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The direct detection of gravitational waves with the next generation detectors, like Advanced
LIGO, provides the opportunity to measure deviations from the predictions of General Relativity.
One such departure would be the existence of alternative polarizations. To measure these, we study
a single detector measurement of a continuous gravitational wave from a triaxial pulsar source. We
develop methods to detect signals of any polarization content and distinguish between them in a
model independent way. We present LIGO S5 sensitivity estimates for 115 pulsars.

I. INTRODUCTION

Since its introduction in 1915, Einstein’s theory of
General Relativity (GR) has been confirmed by exper-
iment in every occasion [1]. However, GR has not yet
been tested with great precision on scales larger than the
solar system or for highly dynamical and strong gravita-
tional fields [2]. Those kinds of rapidly changing fields
give rise to gravitational waves (GWs)—self propagat-
ing stretching and squeezing of spacetime originating in
the acceleration of massive objects, like spinning neu-
tron stars with an asymmetry in their moment of inertia
(e.g., see [3, 4]).

Although GWs are yet to be directly observed, detec-
tors such as the Laser Interferometer Gravitational Wave
Observatory (LIGO) expect to do so in the coming years,
giving us a chance to probe GR on new grounds [5, 6].
Because GR does not present any adjustable parameters,
these tests have the potential to uncover new physics [1].
By the same token, LIGO data could also be used to test
alternative theories of gravity that disagree with GR on
the properties of GWs.

Furthermore, when looking for a weak signal in noisy
LIGO data, certain physical models are used to target
the search and are necessary to make any detection pos-
sible [2]. Because these are usually based on predictions
from GR, assuming an incorrect model could yield a weak
detection or no detection at all. Similarly, if GR is not
a correct description for highly dynamical gravity, check-
ing for patterns given by alternative models could result
in detection where no signal had been seen before.

There exist efforts to test GR by looking at the de-
viations of the parametrized post–Newtonian coefficients
extracted from the inspiral phase of compact binary co-
alescence events [7–9]. Besides this, deviations from GR
could be observed in generic GW properties such as po-
larization, wave propagation speed or parity violation
[1, 10, 11]. Tests of these properties have been proposed
which make use of GW burst search methods [12].
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In this paper, we present methods to search LIGO–like
detector data for continuous GW signals of any polariza-
tion mode, not just those allowed by GR. We also com-
pare the relative sensitivity of different model–dependent
and independent templates to certain kinds of signals.
Furthermore, we provide expected sensitivity curves for
GR and non–GR signals, obtained by means of blind
searches over LIGO noise (not actual upper limits).

Section II provides the background behind GW polar-
izations and continuous waves, while sections III and V
present search methods and the data analysis procedures
used to evaluate sensitivity for detection. Results and fi-
nal remarks are provided in sections V & VI respectively.

II. BACKGROUND

A. Polarizations

Just like electromagnetic waves, GWs can present dif-
ferent kinds of polarizations. Most generally, metric the-
ories of gravity could allow six possible modes: plus (+),
cross (×), vector x (x), vector y (y), breathing (b) and
longitudinal (l). Their effects on a free–falling ring of
particles are illustrated in fig. 1. Transverse GWs (+, ×
and b) change the distance between particles separated in
the plane perpendicular to the direction of propagation
(taken to be the z-axis). Vector GWs are also transverse;
but, because all particles in a plane perpendicular to the
direction of propagation are equally accelerated, their
relative separation is not changed. Nonetheless, parti-
cles farther from the source move at later times, hence
varying their position relative to points with both dif-
ferent x–y coordinates and different z distance. Finally,
longitudinal GWs change the distance between particles
separated along the direction of propagation.

Note that, because of their symmetries, the breathing
and longitudinal modes are degenerate for LIGO-like in-
terferometric detectors, so it is enough to just consider
one of them in the analysis. Also, this study assumes
wave frequency and speed remain constant across modes,
which restricts the detectable differences between polar-
izations to amplitude modulations.

In reality, however, GWs might only possess some of
those six components: different theories of gravity pre-
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FIG. 1: Illustration of the effect of different GW
polarizations on a ring of test particles. plus (+) and

cross (×) tensor modes (green); vector–x (x) and
vector–y (y) modes (red); breathing (b) and

longitudinal (l) scalar modes (black). In all of these
diagrams the wave propagates in the z–direction [1].

dict the existence of different polarizations. In fact, due
to their symmetries, + and × are associated with tensor
theories, x and y with vector theories, and b and l with
scalar theories. In terms of particle physics, this differ-
entiation is also linked to the predicted helicity of the
graviton: ±2, ±1 or 0, respectively. Consequently, GR
only allows + and ×, while scalar–tensor theories also
predict the presence of some extra b component whose
strength depends on the source [1]. Bolder theories might
predict the existence of vector or scalar modes only, while
still being in agreement with all other non–GW tests.

Four-Vector Gravity (G4v) is one such extreme exam-
ple [13]. This vector–based framework claims to repro-
duce all the predictions of GR, including weak–field tests
and total radiated power of GWs. However, this theory
differs widely from GR when it comes to gravitational
wave polarizations. Thus, one of the only ways to test
G4v would be to detect a GW signal composed of x and
y modes instead of + and ×.

B. Signal

Because of their persistence, continuous gravitational
waves (CGWs) provide the means to study GW polar-
izations without the need for multiple detectors. For the
same reason, continuous signals can be integrated over
long periods of time, thus improving the likelihood of
detection. Furthermore, these GWs are quasi–sinusoidal
and present well–defined frequencies. This allows us to
focus on the amplitude modulation, where the polariza-
tion information is contained.

CGWs are produced by localized sources with peri-
odic motion, such as binary systems or spinning neutron
stars [14]. Throughout this paper, we target known pul-

sars (e.g., the Crab pulsar) and assume an asymmetry
in their moment of inertia (rather than precession of the
spin axis or other possible, but less likely, mechanisms)
causes them to emit gravitational radiation. A source
of this type can generate GWs only at multiples of its
rotational frequency ν. In fact, it is expected that most
power be radiated at twice this value [15]. For that rea-
son, we take the GW frequency, νgw, to be 2ν. Moreover,
the frequency evolution of these pulsars is well–known
thanks to electromagnetic observations, mostly at radio
wavelengths but also in gamma-rays.

Simulation of a CGW from a triaxial neutron star is
straightforward. The general form of a such signal is:

h(t) =
∑
p

Ap(t;ψ|α, δ, λ, φ, γ, ξ) hp(t; ι, h0, φ0, ν, ν̇, ν̈),

(1)
where, for each polarization p, Ap is the detector response
(antenna pattern) and hp a sinusoidal waveform of fre-
quency νgw = 2ν. The detector parameters are: λ, lon-
gitude; φ, latitude; γ, angle of the detector x–arm mea-
sured from East; and ξ, the angle between arms. Values
for the LIGO Hanford Observatory (LHO), LIGO Liv-
ingston Observatory (LLO) and Virgo (VIR) detectors
are presented in table I. The source parameters are: ψ,
the signal polarization angle; ι, the inclination of the pul-
sar spin axis relative to the observer’s line-of-sight; h0,
an overall amplitude factor; φ0, a phase offset; and ν, the
rotational frequency, with ν̇, ν̈ its first and second deriva-
tives. Also, α is the right ascension and δ the declination
of the pulsar in celestial coordinates.

Note that the inclination angle ι is defined as is stan-
dard in astronomy, with ι = 0 and ι = π respectively
meaning that the angular momentum vector of the source
points towards and opposite to the observer. The signal
polarization angle ψ is related to the position angle of
the source, which is in turn defined to be the East angle
of the projection of the source’s spin axis onto the plane
of the sky.

Although there are hundreds of pulsars in the LIGO
band, in the majority of cases we lack accurate mea-
surements of their inclination and polarization angles.
The few exceptions, presented in table II, were obtained
through the study of the pulsar spin nebula [16]. This
process cannot determine the spin direction, only the ori-
entation of the spin axis. Consequently, even for the best
studied pulsars ψ and ι are only known modulo a reflec-
tion: we are unable to distinguish between ψ and −ψ
or between ι and π − ι). As will be discussed in section
III, our ignorance of ψ and ι must be taken into account
when searching for CGWs.

1. Frequency evolution

In eq. (1), hp(t) is a sinusoid carrying the frequency
modulation of the signal:

hp(t) = ap cos (φ(t) + φp + φgw0 ) (2)
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φ(t) = 4π

(
νtb +

1

2
ν̇t2b +

1

6
ν̈t3b

)
+ φem0 , (3)

where tb is the Solar System barycentric arrival time,
which is the local arrival time t modulated by the stan-
dard Rømer ∆R, Einstein ∆E and Shapiro ∆S delays
[19]:

tb = t+ ∆R + ∆E + ∆S . (4)

The leading factor of four in the r.h.s. of eq. (3) comes
from the substitution νgw = 2ν. For known pulsars, φem0
is the phase of the radio pulse, while φgw0 is the phase dif-
ference between electromagnetic and gravitational waves.
Both factors contribute to an overall phase offset of the
signal (φem0 + φgw0 ). This is of astrophysical significance
since it may provide insights about the relation between
EM & GW radiation and provide information about the
physical structure of the source.

The ap and φp coefficients in eq. (2) respectively encode
the relative amplitude and phase of each polarization.
These values are determined by the physical model. For
instance, GR predicts:

a+ = h0(1 + cos2 ι)/2 , φ+ = 0, (5)

a× = h0 cos ι , φ× = −π/2, (6)

while ax = ay = ab = 0. On the other hand, according
to G4v [13]:

ax = h0 sin ι , φx = −π/2, (7)

ay = h0 sin ι cos ι , φx = 0. (8)

while a+ = a× = ab = 0. In both cases, the overall
amplitude h0 can be characterized by [13, 15, 20]:

h0 =
4π2G

c4
Izzν

2

r
ε, (9)

where r is the distance to the source, Izz the pulsar’s
moment of inertia along the principal axis, ε = (Ixx −
Iyy)/Izz its equatorial ellipticity and, as before, ν is the
rotational frequency. Choosing some canonical values,

h0 ≈ 4.2× 10−26
Izz

1028 kg m2

[ ν

100 Hz

]2 1 kpc

r

ε

10−6
,

(10)

TABLE I: LIGO detectors [17][18]

LHO LLO VIR

Latitude (λ) 46.45◦ N 30.56◦ N 43.63◦ N

Longitude (φ) 119.41◦ W 90.77◦ W 10.5◦ E

Orientation (γ) 125.99◦ 198.0◦ 71.5◦

TABLE II: Axis polarization (ψ) and inclination (ι)
angles for known pulsars [16].

ψ (deg) ι (deg)

Crab 124.0 61.3

Vela 130.6 63.6

J1930+1852 91 147

J2229+6114 103 46

B1706−44 163.6 53.3

J2021+3651 45 79

ψ (deg) ι (deg)

J0205+6449 90.3 91.6

J0537−6910 131 92.8

B0540−69 144.1 92.9

J1124−5916 16 105

B1800−21 44 90

J1833−1034 45 85.4

it is easy to see that GWs from triaxial neutron stars
are expected to be relatively weak [21]. However, the
sensitivity to these waves grows with the observation time
because the signal can be integrated over long periods of
time [20].

As indicated in the introduction to this section, we
have assumed CGWs are caused by an asymmetry in the
moment of inertia of the pulsar. Other mechanisms, such
as precession of the spin axis, are expected to produce
waves of different strengths and with dominant compo-
nents at frequencies other than 2ν. Furthermore, these
effects vary between theories: for instance, in G4v, if
the asymmetry is not perpendicular to the rotation axis,
there can be a significant ν component as well as the
2ν component. In those cases, eqs. (2, 9) do not hold
(e.g., see [15] for precession models).

2. Amplitude modulation

At any given time, GW detectors are not equally sen-
sitive to all polarizations. The response of a detector
to a particular polarization p is encoded in a function
Ap(t) depending on the relative locations and orienta-
tions of the source and detector. As seen from eq. (1),
these functions provide the amplitude modulation of the
signal.

A GW is best described in an orthogonal coordinate
frame defined by wave vectors (wx, wy, wz), with wz =
wx×wy being the direction of propagation. Furthermore,
the orientation of this wave–frame is fixed by requiring
that the East angle between wy and the celestial North be
ψ. In this gauge, the different polarizations act through
six orthogonal basis strain tensors [22, 23]:

e+jk =

1 0 0

0 −1 0

0 0 0

, e×jk =

0 1 0

1 0 0

0 0 0

, (2,3)

exjk =

0 0 1

0 0 0

1 0 0

, eyjk =

0 0 0

0 0 1

0 1 0

, (4,5)



4

ebjk =

1 0 0

0 1 0

0 0 0

, eljk =
√

2

0 0 0

0 0 0

0 0 1

, (6,7)

with j, k indexing x, y and z components. These tensors
can be written in an equivalent, frame–independent form

e+ = wx ⊗wx −wy ⊗wy, (17)

e× = wx ⊗wy + wy ⊗wx, (18)

ex = wx ⊗wz + wz ⊗wx, (19)

ey = wy ⊗wz + wz ⊗wy, (20)

eb = wx ⊗wx + wy ⊗wy, (21)

el =
√

2 (wz ⊗wz) . (22)

If a detector is characterized by its unit arm–direction
vectors (dx and dy, with dz the detector zenith), its
differential–arm response Ap to a wave of polarization
p is:

Ap =
1

2
(dx ⊗ dx − dy ⊗ dy) : ep, (23)

where the colon indicates double contraction. As a result,
eqs. (2-13) imply:

A+ =
1

2

[
(wx · dx)2 − (wx · dy)2 − (wy · dx)2 + (wy · dy)2

]
,

(24)

A× = (wx · dx)(wy · dx)− (wx · dy)(wy · dy), (25)

Ax = (wx · dx)(wz · dx)− (wx · dy)(wz · dy), (26)

Ay = (wy · dx)(wz · dx)− (wy · dy)(wz · dy), (27)

Ab =
1

2

[
(wx · dx)2 − (wx · dy)2 + (wy · dx)2 − (wy · dy)2

]
,

(28)

Al =
1√
2

[
(wz · dx)2 − (wz · dy)2

]
. (29)

Accounting for the time dependence of the arm vectors
due to the rotation of the Earth, eqs. (24-29) can be
used to compute Ap(t) for any value of t. In fig. 2 we
plot these responses for the LIGO Hanford Observatory
(LHO) observing the Crab pulsar, over a sidereal day (the
pattern repeats itself every day). Note that the b and l

patterns are degenerate (Ab = −
√

2Al), which means
they are indistinguishable up to an overall constant.

Although the antenna patterns are ψ–dependent, a
change in this angle amounts to a rotation of A+ into
A× or of Ax into Ay, and vice–versa. If the orientation
of the source is changed such that the new polarization is
ψ′ = ψ + ∆ψ, where ψ is the original polarization angle
and ∆ψ ∈ [0, 2π], it is easy to check that the new antenna
patterns can be written [23]:

A′+ = A+ cos 2∆ψ +A× sin 2∆ψ, (30)

A′× = A× cos 2∆ψ −A+ sin 2∆ψ, (31)

A′x = Ax cos ∆ψ +Ay sin ∆ψ, (32)

A′y = Ay cos ∆ψ −Ax sin ∆ψ, (33)

A′b = Ab, (34)

A′l = Al, (35)

and the tensor, vector and scalar nature of each polar-
ization becomes evident from the ψ dependence.

III. METHOD

A. Data reduction

For some set of interferometric data, we would like to
detect CGW signals from a given source, regardless of
their polarization, and to reliably distinguish between the
different modes. Because detector response is the only
factor distinguishing CGW polarizations, all the relevant
information is encoded in the amplitude modulation of
the signal. As a result, it suffices to consider a narrow
frequency band around the GW frequency and the data
can be considerably reduced following the complex het-
erodyne method developed in [24] and [20].

A signal of the form of eq. (1) can be re–written as

h(t) = Λ(t)eiφ(t) + Λ∗(t)e−iφ(t), (36)

Λ(t) =
1

2

5∑
p=1

ape
iφp+iφ0Ap(t), (37)

with ∗ indicating complex conjugation and φ(t) as given
in eq. (3). Note that we have slightly simplified the no-
tation in eq. (37) by renaming φgw0 → φ0. Also, the sum-
mation is over only five values of p because the breath-
ing and longitudinal polarizations are indistinguishable
to the detectors.
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FIG. 2: LHO response Ap(t), eq. (23), to different polarizations from the Crab (PSR J0534+2200), from 00:00 UTC
to 24:00 UTC.
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FIG. 3: Simulated GR (left) and G4v (right) heterodyned Crab signals as seen by LHO. The templates are
generated from eq. (37) with the model parameters given in eqs. (5–8) and setting h0 = 1, φ0 = 0. The solid curves

represent the real (blue) and imaginary (red) parts, while the dashed curve corresponds to the complex norm.

The key of the heterodyne method is that, since we
can assume the phase evolution is well–known from elec-
tromagnetic observations (ephemerides obtained through
the pulsar timing package TEMPO2 [19]), we can multi-
ply our data by exp [−iφ(t)] (heterodyning) so that the

signal therein becomes

h′(t) ≡ h(t)e−iφ(t) = Λ(t) + Λ∗(t)e−i2φ(t) (38)

and the frequency modulation of the first term is re-
moved, while that of the second term is doubled. A se-
ries of low–pass filters can then be used to remove the
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quickly–varying term, which enables the down–sampling
of the data by averaging over minute–long time bins. As
a result, we are left with Λ(t) only and eq. (37) becomes
the template of our complex–valued signal. One period
of such GR and G4v signals coming from the Crab are
presented as seen by LHO in fig. 3.

From eq. (38) we see that, in the presence of a signal,
the heterodyned and down-sampled noisy detector strain
data Bk for the kth minute-long time bin (which can be
labeled by GPS time of arrival) are expected to be of the
form:

Bexpected(tk) =
1

2

5∑
p=1

ap(tk)eiφp+iφ0Ap(tk)+n(tk), (39)

where n(tk) is the heterodyned, averaged complex noise
in bin k, which carries no information about the GW sig-
nal. As an example, fig. 4 presents the real part of actual
data heterodyned and filtered for the Crab pulsar. We
can clearly see already that the data are non–stationary,
an issue addressed in the section III B and appendix A.

B. Search

Given data in this form, we analyze it to obtain the
parameters of a signal that would best fit the data and
then incorporate the results into the frequentist analysis
described in section V. Regressions are performed by
minimizing the χ2 of the system (same as a matched–
filter). For certain template T (tk), this is:

χ2 =

N∑
k=0

[T (tk)−B(tk)]
2
/σ2

k, (40)

where σk is the estimate standard deviation of the noise
in the data at time tk. In the presence of Gaussian noise,
the χ2 minimization is equivalent to a maximum likeli-
hood analysis.

Any linear template T can be written as a linear com-
bination of certain basis functions fi, so that T (t) =∑
i

ãifi(t) and each ãi is found as a result of minimiz-

ing (40). For instance, T (tk) could be constructed in the
from of eq. (37). In such model–dependent searches, the
antenna patterns are the basis set, i.e. {fi} = {Ap}, and
the ãi weights correspond to the ap exp (iφp) prefactors.
(From here on, the tilde denotes the coefficient that is
fitted for, rather than its predicted value.)

The regression returns a vector ã containing the values
of the ãi’s that minimize eq. (40). These quantities are
complex–valued and encode the relative amplitude and
phase of each contributing basis. From their magnitude,
we define the overall recovered signal strength to be:

hrec = |ã|. (41)

The significance of the fit is evaluated through the co-
variance matrix C. This can be computed by taking the

inverse of ATA, where A is the design matrix of the sys-
tem (built from the fi set). In particular, we define the
significance of the resulting fit (signal SNR) as

s =
√
ã†C−1ã, (42)

where † indicates Hermitian conjugation.
χ2–minimizations have optimal performances when the

noise is Gaussian. However, although the central limit
theorem implies that the averaged noise in (39) should
be normally distributed, actual data is far from this ideal
(see fig. 4). In fact, the quality of the data changes over
time, as it is contingent on various instrumental factors.
The time series is plagued with gaps and is highly non–
stationary. This makes estimating σk non–trivial.

As done in regular CW searches [21], we address this
problem by computing the standard deviation for the
data corresponding to each sidereal day throughout the
data run, rather than for the series as a whole. This
method improves the analysis because the data remains
relatively stable over the course of a single day, but not
throughout longer periods of time (see appendix A). Fur-
thermore, noisier days have less impact on the fit, because
σk in eq. (40) will be larger. The evolution of the daily
value of the standard deviation for H1 data heterodyned
for the Crab pulsar is presented in fig. 5.

1. Model–dependent

In a model–dependent search, a particular physical
model is assumed in order to create a template based
on eq. (37). In the case of GR, if ψ and ι are known, it is
possible to construct a template with only one complex–
valued free parameter h̃0:

TGR(t) = h̃0
1

2

[
1

2
(1 + cos2 ι)A+(t;ψ)+

+ cos ιA×(t;ψ)e−iπ/2
]
, (43)

where the factor of 2 comes from the heterodyne,
cf. eq. (37). Similarly for G4v:

TG4v(t) = h̃0
1

2

[
sin ι e−iπ/2Ax(t;ψ) + sin ι cos ιAy(t;ψ)

]
,

(44)

Analogous templates could be constructed for scalar-
tensor theories, or any other model. In the former case,
there would be a second free parameter to represent the
unknown scalar contribution.

However, as mentioned in section II, even in the case
of the best studied pulsars we know ι only in absolute
value. This ambiguity creates the need to use two model–
dependent templates like eqs. (43, 44): one corresponding
to ι and one to π − ι. Note that the indeterminacy of ψ
is absorbed by the overall phase of h̃0, so it has no effect
on the template. Thus, if the ambiguity in ι is accounted
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FIG. 4: Real part of LIGO Science Run 5 Hanford 4km detector (H1) minute–sampled data prepared for the Crab
spanning approximately two years. A signal in these data would be described by eq. (39).

FIG. 5: Daily standard deviation of S5 H1 data
heterodyned for the Crab pulsar (fig. 4).

for, the overall signal strength h0 and the angle φ0 can be
inferred directly from the angle and phase of hrec = h̃0.

In most cases, ψ and ι are completely unknown. It is
then convenient to regress to each antenna pattern inde-
pendently, allowing for two free parameters. This can be
done by computing the antenna patterns assuming any
arbitrary value of the polarization angle, say ψ = 0. In-
deed, eqs. (30–35) guarantee that the subspace of tensor,
vector or scalar antenna patterns for all ψ is spanned by
a pair of corresponding tensor, vector or scalar antenna
patterns assuming any particular ψ.

In the case of GR, this means we can use a template

TGR(t) = α̃+A+(t;ψ = 0)/2 + α̃×A×(t;ψ = 0)/2 (45)

with two complex weights α̃’s to be determined by the
minimization. In the presence of a signal and in the
absence of noise, eqs. (30, 31) indicate that the values
returned by the fit would be a function of the actual,

unknown ψ and ι:

α+ = a+(ι)eiφ0 cos 2ψ − a×(ι)eiφ0−iπ/2 sin 2ψ, (46)

α× = a×(ι)eiφ0−iπ/2 cos 2ψ + a+(ι)eiφ0 sin 2ψ, (47)

with the α(ι)’s as given in eqs. (5, 6).
Again, a (semi–) model–dependent template, like

eq. (45), can be constructed for any given theory by se-
lecting the corresponding antenna patterns to be used as
basis for the regression. For G4v, this would be:

TG4v(t) = α̃xAx(t;ψ = 0)/2 + α̃yAy(t;ψ = 0)/2 (48)

with two complex weights α̃’s to be determined by the
minimization. As before, in the presence of a signal and
in the absence of noise, eqs. (32, 33) indicate that the
values returned by the fit would be a function of the
actual, unknown ψ and ι:

αx = ax(ι)eiφ0−iπ/2 cosψ − ay(ι)eiφ0 sinψ, (49)

αy = ay(ι)eiφ0 cosψ + ax(ι)eiφ0−iπ/2 sinψ. (50)

In this case, we cannot directly relate our recovered
strength to h0 and the framework does not allow to carry
out parameter estimation. The proper way to do that
is using Bayesian statistics, marginalizing over the ori-
entation parameters. Since we are mostly interested in
quantifying our ability to detect alternative signals rather
than estimating source parameters, we do not cover such
methods here. However, it would be straightforward to
incorporate our generalized likelihoods (as given by our
templates) into a full Bayesian analysis (cf. [20]).

2. Model–independent

In a model–independent search, the regression is per-
formed using all five non–degenerate antenna patterns
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and the phases between the Ap’s are not constrained.
Thus,

Tindep(t) =

5∑
p=1

ãpAp(t). (51)

Because we do not consider any particular model, there
is no information about the relative strength of each po-
larization; hence, the ãp’s are unconstrained. Again,
eqs. (30–35) enable us to compute the antenna patterns
for any value of ψ.

By calculating the necessary inner products, it can be
shown that a regression to the antenna pattern basis,

{A+, A×, Ax, Ay, Ab} , (52)

is equivalent to a regression to the sidereal basis,

{1, cosωt, cos 2ωt, sinωt, sin 2ωt} , (53)

where ω = 2π/(86164 s) is the sidereal rotational fre-
quency of the Earth. This is an orthogonal basis which
spans the space of the antenna patterns. In this basis,

Tindep(t) =

5∑
i=1

ãifi(t). (54)

with fi representing the set in (53). This is the same
basis set used in so–called 5-vector searches [25].

Because they span the same space, using either basis
set yields the same results with the exact same signifi-
cance, as defined in eq. (42). Furthermore, the weights
obtained as results of the fit can be converted back
and forth between the two bases by means of a time–
independent coordinate transformation matrix.

A model–independent search is sensitive to all polar-
izations, but is prone to error due to noise when dis-
tinguishing between them. It also has more degrees of
freedom (compared with a pure-GR template) that can
respond to noise fluctuations, resulting in a search that is
less sensitive to pure-GR signals. However, the analysis
can be followed by model–dependent searches to clarify
which theory fits with most significance.

IV. ANALYSIS

We wish to detect any CGW signal originating in a
given pulsar, regardless of its polarization in a model–
independent way. We can then determine whether the
measured polarization content agrees with theoretical
predictions. This information can be used to obtain fre-
quentist confidence levels for a potential detection and to
generate upper limits for the strength of signals of any
polarization potentially buried in the data.

In order to test the statistical properties of the noisy
data filtered through our templates, we produce numer-
ous instantiations of detector noise by taking actual data

processed as outlined in section III and re–heterodyning
over a small band close to the frequency of the original
heteredoyne. Any true signal in the data stream is scram-
bled in the process and what remains is a good estimate
of the noise. This allows us to perform searches under re-
alistic conditions with or without injections of simulated
signals, while remaining blind to the presence of a true
signal.

By heterodyning at different frequencies, we are able
to generate a large number of instantiations of the data.
Because our S5 datasets span roughly 1.9 years and are
sampled once per minute, our bandwidth is 8.3×10−3 Hz
with a lowest resolvable frequency of 1.7×10−8 Hz. This
means we could theoretically re–heterodyne our data at
a maximum of 8.3×10−3/1.7×10−8 ≈ 4.9×105 indepen-
dent frequencies. In our study, we picked 104 frequencies
in the 10−7−10−3 Hz range, avoiding the expected signal
frequency of ∼ 10−5 Hz (period of a sidereal day) and its
multiples.

We quantify the results of a particular search by look-
ing at the obtained recovered signal strength, eq. (41),
and significance, eq. (42). As expected, these two pa-
rameters are strongly correlated (fig. 6). However, the
significance is, in the presence of Gaussian noise, a direct
indicator of goodness–of–fit and can be used to compare
results from templates with different numbers of degrees
of freedom.

By performing searches on multiple instantiations of
noise–only data, we construct cumulative distribution
function (CDF) probability plots showing the distribu-
tion of recovered signal strength, eq. (41), and signifi-
cance, eq. (42), corresponding to a given template. Such
plots give the probability that the outcome of the re-
gression is consistent with noise (i.e. provide p–values).
As shown in fig. 7, an instantiation that contains a loud
injected signal becomes manifest in this plot as an out-
lier. This sort of plot can also be used when searching
for an actual signal in the data—namely, when looking
at the original, non–reheterodyned series. In that case,
the 1 − CDF curve can be extrapolated or interpolated
to find the p–value corresponding to the significance with
which the injection was recovered.

After injecting and retrieving increasingly loud signals
with a given polarization content in different background
instantiations, we produce plots of recovered strength
vs. injected strength (hrec vs. hinj) and significance vs. in-
jected strength (s vs. hinj). Recall that injections are of
the form of eqs. (43, 44). Examples of such plots are pre-
sented in fig. 8. These plots, and corresponding fits, can
be used to assess the sensitivity of a template to certain
type of signal, define thresholds for detection and pro-
duce confidence bands for recovered parameters. (In the
frequentist literature, these plots are sometimes referred
to as Neyman constructions [26].)

We define a horizontal detection threshold line above
an arbitrary fraction αn (e.g., αn = 99.9%) of noise–only
points (i.e. points with hinj = 0, but hrec 6= 0), so that
data points above this line can be considered detected
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FIG. 6: Significance, eq. (42), vs. recovered strength, eq. (41), for searches over 5000 noise–only H1 S5 Crab
instantiations using model–dependent eq. (43) (left), semi–dependent eq. (45) (center), and independent eq. (54)
(right) templates. The model–dependent case assumes fully known ι and ψ. Note that the number of degrees of
freedom in the regression is manifested in the spread, which is due to noise: templates with a single degree of

freedom are less susceptible to noise and the spread is minimal. The two plots on the left were generated using a GR
template, but similar results are obtained for G4v.

FIG. 7: Example plot of p = 1− CDF vs. the recovery
significance for a particular template. A loud injection

in noise is manifested as an outlier (star) over the
noise–only background (red). Note that the injection is

plotted arbitrarily at p = 10−1.

with a p–value of p = 1−αn (e.g., p = 0.1%). For a par-
ticular template, this fractional threshold can be directly
translated into a significance value sαn

(e.g., s99.9% =
2.5). The sensitivity of the template is related to the
number of injections recovered with a significance higher
than sαn

. Therefore, for a given αn, a lower sαn
means

higher sensitivity to true signals.

For the results of each template, the fractional thresh-
old αn can also be associated to a strain value. We define
this to be the loudness of the minimum injection detected
above this threshold with some arbitrary upper–limit con-
fidence αup. This value can be determined from the s
vs. hinj plot by placing a line parallel to the best fit but

to the right of a fraction αup of all data points satisfying
0 < hinj. The intersection of this line with the αn line
occurs at hinj = h

αup

min, which is the strain value above
which we can have αup confidence that a signal will be
detected (i.e. recovered with significance s > sαn

).
We refer to h

αup

min as the expected sensitivity or strain
detection threshold at αn. This value allows not only
for the definition of upper limits for the presence of sig-
nals, but also the comparison of different model depen-
dent and independent templates. See fig. 9b for a jux-
taposition of the results of matching and non–matching
model–dependent templates for the case of the Crab pul-
sar.

The efficiency of a template is also quantified by the
slope of the hrec vs. hinj best–fit line, which should be
close to 1 for a template that matches the signal. We
perform this fit by taking into account only points above
the αn line and forcing the y–intersect to be null. The de-
viations from this fit are used to produce confidence inter-
vals for the recovered strength. This is done by defining a
band centered on the best–fit line and enclosing an arbi-
trary fraction αb (e.g., αb = 95%) of the data points, cor-
responding to the confidence band placed around best–fit
line. The intersection between this band and a horizon-
tal line at some value of hrec yields a confidence interval
for the true strength with αb confidence. Note that de-
viations above and below the best–fit line are taken in-
dependently to obtain asymmetric confidence intervals.
The same analysis can be done on the s vs. hinj plots,
taking into account proper scaling of the best–fit slope.

In general, when performing injections we pick param-
eters with a uniform distribution over the uncertainty
ranges of location and orientation values obtained from
the ATNF Pulsar Catalog [27]. When there is no ori-
entation information, we must draw ψ and ι from the
ranges [−π/2, π/2] and [0, 2π] respectively. Note that
standard searches consider tensor signals (2ψ–dependent)
only and therefore assume ψ ∈ [−π/4, π/4]; however, a
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FIG. 8: Neyman plot of recovered signal strength hrec (left) and significance s (right) vs. injected strength hinj. In
this case, GR signals are recovered with GR templates, but results are qualitatively the same with G4v injections

recovered with G4v templates, or either kind of injection recovered with model–independent templates. The
collection of points at hinj = 0 are noise–only and the detection threshold (horizontal line) is placed above

αn = 99.9% of them. The shaded band includes αb = 95% of the data points above the threshold and it is centered
on their best–fit line. The fit forced null y–intersect.

bigger range must be used when taking into account vec-
tor signals (ψ–dependent). The reason these ranges need
not cover the full [0, π] range is that a change in ψ of
π/2 for tensor and π for vector signals is equivalent to a
change of signal sign. Therefore, this is taken care of by
varying the overall phase φ0 ∈ [0, π].

We tested the aforementioned methods on LIGO data
taken by the Hanford and Livingston detectors over
LIGO Science Run 5 (S5). During this run, which
took place from November 2005 through September 2007
(GPS times 815155213 - 875232014), the three LIGO de-
tectors operated in data–taking mode at design sensitiv-
ity, collecting a year of coincident detector data. The
root–mean–square strain noise of the instrument reached
values as low as 3 × 10−22 for bands of 100 Hz over the
most sensitive frequencies [28]. LIGO S5 data has been
recently released to the public and is accessible online
through the LIGO Open Science Center [29].

In particular, we looked at data for 115 pulsars, ob-
tained by reducing S5 H1, H2 and L1 strain data as out-
lined in section III B. But for the inclusion of PSR J0024-
72040 and the exclusion of PSR J2033+17 and Vela, these
are the same heterodyned time series analyzed in refer-
ence [21]. However, that study presented Bayesian upper
limits to the presence of GR signals and did not consider
alternative polarizations.

V. RESULTS

Here we present the results of a study of the signal
sensitivity of the analysis procedure described in sec-
tion V, using the data described at the end of section
. We perform a “closed box” analysis, using only re–
heterodyned data, which are insensitive to the presence
of actual signals, and simulated signal injections. A full
“open box” analysis, using Bayesian methods to produce
model–dependent and model–independent signal detec-
tion confidence bands or upper limits, is in preparation.

In particular, we produced 104 re–heterodyned instan-
tiations of data for each pulsar by picking linearly spaced
frequencies in the 10−7−10−3 Hz range (cf. sec. V). Half
of those were injected with simulated signals of increas-
ing strength. The data were then analyzed with each
template (GR, G4v and model–independent), producing
plots like those in fig. 8. For the Crab pulsar, since the
source orientation information is known, the full model–
dependent templates, eqs. (43, 44), were used; otherwise,
the semi–model–dependent templates, eqs. (45, 48), were
used. The whole process was carried out for both GR
and G4v injections. In all cases, we set αn = 99.9% and
αup = 95.0%.

A. Crab pulsar

Results for searches over H1 S5 data prepared for the
Crab pulsar (ν = 30.22 Hz, νGW = 60.44 Hz) are pre-
sented in fig. 9. The results using templates matched
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(a) GR injections recovered with GR template (green),
eq. (45), and model independent (blue), eq. (54).

(b) GR injections recovered with GR template (green),
eq. (45), and G4v template (red), eq. (48).

(c) G4v injections recovered with G4v template (red),
eq. (48), and model independent (blue), eq. (54).

(d) G4v injections recovered with G4v template (red), eq. (48),
and GR template (green), eq. (45).

FIG. 9: GR (top) and G4v (bottom) injection results of search over LIGO S5 H1 data heterodyned for the Crab
pulsar. Plots show significance, eq. (42), vs. injected strength. Color corresponds to the template used for recovery:
GR, green; G4v, red; model–independent, blue. This particular search was performed using 104 instantiations, half
of which contained injections using the values of ι and ψ given in table I. The model–dependent templates assumed

the same same ι as the injections. Horizontal lines correspond to a detection threshold αn = 99.9%.

to the injections are compared to those of the model–
independent (left) and non–matching templates (right).
The expected sensitivities, as defined in section V, for
each injection template and search model are provided
in table III. Recall that the Crab is a special case, since
its orientation in the sky is well–known, which enables
us to use full model–dependent templates, eqs. (43, 44).
However, searches for actual signals would still have to
make use to two templates for each theoretical model be-

cause of the ambiguity in ι described in section II B. In
order to avoid doing this, a semi–model–dependent or
model–independent search could be carried out instead.

A number of interesting observations can be drawn
from fig. 9 and table III. As inferred from the values
of hmin, the model–independent template is roughly 25%
less sensitive than the matching one, regardless of the
theory assumed when making injections. This is under-
stood by the presence of four extra degrees of freedom in
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FIG. 10: Slope of the s vs. hinj best–fit–line (left and center) and significance detection threshold at αn = 99.9%
(right) vs. GW frequency and for GR and G4v injections on S5 H1 data for 115 pulsars. Color corresponds to search

template: GR, green; G4v, red; and model–independent, blue. Note that for both kinds of injections, the
model–independent points overlap the matching template.

TABLE III: Summary of expected sensitivity for the
Crab pulsar S5 H1 searches (αn = 99.9%, αup = 95.0%).

Rows correspond to injection type and columns to
search template. The rotational frequency of the Crab

is ν = 30.22 Hz and, therefore, νGW = 60.44 Hz.

GR G4v Independent

GR 3.41 × 10−25 7.49 × 10−25 4.20 × 10−25

G4v 8.90 × 10−25 3.30 × 10−25 4.15 × 10−25

the model–independent template, compared to the single
tunable coefficient in the full model–dependent one. If in-
stead the semi–model–dependent template with two de-
grees of freedom is used, the improvement with respect to
the model–independent search goes down to 15%. In any
case, the accuracy of matching and model–independent
searches, given by the width of the confidence bands an,
are almost identical.

Model dependent templates are significantly less sen-
sitive to non–matching signals. Table III indicates that
model–dependent templates are 120-170% less sensitive
to non–matching signals than their matching counter-
part. A consequence of this is the existence of a range
of signals which would be detected by templates of one
theory, but not the other (see figs. 9b & 9d). This is par-
ticularly interesting, given that previous LIGO searches
assume GR to be valid and use a template equivalent to
eq. (43). Therefore, our results suggest it is possible that
those searches might have missed fully–non–GR signals
buried in the data (see section VI for further discussion).

TABLE IV: Best expected sensitivities for S5 H1
searches (αn = 99.9%, αup = 95.0%). Rows correspond
to injection type and columns to pulsar name (PSR),
rotation frequency (ν) and strain detection threshold

for matching dependent (hdep) and independent (hindep)
templates.

PSR ν (Hz) hdep hindep

GR J1603-7202 67.38 4.77 × 10−26 5.53 × 10−26

G4v J1748-2446A 86.48 4.96 × 10−26 5.81 × 10−26

B. All pulsars

The Crab pulsar is only one of the 115 sources we an-
alyzed. The results, presented in figs. 10a & 10b gener-
ally confirm the observations anticipated from the Crab.
While model–independent searches are of the same ac-
curacy as matching semi–model–dependent ones, their
strain detection threshold is louder due to the extra
degrees of freedom (fig. 10c). Consequently, model–
independent templates demand a higher significance to
be able to distinguish a signal from noise. The detection
thresholds for GR and G4v templates are of the same
magnitude, since both have the same number of degrees
of freedom. Among all the 115 pulsars, the sources with
best expected sensitivities to GR and G4v signals were
PSR J1603-7202 and PSR J1748-2446A respectively (see
table IV).

The key results of our study are summarized in fig. 11
for H1 and fig. 12 for L1. These plots present the ex-
pected sensitivity (strain detection threshold at αn =
99.9% with αup = 95.0% confidence) vs. GW frequency
(νGW = 2ν). The outliers seen in figs. 10-12 correspond
to pulsars whose value of νGW are very close to instru-
mental noise spectral lines associated with violin reso-
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FIG. 11: S5 H1 expected sensitivity (strain detection threshold at αn = 99.9% with αup = 95.0% confidence)
vs. GW frequency for 115 pulsars. Color corresponds to search template: GR, green; G4v, red; and

model–independent, blue. The gray line is the anticipated sensitivity of a standard Bayesian search, eq. (55).
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FIG. 12: S5 L1 expected sensitivity (strain detection threshold at αn = 99.9% with αup = 95.0% confidence) vs. GW
frequency for 115 pulsars. Color corresponds to search template: GR, green; G4v, red; and model–independent,

blue. The gray line is the anticipated sensitivity of a standard Bayesian search, eq. (55).
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TABLE V: Average sensitivity ratios 〈ρ〉, eq. (56), for
S5 H1 (first value) and S5 L1 (second value) searches.

Rows correspond to injection type and columns to
search template.

GR G4v Independent

GR 16.11 14.65 58.53 51.89 18.83 17.15

G4v 61.21 55.06 18.42 16.76 21.24 19.32

TABLE VI: Crab sensitivity ratio ρ, eq. (56) evaluated
at the Crab’s GW frequency, for S5 H1 (first value) and

S5 L1 (second value) searches. Rows correspond to
injection type and columns to search template.

GR G4v Independent

GR 20.75 10.40 45.52 27.15 25.54 11.94

G4v 54.06 20.30 20.07 9.96 25.21 11.52

nances of the detectors test mass pendulum suspensions.
For the matching or model–independent templates, the

resulting data points trace the noise curve of the in-
strument; however, due to the long integration time, we
are able to detect signals below LIGO’s standard strain
noise. The gray curve shown in figs. 11, 12 represents
the expected sensitivity of a regular Bayesian GR search
(e.g., [21]). This is proportional to the amplitude spec-
tral density of the detector and inversely proportional to
the square–root of the observation time. The particu-
lar empirical relationship used to generate the curve in
figs. 11 & 12 is:

〈hmin〉 = 10.8
√
Sn(f)/T , (55)

with Sn(f) the noise power spectral density and T the to-
tal observation time (527 days for S5 H1 and 405 days for
S5 L1) [20]. This formula enables the comparison of the
methods presented here with the expected performance
of standard Bayesian searches.

By the same token, we can define a figure of merit ρ
for our searches by the ratio:

ρ (νGW) = hmin/
√
Sn(νGW)/T . (56)

The average of this value over all pulsars, 〈ρ〉, can be
semi–quantitatively compared to the 10.8 prefactor in
eq. (55). The equivalence is not direct because, besides
the intrinsic differences between Bayesian and frequen-
tist approaches, eq. (55) was obtained by averaging the
results of 4000 simulated searches [20], while we include
just the 115 pulsars at hand. The values of 〈ρ〉 for our S5
H1 & L1 analyses are presented in table V and fig. 13.
The specific values for the Crab pulsar are shown in table
VI. A smaller ρ indicates better performance.

As mentioned above, the remarks made about the
Crab pulsar hold for most other sources, except that de-
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FIG. 13: Histograms of the figure of merit ρ, eq. (56),
for our searches over S5 H1 (top) and L1 (bottom) data

sets with GR (left) and G4v (right) injections,
corresponding to 115 pulsars. Color corresponds to

search template: GR, green; G4v, red; and
model–independent, blue.

tectability is slightly lower because orientation parame-
ters are unknown. In all cases, the matching template
is the best at recovering signals, followed closely by the
model–independent one. Searches that assume the incor-
rect model are substantially less efficient and their hmin

vs. νGM curves do not follow the instrumental noise line.
This is reflected, for instance, by the figures of merit pre-
sented in table V.

VI. CONCLUSIONS

We have developed novel model–independent methods
to search for CGW signals coming from targeted sources
in LIGO–like interferometric data. These searches are
able to detect signals of any polarization content with
high significance.

In order to test our methods in the presence of realistic
noise conditions, we implemented a procedure to produce
thousands of noise–only instantiations from actual data.
We then proceeded by injecting and retrieving increas-
ingly loud signals of different polarization content.

We studied 115 pulsars using S5 data from the LIGO
Hanford and Livingston detectors. Although the meth-
ods are general, we restricted our study to two theories
that predict starkly different GW polarization contents
(GR and G4v).

Our results indicate that assuming the wrong the-
oretical model greatly reduces the sensitivity of a
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search to signals buried in the data. Yet, our model–
independent searches are almost as effective as the
model–dependent templates that match the kind of sig-
nal injected (i.e. when the models used for injection
and search are the same). This means that our model–
independent templates can be used to find signals of any
polarizations without additional computational require-
ments.

We are able to reach sensitivities comparable to previ-
ous studies, although slightly worse than those presented
in [21]. This is probably due to our making use of a sin-
gle detector and to differences between frequentist and
Bayesian approaches.

We have shown that, for some combinations of detec-
tors, sources, and signal strengths, G4v signals are in-
visible to GR templates and vice–versa. Therefore, it is
possible that, if GWs are composed uniquely of vector
modes, previous LIGO searches, which assume GR, may
have missed their signals.

It is clear that the next step in this study consists of
incorporating our model–independent templates into the
Bayeasian machinery used in standard LIGO Scientific
Collaboration searches. This will allow us to properly
marginalize over all nuisance parameters and to produce
multi-detector model–dependent and model–independent
signal detection confidence bands or upper limits. We
will also employ methods to constrain other theories
(e.g., scalar–tensor) in the event of a model-independent
detection.
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Appendix A: Statistical properties of LIGO data

The χ2 minimization is equivalent to a maximum like-
lihood procedure only in the presence of Gaussian noise.
When this requirement is not satisfied, the regression is
still valid, but the χ2 values resulting from the fit will
be distributed in a non–trivial way, rather than the χ2

distribution expected in the case of Gaussian noise. Fur-
thermore, the relationship between the covariance matrix
of the system and the standard uncertainties of the recov-
ered coefficients becomes unclear. Therefore, it is impor-
tant to statistically characterize the data and understand
the limitations of our assumption of Gaussianity.

When taken as a whole, LIGO detector noise does not
conform to a stationary Gaussian distribution. This can

be visually confirmed by means of a histogram, as shown
in fig. 14 for the case of S5 H1 data prepared for the
Crab. The divergence from Gaussianity is evident from
the long tails, seen most clearly in the log–y version of the
plot. As expected, the data fail more rigorous standard
Gaussianity tests, such as the Kolmogorov–Smirnov (KS)
or the Anderson–Darling (AD) tests.

However, it is possible to split up the data into day–
long (or shorter) segments, as was described in section
III B, so as to study the Gaussianity of the data on a
day–to–day basis. The results of the KS and AD tests
for each day–segment, together with those for reference
Gaussian noise series, are presented in figs. 15a and 15b
respectively. The KS test returns the p–value for a null
hypothesis that assumes the data is normally distributed;
therefore, a lower p–value implies a higher probability
that the data are not Gaussian [30]. The AS test re-
turns a figure of merit which is indirectly proportional to
the significance with which the hypothesis of Gaussianity
can be rejected; therefore a higher AS statistic implies a
higher probability that the data are not Gaussian [31].

It can be seen from the results of these tests that the
statistical properties of the segments vary considerably
from day to day. This could have been guessed from the
non-stationarity of the data in fig. 4, the daily variation of
the standard deviation (fig. 5) and other irregularities of
the data. Nonetheless, most of the segments seem to pass
the Gaussianity tests, with some remarkable exceptions
around the days 250–400 of the run. This corresponds
to the spiking observed in the heterodyned data (GPS
times 8.4× 108 − 8.5× 108 in fig. 4).

In order to confirm that our assumption of Gaussian-
ity is not too far from reality, we repeated our analysis
(see section V) on sets of synthetic Gaussian noise. In
order to do this, for each pulsar we generated streams
of complex–valued data randomly selected from a nor-
mal distribution with the same standard deviation as the
corresponding original LIGO data set. These series re-
placed the instantiations of re–heterodyned data, but the
search process was otherwise unchanged. The results of
this comparison for S5 H1 are shown in figs. 16, where we
juxtaposed expected sensitivities obtained using Gaus-
sian noise and actual LIGO noise (cf. section V). These
plots confirm that, indeed, we obtain qualitatively the
same results with Gaussian noise as with actual LIGO
data.
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FIG. 14: Normalized histogram of the real part of S5 H1 data heterodyned for the Crab in linear (left) and
logarithmic y scales. A Gaussian curve with the same standard deviation is plotted in red for comparison.
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FIG. 16: Expected sensitivity (αn = 99.9%, αup = 95.0%) vs. GW frequency. Comparison between fabricated
Gaussian noise and actual LIGO noise. Searches were made with semi–model–dependent templates, eqs. (45, 48).
The colored stars correspond to actual LIGO H1 noise (cf. fig. 11), while the black dots correspond to fabricated

Gaussian noise.
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[24] T. M. Niebauer, A. Rüdiger, R. Schilling, L. Schnupp,

W. Winkler, and K. Danzmann, Phys. Rev. D 47, 3106
(1993).

[25] P. Astone, S. DAntonio, S. Frasca, and C. Palomba,
Class. Quantum Gravity 27, 194016 (2010).

[26] A. Olive et al. and Particle Data Group, Chinese Phys.
C 38, 090001 (2014).

[27] R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs,
Astron. J. 129, 1993 (2005), arXiv:0412641 [astro-ph].

[28] The LIGO Scientific Collaboration, Reports Prog. Phys.
72, 076901 (2009), arXiv:0711.3041.

[29] M. Vallisneri, J. Kanner, R. Williams, A. Weinstein, and
B. Stephens, in Proc. LISA Symp. X (IOP Publishing,
Gainesville, Florida, 2014) arXiv:1410.4839.

[30] I. M. Chakravarty, J. D. Roy, and R. G. Laha, Handbook
of methods of applied statistics Volume I (John Wiley
and Sons, New York, 1967) pp. 392–394.

[31] T. W. Anderson and D. A. Darling, Ann. Math. Stat. 23,
193 (1952).


