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Abstract

We present a mechanism that allows a large Higgsino mass without large fine-tuning.

The Higgs is a pseudo Nambu-Goldstone boson (PNGB) of the global symmetry

breaking pattern SO(5)→ SO(4). Because of the PNGB nature of the light Higgs,

the SO(5) invariant Higgsino mass does not directly contribute to the Higgs mass.

Large couplings in the Higgs sector that spontaneously breaks SO(5) minimize the

tuning, and are also motivated by the requirements of generating a sufficiently

large Higgs quartic coupling and of maintaining a natural approximate global SO(5)

symmetry. When these conditions are imposed, theories of this type predict heavy

Higgsinos. This construction differs from composite Higgs models in that no new

particles are introduced to form complete SO(5) multiplets involving the top quark—

the stop is the only top partner. Compatibility with Higgs coupling measurements

requires cancelations among contributions to the Higgs mass squared parameter at

the 10% level. An important implication of this construction is that the compressed

region of stop and sbottom searches can still be natural.
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I. Introduction

The Standard Model of particle physics is in many respects the perfect effective quantum

field theory. It is fully determined by including all possible relevant and marginal couplings

compatible with the particle content, Lorentz symmetry, and gauge invariance. The resulting

theory accurately describes all interactions of elementary particles up to the highest energies

probed by experiment, including the intricate structure of electroweak interactions and

flavor-changing transitions; allowing dimension-5 couplings suppressed by a large mass scale

accounts for small neutrino masses and oscillations. Moreover, the recent discovery of the

125 GeV Higgs by the ATLAS [1] and CMS [2] collaborations at the Large Hadron Collider

(LHC) has experimentally completed the Standard Model.

However, this triumph of effective field theory is marred by the fact that the Standard

Model does not give us any understanding of the size of the Higgs mass, the single relevant

parameter of the model (ignoring the cosmological constant). In particular, new physics at

exponentially high energies, such as the grand unification scale ∼ 1016 GeV or the Planck

scale ∼ 1019 GeV, generically gives contributions to the Higgs mass proportional to the

relevant scale, requiring fine tuning of fundamental parameters to explain the observed

value. This motivates models of physics beyond the Standard Model in which the Higgs

mass parameter is calculable and naturally of order the electroweak scale.

A basic but very important point about this problem is that obtaining a light Higgs

mass in the Standard Model requires only a single tuning. This is also true in models

with supersymmetry (SUSY), which are the focus of this paper. These models have many

parameters, but requiring the absence of fine-tuning constrains only one combination of

them. As such, the tuning is dominated by the superpartner masses that give the largest

correction to the effective Higgs mass [3, 4]. In the minimal supersymmetric standard model

(MSSM) we obtain (see e.g. [5, 6])

1

tuning
∼ 5×max

{( µ

200 GeV

)2

,
m2
t̃1

+m2
t̃2

(600 GeV)2
,
( mg̃

900 GeV

)2
}
, (1)

where µ is the Higgsino mass, mt̃1,2 are the masses of the two stop mass eigenstates, and

mg̃ is the gluino mass. For simplicity we have assumed large tan β and neglected A terms

(no stop mixing). The lack of signals in the impressive variety of SUSY searches at the

8 TeV LHC sets lower bounds on superpartner masses, pushing the theory toward the fine-

tuned regime. The large number of possible spectra makes it impossible to draw completely

general conclusions regarding naturalness, but is probably fair to say that naturalness has

been experimentally probed at the 10% level (see e.g. [7]).

Another independent tension with naturalness is that the observed physical Higgs mass
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mh is an additional source of tuning. In the MSSM, the observed value mh ' 125 GeV

requires mt̃ ∼ 1 TeV, which implies percent-level tuning, as we see in Eq. (1). Eq. (1)

neglects A terms and hence stop mixing, but including this does not alleviate the tension [8].

Naturalness therefore motivates extensions of the MSSM Higgs sector, and many different

possibilities have been explored in the literature [9–19].

Therefore, complete naturalness of SUSY models requires both a spectrum of light

superpartners and an extension of the MSSM Higgs sector. This level of non-minimality

has led some to argue that the price of naturalness is too high, and that Nature may prefer

a simpler but more fine-tuned scenario (see e.g. [20–22]). As discussed above, this tuning

requires only a single accidental cancelation, so this point of view should be taken seriously.

However, fully exploring natural models is one of the most important tasks of particle

physics.

In this spirit, the aim of this paper is to investigate the model-independence of the

naturalness constraints estimated in Eq. (1) on the superpartner spectrum. The naturalness

bound on the stop mass can be understood on very general bottom-up principles. The

top loop correction to the Higgs mass in the Standard Model is quadratically sensitive to

UV physics. In a natural model, some new physics must cut off this dependence. Two

possibilities are compositeness of the Higgs and/or top quark, or the existence of “top

partners,” particles whose loop corrections cancel the quadratic UV sensitivity from top

loops. SUSY is the canonical example of the latter, with the stop playing the role of the

top partner. The bound on the stop mass in SUSY models is therefore very robust and

model-independent. The bound on the gluino mass is also quite general—it arises because

mg̃ contributes to the stop mass at loop level, which in turn contributes to the Higgs mass.1

There is no analogous argument for the naturalness constraint on the Higgsino mass,

which is the focus of this paper. In the MSSM and most extensions considered in the

literature, a Higgsino mass µ directly contributes to the Higgs mass parameter at tree level:

∆m2
H = µ2. A Higgsino mass significantly larger than the observed Higgs mass then requires

large cancelations from some other source, giving rise to fine-tuning. This connection arises

from details of the symmetry structure, so the argument for a naturalness constraint on the

Higgsino mass is more model-dependent.

In this paper, we point out that the connection between Higgsino and Higgs masses is

completely severed in models where the Higgs boson is a pseudo Nambu-Goldstone boson

(PNGB). In such models, the Higgs sector has an approximate global symmetry G, weakly

gauged by SU(2)W × U(1)Y , that is broken spontaneously down to a subgroup H. The

1 This bound can be somewhat alleviated in models where the gluino is a Dirac fermion [23, 24].
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Higgs is identified as a PNGB in the coset G/H [25–27].2 Consequently, a Higgsino mass

that is invariant under G does not contribute to the Higgs mass, breaking the connection

between the two. As a result the Higgsino mass can naturally be much larger than mh

without significant fine-tuning.

These models do however require a moderate amount of fine-tuning in the Higgs potential

to be phenomenologically viable. Denoting the scale of G → H breaking by f , precision

electroweak and Higgs coupling measurements require

v2

f 2 ∼< 10%, (2)

where v = 246 GeV is the Higgs VEV. The ratio v2/f 2 is also a direct measure of the tuning

required to obtain v � f . To make a fair comparison of the tuning in our SUSY PNGB

Higgs models and conventional SUSY models, we compare this with the tuning required to

raise the Higgsino mass in the MSSM, which is ∼ m2
h/µ

2. In our models, the Higgsino mass

is ∼ λf , where λ is a dimensionless coupling in the Higgs sector that spontaneously breaks

SO(5). This is also proportional to f , but the tuning is reduced (compared to the MSSM

with the same value of the Higgsino mass) for large λ.

Large couplings in the Higgs sector that spontaneously breaks SO(5) are in fact required

in our model to maintain the approximate SO(5) symmetry while also generating a Higgs

quadratic coupling sufficiently large to be compatible with the observed Higgs mass.

Moreover, they are motivated by the fact that approximate invariance under a global

symmetry broken by electroweak gauge and top Yukawa couplings is natural in models

with a strong coupling in the Higgs sector. The paradigmatic example is QCD, where an

approximate SU(2)L×SU(2)R symmetry is broken only weakly by the fact that the quarks

have different electromagnetic charges and masses.

For concreteness, these ideas will be demonstrated with a simple model based on the

minimal coset structure G/H = SO(5)/SO(4) [27]. The only additional degrees of freedom

beyond the MSSM are two gauge singlet chiral superfields that couple to the MSSM via the

superpotential. The approximate global SO(5) symmetry is radiatively stable, but its origin

will not be addressed in this work. Since the model is meant as an existence proof, we will

work in a subregion of the full parameter space to demonstrate that the general arguments

about tuning are supported by a complete numerical analysis.

In our model, we can obtain tuning∼< 1/20 for µ∼> 2 TeV. Since we will be working with

large values of λ, the theory has Landau poles at relatively low scales. These can be cut

off by new physics below the Landau pole scale, as is done for other SUSY models in the

2 For a review and general phenomenological discussion of PNGB Higgs models, see [28, 29].
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literature, e.g. [30–33]. Alternatively, it is possible that the sector that produces the PNGB

is strongly coupled, analogous to “superconformal technicolor” models [11, 12] or the ideas

in [34, 35].

A significant difference between models of the type presented below and other realistic

PNGB Higgs models in the literature is that in our models the stop is the only top partner.

PNGB Higgs models without SUSY additionally require fermionic top partners in complete

SO(5) representations in order to render the Higgs mass calculable. In our models, the

stops are sufficient to control the quadratic corrections to the Higgs mass-squared parameter.

However, logarithmic sensitivity to UV scales remains due to the allowed SO(5) breaking

terms in the theory. We check that, under renormalization group evolution, the SO(5)

breaking remains small up to scales in the range 102–106 TeV. This pushes the question of

the origin of the SO(5) symmetry beyond scales that can be presently probed. At these

high scales, the global SO(5) symmetry may be the remnant of a broken gauge symmetry,

for example. The absence of fermionic top partners means that our models have fewer

ingredients, and changes the phenomenology compared to models of PNGB Higgs in the

literature.

Previous studies of SUSY models with a PNGB Higgs include [36–39]. In fact, the model

of [37] is very similar to ours, although they include top partners to fill out complete SO(5)

representations. However, to our knowledge the implications of the naturalness on the

Higgsino mass have not been previously emphasized. Also, the possibility of SUSY models

with a PNGB Higgs but without SO(5) top partners has not been noted. Supersymmetric

Little Higgs models have also been considered, but with the goal of eliminating tuning due to

the large logarithms of the form log(Λ/msoft) that appear in SUSY models [40, 41]. Again,

these models do not focus on the naturalness implications of the Higgsino mass (for example

[40] has µ ∼ 200–400 GeV) and incorporate fermionic top partners. An alternative approach

to SUSY breaking that does lead to heavy Higgsinos is to invoke TeV extra dimensions with

Scherk-Schwarz boundary conditions [42] that project out the light Higgsino [43, 44]. The

presence of an extra dimension means that these models require UV completion near the

TeV scale, while our models are based on soft SUSY breaking.

The models considered here have potentially important implications for the interpretation

of SUSY searches. For example, suppose that at the 13 TeV LHC a SUSY signal consistent

with gluino pair production followed by decays involving tops, bottoms, and a neutral LSP

χ is observed, with

mg̃ ∼ 1.2 TeV, mt̃2 ∼ 800 GeV, mb̃1
∼ 700 GeV, mt̃1 ∼ 600 GeV, mχ ∼ 500 GeV,

where g̃ is the gluino, t̃1,2 are the two stop mass eigenstates (their masses are split due to
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the assumption of a large µ term), and b̃1 is the lighter sbottom.3 Given the large number

of g̃ g̃ events, approximate values for the masses and branching ratios would be inferred. We

would not know the identity of the LSP, but we know that the Higgsino mass can be no

smaller than 500 GeV, otherwise it would be the LSP. In the MSSM, the tuning in such a

spectrum would be dominated by the Higgsino contribution, and would be of order 1% in

the best-case scenario where the LSP is Higgsino-like. In our model, we naturally have a

much larger Higgsino mass with tuning of order 10%, and the LSP would have essentially

no Higgsino admixture. Indeed, the conventional conclusion that natural SUSY is under

experimental pressure relies heavily on the assumption that such spectra are tuned because

of the necessity of heavy Higgsinos [7].

Although we attempt to carefully quantify fine-tuning in this paper, we are not claiming

that the precise value of the tuning is meaningful beyond a rough estimate. We also do not

advocate the idea that nature chooses to minimize some measure of tuning—if this were

the case, SUSY would have been discovered long ago. Our point of view is that the fact

that nature is apparently somewhat tuned is a possible hint for non-minimal structure in

the model, and we are exploring one such possibility. We believe that all possible natural

models should be thoroughly examined, and it is in this spirit that we present our work.

The remainder of this paper is organized as follows. In Sec. II, we describe our model and

analyze it in several simplified limits to elucidate the important effects that determine the

amount of tuning. In Sec. III, we present the results of a complete numerical analysis,

demonstrating the improvement in tuning relative to the MSSM. Our conclusions are

presented in Sec. IV.

II. A SUSY PNGB Higgs Model

In this section, we show that a SUSY PNGB Higgs can arise from a very simple extension

of the MSSM, namely a model with two additional gauge singlet chiral superfields. This

allows an embedding of the Higgs sector into a representation of an approximate SO(5)

global symmetry. The symmetry is broken explicitly by small superpotential and soft-SUSY

breaking terms, in addition to the electroweak gauge interactions and Yukawa couplings.

The model will be analyzed in several steps in order to emphasize important features:

• Beginning with the limit of exact SO(5) symmetry, soft SUSY breaking will be

introduced in order to induce a spontaneous breaking of the global symmetry, SO(5)→

3 There is currently a CMS search with null results for a subset of this spectrum [45]. We used Fastlim [46]

in combination with SUSYHIT [47] to check that this spectrum is plausibly allowed experimentally, and

should be readily observable at the upcoming 13 TeV run of the LHC.
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SO(4). In this limit, there are 4 massless NGBs that will be identified with the physical

Higgs, and the Higgsinos will have mass of order the global symmetry breaking scale.

Because the Higgs potential vanishes in this limit, this already shows that a Higgsino

mass does not contribute to the light Higgs mass, thereby breaking the näıve SUSY

intuition.

• Next, tree-level terms that provide a small explicit breaking of the SO(5) global

symmetry are added. Electroweak gauge symmetry is spontaneously broken, and the

physical Higgs boson acquires a non-zero mass. The model is automatically in the

limit of tan β = 1 due to an unbroken custodial SO(4) symmetry. In this limit, the

tuning required to obtain a realistic Higgs potential can be transparently derived, and

this can be compared with the tuning for an analogous spectrum in the MSSM.

• Next, the effect of the explicit breaking of the SO(5) global symmetry by the Standard

Model electroweak gauge and top Yukawa couplings will be included. In particular,

since the top Yukawa explicitly breaks SO(4), it pushes the model away from the

tan β = 1 limit, generating additional sensitivity to the global symmetry breaking (and

hence Higgsino mass) scale. In addition, the model-dependent quadratic contributions

proportional to the stop soft-mass will be included.

• Finally, we present a complete numerical analysis of the model, explicitly demonstrat-

ing that it exhibits the main features described above.

In order to be quantitative, we use a version of the Barbieri-Giudice measure of tuning

[48], the fractional sensitivity of the physical Higgs mass squared m2
h to changes in the

various input parameters pi,

∆−1 =
∂ lnm2

h

∂ ln pi
. (3)

We have checked that the (more traditional) tuning in v2 is comparable, but we use m2
h for

practical reasons. Depending on the parameters, we find that the tuning is dominated by

one of the following sources:

∆−1
PNGB ∼

f 2

v2
; ∆−1

δtβ
∼ δtβ

µ2
eff

v2
; ∆−1

radiative ∼
3

16π2

m2
t̃

v2
log

(
M2

SUSY

m2
t̃

)
, (4)

where δtβ = tan β − 1 parameterizes the SO(4) breaking, and µeff is the effective µ-term

generated in our model. The standard 1-loop tuning from stops is estimated by ∆−1
radiative,

and sets a minimum possible tuning for a particular choice of SUSY breaking scale MSUSY.

For sufficiently low values of MSUSY this contribution is subdominant, and the dominant

tuning is determined by a competition between the other two sources of tuning.
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In the following, we present an approximate analytic argument for these scalings, followed

by a complete numerical analysis of the model, which will demonstrate that these effects are

robust.

A. The SO(5) Limit

Our model contains the fields of the MSSM, plus two singlet chiral superfields Σ and S.

The MSSM Higgs fields Hu and Hd can be embedded into a fundamental representation of

SO(4),

Φi =
1√
2


−i(H1

u +H2
d)

H1
u −H2

d

i(H2
u −H1

d)

H2
u +H1

d

 , i = 1, . . . , 4, (5)

where the superscripts on the Hu,d scalars are SU(2)W indices. This implies the relationships

Φ†i Φi = H†uHu +H†dHd, Φi Φi = −2HuHd. (6)

Combining Σ with these Higgs fields forms a (complex) fundamental of SO(5),

Φa = (Σ,Φi), a = 0, . . . , 4. (7)

We now present the model in the limit of exact SO(5) symmetry. The superpotential is

W =
λ

2
S Φa Φa −

κ

3
S3. (8)

W contains no dimensionful parameters—as in the NMSSM, this can give a solution to the

µ problem.4 SUSY is assumed to be broken softly by introducing the following terms into

the scalar potential:5

Vsoft = m2
S |S|2 +m2

Φ Φ†a Φa +BS(S2 + h.c.) +BΦ(Φa Φa + h.c.). (9)

The couplings and soft masses can be chosen such that S and Σ acquire non-zero VEVs,

〈S〉 =
u√
2
, 〈Σ〉 =

f√
2
. (10)

When f 6= 0, SO(5) is spontaneously broken, yielding a NGB multiplet consisting of the

real components of Φi, which parameterize the coset space SO(5)/SO(4). These will be

4 The omission of the relevant terms S, S2, and ΦaΦa, can be justified by imposing additional symmetries.
5 A linear term in S can be forbidden by imposing additional symmetries. A terms are also neglected.
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identified with the Higgs field responsible for breaking electroweak symmetry. The imaginary

components of Φi make up a heavy Higgs doublet with mass

m2
Im(Φi)

=
λκu2

2
− λ2 f 2

4
. (11)

This must be positive in order to have a stable vacuum. In the absence of explicit SO(4)

breaking, tan β = 1. Furthermore, the heavy Higgs doublet has a vanishing VEV and does

not mix with the light Higgs.

In addition to the Higgs doublets, the spectrum also contains two singlet scalars and two

singlet pseudoscalars, which are admixtures of the real and imaginary components of S and

Σ. In the limit of vanishing B-terms BS, BΦ → 0 the theory above has a U(1)R symmetry

with charges R(S) = R(Φ) = 2
3
, and therefore an associated axion-like NGB. Nonzero B-

terms are therefore important for the phenomenology of the theory, but do not significantly

affect the aspects of the Higgs sector that are the focus of this paper. For the numerical

analyses performed below, parameters will be chosen such that this axion state is lifted.

The Higgsino mass is given by

µeff =
λu√

2
, (12)

while the NGBs are exactly massless. Therefore, this simple limit already demonstrates the

separation between the (so-far massless) Higgs scalars and the Higgsinos.

B. Explicit Breaking of SO(5)

We now include terms that explicitly break the global SO(5) symmetry at tree-level in

order to generate a Higgs potential. The next subsection will analyze the largest effects

from the loops of Standard Model particles/sparticles. Our purpose is to discuss the tuning

required for realistic electroweak symmetry breaking in the simplest possible context.

Considering only dimensionless terms in the superpotential, we include the following

SO(5)-breaking couplings

∆W =
λ′

2
S Σ2 +

η

2
S2 Σ− κ′

2
Σ3, (13)

and the soft SUSY- and SO(5)-breaking terms

∆Vsoft = ∆m2
Σ |Σ|2 + ∆m2

SΣ(S Σ† + h.c.) +BΣ (Σ2 + h.c.) +BSΣ (S Σ + h.c.) (14)

in the potential. In order to understand the light Higgs potential, it is simplest to use the

effective theory below the mass scale of the heavy fields. Due to the large separation of
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scales, it is consistent to work at leading order in the SO(5) breaking terms above. We

analyze this model in the limit where the B-terms and ∆m2
SΣ vanish, purely for simplicity.

However, we include BS in our numerical analysis below, and also discuss the radiative

stability of neglecting various terms in the appendix. Explicit SO(5) breaking gives rise to

a potential for the light Higgs doublet H with the Standard Model form

V = m2
H H

†H +
λH
4

(H†H)2. (15)

The effective parameters m2
H and λH can be obtained by integrating out the heavy fields at

tree level:

m2
H = −∆m2

Σ −
λ′

4

[
λ f 2 − 2(κ− 2λ)u2

]
− η

4

[
λ f u− (2κ− λ)

u3

f

]
+

3κ′

2
λ f u, (16)

and

λH =
η

2

[
(2κ− λ)u3

f 3
− λu

2 f

]
− 3κ′ λu

f
. (17)

Here we have traded the SO(5) invariant parameters m2
S and m2

Φ for the VEVs f and u.

Note that the terms in the light Higgs potential are proportional to explicit SO(5) breaking,

as they must be. There is clearly sufficient freedom to obtain m2
H < 0 and λH > 0, while

still having a stable minimum (see Eq. (11)).

To understand the tuning, consider the simplest case where λ ∼ κ, u ∼ f , and η ∼ λ′ ∼
κ′ � λ. Then

m2
H ∼ −∆m2

Σ + η λ f 2, λH ∼ η λ. (18)

The VEV of the Higgs field is given by

v2 = −m
2
H

λH
, (19)

such that v∼> f unless m2
H is tuned to be smaller than its natural size. This is the canonical

tuning inherent in PNGB Higgs models. For example, if the small value of m2
H is obtained

by canceling ∆m2
Σ against the other terms, the largest sensitivity is given by

∆−1
PNGB ' −

∆m2
Σ

m2
H

∼ f 2

v2
. (20)

The tuning is always of order v2/f 2, which can be understood from the fact that we are

tuning the Higgs to be light compared to heavy states whose mass is proportional to f . The

same parameter v2/f 2 controls the deviation of the couplings of the light Higgs from the SM

values. The observed Higgs couplings imply v2/f 2∼< 10%, so there is an unavoidable tuning

of order 10% in this framework.
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It may appear that this tuning of the Higgs potential spoils our claim of enhanced

naturalness for this model. In fact, the Higgsino mass is also proportional to f , so the tuning

required to raise the Higgsino mass in the MSSM is proportional to v2/f 2, just like the tuning

in the Higgs potential above. However, the tuning in our model is parametrically improved

relative to an MSSM-like theory when the dimensionless SO(5) preserving couplings are

large. In an MSSM-like theory where the Higgsino mass contributes to the Higgs mass at

tree level, we have a tuning

∆−1
MSSM '

∣∣∣∣µ2
eff

m2
H

∣∣∣∣ =
2µ2

eff

m2
h

, (21)

where mh = 125 GeV is the physical Higgs mass. Note that this is a conservative estimate

of the tuning, since it assumes that there is a natural mechanism for generating the Higgs

quartic and does not include the tuning contribution from stop loops. For example, this is

the case in the NMSSM for large values of the S HuHd coupling (i.e. “λ-SUSY” [33]), but

not for the MSSM where stop loops generate the Higgs quartic. To make a fair comparison

to our model, we consider the ratio of the tuning in our model to the tuning in an MSSM-like

theory for the same value of the Higgsino mass, µeff ∼ λu, yielding

T ≡ ∆−1
MSSM

∆−1
PNGB

∼ λ2

λH
, (22)

where λ is a SO(5)-preserving coupling in our model and λH = m2
h/2v

2 = 0.13 is the SM

Higgs coupling. We see that the tuning is parametrically improved relative to an MSSM-like

model. This is one of the main conclusions of our work.

The tuning in theories with heavy Higgsinos is most significantly improved relative to

MSSM-like theories when the Higgs sector that spontaneously breaks SO(5) is strongly

coupled. This means that we get the maximum gain in a limit where our model is not

calculable. Our attitude toward this is that the model we are presenting is an existence

proof, and we will use it to demonstrate that the above simple picture of the tuning can be

realized in a complete model. The improvement in the tuning in this model is then limited

by the weak coupling that we need for calculability, but we can be confident that there

are no hidden problems in this scenario. It is therefore plausible that there are strongly-

coupled models with the same general features, and we will illustrate the possibilities by

extrapolating the present model all the way to strong coupling.
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C. Explicit SO(5) Breaking by Gauge and Yukawa Couplings

In this section, the effects of the Standard Model electroweak gauge and Yukawa couplings

is discussed. These must not be too large if we are to maintain a light Higgs mass without

fine tuning. Not surprisingly, we find that the largest contribution comes from top/stop

loops.

First, consider the electroweak gauge couplings. Because tan β ' 1, the electroweak

D-term contribution to the Higgs potential is negligible. However, electroweak loops will

generate a radiative correction to the mass-squared parameters for Hu, Hd but not Σ, thereby

breaking SO(5). The largest contribution comes from the Higgsinos due to the large Higgsino

mass in our models. The value is model-dependent because it is sensitive to UV-scale physics,

but it can be estimated using the leading-log approximation:

(∆m2
Σ)EW ' −

3 g2
2

8 π2
µ2

eff log

(
MSUSY

µeff

)
(23)

where MSUSY is the SUSY-breaking scale and g2 is the SU(2)W gauge coupling. Therefore,

requiring small ∆m2
Σ and the approximate SO(5) symmetry potentially gives rise to a loop-

level tuning. Using Eq. (23), one expects

∆−1
radiative ∼

3 g2

16π2

µ2
eff

v2
log

(
MSUSY

µeff

)
. (24)

In our numerical analysis below, we include this tuning by including in the potential

∆m2
Σ = ∆m2

Σ,0 +
(
∆m2

Σ

)
EW

(25)

and calculate the tuning with respect to ∆m2
Σ,0. Therefore, any radiative tuning of Eq. (24)

will show up as the tuning of ∆m2
Σ,0 against the Higgsino loop contribution that is required

to keep ∆m2
Σ small. We find that this tuning is generally subdominant in the regions of

parameter space we consider, but it can become relevant for larger Higgsino masses.

Another important source of explicit SO(5) breaking is the large top Yukawa coupling,

which is particularly important as it impacts the potentials for Hu and Hd differently.

Integrating out the tops and stops generates a correction to the Higgs potential for Hu

but not for Hd

∆Vt = ∆m2
HuH

†
uHu +

∆λHu
4

(
H†uHu

)2
. (26)

These contributions break the custodial SO(4) subgroup of the approximate global SO(5),

so this source of explicit breaking can be parameterized in terms of the resulting deviation

from tan β = 1. In particular, for δtβ = tan β − 1 6= 0, the light Higgs mass will pick up
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contributions ∆m2
H ∼ δtβ µ

2
eff . This can be understood as a mixing between the PNGB

Higgs and the second Higgs doublet, with the amount of mixing set by δtβ, and this effect

induces an additional source of sensitivity to the global symmetry-breaking scales u, f . As

a result, the corresponding tuning is

∆−1
δtβ
∼ δtβ

µ2
eff

v2
∝ ∆−1

MSSM (27)

such that T ∝ δtβ is approximately constant for regions of the PNGB sector parameter

space where this contribution to the tuning dominates. Hence, for a given value of δtβ, there

will be a maximum possible improvement in the tuning with respect to the MSSM.

The contribution from top/stop loops to the Higgs quartic is [49]

∆λHu =
3

π2

(
mt

vu

)4
{

log

(
mt̃1 mt̃2

m2
t

)
+ c2

t̃ s
2
t̃

m2
t̃2
−m2

t̃1

m2
t

log

(
m2
t̃2

m2
t̃1

)

+c4
t̃ s

4
t̃

(m2
t̃2
−m2

t̃1
)2 − 1

2
(m4

t̃2
−m4

t̃1
) log(m2

t̃2
/m2

t̃1
)

m4
t

}
. (28)

In a natural model with lighter stops, as envisioned here, this contribution to λH is

subdominant for mh = 125 GeV. Nonetheless, it does yield an ∼ 30% contribution to

the Higgs mass, so we include a contribution to ∆λHu given by Eq. (28) in our numerical

analysis below.

As for the electroweak correction discussed above, the term ∆m2
Hu

is model-dependent

since it is sensitive to UV-scale physics. In the leading-log approximation, the size of the

radiative contribution to ∆m2
Hu

is given by

(
∆m2

Hu

)
stop
' − 3 y2

t

16π2

(
m2
Q3

+m2
u3

)
log

(
M2

SUSY

mt̃1mt̃2

)
, (29)

where we have neglected A terms and the contribution from the gluino for simplicity. Thus,

a reasonable concern is that maintaining small δtβ (and hence improvement relative to

the MSSM) represents an additional source of tuning in the model due to the radiative

(in)stability of small ∆m2
Hu

. The magnitude of the radiative tuning can be estimated using

Eq. (29),

∆−1
radiative ∼

3 y2
t

32π2

m2
Q3

v2
log

(
M2

SUSY

mt̃1mt̃2

)
. (30)

This contribution gives a lower bound on the tuning in the model for a given set of stop

masses and MSUSY, as in any natural SUSY model. Note that we do not include ∆−1
radiative as a

contribution to ∆−1
MSSM when computing T , making our comparison to the MSSM maximally

conservative. In our numerical analysis below, we account for this tuning by including in
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the potential

∆m2
Hu = ∆m2

Hu,0 +
(
∆m2

Hu

)
stop

(31)

and calculate ∆−1 with respect to both ∆m2
Hu,0

and the stop mass-squared parameters.

The stop mass contributions described above become more important for large µeff

because this increases the stop mass splittings. This increases the tension with naturalness

because larger soft-masses in the stop sector are required to avoid conflict with LHC bounds

on the lightest stop. One could allow At 6= 0, but this would also contribute to
(
∆m2

Hu

)
stop

through the renormalization group evolution. In the numerical results below, we will fix the

lowest stop mass to be 600 GeV, thereby accounting for the increased contribution to the

tuning with larger soft-masses.

As one might expect, we find that preserving the gain relative to the MSSM requires

maintaining the limit where the PNGB description is approximately valid, which includes

the requirement that tan β ' 1. Consequently, while the largest gains relative to the MSSM

are achieved for strong coupling, the improvement does not increase arbitrarily as λ → ∞.

As λ ∝ µeff increases, small δtβ is required such that ∆−1
δtβ

does not dominate the tuning.

Eventually, however, the tuning ∆−1
radiative required to keep ∆m2

Hu
(and hence δtβ) small

prevents δtβ from being decreased further. In other words, the top/stop loops are what

limit the improvement in tuning for large λ.

III. Results

In this section, we confirm the above results based on a full numeric analysis of the

tree-level potential, including the most important radiative corrections Eqs. (24) and (30)

as described above. A weakly-coupled benchmark point is presented as a proof of principle,

and we also present results as a function of λ for a subspace of the parameter space in order

to demonstrate the improvement when extrapolating to strong coupling.

The most important experimental constraint on this model comes from Higgs coupling

measurements at the LHC. In our model, the light Higgs mixes with CP-even components of

S and Σ, resulting in a universal reduction factor κh in the couplings between the couplings

of the Higgs to all other SM particles. Using the full 7 and 8 TeV data sets, ATLAS has

given the constraint [50]

κh − 1 > −0.064. (32)

As in any PNGB Higgs model, we have κh−1 ∼ v2/f 2, assuming v � f ∼ u. In the minimal

composite Higgs model the constraint Eq. (32) implies f > 710 GeV, which in turn requires
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tuning of order v2/f 2 ∼ 10%. In our model, the precise constraint has a more complicated

parametric dependence because the coupling suppression arises from the mixing of 3 states,

but the conclusions are essentially the same. We find that imposing the constraint Eq. (32)

implies tuning of at least 10%.

A. Benchmark Model

We present a complete weakly coupled benchmark in Table I that satisfies all experimental

constraints. This will be used as a starting point to extrapolate into the strongly-coupled

regime in the following subsection. Note that we consider only a subset of the possible

couplings for simplicity. In the appendix we show that this choice is sufficiently radiatively

stable that it does not introduce additional tuning.

SO(4) symmetric input parameters

λ κ u [TeV] f [TeV] BS

[
TeV2

]
η

1.5 2.0 1.1 0.65 −0.04 0.0872

Stop sector input parameters

tanβ mQ3
= mu3

[TeV] md3
[TeV] At = Ab [TeV]

1.05 0.718 1.5 0

Soft SUSY-breaking masses

m2
S

[
TeV2

]
m2

Φ

[
TeV2

]
∆m2

Σ,0

[
TeV2

]
∆m2

Hu,0

[
TeV2

]
−4.48 0.216 0.103 0.174

TABLE I: Input parameters for a weakly-coupled benchmark. The upper table lists the SO(4)

preserving parameters as discussed in Sections II A and II B, and the middle table lists the

parameters of the stop sector, which violate SO(4) and are discussed in Section II C. The lower

table shows the soft SUSY-breaking masses that give rise to the assumed VEVs.
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The physical masses of the particles are

mt̃ = 600 GeV, 851 GeV, (33)

mb̃ = 718 GeV, 1.5 TeV, (34)

mh = 125 GeV, (35)

mH̃,H0, H±, A0 = 1.73 TeV, (36)

scalars: m = 811 GeV, 3.1 TeV, (37)

pseudoscalars: m = 337 GeV, 2.29 TeV. (38)

The tunings with respect to the input parameters are as follows:

pi λ κ m2
S m2

Φ ∆m2
Σ,0 η ∆m2

Hu,0
m2
Q3

m2
u3

∆−1 22 29 4 4 12 8 10 9 9

The tunings in λ, κ capture ∆−1
PNGB, while the tunings in ∆m2

Σ,0,∆m
2
Hu,0

,m2
Q3

and m2
u3

correspond to the radiative tunings described in Eqs. (24) and (30). Note that, for MSUSY =

104
(
106
)

TeV, we would have ∆m2
Hu,0

= 0.479 (0.785) TeV2 and ∆−1
radiative ∼ 25 (50). As

expected, the radiative tuning required to keep tan β ' 1 dominates for larger values of

MSUSY.

This benchmark model is tuned at the level of 3%. Given that the Higgsino mass is µeff =

1.17 TeV, the corresponding Higgsino tuning in an MSSM-like model would be ∼ 0.5%,

corresponding to an improvement factor T = 5.9 (see Eq. (22)). This modest improvement

is expected since we are working at weak coupling.

B. Strong Coupling

We now extrapolate the results of the benchmark model to larger values of λ. We do this

by simply using the same approximations made for the weakly-coupled model. Even though

some quantities will have corrections of order 100%, we expect that the qualitative estimates

of the tuning are accurate. The other input parameters are fixed as follows: f = 650 GeV,

u = 1.1 TeV, κ = 4
3
λ, BS = −0.04 TeV2. The parameters ∆m2

Σ,0 and η are chosen to

reproduce v = 246 GeV and mh = 125 GeV.

Our results are presented in Figs. 1 and 2. Both figures show the largest tuning in our

model in the left panel, and the ratio of tuning compared to an MSSM-like model in the

right panel. The purpose of Fig. 1 is to show how the simple scaling arguments provided

above are reproduced in the full numerical analysis. In particular, four different choices of

tan β are shown. The transition from a regime where the tuning is dominated by ∆−1
PNGB to
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where it is dominated by ∆−1
δtβ

is manifest from the turn over. Note that, for the curve with

tan β = 1.05, ∆−1
δtβ

does not dominate for the values of λ ∝ µeff shown. Here, we have fixed

MSUSY = 102 TeV; the radiative tuning is always subdominant for this choice of parameters.
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FIG. 1: The left (right) panel shows ∆−1
max (T ) as a function of λ for different values of tanβ given

on each curve. The other fixed parameters are given in the text.
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given on each curve. At each point, tanβ has been chosen to minimize the tuning. The other fixed

parameters are given in the text.
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Fig. 2 presents the bottom line results for the tuning in the model at stronger coupling. It

shows ∆−1
max and T for three choices of MSUSY, with tan β chosen at each point to minimize

the tuning. The quadratic improvement of the tuning as λ increases turns over at large

values of λ due to the radiative tuning, which is more important at larger values of MSUSY.

This shows that a significant improvement in tuning with respect to MSSM-like models is

possible in this framework.

IV. Conclusions

We have presented a general mechanism for improved naturalness in SUSY theories with

heavy Higgsinos. The main idea is that if the Higgs is a pseudo-Nambu-Goldstone boson

(PNGB) arising from a global symmetry breaking pattern such as SO(5)→ SO(4), an SO(5)

preserving Higgsino mass does not contribute to the Higgs mass, decoupling the Higgsino

mass from the naturalness of the Higgs mass at tree level. This implies that experimentally

allowed models with relatively light stops and LSP masses not far below the stop masses

can be natural.

We presented a simple model that realizes this scenario. The only fields beyond the

MSSM that are required are two additional singlet chiral multiplets. In particular, there

are no additional top partners to fill out SO(5) multiplets. The model has an approximate

SO(5) global symmetry, and the observed Higgs is a PNGB associated with the spontaneous

breaking of this symmetry. A natural and phenomenologically-acceptable Higgs potential

can arise from a combination of top/stop loops and tree-level SO(5) breaking.

The tuning in this model was compared with an MSSM-like model where the Higgsino

mass contributes to the Higgs mass at tree level. We find a parametric enhancement of

naturalness when the couplings in the Higgs sector that spontaneously breaks SO(5) are

large. A model with a Higgsino mass of 2 TeV would lead to tuning ∼ 1/20 in this model,

an improvement with respect to the Higgsino tuning in an MSSM-like model by a factor

of up to 30. Our model explains the observed Higgs mass of 125 GeV without additional

tuning, while the MSSM-like model would require either additional structure (such as the

NMSSM) or additional tuning to accomplish this.

Only experiment can tell us whether the electroweak scale is fine-tuned. In the meantime,

we must continue to explore all possible angles of electroweak naturalness. The aim of this

paper is to remind us that the only truly model independent naturalness constraints on the

masses of superpartners come from radiative corrections to the Higgs mass. In particular,

the Higgsino mass can be naturally large in SUSY theories minimally extended beyond the

MSSM.
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Appendix: Additional Symmetry-Breaking Terms

In this appendix, we elaborate on the simplifying assumptions made in Sec. III. We

considered a minimal set of parameters including soft SUSY-breaking masses that preserve

both SO(5) and U(1)R (m2
S,m

2
Φ), that explicitly break SO(5) (∆m2

Σ,∆m
2
Hu

) and that

explicitly break U(1)R (BS), in addition to a single SO(5)-violating superpotential coupling

(η). These parameters are sufficient to yield a viable model, and so we focused on them for

simplicity, although other terms could have been included. Indeed, some of these terms will

be generated radiatively, and so must be included in a complete analysis.

We have confirmed numerically that including additional terms does not disrupt the

stability of our solutions. Moreover, due to non-renormalization of the superpotential and

the fact that any radiative corrections must be proportional to small symmetry-breaking

parameters, the neglected terms can be consistently treated as small perturbations to the

above setup without introducing sizable radiative tuning. This allows us to consistently

neglect the couplings λ′, κ′ in Eq. (13). Similarly, consider (for example) the soft SUSY-

breaking mass m2
SΣ in Eq. (14). This term breaks SO(5), and as such will receive radiative

contributions proportional to η and large soft SUSY-breaking masses. For instance, S loops

will generate corrections of size

∆m2
SΣ ∼

λ η

16 π2
m2
S. (39)

Such a contribution is a loop factor smaller than the leading contributions to m2
H ∼ λ η f 2 ∼

λ ηm2
S, allowing m2

SΣ to be taken small enough such that its contribution to the Higgs

potential is subdominant without simultaneously introducing large radiative tuning.
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In addition, we considered a non-zero B-term, BS, in order to lift the U(1)R flat direction

and to give mass to the corresponding NGB—this could also have been accomplished with a

non-zero BΦ term, see Eq. (9). As both terms are SO(5)-preserving, they do not significantly

influence the details of the Higgs potential. Furthermore, as U(1)R is only softly broken by

these terms, radiative corrections must be proportional to BS,Φ, such that the smallness of

these terms relative to the other large mass scales in the model (namely m2
S and m2

Φ) is

radiatively stable. While BΣ,SΣ in Eq. (14) would influence the Higgs sector, such terms

require explicit breaking of both SO(5) and U(1)R, so can be kept small without introducing

significant loop-level tuning. Finally, we have neglected the possible inclusion of A terms.

Again, small A terms are radiatively stable as such terms must be proportional to soft

SUSY-breaking and U(1)R-breaking, and be linear in mass—as we have no such terms, large

A terms will not be generated.
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