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We propose a new “locally smeared operator product expansion” (sOPE) to decompose non-local
operators in terms of a basis of smeared operators. The sOPE formally connects nonperturbative
matrix elements determined numerically using lattice field theory to matrix elements of non-local
operators in the continuum. These nonperturbative matrix elements do not suffer from power-
divergent mixing on the lattice, which significantly complicates calculations of quantities such as
the moments of parton distribution functions, provided the smearing scale is kept fixed in the
continuum limit. The presence of this smearing scale complicates the connection to the Wilson
coefficients of the standard operator product expansion and requires the construction of a suitable
formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.
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I. INTRODUCTION

Quantum chromodynamics (QCD) connects hadronic
matter to its fundamental constituents, quarks and glu-
ons. Many aspects of QCD are poorly understood, in
spite of four decades of intense experimental and theoret-
ical effort. As part of this effort, deep inelastic scattering
(DIS) of leptons from nucleons has played a central role
in establishing QCD as the reigning theory of the strong
interaction and continues to serve as a mainstay for at-
tempts to unravel QCD’s mysteries (for complete reviews
see, for example, [1] and [2]).

Theoretically, inclusive DIS cross-sections are sepa-
rated into leptonic and hadronic tensors, which capture
the electro-weak and strong dynamics of the scattering
process, respectively. The hadronic tensor factorizes into
a convolution of infrared-safe perturbative coefficients
and parton distribution functions (PDFs), which incor-
porate the low-energy QCD physics and therefore must
be determined nonperturbatively. PDFs are independent
of the scattering process, but depend on the target nu-
cleon, while the perturbative coefficients are independent
of the external scattering states.

PDFs are important for two reasons. First, they fur-
nish direct knowledge of the constituents of hadronic
states–the dominant form of visible matter in the
universe–in terms of the fundamental theory of the strong
force. Second, they provide constraints on hadronic
backgrounds at collider experiments, such as the Large
Hadron Collider. These backgrounds affect the sensitiv-
ity of a variety of high energy experiments, including
studies of the properties of the Higgs boson [3–5], and
searches for heavy W ′ and Z ′ boson production [6].
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PDFs cannot currently be calculated directly from
QCD using ab initio lattice QCD, because they are de-
fined in terms of light-cone matrix elements that are not
directly accessible on Euclidean lattices. Hence PDFs are
usually extracted from global analyses of different exper-
iments [7–15].

Naturally a direct nonperturbative computation of
PDFs is desirable: with sufficient precision, such a calcu-
lation would further constrain global fits in regions that
may be experimentally inaccessible.

Until recently, lattice calculations have focused on de-
termining the Mellin moments of PDFs, which are re-
lated to matrix elements of twist-2 operators that can
be determined on the lattice [16–18]. The lattice regu-
lator breaks Lorentz symmetry, which induces radiative
mixing between operators of different mass dimensions.
The resulting power divergences in the lattice spacing
completely obscure the continuum limit. Moments up to
the fourth moment can be extracted by carefully choos-
ing the external momenta and operators, but this signif-
icantly limits the precision with which one can extract
meaningful results for PDFs [19, 20]. Beyond the fourth
moment, power divergent mixing is inevitable and this
method cannot provide reliable calculations.

Ji recently proposed a new approach to directly extract
PDFs from lattice calculations [21, 22], based on a large-
momentum effective theory [23]. Preliminary results first
appeared in [24], but a number of issues remain, including
a complete understanding of the renormalization of the
relevant lattice matrix elements, and the practical ability
to resolve sufficiently large momenta on the lattice.

Here we propose a new formalism that removes mixing
in the continuum limit and, in principle, enables the ex-
traction of higher moments of PDFs from lattice QCD.
We call this formalism the “smeared operator product ex-
pansion” (sOPE). We expand continuum matrix elements
in a basis of locally-smeared lattice degrees of freedom.
The resulting matrix elements are functions of two scales,
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the smearing scale and the renormalization scale. The
sOPE provides the framework necessary to relate these
matrix elements, via Wilson coefficients, to phenomeno-
logically useful quantities, such as the hadronic tensor of
DIS.

Smearing has been widely used in lattice QCD to re-
duce ultraviolet fluctuations, partially restore rotational
symmetry and thereby systematically improve the pre-
cision of lattice calculations [25–28]. For a pedagogical
overview of smearing in lattice calculations, see, for ex-
ample, [29]. In the sOPE, we implement smearing via
the gradient flow, a classical evolution of the fields in
a new dimension, the flow time, towards the stationary
points of the action [30–34]. Matrix elements determined
nonperturbatively on the lattice require no further renor-
malization, up to a fermionic wavefunction renormaliza-
tion [30], and remain finite, provided the smearing scale
is kept fixed in physical units in the continuum limit
[31, 35]. There are two further advantages: the gradient
flow allows one to use smearing lengths of only one or
two lattice spacings, much smaller than hadronic length
scales on typical lattices, and therefore does not distort
the low energy physics [36]; and the gradient flow is com-
putationally very cheap.

The gradient flow is now well-established as a tool
to study lattice gauge theories, with applications from
scale-setting, i.e. determining the lattice spacing in phys-
ical units [37–41], to studying renormalization in lattice
gauge theories. For example, the gradient flow has been
used to define finite-volume renormalization schemes for
the strong coupling constant [42–46], for operator renor-
malization [47], and to understand the nonperturbative
scale dependence of renormalized matrix elements [48].
Related work has used Ward identities to study chiral
fermions on the lattice [49] and the energy-momentum
tensor [50–52].

In this paper we introduce the gradient flow for a sin-
gle real scalar field with quartic interactions and out-
line some of the properties of the sOPE applied to real
scalar field theory. Scalar field theories describe some im-
portant critical phenomena in nature, such as the anti-
ferromagnetic phase transition, and have a long history
as a testing ground for fundamental ideas in quantum
field theory in four dimensions. For our purposes, the
chief advantage is the simplicity of Euclidean scalar field
theory, which lays bare the structure of the sOPE and
highlights the points of similarity and contrast with the
local operator product expansion (OPE).

In the next section, we review Wilson’s OPE and intro-
duce the sOPE. We then apply the sOPE to scalar field
theory in Section III, illustrate how the gradient flow
removes power-divergent mixing in Section IV, and cal-
culate the perturbative Wilson coefficients to two loops
in Section V. Finally, in Section VI, we study the scale
dependence of the sOPE through renormalization group
equations for the Wilson coefficients.

II. THE OPERATOR PRODUCT EXPANSION

Wilson’s approach to the OPE for a non-local opera-
tor is widely known–see, for example, [53]–and here we
review some notation necessary for our discussion.

We write the OPE for a non-local operator, Q(x), as

Q(x)
x→0∼

∑
k

ck(x, µ)[O(k)(0)]R. (1)

The Wilson coefficients ck(x, µ) are complex functions of
the spacetime separation, x, and renormalization scale,
µ, that capture the short-distance physics associated with
the renormalized local operator [O(k)(0)]R. We represent
renormalized operators by [. . .]R and suppress their de-
pendence on the renormalization scale, µ, for notational
simplicity. The free-field mass dimension of the local op-
erator determines the leading spacetime dependence of
the corresponding Wilson coefficient.

As an example, let us consider the time-ordered two-
point function of two scalar fields with spacetime sepa-
ration x: T {φ(x)φ(0)}. In free scalar field theory, the
OPE is a Laurent expansion. Interactions generate sub-
leading dependence on the spacetime separation in the
Wilson coefficients, which become functions of the space-
time separation, the (renormalized) mass mR, and the
renormalization scale, µ:

T {φ(x)φ(0)} =
cI(µx,mRx)

4π2x2
I + cφ2(µx,mRx)[φ2(0)]R

+O(x). (2)

Here we have factored out the leading spacetime depen-
dence from the Wilson coefficients. The O(x) indicates
terms of order x, up to logarithmic corrections generated
by interactions.

We propose replacing the set of local operators in the
OPE by their locally smeared counterparts

Q(x)
x→0∼

∑
k

dk(τ, x, µ)S(k)(τ, 0). (3)

The Wilson coefficients, dk(τ, x, µ), and the smeared op-
erators, S(k)(τ, 0), are now functions of an extra scale,
the flow time, τ . Nevertheless, the leading spacetime
dependence of the Wilson coefficients is dictated by the
canonical mass dimension of the corresponding smeared
operator and is therefore just that of the standard OPE.

Just as the OPE is only valid for small spacetime sepa-
rations, the sOPE requires small flow times. We will see
that we require that τ ∝ x2, where x is assumed to be
small, to ensure that the Wilson coefficients are indepen-
dent of the external states.

For example, returning to the time-ordered two-point
function, the sOPE is

T {φ(x)φ(0)} =
dI(µx, µ

2τ,mRx)

4π2x2
I

+ dρ2(µx, µ2τ,mRx)ρ2(τ, 0) +O(x, τ),
(4)
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where we denote smeared fields at flow time τ by ρ(τ, x).
In the following sections, we will observe four features

of the smeared Wilson coefficients in the sOPE.

1. The logarithmic spacetime dependence of the orig-
inal OPE is preserved in the sOPE.

2. The flow time serves as an ultraviolet regulator for
the smeared Wilson coefficients, to leading order in
perturbation theory.

3. Beyond leading order the flow time cannot regular-
ize the Wilson coefficients, because the flow evolu-
tion is classical. We can, however, absorb renormal-
ization scale dependence into the renormalization
parameters of the original theory.

4. For any OPE to be meaningful, the Wilson coeffi-
cients must be independent of the external states.
We can ensure this for the sOPE by choosing srms <
x, i.e. the mean smearing radius must be smaller
than the spacetime extent of the non-local operator.
This ensures that the sOPE remains an expansion
in approximately local operators. In other words, if
the gradient flow probes length scales on the order
of the non-local operator, then the sOPE becomes
a poor expansion for the original operator.

Although we refer to this expansion as the smeared
OPE, we really have in mind that the smearing is im-
plemented via the gradient flow. The gradient flow acts
as a smoothing operation that drives the degrees of free-
dom of the theory to the stationary points of the ac-
tion. In QCD, the gradient flow corresponds to a contin-
uous stout-smearing procedure, an analytic method for
constructing lattice gauge fields with damped ultraviolet
fluctuations [25]. The direct comparison of the gradient
flow to other smearing schemes was first undertaken in
[54].

Many studies of the gradient flow have incorporated a
small flow-time expansion of fields at non-vanishing flow
time in terms of local fields at zero flow-time [48–52, 55].
We can view such an expansion as an OPE in the flow
time and thereby relate renormalized quantities calcu-
lated at non-zero flow time to the corresponding quanti-
ties in the original theory at vanishing flow time, which
would otherwise be difficult to compute.

In this work, we take a different approach. We do
not expand the flowed fields in terms of original fields at
non-zero flow time, but rather take as the fundamental
objects of study the (matrix elements of) fields at pos-
itive flow time. Both approaches reflect the physically-
motivated expectation that smearing scales much smaller
than the physical scales of the system should not distort
the physics in question. The small flow time expansion
quantifies any deviations from this expectation and, fur-
thermore, decouples analytic calculations of Wilson co-
efficients in the continuum from lattice calculations with
smeared degrees of freedom. The sOPE incorporates the
smearing scale as an inherent scale of the system, which

requires new Wilson coefficients to be determined. Thus
both the small flow time expansion and the sOPE are
shaped by the role of the smearing scale as ultraviolet
regulator and are related, but distinct, conceptual ap-
proaches to the same physics: partially restoring rota-
tional symmetry on the lattice.

Smearing, in general, is a tool that partially restores
rotational symmetry [36] and thereby improves the con-
tinuum limit of lattice calculations. Smearing via the
gradient flow has a number of advantages. In partic-
ular, matrix elements determined nonperturbatively on
the lattice using smeared degrees of freedom require no
further renormalization [32], up to fermionic wavefunc-
tion renormalization [30], and remain finite, provided the
smearing scale is kept fixed in physical units as the con-
tinuum limit is taken.

We now turn to a more complete study of the sOPE ap-
plied to φ4 scalar field theory, a particularly straightfor-
ward theory in which to examine the sOPE. We can solve
the flow time equations exactly, because the flow time
evolution is linear in the scalar field. We do not need to
consider the complications associated with gauge-fixing
[31, 32], nor the extra renormalization of fermions [30].
Furthermore, for scalar fields the sOPE can be under-
stood to be simply a re-summation of the original OPE.
Although it is not necessary for our work, it is also in-
teresting to note that the OPE is known to converge for
Euclidean φ4-theory in four dimensions, at a fixed, but
arbitrary order in the perturbative expansion [56]. This
result holds at arbitrary spacetime separations, provided
the external states are of compact support.

Looking toward future calculations in QCD, we an-
ticipate that the technical issues associated with a flow
equation that incorporates gauge field interactions will
slightly complicate the perturbative calculations by in-
creasing the number of diagrams at a given order in
perturbation theory, but will not alter our conclusions.
Within the gauge sector, there are no loops of flowed
fields, because renormalized correlation functions remain
finite at non-zero flow time [31]. Therefore, at leading or-
der in perturbation theory, the flow time regulates ultra-
violet divergences; beyond leading order an appropriate
renormalization procedure must be incorporated. With
fermionic fields there is an extra fermion renormalization
parameter, calculated in [30], but this can be removed
by considering renormalization group invariant quanti-
ties [30]. We also note that all perturbative calculations
for the sOPE can be carried out in the continuum and do
not require lattice perturbation theory, which is generally
more involved [57, 58].

III. THE GRADIENT FLOW FOR SCALAR
FIELD THEORY

We work in four-dimensional Euclidean scalar field the-
ory with quartic self-interactions and bare mass m, de-
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fined by the action

Sφ[φ] =
1

2

∫
d4x

[
(∂νφ)2 +m2φ2 +

λ

12
φ4
]
. (5)

To study the sOPE, we introduce the scalar gradient
flow, which we define through the flow time evolution
equation

∂ρ(τ, x)

∂τ
= ∂2ρ, (6)

where ρ is a scalar field at non-zero flow time, τ , and ∂2

is the Euclidean, four-dimensional Laplacian operator.
Note that the flow time has units [τ ] = [x]2.

Imposing the Dirichlet boundary condition ρ(0, x) =
φ(x), we may write the exact solution of the flow time
equation as

ρ(τ, x) = eτ∂
2

φ(x), (7)

or, in the momentum representation, as

ρ̃(τ, p) = e−τp
2

φ̃(p). (8)

The full solution is

ρ(τ, x) =

∫
d4y

∫
d4p

(2π)4
eip·(x−y)e−τp

2

φ(y)

=
1

16π2τ2

∫
d4y e−(x−y)

2/4τφ(y), (9)

which demonstrates explicitly the “smearing” effect of
the gradient flow: the flow time exponentially suppresses
ultraviolet modes. We parameterize the smearing radius
via the root-mean-square smearing length, srms =

√
8τ .

The (Euclidean) smeared scalar propagator, for two
fields at flow times τ1 and τ2, is given by

G̃ρ(τ1, τ2, k) =
e−(τ1+τ2)k

2

k2 +m2
. (10)

The flow time evolution is classical, so any interactions
must occur at zero flow time. The corresponding Feyn-
man rule for the four-point vertex is just that of the stan-
dard (Euclidean) four-point vertex, V (4) = −λ/24.

IV. MIXING ON THE LATTICE

Before we examine the sOPE in detail, we demonstrate
how the gradient flow removes power-divergent mixing on
the lattice. We consider the example of twist-2 operators
in scalar field theory, which are symmetric and traceless
and given by

Tµ1...µn
(x) = φ(x)∂µ1

. . . ∂µn
φ(x)− traces. (11)

On the lattice, we replace the partial derivatives with
discrete difference operators

T latt
µ1...µn

(x) = φ(x)∆µ1
. . .∆µn

φ(x)− traces. (12)

The spacetime point x is now a node in the lattice,
xµ = anµ, where a is the lattice spacing and nµ is a
four-component lattice vector. The discrete difference
operators can be improved to remove discretization ef-
fects, but the simplest such symmetric operator acts on
a scalar field as

∆µφ(x) =
1

2a
(φ(x+ µ̂)− φ(x− µ̂)) , (13)

where µ̂ is the unit vector in the µth-direction.
The lattice regulator breaks rotational symmetry,

which induces mixing between twist-2 operators of dif-
ferent mass dimension. On dimensional grounds, the
mixing coefficients scale with inverse powers of the lat-
tice spacing and these coefficients diverge in the con-
tinuum limit. This is the problem of power-divergent
mixing on the lattice. For example, the simple bilin-
ear T latt(x) = φ(x)φ(x) mixes with the operator T latt

µν (x)

with a coefficient that scales as 1/a2. More generally, the
mixing between T latt(x) and any twist-2 operator with an
even number of derivatives, T latt

µ1...µ2n
(x), scales as 1/a2n.

The smeared counterparts of these operators, which
are given by

Slatt
µ1...µn

(x) = ρ(τ, x)∆µ1
. . .∆µn

ρ(τ, x)− traces. (14)

do not suffer from this problem. The mixing coefficient
between Slatt(x) = ρ(τ, x)ρ(τ, x) and Slatt

µ1...µ2n
(x) scales

as 1/τn, where τ is the flow time in physical units. Pro-
vided we keep the dimensionful scale τ = τ̃ a2 fixed, where
τ̃ is dimensionless, then as the lattice spacing a decreases,
the mixing coefficient remains finite, because matrix el-
ements at non-zero flow time cannot contain any addi-
tional divergences [31, 35].

As a simple illustration of this behavior, let us consider
the matrix element of two twist-2 operators of different
mass dimension:

Mcont = 〈Ω|φ(0)φ(0)φ(0)∂µ∂νφ(0)|Ω〉 . (15)

This matrix element vanishes for massless scalar fields.
On the lattice, however, the corresponding matrix ele-
ment,

Mlatt = 〈Ω|φ(0)φ(0)φ(0)∆µ∆νφ(0)|Ω〉 , (16)

is non-zero.
We show the Feynman diagram for the leading contri-

bution to this matrix element in the left-hand diagram
of Figure 1, which is given by

M
(0)
latt =

1

a4

∫ π/a

−π/a

d4(ak)

(2π)4
k̂µk̂ν(

k̂2 +m2
0

)2 , (17)

where k̂µ = (2/a) sin(akµ/2). We have included a bare
mass m0 to remove spurious infrared divergences, but
the integral is finite and we can take the massless limit,
m0 → 0, to match to the continuum massless theory. We
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FIG. 1. Diagrams representing the leading contributions to

the mixing matrix elements with unsmeared fields, M
(0)
latt,

and smeared fields, M
(0)
latt(τ). The black solid lines in the

left-hand diagram represent unsmeared propagators and the
black solid square and diamond are the operators φ2(0) and
φ(0)∆µ∆νφ(0). The blue dashed lines in the right-hand di-
agram are smeared propagators and the two different blue
blobs, filled and unfilled, represent the smeared operators
ρ2(τ, 0) and ρ(τ, 0)∆µ∆νρ(τ, 0).

expand this in powers of the lattice spacing to obtain

M
(0)
latt = − δµν

4

∫ π/a

−π/a

d4k

(2π)4
k2

(k2 +m2
0)2

+O(a2)

= − δµν
48a2

+O(a0) (18)

in the massless limit. This result signals the appear-
ance of power-divergent mixing: the 1/a2 term diverges
in the continuum limit. Although this calculation is only
leading-order in perturbation theory, higher order contri-
butions do not modify this power-divergent dependence
on the lattice spacing [36].

If we calculate this matrix element with smeared de-
grees of freedom (which we depict in the right-hand dia-
gram of Figure 1), however, we find

M
(0)
latt(τ) = 〈Ω|ρ(τ, 0)ρ(τ, 0) ρ(τ, 0)∆µ∆νρ(τ, 0)|Ω〉

= − δµν
4

∫ π/a

−π/a

d4k

(2π)4
k2e−4τk

2

(k2 +m2
0)2

+O(a2)

= δµν
e−4π

2τ/a2 − 1

256π2τ
+O(a0). (19)

Once again we have taken the massless limit. In the
continuum limit, keeping the flow time τ fixed in physical
units, this matrix element tends to a constant, signaling
the suppression of power-divergent mixing for smeared
degrees of freedom.

V. WILSON COEFFICIENTS FOR THE SOPE

The procedure for calculating smeared Wilson coeffi-
cients parallels that for the OPE, discussed in, for ex-
ample, [53]. With the Feynman rules of Section III in
hand, the calculation of smeared Wilson coefficients up to
next-to-leading order in perturbation theory is straight-
forward. We determine the smeared Wilson coefficients
for the leading connected and disconnected operators,
starting with the disconnected contribution.

FIG. 2. Diagrams representing the contributions to the Wil-
son coefficient dI at leading order (left two diagrams) and
next-to-leading order (right two diagrams). Solid black and
dashed blue lines are propagators at vanishing and non-
vanishing flow times, respectively. The black squares are
unsmeared fields φ(0), black dots are interaction vertices at
vanishing flow time and the blue blob represents the smeared
operator ρ2(τ, 0).

A. Disconnected contributions

1. Leading order

We illustrate the leading order (tree level) and next-
to-leading order (one loop) contributions to the smeared
Wilson coefficient for the disconnected operator, I, in Fig-
ure 2. As we will see, the leading order contribution is
independent of the renormalization scale, µ, because at
this order the flow time serves as the ultraviolet regula-
tor. Beyond leading order, however, the smeared Wilson
coefficient will have a renormalization scale dependence.

We extract the disconnected smeared Wilson coeffi-
cient by considering matrix elements of each of the op-
erators in the sOPE in the vacuum, which removes any
connected contributions. To O(x) we have〈

Ω|T {φ(x)φ(0)}|Ω
〉

=
dI(µx, µ

2τ,mx)

4π2x2
〈
Ω| I |Ω

〉
+ dρ2(µx, µ2τ,mx)

〈
Ω|[ρ2(τ, 0)]R|Ω

〉
+O(x), (20)

Here we have chosen the normalization of dI so that at
leading order in the free theory dI is unity. We expand
each quantity in this expression to one loop according to

f = f (0) − λf (1) +O(λ2), (21)

where f stands for either a matrix element or Wilson
coefficient. We have chosen the sign of the one loop con-
tribution to factor out the sign of the coupling constant
arising from the Feynman rule for the four-point vertex
V (4) = −λ/24.

The tree-level Wilson coefficient is then given by the
small spacetime behavior of

d
(0)
I

4π2x2
x∼0
=
{〈

Ω|T {φ(x)φ(0)}|Ω
〉

−
〈
Ω|ρ2(τ, 0)|Ω

〉}(0)

O(m2)
, (22)

where we have neglected the arguments of the coefficient
for clarity and used the fact that the tree-level connected
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coefficient is d
(0)
ρ2 = 1. The subscript indicates that we

must expand the result to O(m2). For more details about
the calculation of Wilson coefficients see, for example,
[53]. The corresponding Feynman integral representation
is

d
(0)
I

x∼0
= 4π2x2

{∫
k

eik·x − e−2k2τ

k2 +m2

}
O(m2)

= 4π2x2
∫
k

(
eik·x − e−2k

2τ
)( 1

k2
− m2

(k2)2

)
, (23)

where ∫
k

≡
∫

d4k

(2π)4
. (24)

The smeared Wilson coefficient is

d
(0)
I = 1− x2

8τ
+
m2x2

4

[
γ E − 1 + log

(
x2

8τ

)]
, (25)

with γ E ' 0.577216 the Euler-Mascheroni constant.
We can compare this result with the Wilson coefficient

for the OPE for d = 4− 2ε dimensions [53]:

c
(0)
I = 1 +

m2x2

4

[
1

ε
+ 1 + γ E + log

(
πµ2x2

4

)]
. (26)

Then in the MS scheme, this becomes

c
(0)
I = 1 +

m2x2

4

[
1 + 2γ E + log

(
µ2x2

16

)]
. (27)

Although the finite contribution to these expressions
cannot be directly compared, because we have expressed
the Wilson coefficients in two different renormalization
schemes, we note three important features. First, the
logarithmic dependence on the spacetime separation is
identical. Second, the flow time τ plays the role of the
renormalization scale at leading order. Third, we see
that for small spacetime separations, we require a small
flow time parameter. If we do not choose the flow time
parameter appropriately, we generate large logarithmic
contributions to the smeared Wilson coefficients and the
sOPE exhibits poor convergence properties, even at small
spacetime separations.

2. Next-to-leading order

At one loop, the smeared Wilson coefficient is given by

−λ
d
(1)
I

4π2x2
=
{〈

Ω|T {φ(x)φ(0)}|Ω
〉

−
〈
Ω|ρ2(τ, 0)|Ω

〉}(1)

O(m2)
. (28)

The four-point interaction in this diagram, which we
show in Figure 2, appears at zero flow time. Therefore

the flow time cannot act as a regulator for the momentum
integral over k2 and we must introduce a renormaliza-
tion procedure. We use dimensional regularization and
the MS scheme. The double integral is straightforward,
however, because the two integrals can be carried out
separately:

d
(1)
I

4π2x2
=

{∫
k1

eik1·x − e−2k21τ

(k21 +m2)2
1

2

∫
k2

1

k22 +m2

}
O(m2)

.

(29)
We find, for m > 0,

d
(1)
I = − m2x2

128π2

[
γ E − 1 + log

(
x2

8τ

)][
1 + log

(
µ2

m2

)]
.

(30)

Here we see that the second term, which is a function
of the new renormalization scale, µ, and the bare mass,
m, is nothing other than the one-loop contribution to the
mass renormalization of the original theory, in the MS
scheme [59]. Moreover, the factor containing the flow
time is identical to the O(m2) term from the leading

order contribution, d
(0)
I , in Equation (25).

Therefore, we can simply combine the leading order
and next-to-leading order terms to give

dI = 1− x2

8τ
+
m2

Rx
2

4

[
γ E − 1 + log

(
x2

8τ

)]
+O(λ2),

(31)

where mR is the renormalized mass in the MS scheme,
given by m2

R = Z−1m m2 and Zm is the mass renormaliza-
tion [59]:

Zm = 1 +
λ

16π2

[
1 + log

(
µ2

m2

)]
+O(λ2). (32)

This is a clear, next-to-leading order example of how
the divergences of the theory at non-zero flow time are
absorbed by the renormalization parameters of the orig-
inal theory at zero flow time. In other words, the renor-
malized theory at zero flow time remains ultraviolet finite
at non-zero flow time.

B. Connected contribution

We illustrate the leading and next-to-leading or-
der contributions to the connected Wilson coefficient
dρ2(µx, µ2τ,mx) of Equation (4) in Figures 3 and 4 re-
spectively. Throughout this section, we neglect dia-
grams that are trivially incorporated as part of the wave-
function renormalization of the external fields, such as
the one loop examples illustrated in Figure 5. Provided
the original theory at zero flow time is renormalized,
counterterms cancel these contributions completely.
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FIG. 3. Diagrams representing the leading order (one loop)
contributions to the Wilson coefficient dρ2 . Details of the
Feynman diagrams provided in the caption of Figure 2.

FIG. 4. Diagrams representing the contributions to the next-
to-leading order (two loop) contributions to the Wilson co-
efficients dρ2 . For details of the Feynman diagrams, see the
caption of Figure 2.

1. Leading order

We extract the leading order connected Wilson coeffi-
cient by considering matrix elements of each of the oper-
ators in the sOPE coupled to two external fields, which
removes any disconnected contributions. We can then
read off the one loop contribution to the Wilson coeffi-

cient, d
(1)
ρ2 , by matching terms at O(λ). This contribution

is given by the small spacetime behavior of

−λd(1)ρ2
x∼0
=
{〈

Ω|T {φ(x)φ(0)}φ̃(p1)φ̃(p2)|Ω
〉(1)

−
〈
Ω|ρ2(τ, 0)φ̃(p1)φ̃(p2)|Ω

〉(1)}
O(m0)

. (33)

The corresponding Feynman integral is

1

(p21 +m2)(p22 +m2)

{
1

2

∫
k

eik·x − e−(k2+q2)τ

(k2 +m2)(q2 +m2)

}
,

(34)

where q = k − p1 − p2. We extract the smeared Wilson

FIG. 5. Example diagrams that are naturally incorporated
in the renormalized external propagators. We do not include
these contributions in our explicit calculations of the Wilson
coefficients. For details of the Feynman diagrams, see the
caption of Figure 2.

FIG. 6. At small flow times (left-hand diagram), the smeared
operators are localized relative to the spacetime separation
of the non-local operator. At large flow time values (right-
hand diagram), however, the smearing radius probes the scale
of the non-local and the sOPE is a poor approximation to
the original non-local operator. For details of the Feynman
diagrams, see the caption of Figure 2.

coefficient by examining the small spacetime behavior of
the integral in curly braces, expanded to O(m0):

d
(1)
ρ2

x∼0
=

{
1

2

∫
k

eik·x − e−(k2+q2)τ

(k2 +m2)(q2 +m2)

}
O(m0)

. (35)

The smeared Wilson coefficients must be independent
of the external states to ensure that the sOPE is truly an
operator expansion. In this particular case, we require

that d
(1)
ρ2 is independent of the external momenta p1 and

p2 and the mass. By taking a derivative with respect to
one of the external momenta,

d

dpi
d
(1)
ρ2 =

∫
k

qi
[
eik·x − e−(k2+q2)τ (1 + (q2 +m2)τ)

]
(k2 +m2)(q2 +m2)2

,

(36)
we obtain a convergent integral. The x→ 0 limit of this
integral is now well-defined and only vanishes if the flow
time is related to the spacetime separation. An analo-
gous result holds if we take a derivative with respect to
the external mass, m. On dimensional grounds, then, we
guarantee that the smeared Wilson coefficient is indepen-
dent of the external states by choosing τ ∝ x2.

On physical grounds, however, we require that the
smearing radius is smaller than the spacetime extent of
the non-local operator: srms < x. This choice ensures
that the sOPE remains an expansion in local operators.
Physically speaking, if the gradient flow probes length
scales on the order of the non-local operator, which we
represent in Figure 6, then smeared operators would
cease to be (approximately) local. In other words, the
sOPE would be a poor expansion for the original op-
erator. This is the physical origin of the third feature
that we saw in the leading order disconnected contribu-
tion, Equation (25): small spacetime separations require
small flow times to ensure convergence. The OPE re-
quires small spacetime separations for good convergence,
so it follows that the sOPE requires small flow times as
well.

There is a complementary viewpoint that elucidates
the small flow-time requirement more quantitatively: the
small flow-time expansion [31, 50, 52]. In this case we see
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that the derivative of Equation (36) is independent of the
external momenta in the x→ 0 limit, up to terms linear
in the flow time:

d

dpi
d
(1)
ρ2 =

∫
k

qi
(
eik·x − 1

)
(k2 +m2)(q2 +m2)2

+O(τ). (37)

From this, it is clear that the Wilson coefficients will be
independent of the external states, up to terms linear in
the flow time. Therefore, provided the flow time is small
relative to the spacetime separation, the sOPE is an ex-
pansion approximately local operators, in a quantifiable
sense. Moreover, the flow time dependence will cancel in
the product of the Wilson coefficient and its associated
matrix element, to the desired order in the flow time.

We are free to set p1 = p2 = 0 in Equation (35), be-
cause the smeared Wilson coefficient is independent of
the external momenta and the mass to the order at which
we are working [53]. Expanding in the mass, we obtain

d
(1)
ρ2 =

1

2

∫
k

eik·x − e−2k2τ

(k2)2

= − 1

32π2

[
γ E − 1 + log

(
x2

8τ

)]
. (38)

Combining this with the leading order contribution,
which is just unity, we have

dρ2 = 1 +
λ

32π2

[
γ E − 1 + log

(
x2

8τ

)]
+O(λ2). (39)

In contrast, the Wilson coefficient for the OPE in the
MS scheme, denoted by c, is

cφ2 = 1 +
λ

32π2

[
1 + 2γ E + log

(
µ2x2

16

)]
+O(λ2). (40)

We note the occurrence of the three features we observed
for the leading order disconnected contribution: the same
spacetime dependence for both smeared and unsmeared
coefficients; the appearance of the flow time as a leading
order regulator; and the need to choose a small flow time
for small spacetime separations to avoid large logarith-
mic contributions. From the small flow-time expansion
viewpoint, we can confirm that the flow time dependence
ultimately cancels to the desired order. For example, the
matrix element of ρ2(τ, 0) coupled to two external fields
is〈

Ω|ρ2(τ, 0)φ̃(p1)φ̃(p2)|Ω
〉

= 1

+
λ

32π2

[
1 + γ E + log

(
2m2τ

)]
+O(τ, λ2) (41)

for sufficiently small flow times. Here we have dropped
the external fields, which we take to be onshell, for sim-
plicity. The product of this matrix element with the Wil-
son coefficient is independent of the flow time to one loop
and O(τ), as we would expect:

dρ2
〈
Ω|ρ2(τ, 0)φ̃(p1)φ̃(p2)|Ω

〉
= 1

+
λ

32π2

[
2γ E + log

(
m2x2

4

)]
+O(τ, λ2). (42)

FIG. 7. Two loop diagrams that appear at O(m2) and there-
fore do not contribute to dρ2 . For details of the Feynman
diagrams, see the caption of Figure 2.

2. Next-to-leading order

To determine the next-to-leading order contribution to
the connected Wilson coefficient, we must incorporate the
Feynman diagrams of Figure 4. The two loop diagrams
of Figure 7 do not contribute to the Wilson coefficient
dρ2 , because they appear at O(m2).

Looking at the Feynman diagrams of Figure 4, and
bearing in mind our experience of the next-to-leading or-
der contribution to dI, we immediately observe that these
diagrams are simply the product of the one loop Wilson

coefficient, d
(1)
ρ2 , and the next-to-leading order renormal-

ized four-point vertex. This contribution to the vertex
is, of course, nothing other than the next-to-leading or-
der contribution to the renormalized coupling constant.
Thus we write the Wilson coefficient quite simply as

dρ2 = 1 +
λR

32π2

[
γ E − 1 + log

(
x2

8τ

)]
+O(λ3), (43)

where λR is the renormalized coupling. In the MS
scheme, the renormalized coupling is given by

λR = λ− 3λ2

2(16π2)
log

(
µ2

m2

)
+O(λ3). (44)

For a calculation of this to five loops, see [59].
As we move beyond the leading order Wilson coeffi-

cients, i.e. d
(0)
I and d

(1)
ρ2 , divergent radiative corrections

appear in our calculations, because all field interaction
vertices appear at zero flow time. These divergences
can be removed by the renormalization parameters of the
original theory and the renormalization scale dependence
of the smeared operators is completely contained in the
renormalization parameters of the original theory. This
is to be expected: it follows from the fact that renormal-
ized matrix elements at zero flow time remain finite at
non-zero flow time and require no further renormalization
[31, 35].

Ultimately, for realistic calculations in lattice QCD,
the perturbative calculation of smeared Wilson coeffi-
cients must be combined with nonperturbative determi-
nations of matrix elements at hadronic energy scales.
Scalar φ4 theory is not asymptotically free in four dimen-
sions, but we can understand the mathematical features
of the sOPE in more detail by studying the renormal-
ization group equations for the simple example of scalar
fields.
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VI. RENORMALIZATION GROUP EQUATIONS

We consider the matrix elements of scalar operators
coupled to N external, unsmeared scalar fields. We can
derive renormalization group equations for the Wilson
coefficients of the OPE by considering the scale depen-
dence of suitably-chosen Green functions [53]. The Green
function for N + 2 external scalar fields obeys the renor-
malization group equation[

µ
d

dµ
+ (N + 2) γ

] 〈
Ω|φ̃(p1) . . . φ̃(pN+2)|Ω

〉
= 0, (45)

while the Green function of the renormalized operator
φ2R(0) coupled to N external scalar fields satisfies[

µ
d

dµ
− γm +Nγ

] 〈
Ω|φ2R(0)φ̃(p1) . . . φ̃(pN )|Ω

〉
= 0.

(46)
Here the renormalization group operator for scalar field
theory is

µ
d

dµ
= µ

∂

∂µ

∣∣∣∣
λ,mR

+ β
∂

∂λ

∣∣∣∣
µ,mR

− γmmR
∂

∂mR

∣∣∣∣
µ,λ

(47)

and the coefficients are [59]

βMS(λ) = µ
dλ

dµ
=

3λ2

(16π2)2
+O(λ3), (48)

γMS
m (λ) = − µ

2

d log(mR)

dµ

= − λ

2(16π2)
+

5λ2

12(16π2)2
+O(λ3), (49)

γMS(λ) =
µ

2

d log(Zφ)

dµ
=

λ2

12(16π2)2
+O(λ3). (50)

In general these coefficients depend on the mass, renor-
malization scale, and the renormalized coupling con-
stant, but in a mass independent renormalization scheme,
such as the MS scheme, they depend on the renor-
malization scale only through the renormalized coupling
constant. These functions are known to five loops for
the O(N)-symmetric theory, given by the N -multiplet
Φ = {φ1, . . . , φN} [59, 60].

Returning again to our example of the OPE for the
two-point function, Equation (2), we can derive an renor-
malization group equation for the Wilson coefficient cφ2

by coupling these operators to two external scalar fields
and using Equations (45) and (46) (for further details,
see, for example, [53]):[

µ
d

dµ
+ 2
(
γ + γm

)]
cφ2 = 0. (51)

Just as we might expect, the anomalous dimension of
the Wilson coefficient cφ2 is equal to the difference be-
tween the anomalous dimension of φ(x)φ(0) and that of
[φ2(0)]R.

A. Renormalization group equations for the sOPE
Wilson coefficients

The flow time, τ , introduces a new scale into the prob-
lem. In principle one can view the flow time as just
another external scale, unrelated to the renormalization
scale µ. In this case, it is natural to modify the renor-
malization group equations to account for the change in
the Green functions as we change both µ and τ :

µ
d

dµ
→ µ

d

dµ
− 2τ

d

dτ
. (52)

Our choice of differential operator is constrained by
the mass dimension of each scale, µ and τ , but is not
unique. In particular, one could choose the operator
µd/dµ + τd/dτ . This freedom does not affect the logic
of our discussion nor our conclusion, because alternative
conventions can be absorbed into the definition of the
renormalization parameters and anomalous dimensions
in, for example, Equation (58).

At this stage it is worth commenting on the two scales
in the problem, µ and τ . In DIS, the spacetime separation
of the corresponding OPE, x, and renormalization scale
µ are, in principle, two distinct scales. The spacetime
separation is provided by the inverse momentum transfer
of a particular DIS experiment or set of experiments. The
renormalization scale, however, is a theoretical choice and
ultimately physical quantities should not depend on the
renormalization scale. It is generally convenient to choose
µ = 1/x, but it is not strictly necessary.

The relationship between the flow time and the renor-
malization scale is analogous and these two scales are
distinct. For the sOPE, the flow time can be considered
as simply an external scale, imposed by some particular
lattice “experiment”, and the renormalization scale is a
convenient theoretical choice. We will see that it is help-
ful to tie these scales together, to reduce the two-scale
problem to a single scale, but this is not formally neces-
sary. Therefore, in the following analysis, the flow and
renormalization scale should be understood as completely
independent scales.

Considering again the sOPE for the two-point function,
Equation (4), we determine the renormalization group
equation for the smeared Wilson coefficient, dρ2 , by fol-
lowing a procedure analogous to that outlined above.

We assume that we are working in the small flow time
regime, which allows us to relate operators at vanishing
and non-vanishing flow time [31, 50, 52]:

[φ2(0)]R = Zρ2(τ, µ)ρ2(τ, 0) +O(τ). (53)

This coefficient satisfies

µ
d

dµ
log(Zρ2(τ, µ2)) = 2γm, (54)

and to one loop is given by

Zρ2(τ, µ2) = 1− λ

32π2

[
1 + γ E + log(2τµ2)

]
+O(λ2, τ).

(55)
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We apply the renormalization group operator

µ
d

dµ
− 2τ

d

dτ
+ (N + 2) γ (56)

to matrix elements of the operators in Equation (53) cou-
pled to N external scalar fields to obtain

[
µ

d

dµ
− 2τ

d

dτ
+ 2(ζρ2 − γ)

]
dρ2 = O(τ). (57)

Here

ζρ2 = τ
d

dτ
log(Zρ2(τ, µ2)) (58)

is an anomalous dimension associated with the flow time
dependence of the operator ρ2(τ, 0). The renormalization
group equation for the corresponding matrix element of
ρ2(τ, 0) coupled to N external fields is given by

[
µ

d

dµ
− 2τ

d

dτ
+ 2ζρ2 +Nγ

]
×
〈
Ω|ρ2(τ, 0)φ̃(p1) . . . φ̃(pN )|Ω

〉
= O(τ). (59)

We note that this equation only holds provided the flow
time is small compared with the momenta of the external
particles, which for DIS would be of the order of hadronic
scales.

If we now demand that the smearing scale, τ , and the
inverse of the renormalization scale µ are proportional to
each other, i.e. τ = b/µ2 with b real, then the renormal-
ization group equation becomes

[
2µ

d

dµ
+ 2ζρ2 +Nγ

]
×
〈
Ω|ρ2

(
b/µ2, 0

)
φ̃(p1) . . . φ̃(pN )|Ω

〉
= O(b). (60)

This renormalization group equation provides the start-
ing point for a nonperturbative step-scaling method
[47, 61] that evolves nonperturbative matrix elements to
a high scale, where they can be combined with pertur-
bative smeared Wilson coefficients. Here the renormal-
ization group equation holds in the small flow time limit,
or in other words, provided b� 1. This constraint auto-
matically ensures that the flow time is also smaller than

any hadronic length scales, ΛQCD � µ2 � 1/τ and is
generally true for practical step-scaling methods [47, 61].
We are currently investigating this approach in QCD.

VII. CONCLUSION

We have proposed a new method, the smeared oper-
ator product expansion (sOPE), to extract matrix ele-
ments from numerical nonperturbative calculations with-
out power divergent mixing. The smeared operator
product expansion is a general framework relevant to
any asymptotically free theory with nonperturbative ma-
trix elements that suffer from power divergent mixing.
Within QCD, the most obvious application is to deep
inelastic scattering, but other applications include non-
perturbative determinations of K → ππ decays [62, 63]
and B-meson mixing [64]. Beyond QCD, applications in-
clude nonperturbative studies of critical phenomena in
the Heisenberg model, spin systems and other condensed
matter systems.

In the sOPE, we expand non-local operators in a basis
of smeared operators, the matrix elements of which can
be determined on the lattice. We implement the smear-
ing via the gradient flow, a classical evolution of the the-
ory in a new dimension that smooths ultraviolet fluctu-
ations. The continuum limit of these matrix elements is
free of power divergent mixing, provided the localization
scale, the smearing length, is kept fixed in the continuum
limit. The resulting matrix elements are functions of two
scales, the renormalization scale and the smearing length.
The sOPE systematically relates these matrix elements
to smeared Wilson coefficients, which can be calculated
in perturbation theory, thereby providing a complete de-
termination of the non-local operators.
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