effects in the ppN formalism [1]. These
quantities can be inverted to express any two in the
set (λKG, βKG, αKG) as functions of αppN,KG

1,2 . As in the
Einstein-Æther case, any linearly independent set of 3 of
these quantities is enough to span the coupling parame-
ter space of khronometric gravity. In this paper, we will
work with the set (αppN,KG

1 , λKG, βKG), and we note that
αKG = αppN,KG

1 (βKG−1)/4+2βKG. Also note that αppN,KG

1,2

both vanish when αKG = 2βKG.
Khronometric gravity also passes all tests performed,

provided its coupling parameters are small enough. Solar
System [1, 37], cosmological [6, 20] and binary pulsar
observations [5] require that

|αppN,KG

1 | . 10−4 , βKG . 10−2 , λKG . 10−1 . (19)

Saturating current constraints, this implies αKG . 10−2.
Conservative orbital motion is modified in khronomet-

ric gravity in a similar way as in Einstein-Æther theory.
In particular, the gravitational constant GN that enters
into Cavendish-type measurements of Newton’s third law
is different from the bare constant GEA that enters the
khronometric gravity action and the constant G that en-
ters Kepler’s third law in binary systems. We will here
express all such constants in terms of GN and then choose
units via GN = 1.

As in Einstein-Æther theory, dissipation during orbital
motion is controlled by the evolution of all propagating
degrees of freedom. The additional constraint of hyper-
surface orthogonality eliminates the vector modes, leav-
ing only the scalar and tensor modes. The scalar mode
is responsible for dipole energy and angular momentum
loss. The propagation speeds for the scalar and tensor
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modes are

wKG

0 =

[
(αKG − 2)(βKG + λKG)

αKG(βKG − 1)(2 + βKG + 3λKG)

]1/2

, (20)

wKG

2 =

(
1

1− βKG

)1/2

, (21)

respectively. Again, by stability considerations these
speeds must be greater than or equal to one [42].

III. RESPONSE FUNCTIONS IN MODIFIED
GRAVITY THEORIES

In this section, we review how to construct the Fourier
transform of the response of an interferometer to a grav-
itational wave in generic modified gravity theories. We
present this material for completeness and refer the in-
terested reader to [1, 32, 43–45] and references therein
for a more thorough coverage.

In a generic modified gravity theory, the metric pertur-
bation can possess up to 6 independent degrees of free-
dom: 2 tensor modes (spin-2), 2 vector modes (spin-1)
and 2 scalar modes (spin-0). Given such a generic metric
perturbation, the time-domain response function is (see
e.g. [44])

h(t) = F+h+ + F×h× + Fsehse + Fsnhsn + Fbhb + Flhl .
(22)

where (F+, F×, Fse, Fsn, Fb, Fl) are beam pattern func-
tions that can for example be found in [44].

For gravitational waves emitted during the quasi-
circular inspiral of compact objects, this response can
be written as a sum over harmonics of the orbital phase
Φ(t):

h(t) =
∑
`

A`(t)
(
ei`Φ(t) + e−i`Φ(t)

)
, (23)

where A`(t) are some time-dependent amplitude co-
efficients that must be found by solving the modi-
fied field equations in the far-away, wave-zone. For
any `th harmonic, one generically has that d

dt lnA` �
d
dt

(
ei`Φ(t) + e−i`Φ(t)

)
in the inspiral phase, where the or-

bital velocities are small. Moreover, for quasi-circular,
non-spinning compact objects, the ` = 2 harmonic is
dominant.

The evolution of the orbital phase is related to the bi-
nary’s separation through the relativistic version of Ke-
pler’s third law. While not generically true, in Einstein-
Æther theory and in khronometric gravity, Kepler’s third
law remains the familiar P 2

b /r
3
12 = 4π2/Gm to leading-

order in a v12 � 1 expansion [19], where Pb is the orbital
period, r12 is the orbital separation, v12 is the magnitude
of the relative orbital velocity vector, m = m1 + m2 is
the total mass of the binary and G is a two-body gravita-
tional constant. Recall that G is corrected from GN via

Eq. (12). Thus, we can re-write the modified, relativistic
version of Kepler’s third law to 1PN order in the more
convenient form

r12 = GM η−1/5 u−2
[
1 +

(
rGR

12,1PN + rMG

12,1PN

)
u2 +O(c−3)

]
,

(24)

where u ≡ (2πGMF )
1/3

= O(c−1) is a reduced (di-
mensionless) frequency, F is the orbital frequency, M =
m η3/5 is the chirp mass, η = µ/m is the symmetric mass
ratio and µ = m1m2/m is the reduced mass. The terms
rGR
12,1PN and rMG

12,1PN are the 1PN corrections to Kepler’s
law in GR and in Lorentz-violating gravity respectively.

Once the time-domain response has been found, one
can obtain its frequency representation through its
Fourier transform, defined here as follows:

h̃(f) =
∑
`

∫ +∞

−∞
A`(t)

(
e2πift+i`Φ(t) + e2πift−i`Φ(t)

)
dt .

(25)

This generalized Fourier integral can be evaluated
through the SPA, which uses the fact that the argument
of the exponential varies much more rapidly than the am-
plitude, except in a small region in time-frequency that
extremizes the phase [32]. The integral will thus be dom-
inated by contributions around the stationary point t0,
defined via 2πif− i`Φ̇(t0) = 0. The first term in Eq. (25)
can be neglected by the Riemann-Lebesgue theorem [32],
and the frequency-domain response in the SPA is simply

h̃(f) =
∑
`

A` e−iΨ` , (26)

where we have defined

A` ≡
A`(t0)√
`Ḟ (t0)

, Ψ` ≡
F (t0)∫

ν(F ′) dF ′ +
π

4
, (27)

F (t) = Φ̇(t)/(2π) is the orbital frequency, overhead dots
stand for time differentiation, and the integrand

ν(F ) ≡ 2π

(
`

F

Ḟ (F )
− f

Ḟ (F )

)
. (28)

See for example [43] for more details.
Clearly, in order to compute the frequency-domain re-

sponse function in the SPA, we must first find the rate of
change of the orbital frequency: Ḟ . We can do this via
the chain rule

Ḟ =
dF

dEb

dEb
dt

, (29)

where Eb is the binary’s binding energy. Assuming a
modified gravity theory that is semi-conservative [1], a
balance law must then exist to relate the amount of en-
ergy the binary system loses per unit time, Ėb, to the
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amount of energy carried away by all propagating de-
grees of freedom L, i.e. Ėb = −L.

Now, in order to proceed with the calculation, we will
need the binding energy, E and the rate of change of the
binding energy, Ėb. Expanding in powers of v12/c, we
can write these quantities as

Ėb = ĖGR

0PN

[
ĖMG

−1PNv
−2 + 1 + ĖMG

0PN +O(c−2)
]
, (30)

Eb = EGR

0PN

[
1 + (EGR

1PN + EMG

1PN) v2 +O(c−4)
]
, (31)

where EGR
0PN and ĖGR

0PN are the expected values in pure

GR at 0PN order, ĖMG
−1PN is a modified gravity correction

induced by dipole radiation, and ĖMG
0PN is a correction

to quadrupole radiation and a 1PN correction to dipole
radiation. Similarly, EMG

1PN is a modified gravity correction
to the binding energy at 1PN order. We will examine
how all of these terms specifically affect the dynamics of
the system in Lorentz-violating gravity theories in the
following section.

Let us now assume that the modified theory of gravity
is a small deformation from GR, i.e. that we can expand
all functions as the GR expectation plus a small defor-
mation. Let us further assume that the deformation de-
pends on certain coupling parameters continuously, such
that in the limit as these coupling parameters vanish, the
deformation also vanishes. With this at hand and using
the modified and relativistic version of Kepler’s law, we
can then always expand Ėb and Eb as

Ėb(u) = ĖGR

b (u)
[
1 + δĖb

(u)
]
, (32)

Eb(u) = EGR

b (u) [1 + δEb
(u)] , (33)

where ĖGR

b (u) ≡ −(32/5)u10[1 + O(c−2)] and EGR

b (u) ≡
−(1/2)Mu2[1+O(c−2)] are the GR prediction to as high
a PN order as one wishes to keep (see e.g. [33]), while
δĖb

(u) and δEb
(u) are small deformations. Putting these

two equations together, we then find

Ḟ (u) = ḞGR(u) [1 + δḞ (u)] , (34)

ν(u) = νGR(u) [1 + δν(u)] , (35)

where ḞGR(u) ≡ 48/(5π)u11/M2[1 + O(c−2)] and
νGR(u) = (5π2/24)M2u−11(F` − f)[1 + O(c−2)] are the
GR predictions, and again δḞ (u) and δν(u) are small de-
formations. In separating the GR prediction from its
deformation, one must be careful to account for the de-
formation that is generated due to correction to Kepler’s
law [Eq. (24)], since G 6= GN in general.

For future convenience, let us introduce the
parametrized post-Einsteinian (ppE) framework [45].
This is a scheme for modeling many different modified
gravity theories, in close analogy to the ppN framework.
This parametrization relies on the fact that, while in the-
ory the set of possible modifications to GR is uncount-
ably infinite, we wish to focus on those that are (i) well-
motivated from fundamental physics, (ii) pass all weak-
field, Solar System tests and (iii) lead to non-negligible

effects in the non-linear and dynamical regime, e.g. dur-
ing the late inspiral and merger of binary systems. The
ppE framework is able to reproduce gravitational wave
predictions for all known, well-motivated modified grav-
ity theories that can be treated as small deformations
from the GR prediction.

The simplest ppE waveform model for the quasi-
circular inspiral of compact objects is [45]

h̃ppE(f) =

∞∑
`=1

A(`)
ppE(f) eiΨ

(`)
ppE(f) , (36)

with the `-harmonic, ppE phase and amplitude [45]

A(`)
ppE(f) = A(`)

GR,PN(f)

[
1 + u

appE
`

∞∑
k=0

αppE,ku
k
`

]
, (37)

Ψ
(`)
ppE(f) = Ψ

(`)
GR,PN(f) + u

bppE
`

∞∑
k=0

βppE,ku
k
` , (38)

and where A(`)
GR,PN(f) and Ψ

(`)
GR,PN(f) are the `-harmonic

of the GR amplitude and phase prediction in the PN
approximation for an inspiral waveform, (bppE, appE) are
leading-order, ppE exponent parameters, (αppE,0, βppE,0)
are leading-order, ppE amplitude parameters, and
(αppE,k≥1, βppE,≥1) are higher PN order, ppE amplitude
parameters. Note that for non-spinning and quasi-
circular inspirals, ` = 2 is the dominant harmonic in GR,
but this need not be the case in modified gravity theories.
Of course, GR waveforms are obtained when all ppE am-
plitude parameters αppE,k and βppE,k are simultaneously
zero.

An interesting simplification that is usually made in
the literature is that of the restricted PN approximation.
This approximation requires that we keep only the lead-
ing PN order terms in the amplitude, but all available PN
corrections to the phase (see e.g. [46]). When the ` = 2
harmonic is dominant, one then has the fully-restricted
PPE waveform as

h̃fr,ppE(f) = A(2)
ppE,Newt(f) eiΨ

(2)
ppE(f) , (39)

where A(2)
ppE,Newt(f) is given by Eq. (37) with ` = 2 and

keeping only the k = 0 term in the sum, while Ψ
(2)
ppE is

given by Eq. (38) with ` = 2 and keeping as many PN
terms as possible. More complicated ppE models have
been proposed that incorporate the merger and ringdown
phases, but in this paper we will focus solely on the in-
spiral part. A further discussion of the ppE framework
can be found in [44, 45, 47], while data analysis imple-
mentations have been worked out in [31, 48–54].

IV. RESPONSE FUNCTIONS IN LORENTZ
VIOLATING GRAVITY: EINSTEIN-ÆTHER

THEORY

In this section, we construct the time-domain and
frequency-domain representations of the response func-
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tion in Einstein-Æther theory. We use heavily the generic
analysis presented in Sec. III and assume the coupling
parameters (αppN,EA

1 , αppN,EA

2 , c+, c−) are all smaller than
unity, as required by current constraints. Given the work
of [4, 5], this also implies that the sensitivities si � 1 and,
for NS binaries in particular, (s1 − s2)� 1.

A. Time Domain Response

In Einstein-Æther theory, the metric perturbation has
only five propagating degrees of freedom: two tensor
modes, two vector modes, and one scalar mode [18].
These degrees of freedom are encoded in the metric per-
turbation, which can be written in harmonic coordinates
and in an appropriate gauge as [19]

hEA

ij = φEA

ij + TTij(FEA) + φEA

,ij , (40)

hEA

0i = γEA

i , (41)

hEA

00 =
1

c14
FEA , (42)

with the gauge condition φEA
ij,j = φEA

ii = γEA
i,i = 0. Here

TTij is the transverse-traceless operator, and, to leading
PN order [19]

φijEA = 4GEA

µ

r

(
vi12v

j
12 −GEA

m

r12
ni12n

j
12

)
, (43)

FEA = −8GEA

µ

r

(sEA
1 − sEA

2 )

wEA
0 (c14 − 2)

niv
i
12 , (44)

γiEA = 4GEA

µ

r

c+(sEA
1 − sEA

2 )

2c1 − c−c+

(
njv

j
12n

i + vi12

)
. (45)

φEA = −1 + c2
c123

FEA , (46)

where ri12 is the relative position vector, ni12 is its unit
vector, r is the distance from the center of mass to the
observer, ni is its unit vector, and the relative orbital
velocity of the binary is vi12. Recall that the quantities
sEA

1 and sEA
2 are the sensitivities of the two stars.

Using this along with [44], the polarizations are

hEA

b = 4 GEA

(s1 − s2)

wEA
0 (c14 − 2)

[
1

c+
+

(c2 + 1)

c123

]
(47)

× sin ι η1/5 M
r
u cos(Φ) ,

hEA

` = −8 GEA(s1 − s2)

[
2 +

c123 + c+(c2 + 1)

wEA
0 (c14 − 2)c+c123

]
(48)

× sin ι η1/5 M
r
u cos(Φ) ,

hEA

sn = 4 GEA

c+(s1 − s2)

c+c− − 2c1
η1/5 M

r
u sin(Φ) , (49)

hEA

se = 4 GEA

c+(s1 − s2)

c+c− − 2c1
cos ι η1/5 M

r
u cos(Φ) , (50)

hEA

+ = 2 GEA(1 + cos2 ι) η1/5 M
r
u2 cos(2Φ) , (51)

hEA

× = 4GEA cos ι η1/5 M
r
u2 sin(2Φ) , (52)

to leading PN order, where ι is the inclination angle and
recall Φ is the orbital phase. Notice that the amplitude
of non-GR terms is O(v12) larger than the amplitude
of GR terms. This is a common feature of vector and
scalar modes in modified gravity theories [44]. Note also
that hEA

b and hEA

l are functions only of cos Φ (the first-
harmonic of the orbital phase), and that they have the
same exact time-dependence, so that their ratio is actu-
ally time-independent.

The response function in the time-domain can then be
written as

hEA(t) = AEA

2

M
r
u2
(
e−2iΦ+iΘ + e2iΦ−iΘ) (53)

+AEA

1 ᾱEA
M
r
η1/5u

(
e−iΦ + e+iΦ

)
,

where Θ = tan−1[2F× cos ι/F+(1+cos2 ι)], and to leading
PN order,

AEA

2 = GEA

[
F 2

+(1 + cos2 ι)2 + 4F 2
× cos2 ι

]1/2
, (54)

AEA

1 = 2GEA(s1 − s2) , (55)

ᾱEA ≡
[

4c+
2c1 − c+c−

F` −
c2 + 1

c123(c14 − 2)wEA
0

× (Fb + 2F`) +
1

(c14 − 2)c+wEA
0

(Fb − 2F`)

]
sin ι

+
c+

2c1 − c+c−
[iFsn + cos ιFse] . (56)

Note that the term in the first line of Eq. (53), propor-
tional to the second harmonic of the orbital phase, is pre-
cisely that expected in GR in the limit GEA → 1 [44]. On
the other hand, the term in the second line of Eq. (53),
proportional to the first harmonic of the orbital phase,
goes to zero in the GR limit because then the sensitivi-
ties go to zero. Finally, note that the ` = 2 amplitude is
of O(c−1) smaller than the ` = 1 term, but the latter is
multiplied by a function of the coupling parameters, so
it actually is parametrically smaller.

B. Frequency Domain Response

Let us begin with the calculation of the Fourier phase.
As discussed in Sec. III, this quantity in the SPA is con-
trolled by the rate of change of the orbital frequency,
which in turn depends on the rate of change of the bind-
ing energy. Using Eq. (32), we write the correction to the
rate of change of the gravitational binding energy as [5]

δEA

Ėb
=

7

4
η2/5ĖEA

−1PNu
−2 + ĖEA

0PN , (57)

where ĖEA
−1PN and ĖEA

0PN are functions of the ci’s of
Einstein-Æther theory that we determine next.



9

For the systems examined here, i.e. NS binaries with
C∗ < 1/2, in the small coupling limit, the sensitivities can
be shown to be small [5]. In the regions examined in this
paper, the sensitivities are generally less than O(10−4)
each, so that (s1 − s2)2 / 10−8, making this a small
parameter indeed. As such we will ignore terms pro-
portional to powers of (s1 − s2)n for n > 2. Then, for
Einstein-Æther theory, we find that

ĖEA

−1PN ≡ β̃EA

−1PN =
5

84
G(s1 − s2)2 (c14 − 2)(wEA

0 )3 − (wEA
1 )3

c14(wEA
0 )3(wEA

1 )3
,

(58)

ĖEA

0PN ≡ β̃EA

0PN = G
(

1− c14

2

)( 1

wEA
2

+
2c14c

2
+

(2c1 − c−c+)2wEA
1

+
3c14(ZEA − 1)2

2wEA
0 (2− c14)

+ SA2 + S2A3

)
− 1 ,

(59)

where S ≡ (s1m2 + s2m1)/m, while A2 and A3 are func-
tions of the coupling parameters, given explicitly in [5],
and

ZEA =
(αppN

1 − 2αppN

2 )(1− c+)

3(2c+ − c14)
. (60)

In Sec. VI, it will become clear why we have redefined
ĖEA
−1,0PN as β̃EA

−1,0PN.
The binding energy, Eb, was also presented explicitly

in [5], and it is not modified to leading PN order from the
GR result. The 1PN modification to the binding energy
has not yet been calculated and it would depend not only
on sA but also on its derivative with respect to the scalar
field, s′A [19]. The latter is a function of sA but also of
the second derivative of the binary’s masses with respect
to the scalar field, which has not yet been calculated.

Our ignorance of the 1PN corrections to the binding
energy, however, should not affect the validity of the re-
sults presented here. These corrections will enter our cal-
culation proportional to both u2×(s1−s2)2. For systems
where the difference in sensitivities is very small, such as
NS binaries, these terms will be strictly sub-dominant
relative to other 1PN terms that enter through the rate
of change of the binding energy, in our small-coupling ex-
pansion. For example, the S2A3 term is much larger than
terms proportional to (s1− s2)2u2, since S2 � (s1− s2)2

for systems with similar sensitivities. For this reason, we
will here ignore rMG

12,1PN and δEb
in Eqs. (24) and (33), but

such modifications can easily be included in the future,
when s′A is calculated.

Combining all of this, we can now compute the Fourier
response function in the SPA from Eq. (26). Using
Eqs. (34) and (28), the correction to the frequency evo-
lution is

δEA

Ḟ
=

7

4
η2/5β̃EA

−1PNu
−2 + β̃EA

0PN . (61)

while ν(F ) is

δEA

ν =

(
− 5

48
η2/5β̃EA

−1PNu
−2 + β̃EA

0PN

)
(F`− f) . (62)

With this, the SPA Fourier phase is

ΨEA

` = 2πftc + Φc −
π

4
− 3`

256
u−5
`

[
1 +O(c−2)

]
− 3`

256
u−5
`

[
β̃EA

−1PNη
2/5u−2

` + β̃EA

0PN +O(c−2)
]
, (63)

where (tc, φc) are constant time and phase offsets (some-
times called the time and phase of coalescence) and where

we have defined u` ≡ (2πGMf/`)
1/3

. Notice that u` 6= u,
where the former is defined in terms of the gravitational
wave frequency f , while the latter depends on the orbital
frequency F .

We can now make several observations on the impor-
tant result presented in Eq. (63). First, the first line in
this equation is the GR prediction for the SPA phase,
while the second line is the Einstein-Æther correction.
Notice that the latter depends on the quantities β̃EA

−1,0PN,
which are functions of the coupling parameters defined
precisely so that Eq. (63) takes the simple form presented
above. Second, the gravitational wave phase reduces to
the GR prediction as β̃EA

−1,0PN → 0. This implies that a
gravitational wave detection consistent with GR would
allow us to constrain the particular combination of cou-
pling parameters in β̃EA

−1,0PN. Third, the GR phase was

truncated to leading order with O(c−2) remainders to
simplify the presentation. One can easily include as many
higher PN order terms to the GR phase as one wishes,
for example using [46]. The Einstein-Æther correction
to the SPA phase was truncated at O(c−4) relative to its

leading-order term, but it is also proportional to β̃EA
−1,0PN,

and thus, parametrically smaller than GR terms of the
same PN order.

Similarly, we can compute the amplitude of the Fourier
response in the SPA: and

AEA

1 = −
(

5π

48

)1/2

AEA

1 ᾱEA
M2

r12
η1/5u

−9/2
1 , (64)

AEA

2 =

(
5π

96

)1/2

AEA

2

M2

r12
u
−7/2
2 . (65)

Notice again that AEA
1 vanishes and AEA

2 reduces to the
GR prediction as the coupling parameters go to zero.
Note also that the amplitude of the ` = 1 harmonic, AEA

1

is larger than that of the ` = 2 harmonic by a factor of
O(v/c), but parametrically smaller due to its dependence
on ᾱEA.

Let us now quickly review which terms have been ac-
counted for and which are left as remainders. Recall, to
-1PN order, our expression is complete. However, to 0PN
order, we expand in powers of (s1−s2)2. Thus these final
expressions we have obtained are valid only for systems
where the sensitivity difference is small. Thus, the cal-
culation would have to be redone from Eq. (53) if, for
example one considers mixed binaries and the individ-
ual sensitivities are large. This, however, would require
computation of the derivative of the sensitivities, which
is currently unknown.
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For convenience, we can also rewrite the Fourier trans-
form as in Eq. (22):

h̃(f)EA

l = sin ι

(
5π

48

)1/2

GEAα
EA

l

M2

r12
η1/5u

−9/2
1 eiΨ1 ,

(66)

h̃(f)EA

b = sin ι

(
5π

48

)1/2

GEAα
EA

b

M2

r12
η1/5u

−9/2
1 eiΨ1 ,

(67)

h̃(f)EA

se = cos ι

(
5π

48

)1/2

GEAα
EA

v

M2

r12
η1/5u

−9/2
1 eiΨ1 ,

(68)

h̃(f)EA

sn =

(
5π

48

)1/2

GEAα
EA

v

M2

r12
η1/5u

−9/2
1 ei(Ψ1+π/2) ,

(69)

h̃EA

+ (f) = (1 + cos2 ι)

(
5π

96

)1/2

GEA

M2

r12
u
−7/2
2 eiΨ2 ,

(70)

h̃EA

× (f) = 2 cos(ι)

(
5π

96

)1/2

GEA

M2

r12
u
−7/2
2 ei(Ψ2+π/2) .

(71)

where

αEA

v ≡ 2GEA(s1 − s2)
c+

2c1 − c+c−
, (72)

αEA

b ≡ 2GEA(s1 − s2)
1

(c14 − 2)wEA
0

[
1

c+
− c2 + 1

c123

]
,

(73)

αEA

l ≡ −4GEA(s1 − s2)
1

(c14 − 2)wEA
0

[
1

c+
+
c2 + 1

c123

]
+ 4αEA

v . (74)

Comparing the Einstein-Æther Fourier phase and am-
plitude to the ppE Fourier amplitude and phase in
Eqs. (37) and (38), we find the mapping to a fully-
restricted ppE waveform:

αppE,0 = GEA − 1 , appE = 0 , (75)

βppE,0 = − 3

128
β̃EA

−1PNη
2/5 , bppE = −7 , (76)

βppE,1 = 0 , βppE,2 = − 3

128
β̃EA

0PN . (77)

Note that αppE,0 � 1 and βppE,0,1 � 1 as expected. Note
also that the leading PN order correction to the ppE
phase enters at −1PN order, as expected.

V. RESPONSE FUNCTIONS IN LORENTZ
VIOLATING GRAVITY: KHRONOMETRIC

GRAVITY

This section parallels Sec. IV, but we focus here on
khronometric gravity instead of Einstein-Æther theory.

As before, we rely heavily on Sec. III for the construc-
tion of the Fourier transform of the gravitational wave
response in the SPA.

A. Time Domain Response

In khronometric gravity, the two vector degrees of free-
dom vanish and the metric perturbation has now only
four polarizations, two less than in Einstein-Æther the-
ory due to the hypersurface-orthogonality constraint. In
harmonic coordinates and in a suitable gauge, the metric
has components

hKG

ij = φKG

ij + TTij(FKG) + φKG

,ij , (78)

hKG

00 =
1

αKG

FKG , (79)

with the gauge condition φKG
ij,j = φKG

ii = γKG
i,i = 0. From

Eq. (119) in [5, 55], to leading PN order we have

φijKG = 4GÆ
µ

r

(
vi12v

j
12 −GÆ

m

r12
ni12n

j
12

)
, (80)

FKG = −8GÆ
µ

r

(sKG
1 − sKG

2 )

wKG
0 (αKG − 2)

niv
i
12 , (81)

φKG = − 1 + λKG

βKG + λKG

FKG , (82)

where (µ,m, r, ni, r12, v
i
12, n

i
12) are defined as in Einstein-

Æther theory (see definitions below Eq. (46)), while sKG
1

and sKG
2 are sensitivities in khronometric gravity, which

have been computed numerically in [4, 5] for NSs.
Following the convention of [44], we find that the grav-

itational wave polarization modes are

hKG

b = 4 GÆ
(sKG

1 − sKG
2 )

αKG − 2

√
(βKG − 1)(2 + βKG + 3λKG)

(αKG − 2)(βKG + λKG)

×
[

1√
αKG

+

√
αKG(λKG + 1)

(βKG + λKG)

]
sin ι η1/5 M

r
u cos Φ ,

(83)

hKG

l = −8 GÆ
(sKG

1 − sKG
2 )

αKG − 2

√
(βKG − 1)(2 + βKG + 3λKG)

(αKG − 2)(βKG + λKG)

×
[

1√
αKG

−
√
αKG(λKG + 1)

(βKG + λKG)

]
sin ι η1/5 M

r
u cos Φ ,

hKG

+ = 2 GÆ (1 + cos2 ι)
M
r
η1/5 u2 cos(2Φ) , (84)

hKG

× = 4 GÆ cos ι
M
r
η1/5 u2 sin(2Φ) , (85)

to leading PN order. Note that the vector modes hsn

and hse are now absent [55]. Note also that the hb and hl
modes are linearly dependent, i.e. their ratio is a function
only of the coupling parameters of the theory.

The time-domain response function in khronometric
gravity is then

h(t)KG = AKG

2

M
r
u
(
e−2iΦ+iΘ + e+2iΦ−iΘ) (86)
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+AKG

1 ᾱKG
M
r
η1/5u2(e−iΦ + eiΦ) ,

where recall that Θ = tan−1[2F× cos ι/F+(1 + cos2 ι)],
and interestingly

AKG

2 = AEA

2 , (87)

AKG

1 = 4 GÆ (sKG

1 − sKG

2 ) , (88)

ᾱKG =

[√
αKG(λKG + 1)

βKG + λKG
(Fb + 2Fl)

+
1√
αKG

(Fb − 2Fl)

]
. (89)

Comparing this to Eqs. (54)–(56) in Einstein-Æther the-
ory, we see that A1,2 are very similar, but ᾱ is quite dif-
ferent, primarily due to the absence of the vector modes
in khronometric gravity. Note also that AKG

2 is precisely
what one would find in pure GR in the limit GÆ → 1,
while AKG

1 goes to zero as the khronometric coupling
parameters go to zero, because then sKG

i vanishes fast
enough. In Sec. VI, it will become clear why we have
defined the amplitude of the ` = 1 mode of the response
function through the product of AKG

1 ᾱKG.

B. Frequency Domain Response

We now transform the time-domain response function
in khronometric gravity to the frequency domain, again
using the SPA. As in the Einstein-Æther case, we follow
the same reasoning presented in Sec. III.

The rate of change of the binding energy in khrono-
metric gravity is given by Eq. (30) with

δKG

Ėb
=

7

4
η2/5u−2ĖKG

−1PN + ĖKG

0PN .

Taking (s1−s2) again as a small parameter, we have that

ĖKG

−1PN ≡ β̃KG

−1PN =
5

84
G(s1 − s2)2

√
αKG

×
[

(βKG − 1)(2 + βKG + 3λKG)

(αKG − 2)(βKG + λKG)

]3/2

, (90)

ĖKG

0PN ≡ β̃KG

0PN = G
(

1− 2

βKG

)
×
(

1

wKG
2

+
3αKG(ZKG − 1)2

2wKG
0 (2− αKG)

+ SA2 + S2A3

)
− 1 ,

(91)

where A2 and A3 are found in Eqs. (121) and (122) of [5],
and

ZKG =
(αppN

1 − 2αppN

2 )(1− βKG)

3(2βKG − αKG)
. (92)

As in the Einstein-Æther case, the binding energy is not
modified to leading, Newtonian order beyond the simple
replacement of gravitational constants. To 1PN order,

there will khronometric modifications, but these require
knowledge of the derivative of the sensitivities, which are
not available. Refer to the discussion below Eq. (60) for
more details.

Given the above, the rate of change of the orbital fre-
quency in khronometric gravity is given by Eq. (34) with

δKG

Ḟ
=

7

4
η2/5β̃KG

−1PNu
−2 + β̃KG

0PN . (93)

From these expressions, we can compute the correction
to the integrand of the phase ν(F ) to find

δν =

(
− 5

48
η2/5β̃KG

−1PNu
−2 + β̃KG

0PN

)
(F`− f) . (94)

The Fourier response is then again given by Eq. (26),
where the Fourier phase in khronometric gravity is

ΨKG

` = 2πftc + Φc −
π

4
− 3`

256
u−5
`

[
1 +O(c−2)

]
− 3`

256
u−5
`

[
β̃KG

−1PNη
2/5u−2

` + β̃KG

0PN +O(c−2)
]
, (95)

and the Fourier amplitudes are

AKG

1 =

(
5π

48

)1/2

AKG

1 ᾱKG
M2

r12
η1/5u

−9/2
1 , (96)

AKG

2 =

(
5π

96

)1/2

AKG

2

M2

r12
u
−7/2
2 . (97)

As before, the GR prediction for the SPA phase is in the
first line of Eq. (95), and it can be taken to as high PN
order as one wishes.

Note that the Fourier response in khronometric grav-
ity is identical to that in Einstein-Æther theory, up to
how the ᾱ−1,0PN and β̃−1,0PN quantities depend on the
coupling parameters of the theory. With this in mind it
is obvious that khronometric gravity too can be mapped
easily to the ppE framework, via the same mapping given
in Eq. (75), but of course replacing the EA labels with the
corresponding KG ones. Similarly, we can decompose the
khronometric response function in the same way as in
Einstein-Æther theory through Eq. (22). We find we ob-
tain the precise form of Eqs. (66)-(71), but with

αKG

v = 0 , (98)

αKG

b = 4GÆ(s1 − s2)

[√
αKG(λKG + 1)

βKG + λKG
+

1√
αKG

]
, (99)

αKG

l = 8GÆ(s1 − s2)

[√
αKG(λKG + 1)

βKG + λKG
− 1√

αKG

]
.

(100)

VI. PROJECTED CONSTRAINTS ON
LORENTZ VIOLATING GRAVITY WITH ONLY

GRAVITATIONAL WAVES

Let us assume that a gravitational wave has been ob-
served by a given detector and that the observation is
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consistent with GR. Let us then try to estimate the ac-
curacy to which a non-GR deviation can be claimed to be
consistent with zero, given statistical uncertainties. We
will do so here through a Fisher analysis following the
presentation in [34, 56].

A. Basics of a Fisher Analysis

Let us first define some data analysis quantities that
will be necessary for a Fisher analysis. Given a waveform
template, h, the SNR is defined via

ρ(h) = (h|h)1/2 , (101)

where we have introduced the inner-product between two
templates h1 and h2 via [34]

(h1|h2) ≡ 2

∞∫
0

h̃∗1(f)h̃2(f) + h̃1(f)h̃∗2(f)

Sn(f)
df . (102)

Here, the superscript star stands for complex conjuga-
tion, while Sn(f) is a detector’s noise spectrum. We will
here use the zero-detuned, high-power spectral noise of
aLIGO [57], as well as the projected noise spectrum of
LIGOIII [25], ET [26, 57] and DECIGO [58, 59]. In prac-
tice, the lower limit of integration will be set to 10Hz for
aLIGO and LIGOIII, 1Hz for ET, and 10−3Hz for DE-
CIGO, while the upper limit of integration will be set
to 2FISCO, where FISCO ≡ 6−3/2/(2πm) is the orbital
frequency for a particle in a Schwarzschild background
at the innermost stable circular orbit. Note that this
is a reasonable value to terminate integration at, as the
peak sensitivity of the detectors we are examining here is
at frequencies of about 100Hz, and by construction the
dominant gravitational wave frequency associated with
FISCO is between 1100Hz and 2200Hz depending on the
masses.

We use two modified gravity waveform models in our
analysis. The first one is a fully-restricted model, in
which we keep up to 3.5PN order terms in the GR
phase [46], up to 1 PN order terms in the non-GR phase
relative to the leading-order correction, and model the
Fourier amplitude with only the leading-order PN ex-
pression in GR, namely

h̃fr,MG(f) = A f−7/6 eiΨ
MG
2 , (103)

with ΨMG
2 = ΨMG

`=2 and

ΨMG

` = δΨMG

` +
3`

256u5
`

7∑
n=1

un` (pPN

n + lPN

n ln(u`)) . (104)

Here, pPN
n and lPN

n are known PN coefficients in GR (see
e.g. [46]), while

δΨMG

` = − 3`

256
u−5
`

(
β̃MG

−1PNη
2/5u−2

` + β̃MG

0PN

)
, (105)

with β̃MG = β̃EA or β̃KG depending on whether we are
studying Einstein-Æther theory or khronometric gravity.

The second modified gravity model we will employ is a
semi-restricted one, in which we keep up to 3.5PN order
terms in the GR phase, up to 1 PN order terms in the
non-GR phase, and we model the Fourier amplitude as
a linear superposition of both GR and non-GR terms to
leading PN order, namely

h̃sr,MG(f) = Af−7/6eiΨ
MG
2

−
(

288

1225

)1/2

A ᾱMG η
1/5f−3/2eiΨ

MG
1 , (106)

where ΨMG

` was given in Eq. (105), while ᾱMG = ᾱEA

or ᾱKG depending on whether we are studying Einstein-
Æther theory or khronometric gravity [see Eqs. (56)
and (89), respectively]. Note that the amplitude of the
` = 1 mode depends on the coupling parameters of the
modified theory only through ᾱMG, which is why intro-
duced correction ᾱEA or ᾱKG in Secs. IV and V.

Both models assume an angle-averaged response func-
tion with parameters

Θa
fr = (tc, φc,A,M, η, β̃−1PN,MG, β̃0PN,MG) , (107)

for the fully-restricted model and

Θa
sr = (tc, φc,A,M, η, ᾱMG, β̃−1PN,MG, β̃0PN,MG) , (108)

for the semi-restricted one. In this parameter list, recall
that (tc, φc) are the time and phase of coalescence, M is
the chirp mass, and η is the symmetric mass ratio. The
quantity A = (245π/6144)1/2M5/6/r is an overall ampli-
tude constant that depends on the chirp mass, distance
from the source to the detector and is angle averaged over
all sky angles.

Given a gravitational wave detection, the accuracy to
which template parameters can be estimated (in Gaus-
sian and stationary noise) can be approximated via

∆Θa
RMS =

√
Σaa , (109)

where Σab = (Γab)
−1 is the inverse of the Fisher matrix,

Γab ≡
(
∂h

∂Θa

∣∣∣∣ ∂h∂Θb

)
, (110)

If the detection is consistent with GR (i.e. evaluating

the Fisher matrix with β̃−1PN,MG, β̃0PN,MG and ᾱMG all set
to zero.), then ∆βMG and ∆ᾱMG lead to projected con-
straints on the coupling parameters of Lorentz-violating
gravity. In the next subsections, we will estimate these
constraints.

B. Projected Constraints on Einstein-Æther
Theory and Khronometric Gravity

Using the method described above, we can calculate
projected constraints on the modified theory template
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m1 m2 ∆tc (ms) ∆Φc
∆M
M

∆η
η

∆ᾱMG ∆β̃−1PN,MG ∆β̃0PN,MG

1.4M� 1.4M� 0.680 6.22 0.225 2.71× 10−2 2.71 5.32× 10−5 0.389
aLIGO 2.0M� 1.0M� 0.651 7.18 0.234 1.85× 10−2 2.77 5.71× 10−5 0.403

1.8M� 1.2M� 0.666 6.79 0.243 2.08× 10−2 2.73 6.11× 10−5 0.419
1.4M� 1.5M� 0.678 6.41 0.237 2.30× 10−2 2.71 5.80× 10−5 0.408

1.4M� 1.4M� 0.179 1.59 5.56× 10−2 7.07× 10−3 0.913 1.17× 10−5 9.55× 10−2

LIGOIII 2.0M� 1.0M� 0.168 1.78 5.67× 10−2 5.27× 10−3 0.935 1.24× 10−5 9.76× 10−2

1.8M� 1.2M� 0.172 1.70 5.92× 10−2 6.03× 10−3 0.921 1.33× 10−5 0.102
1.4M� 1.5M� 0.177 1.62 5.80× 10−2 6.77× 10−3 0.913 1.27× 10−5 9.97× 10−2

1.4M� 1.4M� 3.96× 10−2 0.123 1.91× 10−3 1.20× 10−3 0.196 8.60× 10−8 3.23× 10−3

ET 2.0M� 1.0M� 3.94× 10−2 0.125 1.88× 10−3 1.04× 10−3 0.201 9.01× 10−8 3.19× 10−3

1.8M� 1.2M� 3.95× 10−2 0.123 2.00× 10−3 1.14× 10−3 0.198 9.71× 10−8 3.38× 10−3

1.4M� 1.5M� 3.96× 10−2 0.123 1.98× 10−3 1.19× 10−3 0.196 9.32× 10−8 3.35× 10−3

1.4M� 1.4M� 1.80 0.295 9.50× 10−5 9.25× 10−4 5.42× 10−2 2.92× 10−10 1.59× 10−4

DECIGO 2.0M� 1.0M� 1.80 0.295 8.15× 10−5 8.68× 10−4 5.55× 10−2 3.05× 10−10 1.37× 10−4

1.8M� 1.2M� 1.78 0.289 9.24× 10−5 8.98× 10−4 5.45× 10−2 3.07× 10−10 1.55× 10−4

1.4M� 1.5M� 1.79 0.290 9.66× 10−5 9.19× 10−4 5.41× 10−2 3.00× 10−10 1.62× 10−4

TABLE I. Parameter estimation accuracy using aLIGO (top), LIGOIII (top center), ET (lower center), and DECIGO (bottom).
The simulated signals for all three detectors lie at a luminosity distance of approximately 270Mpc, which corresponds SNR’s
of ρaLIGO = 10, ρLIGOIII = 30, ρET = 130, ρDECIGO = 140. Notice that in general, ET is able to estimate parameters to an
order of magnitude greater accuracy than aLIGO for a source at the same distance. In particular, note that ET can constrain
both β̃−1PN,MG and β̃0PN,MG more than two orders of magnitude more stringently than aLIGO, while LIGOIII constraints
generally lie between those obtained with the other two detectors. Note also that the bounds calculated on ∆ᾱ can be obtained
only in the semi-restricted model. Finally, note that these are the constraints produced in both Einstein-Æther theory and in
khronometric theory, since the waveforms are functionally the same with differences only in how β̃MG is related to the coupling
parameters of the theory.

parameters (β̃−1PN,MG, β̃0PN,MG), as well as the accuracy
to which other system parameters can be measured. This
is shown in Table I, where we have assumed gravitational
wave observations consistent with GR from the quasi-
circular inspiral of non-spinning NSs with second- and
third-generation detectors. We place the binaries at a
fixed luminosity distance (DL = 270 Mpc) and average
over all sky positions, leading to SNRs of 10, 30, 130
and 140 with aLIGO, LIGOIII, ET and DECIGO re-
spectively. The results reported in Table I scale with the
reciprocal of the SNR.

Let us concentrate on the columns of Table I that
present the projected bounds on the modified gravity
theory template parameters. Note that the projected
bounds on ᾱMG can only be calculated using the semi-
restricted model, since the fully restricted one does not
have ᾱMG as a template parameter. Note also that the
columns that give bounds on β̃−1PN,MG and β̃0PN,MG give
exactly the same constraints irrespective of using the full
or the restricted model, since the additional term in the
semi-restricted model scales with ᾱMG. Obviously, the
constraints on the modified gravity template parameters
improve with SNR, but observe that they are almost in-
sensitive to the NS masses.

Are the projected gravitational wave constraints on
(β̃−1PN,MG, β̃0PN,MG, ᾱMG) presented in Table I competi-
tive with current binary pulsar constraints on the cou-
pling parameters? Saturating the latter and using the
weak-field limit approximation for the sensitivities leads

to (β̃bin.pul
−1PN,MG

, β̃bin.pul
0PN,MG

, ᾱbin.pul
MG ) . (10−4, 10−3, 10−2).

Note that ᾱbin.pul
MG is smaller than the projected con-

straints quoted in Table I, while (β̃bin.pul
−1PN,MG

, β̃bin.pul
0PN,MG

) are
comparable or even less strict than those in Table I.
This suggests that gravitational waves will not be able
to produce competitive bounds on the coupling parame-
ters through modifications to the amplitude (ᾱMG), but
may be able to compete via measurements of the phase
modifications β̃0PN,MG and β̃−1PN,MG. Henceforth, we con-
centrate on the latter only.

Given the results in Table I, we can now map the
constraints on (β̃−1PN,MG, β̃0PN,MG) to constraints on the
coupling parameters of Einstein-Æther and khronometric
gravity via

β̃−1PN,EA(c+, c−) ≤ β̃−1PN,MG , (111)

β̃0PN,EA(c+, c−) ≤ β̃0PN,MG , (112)

and

β̃−1PN,KG(λKG, βKG) ≤ β̃−1PN,MG , (113)

β̃0PN,KG(λKG, βKG) ≤ β̃0PN,MG . (114)

The right-hand sides are given in Table I, which have a
weak dependence on the NS masses. To be conservative,
we here pick component masses (m1,m2) = (1.2, 1.8)M�,
but we have checked that picking other masses, i.e. other
rows in Table I, leads to negligible effects on the coupling
parameter constraints. The left-hand sides are given in
Eqs. (58)–(59) and (90)–(91), which depend on all cou-
pling parameters and on the NS sensitivities. We set
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αppN

1,2 = 0 in both theories, since (c+, c−, λKG, βKG) �
αppN

1,2 , given current constraints on the latter. Once the
sensitivities are written in terms of the coupling param-
eters, each inequality produces a distinct contour in the
(c+, c−) and (λKG, βKG) space, and the intersection of
these contours serves as a projected bound on the cou-
pling parameters.

An important caveat is here in order: the mapping
of constraints on β̃−1PN,MG to constraints on the cou-
pling parameters of the theory is impossible for systems
of exactly equal masses. This is because β̃−1PN,EA and

β̃−1PN,KG depend on (s1 − s2)2 [see Eqs. (58) and (90)].
For any given value of the coupling parameters, if the
NS masses are the same, then the sensitivities are also
the same (assuming the same equation of state for each
NS component) and the effect of dipole radiation disap-
pears. Henceforth, we will consider only unequal mass
NS binaries.

Before we can map projected constraints on
(β̃−1PN,MG, β̃0PN,MG) to projected constraints on the
coupling parameters, we must express the sensitivities
as functions of the latter. This has been done in [5]
through a fitting function of the form

sEA,KG

A =

2∑
`,m,n=0

cEA,KG

`,m,n κ
`
1κ
m
2 C

n
∗,A , (115)

where C∗,A is the stellar compactness of the Ath star
(the ratio of the individual stars mass to its radius),
(κ1, κ2) = (c+, c−) and (κ1, κ2) = (βKG, λKG) in Einstein-
Æther and khronometric gravity respectively, and where
the cEA,KG

`,m,n constants are given in Table I of [5]. The fit

found in [5], however, is not very useful in this paper.
This is because the former is valid only in a very spe-
cific region of coupling parameters, which was relevant
in [5] but is not in this paper. Moreover, the fit does
not lead to zero sensitivities in the limit as (c+, c−)→ 0,
because Ref. [5] chose αppN

1,2 by saturating Solar System
constraints.

We thus create new fitting functions for sA by re-
running the code developed in [5]. We will require that
the sensitivities go to zero in the limit as the coupling pa-
rameters go to zero, by setting αppN

1,2 = 0. We will further

restrict attention to the region in (c+, c−) and (βKG, λKG)
that is relevant to this paper, as shown e.g. in Fig. 1. Fi-
nally, as we will be interested only in a discrete set of
compactnesses, we create separate fits for each compact-
ness used. This allows us to use lower-order polynomials
in the fitting function and have the same fitting accuracy.

As described above, the sensitivities depend on the
compactness of the star, which, given a fixed mass, de-
pends only on its radius, and thus, on its equation of
state. As the NS equation of state is still unknown, we
will consider three representative systems with difference
radii, and thus compactnesses:

1. System 1: C∗,1 = 0.12 and C∗,2 = 0.13.

2. System 2: C∗,1 = 0.08 and C∗,2 = 0.15.

3. System 3: C∗,1 = 0.07 and C∗,2 = 0.14.

The different compactnesses act as a proxy for the vari-
ability of the equation of state, and together with the
fitting functions, completely determine the sensitivities
as functions of the coupling parameters only.

Using these representative systems, we are able
to project bounds on (c+, c−) and (λKG, βKG) using
Eqs. (111) and (114). Figure 2 presents these bounds for
Einstein-Æther theory. In all four panels, the dark (pur-
ple) shaded region marks the allowed region of coupling
parameter space, as calculated in [4, 5] from binary pul-
sar observations. As these are currently the most strict
constraints on the coupling parameters of Einstein-Æther
theory, any bounds which can be placed which exclude
parts of this region increase our ability to constrain the
theory. All four panels also contain a stability region,
shown through a light (cyan) shading and delimited by
a thin (black) stability line. This region corresponds to
values of c+ and c− for which the speeds of propagation
of the modes equal or exceed the speed of light, thus sat-
isfying the stability criterion discussed in earlier sections.

The top-left (top-right) panel depicts the bounds
placed using aLIGO (LIGOIII). The solid red curve
marks the outer edge of the region allowed using con-
straints on β̃0PN,EA; all points to the left of the curve

cannot be ruled out by our analysis. Recall that β̃0PN,EA

depends on the sensitivities very weakly, only through
SA2 + S2A3 [see e.g. Eq. (59)], which allows us to use a
single curve for all three representative systems. The dot-
ted red curve marks the line in coupling parameter space
where β̃0PN,EA = 0. Thus, if the coupling parameters of
Einstein-Æther theory lied on this line, one would never
be able to constrain the theory with observations of the
0PN correction to the gravitational wave phase. The pro-
jected bounds derived from constraints on β̃0PN,EA form

a “track” surrounding the β̃0PN,EA = 0 line. However, for
aLIGO and LIGOIII, the leftmost bound on the track
lies outside of the region allowed by stability and is thus
not shown explicitly in the figure. Observe that the solid
curve in the LIGOIII case is farther to the left than in the
aLIGO case, but neither of these bounds is competitive
with current binary pulsar constraints.

Observe also that neither of these top panels presents
bounds on (c+, c−) from constraints on β̃−1PN,EA. This is

because β̃−1PN,EA depends strongly on (s1 − s2)2, which
in turn is proportional to the difference in compactness of
the two stars. Thus, for two equal mass (and equal com-

pactness) stars, β̃−1PN,EA = 0. We consider here only NS
binaries with unequal masses, and thus, compactnesses
for which β̃−1PN,EA is small but non-zero. However, for
both aLIGO and LIGOIII, the error in recovery of the
chirp mass is quite large because this parameter enters
at 0PN order and is thus degenerate with β̃0PN,EA. For
instance, aLIGO has a 20% error in chirp mass recovery
for the systems examined in Table I. For any of the three
cases examined here, we would be unable to ensure from
a detection that the masses of the two stars were not ac-
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FIG. 2. Projected constraints on the (c+, c−) space, given a gravitational wave detection by aLIGO, LIGOIII, DECIGO and
ET (clockwise from top left) consistent with GR. We inject a simulated signal produced by the quasi-circular inspiral of non-
spinning NSs at a luminosity distance of 270 Mpc. The contours are produced by finding the values of (c+, c−) that satisfy
Eqs. (111) and (112). Thus, the region below the contours are the allowed regions for c+ and c−. One cannot place constraints
from β̄−1PN,EA with aLIGO or LIGOIII because the measurement errors on the masses are too large due to degeneracy with

β̃0PN,EA. The dark shaded (purple) region is the allowed region from binary pulsar observations, as calculated in [4, 5]. Note
that the gravitational wave projected constraints are less strict by orders of magnitude than those calculated with binary pulsar
observations.

tually equal. The most conservative bounds then come
from the case where C∗,1 = C∗,2, in which case s1−s2 = 0
and therefore all values of the coupling parameters sat-
isfy the bounds on β̃−1PN,EA and constraints come only

from bounds on β̃0PN,EA.
The bottom left (right) panel presents the constraints

on Einstein-Æther theory projected for ET (DECIGO).
The region between the two solid red curves marks the
space allowed after placing constraints on β̃0PN,EA. Ob-
serve that both for ET and DECIGO, the gravitational
wave constraints can improve upon constraints from bi-
nary pulsar analysis alone. Unlike in the aLIGO or
LIGOIII case, we can now also place constraints on
Einstein-Æther theory from bounds on β−1PN,EA. This
is because ET and DECIGO would be able to extract
the component masses to sufficient accuracy that the
equal mass case could be excluded to high confidence

for the systems investigated, thus ruling out the possibil-
ity that β−1PN,EA could vanish due to s1 = s2. Bounds
extracted from β−1PN,EA are mostly-horizontal lines (dot-
ted, dashed, dash-dot-dotted in the figure) for the three
representative systems. As expected, the strongest con-
straints come from systems with the most dissimilar com-
pactnesses (the most unequal mass systems). The over-
lap of the constraint regions produced by bounds on
β0PN,EA and β−1PN,EA lead to the combined constraints
on Einstein-Æther theory. In other words, given a gravi-
tational wave detection with ET or DECIGO, one would
be able to constrain the coupling parameters of Einstein-
Æther theory to be in the overlap of the β0PN,EA region
and the β−1PN,EA of the system detected. As an example,
this is shown as a checkered (blue) region. Observe that
these combined constraints can notably improve upon bi-
nary pulsar bounds.
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FIG. 3. Projected constraints on βKG and λKG via a gravitational wave detection by 3rd generation detectors ET (Left) and
DECIGO (Right), consistent with GR. The contours are produced by finding the values of βKG and λKG such that the bounds

on β̃0PN,KG and β̃−1PN,KG are met exactly. Thus, the region above (or bounded by) the contours are the allowed regions for βKG

and λKG. The dark (purple) shaded region is the allowed region from binary pulsar observations, as calculated in [4, 5], the light
(cyan) shaded region is that allowed by stability, and the mid (orange) shaded region is the allowed region from cosmological
constraints. Note that the constraints producible via second generation gravitational wave detection are entirely outside the
region allowed by requiring stability and cosmological constraints.

Not surprisingly, our findings are similar in khronomet-
ric theory (Fig. 3). Due to our choice of notation and the
way khronometric gravity effects correct GR, the results
of our Fisher analysis are identical to those produced on
Einstein-Æther theory, except for the way β̃−1PN,MG and

β̃0PN,MG depend on λKG and βKG. Due to the combination
of stability and cosmological constraints, we find that the
constraints produced on khronometric theory are only
competitive when using ET and DECIGO; the aLIGO
and LIGOIII bounds allow the entire region which is not
ruled out by stability and cosmological observations.

Figure 3 shows the projected bounds on the coupling
parameters in khronometric gravity given a gravitational
wave detection consistent with GR. In both panels, the
dark (purple) shaded region depicts the allowed values
of the coupling parameters after constraints from binary
pulsar observations [4, 5] are imposed. The light (cyan)
section marks the region where stability constraints are
satisfied, and the medium (orange) region is the section
where both stability and cosmological constraints are sat-
isfied. As in the Einstein-Æther case, the bounds on the
coupling constants obtained with an aLIGO or a LIGOIII
detection are less strict than stability constraints, and are
we will not report them here.

The left (right) panel depicts the projected constraints
assuming a detection with ET (DECIGO). We present

both the bounds given by β̃0PN,KG (solid red curve) as

well as β̃−1PN,KG for the three representative systems de-

scribed earlier. Since β̃0PN,KG again depends weakly on
compactness, we only present a single curve for each de-
tector. Note that the contours produced by ET approach
but do not surpass current binary pulsar bounds, while
a detection with DECIGO could narrow the allowed re-

gion of coupling parameter space for khronometric grav-
ity. The overlap of the constraints obtained with β̃0PN,KG

and β̃−1PN,KG form the combined projected bound, shown
here as a checkered, shaded region using system II.

VII. PROJECTED CONSTRAINTS ON
LORENTZ VIOLATING GRAVITY WITH

COINCIDENT GRAVITATIONAL WAVES AND
ELECTROMAGNETIC OBSERVATIONS

Although using only gravitational wave observations
from NS binaries with second-generation detectors will
be insufficient to place bounds on the coupling parame-
ters of Lorentz violating gravity theories that are stronger
than current constraints, we can gain much additional
information if a coincident electromagnetic counterpart
is observed. Such an event could occur if, for example,
binary NS mergers are progenitors to short gamma ray
bursts, and one were to occur with such a geometry that
Earth lied in the line of sight. Similarly, one could place
constraints given a supernovae that resulted in a neu-
trino burst, provided it occurred close enough to Earth
for detection. While such coincident events are far from
likely, a single coincidence would be enough to place very
interesting constraints.

A. Constraints from Times of Arrival

Given a gravitational wave observation with an associ-
ated electromagnetic counterpart, one could use the time
of arrivals to infer the propagation speed of photons and
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gravitons, given the distance to the source [35]. In the
case of a short gamma-ray burst, the latter can be es-
timated from the gravitational wave observation itself
during the binary NS inspiral. In the case of a super-
nova, the distance could be estimated electromagneti-
cally, provided the explosion occurs close enough for grav-
itational wave detection (i.e. roughly within our galaxy).
Of course, the statistical error in the determination of
the distance can be non-negligible, but even folding this
error into account, we will see that constraints on the
coupling parameters from coincident detections can be
very powerful.

A slight complication is that there is an intrinsic time
delay between photon or neutrino emission and gravita-
tional wave emission [60]. The quantum-mechanical pro-
cesses that produce neutrino and photon emission may
precede or follow the core bounce or the NS merger, while
the gravitational wave emission is centered tightly around
this event [35]. However, these delays have been very well
constrained [60–62]. Section II of [35] derives an explicit
relation between the intrinsic time delay of emission and
the bounds on the difference of the propagating speeds
of gravitational waves and photons. Below we will uti-
lize the results of this analysis to constrain the effects of
Lorentz violating gravity.

Keeping this modeling caveat in mind, let us define the
speed of gravitons via

w2 = c(1− δg) , (116)

where δG is a function of the coupling constants of the
theory only and, in pure GR, δg = 0. Given a binary NS
merger at a luminosity distance of approximately 200Mpc
with a GR signal and an electromagnetic counterpart, a
conservative bound on δg was estimated to be [35]

|δg| / 10−14 . (117)

The approximately less or equal sign is included because
there are slight differences in the bounds when one uses
different models for the photon and neutrino time delays.
We use here the most conservative estimates presented in
[35].

Given such a constraint on δg, we can then constrain
Lorentz violating gravity, because generically the propa-
gation speed of the tensor modes is modified in such the-
ories. In Einstein-Æther theory, the propagation speed
is given by wEA

2 /c = (1− c+)−1/2 [see Eq. (13)], while in
khronometric gravity it is given by wKG

2 /c = (1−βKG)−1/2

[see Eq. (21)], where we have reinserted the factors of c
for clarity. Then, from Eq. (117) we automatically obtain

c+ / 10−14 , βKG / 10−14 . (118)

These projected bounds are much more stringent than
any other constraint by over 10 orders of magnitude.

The bounds on c+ and βKG presented above, of course,
depend on our accuracy to constrain δg, which in turn
is limited by systematic errors induced by the intrinsic

time of emission of electromagnetic radiation [35]. Let
us assume the electromagnetic particle travel time Tem

and the graviton travel times Tg are roughly Tem,g ∼
(D/c)γem,g, where D is the distance to the source, mak-
ing D/c the light travel time from the source, while
γem,g = 1−vem,g/c. The time lag between their arrival is
then simply ∆T = (D/c)(γem − γg). Let us assume now
that we have measured no time lag, but our measure-
ment has a systematic uncertainty due to our intrinsic
ignorance for the time of emission of electromagnetic ra-
diation relative to the emission of gravitational radiation:
(∆T )m = 0 + ∆τint. Then, we can place the constraint

|γem − γg| <
c

D
∆τint (119)

on γg. How well we can constrain γg then depends on
γem and on ∆τint.
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FIG. 4. Projected constraints on c+ and βKG, assuming a co-
incident gravitational wave and electromagnetic observation.
The vertical (dashed) lines show conservative and typical es-
timates for the intrinsic uncertainty in the time of arrival of
electromagnetic radiation. The solid lines are the solutions to
Eq. (119) for c+ and βKG. The intersection of the solid and
dashed lines show the projected constraints.

Figure 4 presents these constraints assuming a photon
or neutrino detection that is coincident with a gravita-
tional wave detection. For Einstein-Æther theory and
khronometric gravity, we have γEA

g ∼ −c+/2 and γKG

G =

−βKG/2. In the neutrino case, we set γν = m2
νc

4/(2E2
ν),

with mν = 0.1 eV and Eν = 10 MeV, while in the photon
case, γγ = 0. We assume D = 100 kpc and 200 Mpc for
the neutrino (from a supernova) and the photon (from a
short gamma-ray burst) cases respectively, with measure-
ment errors much smaller than those incurred by ∆τint.
For the latter, we present conservative and “typical” es-
timates from [35] (vertical dashed lines in Fig. 4). The
solid lines in Fig. 4 are then the solution to Eq. (119) for
c+ and βKG. Thus, the intersection of the solid lines with
the vertical dashed lines gives the constraints that could
be placed on c+ and βKG.
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Although given a coincident electromagnetic and grav-
itational wave observation we can place stringent con-
straints on c+ and βKG, the lack of a coincident observa-
tion provides no information. The latter can be explained
by a vast set of reasons that have nothing to do with
GR modifications, such as large misalignment angles for
short gamma-ray bursts, the presence of dust between the
source and Earth, uncertainties in the sky location, etc.
Of course, if the speed of propagation of gravitational
waves was sufficiently different from c, one would also
lose the electromagnetic-gravitational association. How-
ever, one would associate the lack of coincidence with
astrophysical effects, rather than a modification to GR.

Given this, there is a vast range in coupling param-
eter space that one could not constrain at all with the
method described above. In practice, a time delay be-
tween electromagnetic and gravitational signals of more
than a few days would probably be enough to lose con-
fidence in any type of coincidence. One can then ask
how large would the coupling parameters of the theory
have to be for no coincident events (events with time
delays smaller than a few days) to ever occur. For
a source at 100Mpc, one finds that this occurs when
(c+, βKG) & 10−10 in Einstein-Æther theory or khrono-
metric gravity. From binary pulsar and gravitational
wave bounds, we can constrain these coupling parameters
to be / 10−2. Thus, one would not be able to constrain
Lorentz violating gravity for coupling parameters in the
range (10−10 . c+ / 10−2) and (10−10 . βKG / 10−2).

B. Recalculating Gravitational Wave Constraints
Given a Coincident Detection

Given a coincident detection, one can effectively set
c+ = 0 in Einstein-Æther theory and βKG = 0 in khrono-
metric gravity, and then study what constraints can be
placed on the other coupling parameters given additional,
non-coincident gravitational wave observations. We will
further set αppN

2 = 0, as this parameter has already been
constrained strongly to be αppN

2 / 10−7 from Solar Sys-
tem experiments and αppN

2 / 10−9 from isolated pulsar
observations [63].

Let us first focus on Einstein-Æther theory. When
c+ = 0, one finds c1 = c−/2 and c3 = −c−/2, and Eq. (6)
reduces to

αppN,EA

2 =
c14(2c14c2 + c14 − c2)

c2(2− c14)
. (120)

Notice that one can set αppN,EA

2 = 0 in two ways,
namely, (i) c2 = c14/(1 − 2c14) and (ii) c14 = 0. In
the first case, one can solve Eq. (5) for c4 and finds
c4 = −(αppN,EA

1 + 2c−)/4, which in turn leads to c2 =
−αppN,EA

1 /(2αppN,EA

1 + 4). Therefore, one is left with
(c−, α

ppN,EA

1 ) as two independent coupling parameters.
Alternatively, in the second case, one finds αppN,EA

1 = 0
and c4 = −c−/2, while c2 is undetermined. Therefore,
one is left with (c−, c2) as two independent parameters.

Let us first focus on the first parameter set, namely
taking (c−, α

ppN,EA

1 ) as our two independent parameters.
Before we can place any types of constraints, we must find
the sensitivities as a function of (αppN,EA

1 , c−). We calcu-
lated the latter numerically following the analysis in [5]
and found that as long as c+ � c−, then the sensitivities
depend only on αppN,EA

1 . In fact, we find that the sensitiv-
ities are extremely well approximated by the weak-field
expression of [19], namely Eq. (11). Taking the same
general expressions for the modifications to the dipolar
and quadrupolar radiation derived earlier in Sec. IV, but
now taking the limit c+ = 0 = αppN,EA

2 , we re-calculate
the new allowed regions in (c−, α

ppN,EA

1 ) space, given the
bounds produced in Sec. VI.

FIG. 5. Bounds on (αppN,EA

1 , c−), given a constraint on the
speed of gravity through a coincident gravitational wave-
electromagnetic observation. Note that in the region for c−
allowed by stability, the constraints on αppN,EA

1 are approx-
imately two orders of magnitude weaker than current Solar
System constraints (αppN,EA

1 < 10−4), and of comparable size
to the bounds on αppN,EA

1 found in [64]. For third generation
detectors, such as ET, the constraints become one order of
magnitude stricter than current Solar System constraints.

Figure 5 shows the bounds on c− and αppN,EA

1 we would
be able to place now. Notice that with these new bounds,
given a bound on c−, we can constrain αppN,EA

1 / O(c−).
On the other hand, in contrast to the previous cases, we
now are not able to place any strong bounds on c−, as the
constraint curves are nearly horizontal. As can be seen in
Fig. 1, the most strict bounds on c− as c+ becomes small
come from stability constraints. However, as αppN,EA

1 and
αppN,EA

2 cease to be negligible in comparison to c±, the
stability conditions are modified from what is shown in
Fig. 1, which is actually only valid when c± � α1,2.
These new stability curves can be found simply by solving
the inequalities w1 > 1 and w0 > 1 for αppN,EA

2 in terms
of c−.

Let us now consider the second choice of the param-
eter set, namely taking (c−, c2) as our two independent

parameters. When one sets c+ = 0 and expands β̃EA
−1PN

and β̃EA
0PN in Eqs. (58) and (59) around c14 = 0, one finds



19

that β̃EA
−1PN = O(c214) and β̃EA

0PN = O(c14). This means
that the Einstein-Æther corrections to the gravitational
waveform at -1PN and 0PN order vanish in the limit
c14 → 0 and one cannot place any constraints on the
theory from gravitational wave observations.

While in principle we could perform a similar calcula-
tion in khronometric theory, this would be fruitless be-
cause the most conservative bounds on λKG come from
the case in which αKG = 2βKG. Then, when we impose
the constraint βKG ≤ 10−14, we automatically also have
αKG . 10−14, and we are merely focussing on the far left
portion of the bounds already constructed. From Fig. 3,
this means that at most λKG ∈ (0, 0.1). Indeed, when we
perform this calculation, we find that these are exactly
the bounds produced.

C. Recalculating Binary Pulsar Constraints Given
a Coincident Detection

Given a coincident detection, we can also recalculate
binary pulsar constraints [5] under the condition c+ = 0
in Einstein-Æther theory and βKG = 0 in khronometric
gravity. The rate of change of the orbital period of such
a binary in Einstein-Æther theory is given by [5]

Ṗ

P
=

(
Ṗ

P

)
GR

A , (121)

where,

A ≡ 1 + β̃0PN,MG +
5

32

(
1− c14

2

)( Pb
2πm

)2/3

β̃−1PN,MG ,

(122)

where, clearly, in pure GR A = 1. We then translate ob-
served values for Ṗ /ṖGR, where ṖGR is the rate of change
of the orbital period predicted by GR, directly into an
allowed region for A.

Let us first consider the case where one uses
(c−, α

ppN,EA

1 ) as two independent parameters. Figure 6
shows the projected allowed regions in (c−, α

ppN,EA

1 ) given
the four separate binary pulsar observations PSR J1141-
6545 [65], PSRJ03848+0432 [66], PSR J0737-3039 [67],
and PSR J1738-0333 [68] found to be consistent with GR.
We see that the (αppN,EA

1 , c−) region allowed is not heav-
ily restricted. In particular, observe that αppN,EA

1 / 10−4,
a bound comparable with Solar System constraints, but
no additional bounds could be placed on c−. Of course,
these projected bounds on (αppN,EA

1 , c−), are possible only
through direct measurement of gravitational radiation
coincident with an electromagnetic signal.

Let us now consider the case where one uses (c−, c2) as
two independent parameters. As in the previous subsec-
tion, the Einstein-Æther corrections to the orbital de-
cay rate of a binary pulsar in Eq. (121) vanish when
c+ = 0 = c14. Therefore, once more, one cannot place
any constraints on the theory when one takes (c−, c2) as
the two independent parameters.

FIG. 6. In the figure above, we show the allowed regions in
parameter space for the coupling parameters c− and αppN

1 in
Einstein-Æther theory based on binary pulsar observations,
in the case of a restriction on the speed of gravity through
coincident gravitational wave/electromagnetic detection. For
our analysis, we used observational bounds on the values of
Ṗ /ṖGR to bound the magnitude of A. We chose a representa-
tive case, PSR J1141-6545 [65]. We also considered pulsars:
PSRJ03848+0432 [66], PSR J0737-3039 [67], and PSR J1738-
0333 [68], and found comparable results.

Once again, we do not calculate constraints for khrono-
metric theory in this case, as in the limit as βKG = 0 is
already shown in [5]. In summary, like before, the most
conservative constraints require αKG = 2βKG, which con-
strains λKG ≤ 0.1.

VIII. CONCLUSIONS

The observation of gravitational waves has great po-
tential as a way to test and constrain modified grav-
ity theories. One such modification is the violation of
Lorentz-symmetry in the gravitational sector. In this pa-
per, we studied whether gravitational waves could place
meaningful constraints on Lorentz-violating gravity by
considering two particular theories: Einstein-Æther the-
ory and khronometric gravity.

We first calculated waveform templates for the time-
domain and SPA frequency-domain response function,
assuming an impinging gravitational wave produced in
the late, quasi-inspiral of NS binaries. We found that
the modification to the waveform template can be easily
mapped to the ppE framework through a -1PN and a
0PN term in the waveform phase, relative to the leading-
order GR quadrupole term. We then performed a Fisher
analysis to determine how well Lorentz-violating gravity
could be constrained given a gravitational detection con-
sistent with GR. We found that second-generation detec-
tors, such as aLIGO, will not be able to place constraints
that are more stringent than current binary pulsar ones,
given a NS inspiral detection. Third-generation detec-
tors, such as LIGOIII, ET and DECIGO, could poten-
tially place more stringent constraints.
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We then examined the possibility of placing constraints
on Lorentz-violating gravity given a coincident gravita-
tional wave and electromagnetic observation, for example
from a short gamma ray burst or a supernova explosion.
A single coincident event would allow us to place an in-
credibly stringent constraint on the speed of gravity, rela-
tive to the speed of light. This translates into constraints
on the coupling parameters of Einstein-Æther theory and
khronometric gravity that are at least 10 orders of magni-
tude more strict than current binary pulsar constraints.

We found that the sensitivities are almost c− indepen-
dent when c+ is small, and possible future work could be
aimed at understanding such behavior better. Since Fos-
ter already showed that the sensitivities do not depend
on c− in the weak-field limit [19], one possible avenue is
to extend such an analysis to higher PN order and derive
PN corrections to the sensitivities. One may also try to
explain the c− insensitivity by considering the variation
of the action with respect to the velocity squared rela-
tive to the Æther field, and relate such a quantity to the
definition of the sensitivities [69].

Other possibilities for future work include reworking
the accuracy to which Lorentz-violating gravity can be
constrained with a Bayesian analysis that uses Markov-
Chain Monte-Carlo techniques. The Fisher results pre-
sented here can be interpreted as best-case, projected
constraints, as they are valid only for high SNR events,
assuming Gaussian and stationary noise. A more real-
istic model-selection study would probably lead to more
pessimistic constraints. One could do such an analysis for
coincident events, as isolated gravitational wave observa-
tions with second-generation detectors are not likely to

lead to interesting constraints on Lorentz-violating grav-
ity.

Another possibility for future work would be examin-
ing the gravitational wave signals produced by black hole
binaries or black hole-neutron star binaries. For NS bi-
naries, the −1PN dipole correction to the GW phase is
suppressed by the square of the difference of the sensi-
tivities, while the 0PN term is partially degenerate with
the chirp mass. For mixed binaries, however, the −1PN
dipole term should be dominant and may lead to much
more interesting constraints. However, for such an anal-
ysis one would have to first compute the sensitivities in
Lorentz-violating gravity for black holes, a calculation
that has not yet been carried out.
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