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We present new results for the amplitude A2 for a kaon to decay into two pions with isospin I = 2:
ReA2 = 1.50(4)stat(14)syst × 10−8 GeV; ImA2 = −6.99(20)stat(84)syst × 10−13 GeV. These results
were obtained from two ensembles generated at physical quark masses (in the isospin limit) with
inverse lattice spacings a−1 = 1.728(4) GeV and 2.358(7) GeV. We are therefore able to perform a
continuum extrapolation and hence largely to remove the dominant systematic uncertainty from our
earlier results [1, 2], that due to lattice artefacts. The only previous lattice computation of K → ππ
decays at physical kinematics was performed using an ensemble at a single, rather coarse, value of
the lattice spacing (a−1

≃ 1.37(1) GeV). We confirm the observation reported in [3] that there is
a significant cancellation between the two dominant contributions to ReA2 which we suggest is an
important ingredient in understanding the ∆I = 1/2 rule, ReA0/ReA2 ≃ 22.5, where the subscript
denotes the total isospin of the two-pion final state. Our result for A2 implies that the electroweak
penguin contribution to ǫ′/ǫ is Re(ǫ′/ǫ)EWP = −(6.6± 1.0) × 10−4.

PACS numbers: 11.15.Ha, 11.30.Rd, 12.15.Ff, 12.38.Gc

I. INTRODUCTION

Nonleptonic K → ππ decays continue to be an important class of processes in the phenomenology of the standard
model of particle physics. Historically it was in these decays that both direct and indirect CP-violation were discovered
and the challenges for theoretical physicists include an explanation of the long-standing puzzle of the ∆I = 1/2 rule
and an ab initio computation of ǫ′/ǫ. Developments in the theoretical framework of Lattice QCD and in efficient
algorithms, together with the availability of the latest computing power, have made meeting these challenges feasible.
A significant element of the current joint research program of the RBC and UKQCD collaborations is the evaluation
of the K → ππ amplitudes A0 and A2, where the subscript represents the isospin of the two-pion final state (which
by Bose symmetry is restricted to 0 or 2). In this paper we present our latest results for A2.
In [1, 2] we reported on the first results from a lattice determination of the amplitude A2 for K → (ππ)I=2 decays,

where I is the total isospin of the two-pion final state:

ReA2 = 1.381(46)stat(258)syst 10
−8GeV, ImA2 = −6.54(46)stat(120)syst 10

−13GeV . (1)

This was the first quantitative calculation of an amplitude for a realistic hadronic weak decay and hence extended
the framework of lattice simulations into the important domain of nonleptonic weak decays. As explained in the
Introduction of [2], in order to obtain the result in Eq. (1) it was necessary to overcome a number of theoretical
problems and exploit recent improvements in algorithms and the opportunities provided by increases in computing
resources. The systematic errors in (1) are dominated by the fact that the calculation was performed at a single,
rather coarse, value of the lattice spacing (a ≃ 0.14 fm). We estimated these errors to be O(15%).
In this paper we repeat the calculation at two finer values of the lattice spacing and perform the continuum

extrapolation.The simulations are carried out at physical pion masses (with unitary sea and valence quark masses)
using our two new ensembles with lattice spacings a = 0.011 fm and a = 0.084 fm. Our new result is presented in
Eq. (63) and we reproduce it here for the reader’s convenience:

Re(A2) = 1.50(4)stat(14)syst × 10−8 GeV; Im(A2) = −6.99(20)stat(84)syst × 10−13 GeV . (2)

A very interesting feature of our earlier calculation of A2 was the observation that the two dominant contributions
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to ReA2 show a significant numerical cancellation [3]. We argued in [3] that this cancellation is an important element
in the explanation of the ∆I = 1/2 rule, ReA0/ReA2 ≃ 22.5. We confirm this cancellation in the present calculation.
Of course, before we can claim that we fully understand the ∆I=1/2 rule, we need to compute A0 at physical quark
masses and momenta; this calculation is even more challenging than the evaluation of A2 but is underway. For the
status of this calculation we refer the reader to [4].
The structure of the remainder of this paper is as follows. In the next section we present the parameters of the

two ensembles used in this calculation. The evaluation of the bare matrix elements and the renormalization of the
lattice operators are discussed in Secs. III and IV respectively. We consider finite-volume effects in Sec. V and present
an overview of the different sources of systematic uncertainty in Sec. VI. We perform the continuum extrapolation
in Sec.VII and present our final result in Eq. (63). Sec.VIII contains our conclusions and a brief discussion of the
prospects for the reduction of the errors in A2 as well as for the calculation of A0. There is one appendix in which we
reproduce the calculation from [5] of the Lellouch-Lüscher factor for finite-volume corrections in the context of chiral
perturbation theory. This calculation demonstrates how to disentangle the finite volume corrections which decrease
exponentially with increasing lattice volume (a source of systematic error) from those which decrease as a power of
the volume (which are corrected by the Lellouch-Lüscher factor). This calculation also clarifies a misunderstanding
of these effects in the literature [6].

II. DETAILS OF THE SIMULATION

The calculations described below have been performed on two new 2+1 flavor ensembles generated with the Iwasaki
gauge action and with Möbius domain wall fermions [7] . The parameters of the ensembles are:

(i) 483 × 96× 24 with β = 2.13 (a−1 = 1.728(4)GeV);

(ii) 643 × 128× 12 with β = 2.25 (a−1 = 2.357(7)GeV).

These two ensembles use the Möbius variant of domain wall fermions [8] with a Möbius scale factor α = 2. For
compactness of notation we will refer to these ensembles as 483 and 643 respectively. The lattice spacing and quark
masses were set by choosing the masses of the pion, kaon and the Ω-baryon to be equal to their physical values. The
corresponding sea quark masses are amud = 7.8 × 10−4 and ams = 3.62 × 10−2, with the residual mass amres =
6.19(6)× 10−4 for the 483 ensemble and amud = 6.78 × 10−4, ams = 2.661 × 10−2 and amres = 2.93(8)× 10−4 for
the 643 ensemble. The two ensembles have approximately the same physical volume with spatial extent L ≃ 5.5 fm,
enabling the continuum extrapolation to be separated from finite-volume effects which we estimate separately. For
more details on these ensembles see [7] and we will return briefly to the determination of the lattice spacings in the
context of the continuum extrapolation in Sec. VII.
The results presented below were obtained using 76 gauge configurations on the 483 ensemble and 40 on the 643

ensemble. The large statistical uncertainty one expects with a relatively small number of gauge configurations can
be significantly reduced if we perform many measurements on each configuration in which the sources and sinks are
simply translated in space and time [7]. Performing multiple measurements on the same configuration offers two
important opportunities for increased efficiency. First if we can use a low-mode deflation method such as eigCG [9]
we will be able the amortize the set-up costs of such an approach over a large number of inversions. Second we can
use the all mode averaging technique [10] and perform most of these many inversions at reduced precision and use a
relatively few accurate inversions to determine a correction that guarantees systematic double precision but with an
additional (usually small) statistical error that reflects the small number of accurate solves. Specifically for the 483

ensemble, the eigCG method was used in single precision with 600 approximate low-lying eigenvectors and a stopping
residual of 10−4. The approximate (wall source) propagators were computed on all 96 time slices. The accurate
solves used to correct the approximation were computed on time slices 0, 76, 72, 68, 64, 60 and 56 with CG stopping
residual 10−8. (This choice of time-slice separations is not related to the K → ππ calculation presented here but to
an accompanying calculation of BK [7].) To ensure that no bias results from the choice of inexact solves for which the
correction is calculated, this complete pattern of source time slices for the accurate solves was shifted by a different
random time displacement on each configuration. A similar procedure was used on the 643 ensemble but with 1500
low-modes and a stopping residual of 10−5 for the approximate solves and accurate solves on time slices 0, 103, 98,
93, 88, 83, 78 and 73. On both the ensembles, the accurate CG solves were also computed using eigCG, exploiting
the approximate eigenvectors created during the inaccurate applications of eigCG.
Measurements on the 483 and 643 ensembles are separated by 20 MD and 40 MD units respectively. In order to

study the effects of autocorrelations we bin the data. We find that the effects are small, typically leading to a variation
of the statistical errors of less than 10%. The results presented below were obtained after binning the 76 configurations
of the 483 ensemble into 19 bins of 4 configurations and the 40 configurations of the 643 ensemble into 8 bins of 5
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mπ mK Eππ mK − Eππ

483 (lattice units) 8.050(13)× 10−2 2.8867(15)× 10−1 2.873(13)× 10−1 1.4(14)× 10−3

643 (lattice units) 5.904(14)× 10−2 2.1531(14)× 10−1 2.1512(68)× 10−1 9(10)× 10−4

483 (MeV) 139.1(2) 498.82(26) 496.5(16) 2.4(24)

643 (MeV) 139.2(3) 507.4(4) 507.0(16) 2.1(26)

TABLE I: Pion and kaon masses and the I=2 two-pion energies in lattice and physical units measured on the 483

and 643 ensembles. The momentum of each of the final-state pions is ±π/L in each of the three spatial directions.
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FIG. 1: Effective mass plots for the kaon correlation functions on the 483 ensemble (left) and 643 ensemble (right).

configurations. The 40 configurations from the 643 ensemble are precisely those used in the global analysis reported
in [7]. The 76 configurations from the 483 ensemble include 73 of the 80 used in [7]. We have however, repeated the
relevant analysis of [7], including the determination of the lattice spacings, using precisely the 76 configurations for
which we have computed A2. This makes it possible to compute standard jackknife errors for our physical results
which necessarily depend upon the value of the lattice spacing.
The pion (mπ) and kaon masses (mK) as well as the energies of the I = 2 two-pion state (Eππ) obtained on the

two ensembles are shown in Tab. I. The fitting ranges used for pion and kaon masses as well as two pion energies were
from 10 to 86 on the 483 ensemble and from 10 to 118 on the 643 ensemble. These choices were motivated by the
plateaus in the effective mass plots shown in figures 1 - 2. The effective mass of the kaon, meff

K , is defined numerically
by the ratio:

CK(t+ 1)

CK(t)
=

cosh(meff
K (t+ 1− T/2))

cosh(meff
K (t− T/2))

, (3)

and the two-pion effective mass, Eeff
ππ, is found by inverting:

Cππ(t+ 2)− Cππ(t+ 1)

Cππ(t+ 1)− Cππ(t)
=

e−Eeff
ππ(t+2) + e−Eeff

ππ(T−t−2) − e−Eeff
ππ(t+1) + e−Eeff

ππ(T−t−1)

e−Eeff
ππ(t+1) + e−Eeff

ππ(T−t−1) − e−Eeff
ππt + e−Eeff

ππ(T−t)
. (4)

The two-point correlation functions CK and Cππ are defined explicitly in Eq. (22) below and the differences in the
numerator and denominator on the left-hand side of Eq. (4) are introduced to eliminate the constant C in Eq. (23).
The pion and kaon masses correspond closely to their physical values. We will explain below that the pions are given

a momentum π/L in each of the three spatial directions and from the table we see that with this choice Eππ ≃ mK and
the K → ππ matrix elements correspond to the on-shell (within statistical errors) decay of a kaon in the centre-of-mass
frame. We now discuss the evaluation of the matrix elements.
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FIG. 2: Effective mass plots for the two-pion correlation functions on the 483 ensemble (left) and 643 ensemble
(right).

III. EVALUATION OF THE BARE MATRIX ELEMENTS

K → ππ decay amplitudes are defined by:

√
2A2,0 e

iδ2,0 = 〈(ππ)I=2,0 | HW | K0〉, (5)

where HW is the component of the weak Hamiltonian which changes the strangeness by one unit. The weak Hamil-
tonian can be separated into short and long distance contributions by using the operator product expansion:

HW =
GF√
2
V ∗
udVus

∑

i

Ci(µ)Qi(µ), (6)

where GF is the Fermi constant, Vus and Vud are CKM matrix elements, the Qi are all the possible dimension-6
operators which contribute to the decay and Ci are the corresponding Wilson coefficients which contain information
about the short distance physics. The Ci take the form Ci = zi + τyi where τ is the ratio of CKM matrix coefficients

τ = − V ∗
tsVtd

V ∗
usVud

.

In this paper we only consider ∆I = 3/2 decays where the two-pion final state has total isospin 2. The nonpertur-
bative contribution to the decay amplitude is contained in the matrix elements:

MK0

i ≡ 〈(ππ)I=2
I3=0 | Q∆I=3/2

∆I3=1/2,i | K0 〉 and MK+

i ≡ 〈(ππ)I=2
I3=1 | Q∆I=3/2

∆I3=1/2,i | K+ 〉. (7)

There are only 3 operators which contribute to A2, which we label according to their chiral SU(3)L × SU(3)R
transformation properties. We have one (27,1) operator and two electroweak penguin operators labelled (8,8) and
(8, 8)mx, where the subscript mx denotes a color mixed operator. Explicitly, the operators are given by:

Q
∆I=3/2
(27,1) = (s̄idi)L

(
ūjuj − d̄jdj

)

L
+ (s̄iui)L(ūjdj)L, (8)

Q
∆I=3/2
(8,8) = (s̄idi)L

(
ūjuj − d̄jdj

)

R
+ (s̄iui)L(ūjdj)R, (9)

Q
∆I=3/2
(8,8)mx = (s̄idj)L

(
ūjui − d̄jdi

)

R
+ (s̄iuj)L(ūjdi)R. (10)

The subscripts L and R denote the left and right-handed spin structures respectively:

(q̄1q2)L = q̄1γ
µ(1− γ5)q2 and (q̄1q2)R = q̄1γ

µ(1 + γ5)q2. (11)

The Lorentz indices are understood to be contracted between the two parentheses in each of the operators in Eqs. (8) -
(10) and i, j are color indices which are summed from 1 to 3.
Below we will confirm the feature found in our earlier work [1, 2] that the dominant contribution to Re(A2) comes

from (27,1) operator, while the dominant contribution to Im(A2) in the MS scheme at 3GeV comes from the (8, 8)mx
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operator. We can now write the expressions for the A2 amplitude, which is:

A2 =
GF√
2
V ∗
udVus

∑

i

Ci(µ)

(
1√
2
MK0

i

)

=
GF√
2
V ∗
udVus

∑

i

Ci(µ)

(
1√
3
MK+

i

)

. (12)

The relative factor between the two expressions is due to the different Clebsch-Gordan coefficients.
A major challenge in the calculation of A2 (and even more so in the calculation of A0) is to ensure that the pions have

physical momenta. In the centre-of-mass frame with periodic boundary conditions, the ground-state for the two-pion
system has each pion at rest. The evaluation of matrix elements at physical kinematics therefore corresponds to the
contribution from an excited two-pion state resulting in a considerable loss of precision. We can avoid the necessity
of multi-exponential fits to extract the excited state contribution by utilizing the technique suggested in [11, 12] and
applied successfully in our original calculation of A2 [1, 2]: we introduce antiperiodic boundary conditions for the
(valence) d quark in all three spatial directions, and periodic boundary conditions for the u and s quarks [11]. We
then exploit the Wigner-Eckart theorem to relate K+ → π+π0 matrix elements to those for the unphysical transition
K+ → π+π+. The relation is

〈(ππ)I=2
I3=1 |

︸ ︷︷ ︸
1√
2
(〈π+π0|+〈π0π+|)

Q
∆I=3/2
∆I3=1/2,i | K

+〉 = 3

2
〈(ππ)I=2

I3=2 |
︸ ︷︷ ︸

〈π+π+|

Q
∆I=3/2
∆I3=3/2,i | K

+〉 . (13)

The indices I and I3 label the two-pion state’s total and third component of isospin respectively. With antiperiodic
boundary conditions in three spatial directions, the |π+π+〉 ground state has total momentum ~0, with each pion

having momentum |~pπ| =
√
3π/L. It can be seen from Tab. I that Eππ is very close to mK on both the 643 and

483 ensembles. (For the smaller physical volume in our original calculation [1, 2], we imposed antiperiodic boundary
conditions for the d quark in two spatial directions in order to achieve Eππ ≃ mK .) Note that with both periodic
and antiperiodic boundary conditions on the d quark, the lowest momentum of the π0 meson is zero; this motivates
the use of the Wigner-Eckart theorem to reformulate the calculation to that of a matrix element with a |π+π+〉 final
state.
The operators Q

∆I=3/2
∆I3=3/2 which appear on the right-hand side of Eq. (13), and which correspond to the Q

∆I=3/2
∆I3=1/2

operators in Eqs. (8) - (10), are

Q(27,1) = (s̄idi)L(ūjdj)L, Q(8,8) = (s̄idi)L(ūjdj)R, Q(8,8)mx = (s̄idj)L(ūjdi)R. (14)

To simplify the notation we have dropped the labels ∆I = 3/2 and ∆Iz = 3/2 on the operators in Eq. (14); this will
be implicit in the following. In this paper we compute the K → ππ matrix elements of the three operators in Eq. (14).

The factor of 3/2 in Eq. (13) is a combination of
√
3/2 coming from the Clebsch-Gordan coefficients and the Wigner-

Eckart theorem, and a further
√
3 corresponding to the simple choice for the normalization of operators in Eq. (14).

The amplitude A2 is given in terms of the K+ → π+π+ matrix elements Mi by:

A2 =
GF√
2
V ∗
udVus

√
3

2

∑

i

Ci(µ)Mi. (15)

Since it is the K+ → π+π+ matrix elements which we compute directly in this paper, we choose the compact notation

Mi ≡ MK+→π+π+

i . The label i runs over the three operators in Eq. (14).

A. Evaluation of the correlation functions

The bare matrix elements are obtained from the computation of two and three point correlation functions. The
three-point functions are:

CK→ππ
i (top) = 〈0 | σππ(tππ)Qi(top)σ

†
K(0) | 0〉, (16)
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s̄

Qi(top)

t = 0 tππ

FIG. 3: Diagrammatic representation of the K → ππ three-point function defined in Eq. (16). The strange quark
propagator is explicitly labelled, the remaining lines represent light-quark propagators.

where Qi is one of the three operators in Eq. (14) and σK and σππ are interpolating operators for the kaon and
two-pion state respectively. For σK and σππ we take Coulomb gauge-fixed wall-source operators defined as follows:

σK(t) ≡
∑

~x1,~x2

s̄(~x1, t) γ
5 u(~x2, t), (17)

σππ(t) ≡
[
d̄(t)γ5u(t)

] [
d̄(t)γ5u(t)

]
, (18)

where in (18) we have used the cosine momentum sources for the d quark:

d(t) =
∑

x,y,z

d(x, y, z, t) cos(xpx) cos(ypy) cos(zpz) . (19)

d(x, y, z, t) represents the d-quark field and the components of momenta satisfy px = py = pz = π/L. Just as for the
u-quark source in Eq. (17), the u-quark sources in σππ shown in Eq. (18) are given zero momentum by summing them
over the full spatial volume, evaluated in the Coulomb gauge. As explained in Ref. [2] the cosine source described
above creates d quarks with both signs for each component of the three momentum ±pi, for i = x, y and z. This will
then produce pairs of pions with total momentum in each direction of ±2π/L in addition to the desired value of ~0. For
the three-point functions described in Eq. (16), the zero total momentum of the decaying kaon and three-momentum
conservation imply that the non-zero π-π momenta cannot occur. For the two-point function defined in Eq. (22) below
we use a π-π sink which is different from the source and which explicitly projects onto π-π states with zero total
momentum, as described in Ref. [2]. A further subtlety, not described in that reference, relates to the possible angular
momentum of the two-pion state. For our two identical π+ bosons which carry equal but opposite momenta, there
are actually four possible states given our boundary conditions. Specifically, the π+ which carries px = +π/L may
have four possible values for the other momentum components: py = ±π/L and pz = ±π/L. These four states form a
four-dimensional representation of the cubic symmetry group, which decomposes into two irreducible representations:
a singlet (A1) and a triplet (T2), out of which only A1 contains an s-wave contribution. Since the lowest energy level
of the finite volume I = 2 s-wave spectrum of the A1 representation is nearly degenerate with the lowest energy level
of the d-wave spectrum of the T2 representation, it is important that we use the cubically symmetrical source specified
in Eq. (19) which couples only to the A1 state of interest.
The spinor and color labels are contracted within each set of square parentheses in Eq. (18). A schematic diagram

of the correlation function CK→ππ
i (top) is shown in Fig. 3.

We have evaluated CK→ππ
i (top) for a range of values of the source-sink separations tππ. For the 48

3 (643) ensemble
we performed the calculations for values of tππ between 24 and 39 (26 and 36). These separations were chosen to
be large enough for the plateau region to give a reliable fit and small enough for the around-the-world effects to be
small. The fitting ranges were chosen to be from 10 to tππ − 10 for both ensembles. These choices are motivated by
the locations of plateau regions in Fig. 4.
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FIG. 4: K → ππ three-point correlation function on the 483 lattice (left) and 643 lattice (right) with a kaon-pion
separation of tππ = 26.

For sufficiently large time separations top and tππ − top, the expected time dependence of CK→ππ
i (top) is:

CK→ππ
i (top) = Nππ NK Mbare

i e−(mK−Eππ)top e−Eππtππ , (20)

where

Nππ = |〈ππ |σππ(0) | 0〉| and NK = |〈K|σK(0) |0〉| . (21)

We have introduced the label “bare” as a reminder that Mbare
i are matrix elements of the bare operators in the lattice

regularization which we are using. The renormalization of the operators is discussed in the following section. For
illustration, in Fig. 4 we plot CK→ππ

i (top) computed on each of the two ensembles for tππ = 26. The observed plateaus
are a manifestation of the fact that the volumes have been tuned so that Eππ ≃ mK (cf. Eq. (20)).
We obtain the matrix elements Mi by fitting Eq. (20), using the values of Nππ, NK , mK and Eππ obtained from

fitting (under the jackknife) the correlation functions:

Cππ(t) = 〈0 |σ†
ππ(t, ~p = 0)σππ(0)| 0〉 and CK(t) = 〈0|σK(t)σ†

K(0)|0〉, (22)

which have the following time dependence:

Cππ(t) −−−→
t→∞

|Nππ|2
(

e−Eππ + e−Eππ(T−t) + C
)

, (23)

CK(t) −−−→
t→∞

|NK |2
(

e−mKt + e−mK(T−t)
)

. (24)

The ‘t → ∞’ limit should be understood as taking a sufficiently large time separation so that excited state contributions
are negligible. Introducing the constant C in Eq. (23) allows one to account for possible around-the-world effects in
Cππ.
As a check, we can also construct the time-independent ratio of the correlation functions:

Ci
K→ππ(t)

CK(t)Cππ(tππ − t)
=

Mbare
i

NππNK
. (25)

This ratio is plotted for tππ = 26 in Fig. 5. As anticipated, all three operators exhibit a constant behaviour in the region
where the contribution from excited states is negligible. Eq. (25) is expected to hold in the region 0 ≪ t ≪ tππ ≪ T ,
where T is the total time extent of the lattice. In this region ‘around-the-world’ effects arising from different time
orderings of the operators can be neglected.
The values of the bare K+ → π+π+ matrix elements are shown in Tab. II. The entries have been obtained by

performing weighted averages (under the jackknife) over the values obtained for each choice of tππ.
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FIG. 5: Ratios of K → ππ three-point correlation function to the two point functions (Eq. (25)) on the 483 lattice
(left) and the 643 lattice (right) with a kaon-pion separations of tππ = 27 and 36 respectively.

a3Mbare
(27,1) a3Mbare

(8,8) a3Mbare
(8,8)mx

483 ensemble 7.400(70)× 10−5 9.171(69)× 10−3 3.058(23)× 10−2

643 ensemble 2.742(22)× 10−5 3.942(39)× 10−3 1.308(13)× 10−2

TABLE II: Results for the bare K+ → π+π+ matrix elements in lattice units. Only statistical errors are shown.

IV. RENORMALIZATION OF THE OPERATORS

Having determined the matrix elements of the bare operators in the lattice regularization we now have to combine
them with the remaining factors in Eq. (6) to obtain A2. The Wilson coefficients (Ci(µ)) and composite operators
(Qi(µ)) appearing in Eq. (6) are separately renormalization scheme and scale (µ) dependent. To obtain the physical
amplitudes they must be combined in the same scheme and at the same scale. The Ci(µ) are calculated in perturbation
theory for which it is convenient to use the MS -NDR scheme (called MS in the following). The matrix elements
calculated in Sec. III, on the other hand, were obtained using bare operators with the lattice spacing as the ultraviolet
regulator with the lattice discretization of QCD. The operators can be renormalized non-perturbatively, but only
into schemes for which the renormalization condition can be imposed on lattice Green’s functions. The MS scheme,
which is based on dimensional regularization cannot be simulated in a lattice computation. Our procedure is to start
by renormalizing the operators non-perturbatively into schemes which can be simulated, specifically the RI-SMOM
schemes [13] as described in detail in [2] and briefly summarized below. The matching between the RI-SMOM and
MS schemes is necessarily performed in perturbation theory and is currently known at one-loop order. (Below we
also present the matrix elements in two RI-SMOM schemes so that if the perturbative coefficients are calculated to
higher order in the future, these matrix elements can be used to reduce the systematic uncertainty in A2 due to the
truncation of the perturbation series.)
We now briefly summarise the renormalization procedure. We write the five-point amputated Green’s functions of

the three operators in Eq. (14) as a three-component vector Λ = (Λ(27,1),Λ(8,8),Λ(8,8)mx) ≡ (Λ1,Λ2,Λ3), and impose
a renormalization condition of the form

P
{
ΛR(µ)

}
= F , (26)

where P is a vector of projectors and F the corresponding tree-level matrix. Denoting the tree-level contribution by
the superscript (0) and including explicitly the spinor and color labels, the matrix F is given by

Pi

{

Λ
(0)
j

}

≡ [Pi]
BA;DC
βα;δγ

[

Λ
(0)
j

]AB;CD

αβ;γδ
= Fij . (27)

Here Greek letters label spinor components, the upper-case Roman letters represent color indices and i, j = 1, 2, 3
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denote the operators and projectors. For illustration, the tree-level value of the Green’s function of Q(27,1) is

[

Λ
(0)
1

]AB;CD

αβ;γδ
= [(γµ)αβ(γ

µ)γδ + (γµγ5)αβ(γ
µγ5)γδ] δ

ABδCD

− [(γµ)αδ(γ
µ)γβ + (γµγ5)αδ(γ

µγ5)γβ] δ
ADδBC . (28)

For the renormalization we only consider the parity-even component of the four-quark operators.
The choice of projectors is not unique and we implement two different sets known as the γµ and /q-projectors, given

explicitly by

[

P (γµ)
]JI;LK

βα;δγ
=






[
(γµ)βα(γ

µ)δγ + (γµγ5)βα(γ
µγ5)δγ

]
δJIδLK

[
(γµ)βα(γ

µ)δγ − (γµγ5)βα(γ
µγ5)δγ

]
δJIδLK

[
(γµ)βγ(γ

µ)δα − (γµγ5)βγ(γ
µγ5)δα

]
δJKδLI




 (29)

and

[

P (/q)
]JI;LK

βαβ;δγ
=






[
(/q)βα(/q)δγ + (/qγ5)βα(/qγ

5)δγ
]
δJIδLK

[
(/q)βα(/q)δγ − (/qγ5)βα(/qγ

5)δγ
]
δJIδLK

[
(/q)βγ(/q)δα − (/qγ5)βγ(/qγ

5)δα
]
δJKδLI




 . (30)

The corresponding matrices F read

F (γµ) =






128N(N + 1) 0 0

0 128N2 128N

0 128N 128N2




 (31)

and

F /q = q2






32N(N + 1) 0 0

0 32N2 32N

0 32N 32N2




 , (32)

where N = 3 is the number of colors.
The final result for the amplitude is, of course, independent of the choice of intermediate scheme defined by P , but

comparing the results obtained with different projection operators gives us an estimate of the systematic uncertainty
due to the truncation of perturbation theory in relating the RI-SMOM schemes to the MS schemes.
The renormalized operators are related to the bare ones by a matrix relation of the form:

QR
i (µ) = Zij(µa)Q

bare
j (a). (33)

In order to extract the renormalization constants we follow the standard procedure [14, 15] and compute numerically
the amputated Green’s functions of the bare operators in Eq. (14) with particular choices of external momenta (as
discussed below) on Landau gauge-fixed configurations. We next solve equation (26) which we rewrite in the form

Zij(µa)

Z2
q (µa)

Pk

{
(Λbare

j (a)
}

µ2=p2 = Fik , (34)

where
√
Zq is the quark field renormalization constant and µ is the renormalization scale, which we ultimately choose

to be 3GeV.
The choice of Zq is also not unique, and we use the following two cases:

Z
(/q)
q

ZV
=

qµ

12q2
TrΛµ

V /q, and
Z

(γµ)
q

ZV
=

1

48
TrΛµ

V γ
µ, (35)

where Λµ
V is the three-point amputated Green’s function of the local vector current and ZV is the renormalization

constant of the local vector current. In practice, we multiply each side of Eq. (34) by the square of the corresponding
side of Eq. (35). This eliminates Zq and after this multiplication the left-hand side of Eq. (34) contains the ratio of
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d(p1)

d(p1)

s(p2)

u(p2)

FIG. 6: Momentum flow defining a renormalization condition of a four quark operator in RI-SMOM scheme. The
momenta are chosen so that p21 = p22 = (p1 − p2)

2 ≡ µ2.

renormalization factors Zij/Z
2
V . ZV is then calculated by imposing the Ward identity ZV 〈P |V 4 |P 〉 = 2mP , where

V µ is the local vector current and |P 〉 is the state of a pseudoscalar meson P at rest with mass mP ; this is explained
in detail in [7].
The choice of projection operator for the four-quark operator and Zq defines a renormalization scheme, which we

will label (a, b) with a, b ∈ γµ, /q for the choice of P (a) and Z
(b)
q . In particular, we consider the (γµ,γµ) and (/q,/q)

schemes, having found in earlier studies that the perturbative conversion to the MS scheme is more precise in these
schemes. This is based on the observation that the non-perturbative running is generally closer to the perturbative
one for these schemes for the four-quark operators in Eq. (14) [2, 16]. As explained below, we follow our previous
practice and choose the (/q,/q) scheme for our central value and the (γµ,γµ) scheme to estimate the error due to the
perturbative conversion to the MS scheme.
Chiral symmetry suppresses mixing of operators in different irreducible representations of the chiral symmetry

group, so that if the symmetry is exact, Zij is a block diagonal matrix with a 1 × 1 block corresponding to the
renormalization of the (27, 1) operator and 2 × 2 block corresponding to the mixing of (8, 8) and (8, 8)mx operators.
In a massless renormalization scheme with a chiral discretization such as the Domain Wall action, we expect a mixing
pattern very similar to this, but with a small O((amres)

2) mixing between the blocks.
The mixing of the operator Q(27,1) with either of Q(8,8) or Q(8,8)mx

due to explicit chiral symmetry breaking

induced by finite Ls is proportional to (amres)
2 (which is <∼ 3.6× 10−7 in this work). Such mixing can result from two

mechanisms [17, 18]. First, both quarks in a left-handed q̄-q pair in Q(27,1) can propagate in the fifth dimension from
the left-hand to the right-hand wall, exploiting numerous but exponentially damped modes which even in perturbation
theory link the left- and right-hand walls. This will change the (27, 1) operator into one transforming as the (8, 8)
representation, but requires the propagation of two quarks from the left-hand to the right-hand wall. This incurs a
penalty of (amres)

2 since one power of the residual mass results from the fifth-dimensional mixing of the left- and
right-handed components of a single quark.
The second mechanism is non-perturbative and more subtle. For this case the propagation results from the left-right

tunneling that can be caused by an eigenvector of the 5-dimensional transfer matrix with a near-unit eigenvalue. Such
eigenvectors permit O(1) left-right mixing but are rare and therefore give a small contribution to mres. Under some
circumstances such modes can simultaneously allow a number of quark flavors to flip chirality. However, to change a
(27,1) representation into an (8,8) one, both a quark and an anti-quark must flip chirality which requires two distinct
transfer matrix eigenvectors and is therefore also doubly suppressed by a factor (amres)

2. Such doubled suppression
will not occur for the mixing between the operator Q(27,1) and, for example, an operator in the (6̄, 6) representation.
Here a single transfer matrix eigenvector with near-unit eigenvalue can result in a O(amres) mixing between Q(27,1)

and (s(1 + γ5)d) (u(1 + γ5)d) by allowing both a u- and a d-quark (localized near this eigenvector) to flip chirality.
This kind of mixing has been studied for example in [19] and it was found to be largely suppressed by our choice of
kinematics, as explained below.
In order to suppress physical infrared chiral-symmetry breaking effects we choose to impose the renormalization

conditions with the kinematics indicated in Fig. 6 with p21 = p22 = (p1 − p2)
2 ≡ µ2. We compute the Green’s functions

for several momenta and interpolate to µ = 3GeV using a quadratic ansatz. Using partially twisted boundary
conditions, we have a good resolution around the targeted momentum. The momenta in such RI-SMOM schemes
are chosen so that there are no “exceptional” channels, i.e. no channels in which the square of the momenta is
small [13]. (This is in contrast with the original RI-MOM scheme [14, 15] in which p1 = p2.) We have already checked
that with Domain-Wall fermions and this choice of kinematics the chirally forbidden matrix elements are numerically
negligible [2]. In the present computation, we use the 483 and 643 ensembles which have physical light and strange
sea-quark masses. However, the light quark mass is used in all of the valence quarks propagators in the five-point
Green’s functions, including those for both light and strange quarks. We do not extrapolate either the sea or valence
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483 Ensembles 643 Ensembles

Re(A2) (γ
µ, γµ) 1.346(11)stat(1)NPR × 10−8GeV 1.4029(93)stat(11)NPR × 10−8GeV

Im(A2) (γ
µ, γµ) −5.739(46)stat(8)NPR × 10−13GeV −6.143(73)stat(9)NPR × 10−13GeV

Re(A2) (/q, /q) 1.386(12)stat(1)NPR × 10−8GeV 1.4386(95)stat(11)NPR × 10−8GeV

Im(A2) (/q, /q) −6.174(49)stat(9)NPR × 10−13GeV −6.548(78)stat(10)NPR × 10−13GeV

TABLE III: The amplitude A2 calculated using two different intermediate RI-SMOM schemes. The two errors,
labelled by “stat” and “NPR”, are the statistical uncertainties in the evaluation of the bare matrix elements and Zij

respectively. Discrepancies in the results in the two schemes are attributed to the truncation in the matching to the
MS scheme.

quark masses to zero and, strictly speaking, do not work in the chiral limit. In practice the light quark masses
are sufficiently small that their effects are negligible as is the non-zero mass of the strange sea quark. Comparing
our results with those of our previous work (with Shamir domain wall fermions) where a chiral extrapolation was
performed we find agreement at the per-mille level or better.
We find that all the chirally forbidden renormalization factors are smaller than 10−5, so we set the corresponding

matrix elements of Pi{Λj} to zero and finally obtain the renormalization matrices:

Z
(γµ,γµ)
β=2.13 (µ = 3GeV) =






0.4617(3) 0 0

0 0.5302(4) −0.07018(6)

0 −0.0386(1) 0.4451(5)




 (36)

Z
(/q,/q)
β=2.13(µ = 3GeV) =






0.4822(3) 0 0

0 0.5305(4) −0.07135(7)

0 −0.0637(1) 0.5052(6)




 (37)

for the 483 ensembles and

Z
(γµ,γµ)
β=2.25 (µ = 3GeV) =






0.5194(2) 0 0

0 0.5774(2) −0.0751(1)

0 −0.02797(7) 0.4431(6)




 (38)

Z
(/q,/q)
β=2.25(µ = 3GeV) =






0.5399(2) 0 0

0 0.5782(2) −0.0761(1)

0 −0.05230(4) 0.4990(5)




 (39)

for the 643 ensembles. With momentum sources [20], only few configurations are needed to obtain an excellent
statistical precision. The number of Landau gauge-fixed configurations used to obtain these results varies between 5
and 15. The statistical errors were estimated with 200 bootstrap samples. The matrices in Eqs. (36) – (39) are the
ones used in Eq. (33) to obtain the operators renormalized in the RI-SMOM schemes at the scale µ = 3GeV from the
corresponding lattice bare operators.
The procedure described above enables us to calculate the matrix elements of the operators in Eq. (14) in the

(continuum) RI-SMOM schemes with a very small systematic uncertainty due to the renormalization. The Wilson
coefficients however, are computed in the MS scheme and so we have to match the RI-SMOM schemes to the MS one.
We repeat that this matching is perturbative and at present is only known to one-loop order [21]; this limitation
amplifies the uncertainty due to the renormalization. This uncertainty could be reduced by extending the perturba-
tive calculations to higher orders. Future lattice calculations could also help here by using step scaling to run the
renormalization constants obtained in the RI-SMOM schemes non-perturbatively to larger momentum scales. The
perturbative matching to the MS scheme can then be performed at these larger scales where the coupling constant is
smaller, leading to smaller uncertainties. We now estimate the current uncertainty due to the matching.
To estimate the uncertainty due to the truncation of the perturbative matching factors, we note that the matrix

elements in the MS scheme should be independent of the choice of intermediate RI-SMOM scheme. Differences in
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Eππ q δ [radians] ∂δ
∂q

∂φ
∂q

483 0.2873(13) 0.9087(61) -0.158(22) -0.174(24) 3.7147(20)

643 0.21512(68) 0.9157(43) -0.184(16) -0.201(17) 3.7171(15)

TABLE IV: Contributions to the Lellouch-Lüscher factor on the 483 and 643 ensembles. The rate of change of the
phase shift was calculated by using a linear approximation in momentum as explained in the text.

the results are observed (see Tab. III) and attributed to the truncation. Following the procedure in [1, 2] we take the
result obtained using the (/q, /q) intermediate scheme as our central value and the difference of the results obtained
using the two schemes as an estimate of the systematic error. This uncertainty is marked as “NPR (perturbative)”
in the error budgets presented in Tabs. IX and X in Sec.VI. The uncertainties marked as “NPR (nonperturbative)”
are the statistical errors in the evaluation of Zij .

V. FINITE VOLUME EFFECTS

The presence of two pions in the final state in K → ππ decays leads to finite-volume corrections which decrease
as inverse powers of the volume, in addition to the exponential correction present in simpler quantities such as decay
constants and form factors. The power corrections result in a multiplicative correction to the matrix element [22]:

〈ππ | HW | K〉∞ = F 〈ππ | HW | K〉FV . (40)

The subscripts ∞ and FV correspond to infinite and finite volume respectively, and the factor F is given by the
Lellouch-Lüscher formula [22]:

F 2 = 8πq

(
∂φ

∂q
+

∂δ

∂q

)
mKE2

ππ

p3
, (41)

where p is the magnitude of the momentum of a pion in the centre of mass frame given by p =

√
E2

ππ

4 −m2
π and q is

defined as q = pL/2π. Since the π+ mesons satisfy anti-periodic boundary conditions in all three spatial directions,
the function φ in this case is defined by the condition:

tanφ = − qπ3/2

Z00(1; q)
, Z00(1; q) =

1√
4π

∑

n∈Z3

1

(n+ (12 ,
1
2 ,

1
2 ))

2 − q2
. (42)

δ is the two-pion s-wave phase shift, which can be calculated using the Lüscher quantization condition, δ(q)+φ(q) = nπ,
but the calculation of the derivative in Eq. (41) requires an approximation.
The results presented in Tab. IV were obtained using the approximation that δ is a linear function of the momentum

between 0 and p. Since the second term in the parentheses on the right-hand side of Eq. (41) is much smaller than
the first and given the remaining systematic uncertainties discussed in Sec.VI, this procedure gives an adequate
approximation. In order to estimate the error due to this approximation we also evaluate the derivative ∂δ

∂p using the

phenomenological curve of Ref. [23] illustrated in Fig. 7; we take the difference of the two procedures as an estimate of
the corresponding uncertainty. For our central value we use the linear approximation for the derivative of the phase
shift so that it is independent of phenomenological estimates.
At the pion momentum which corresponds to the decay of a physical kaon to two pions (p = 207MeV) the value

of the derivative of the phase shift with respect to the momentum obtained from the phenomenological curve is
9.53 × 10−4MeV−1. Converting this to ∂δ

∂q gives -0.216 for the 483 and -0.221 for the 643 ensembles. While this

makes a significant difference to the derivative of the phase shift, it represents a relatively small uncertainty in the
Lellouch-Lüscher factor F ∝ ∂δ

∂q +
∂φ
∂q . This sum is dominated by the ∂φ

∂q term and thus the difference in the Lellouch-

Lüscher factor between both approaches to calculating ∂δ
∂q amounts to 1.1% and 0.6% on the 483 and 643 ensembles

respectively.
When quoting our central value we include the Lellouch-Lüscher factor evaluated as described in the preceding

paragraph. In order to estimate the size of the remaining exponential finite-volume effects we use chiral perturbation
theory and include the corresponding effects in our systematic uncertainty. Since we are only calculating an estimate,
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FIG. 7: Comparison of I = 2 two-pion s-wave phase shifts calculated using Lüscher’s formula with the
phenomenological curve from Ref. [23]. The computed results are consistent with the phenomenological curve.

we do not use partially-twisted chiral perturbation theory, but take both the sea and valence d-quarks to satisfy
anti-periodic boundary conditions.
In SU(3)L×SU(3)R chiral perturbation theory, the leading order (LO) and leading logarithmic next-to-leading order

(log) contributions to the (27,1) and (8,8) matrix elements are given by [6, 24]:

M27
LO =〈π+π−|O(27,1),3/2|K0〉LO = −4iα27

fKf2
π

(m2
K −m2

π) , (43)

M27
log =〈π+π−|O(27,1),3/2|K0〉log

=− 4iα27

fKf2
π

1

f2

[

− 1

12
m4

K

(

1− m2
K

m2
π

)

β(m2
π,m

2
K ,m2

η) +m2
K

(
5

4

m4
K

m2
π

−13

4
m2

K + 2m2
π

)

β(m2
π ,m

2
K ,m2

π) + (m4
K − 3m2

πm
2
K + 2m4

π)

× β(m2
K ,m2

π,m
2
π) +

(

−1

4

m4
K

m2
π

− 1

12
m2

K +
1

3
m2

π

)

ℓ(m2
η) +

(−m4
K

m2
π

−4m2
K + 4m2

π

)
ℓ(m2

K) +

(
5

4

m4
K

m2
π

− 45

4
m2

K + 11m2
π

)

ℓ(m2
π)

]

, (44)

M88
LO =〈π+π−|O(8,8),3/2|K0〉LO = −4iα88

fKf2
π

, (45)

M88
log =〈π+π−|O(8,8),3/2|K0〉log

=− 4iα88

fKf2
π

1

f2

[(
5

4

m4
K

m2
π

− 2m2
K

)

β(m2
π,m

2
K ,m2

π) + (m2
K − 2m2

π)

×β(m2
K ,m2

π,m
2
π) +

1

4

m4
K

m2
π

β(m2
π ,m

2
K ,m2

η)−
(

4 +
1

2

m2
K

m2
π

)

ℓ(m2
K)

+

(
5

4

m2
K

m2
π

− 8

)

ℓ(m2
π)−

3

4

m2
K

m2
π

ℓ(m2
η)

]

. (46)

At this order mη is given by the Gell-Mann-Okubo relation: 3m2
η = 4m2

K −m2
π.

The functions ℓ(m2) and β(q2,m2
1,m

2
2) correspond to diagrams with one and two pseudo-Goldstone boson propa-

gators respectively as illustrated in Fig. 8 and they are the only sources of finite-volume corrections. They are given
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m1
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q

FIG. 8: Sample loop diagrams which contribute to finite-volume corrections of (27,1) and (8,8) K → ππ matrix
elements in chiral perturbation theory.

by (in Minkowski spacetime):

ℓ(m2) ≡
∑
∫ ∫

dk0

2π

i

k2 −m2 + iǫ
=
∑
∫

1
√
~k2 +m2

, (47)

β(q,m1,m2) ≡
∑
∫ ∫

dk0

2π

i

(k2 −m2
1) ((q + k)2 −m2

2)
=
∑
∫

ω1 + ω2

2ω1ω2(q20 − (ω1 + ω2)2)
, (48)

where the symbol
∑∫

denotes the summation over ~k in finite volume or the integration in infinite volume. ω1 =
√

~k2 +m2
1 and ω2 =

√

(~q − ~k)2 +m2
2. The difference between the sum and the integral can be calculated using the

Poisson summation formula:

1

L3

∑

~k

f(~k) =

∫
d3~k

(2π)3
f(~k) +

∑

~n6=~0

∫
d3~k

(2π)3
f(~k)eiL

~k·~n, (49)

where the summation on the left-hand side is over all ~k = 2π
L ~n, where ~n is a vector of integers. If f is a function that

has no singularities on the real axis, then the second term on the right-hand side gives the exponential finite-volume
corrections which we are trying to evaluate.

A. Corrections to ℓ(m2)

With periodic boundary conditions, applying the Poisson summation formula (49) to ℓ, writing ~k in spherical polar
coordinates and integrating over the angles, we obtain for the difference between the finite and infinite-volume values
of ℓ(m2) [25]

∆ℓ(m,L) ≡ m2

16π2
δ1(mL) ≡ m

4π2L

∑

~n6=0

K1(|~n|mL)

|~n| , (50)

where K1 is a modified Bessel function of the second kind, ~n is an vector of integers and the sum is over all ~n 6=
(0, 0, 0) ∈ Z

3.
Since our choice of boundary conditions breaks the isospin symmetry Eq. (50) does not give the correct finite-volume

corrections for all the instances of ℓ which appear in Eqs. (44) and (46). Specifically, π0, K+ and η satisfy periodic
boundary conditions (so that the corresponding finite-volume corrections are indeed given by Eq. (50)) whereas π±

and K0 satisfy antiperiodic boundary conditions for which the finite-volume corrections to ℓ are different. In the

antiperiodic case, we replace f(~k) in Eq. (49) by f(~k + ~q), where ~q = ( πL)(1, 1, 1). Shifting the integration variable

from ~k to ~k + ~q, we find that δ1(mL) in Eq. (50) is now replaced by:

δA1 (mL) =
4

mL

∑

~n6=~0

(−1)nx+ny+nz
K1(|~n|mL)

|~n| , (51)
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where the index A denotes that the correction is evaluated for a volume with antiperiodic boundary conditions in
all spatial directions. The difference from the periodic case is the additional factor (−1)nx+ny+nz in the summands.
The known formulae in Eqs. (44) and (46) do not differentiate between different isospin components, and therefore do
not specify which linear combination of periodic and antiperiodic corrections should be used. Since we are only using
these formulae for an approximate estimate of the size of the error, we choose to be conservative and to include the
larger corrections which are those obtained with the periodic boundary conditions given in Eqs. (50). The numerical
results are presented in Tab.V and as expected the leading contributions come from the loops with a pion propagator.

B. Corrections to β(mπ,mK ,mπ) and β(mπ,mK,mη)

We now consider the contributions from loops with two meson propagators and which are proportional to the
function β. We start by discussing the corrections to β(mπ ,mK ,mπ) and β(mπ ,mK ,mη), for which in Minkowski
space the external energy is below the corresponding two-particle cut; e.g. in β(mπ,mK ,mπ) the external energy in
the centre-of-mass frame is mπ which is clearly smaller than mK+mπ. In such situations the finite-volume corrections
are exponentially small. We postpone the discussion of the contribution which does contain the two-particle cut, that
proportional to β(mK ,mπ,mπ), until the following subsection.
The corrections to β(mπ,mK ,mπ) and β(mπ ,mK ,mη) are proportional to

∆β(q,m1,m2) =
∑

~n 6=0

∫
d3~k

(2π3)

ei
~k·~n(ω1 + ω2)

2ω1ω2(q2 − (ω1 + ω2)2)
(52)

with

ω2
1 =

∣
∣
∣~k
∣
∣
∣

2

+m2
1 and ω2

2 =
∣
∣
∣~q + ~k

∣
∣
∣

2

+m2
2 . (53)

Because of the angular dependence inside the integrals, we evaluate the integrals numerically. With the boundary
conditions which we are using the corrections with a K+ and π− are equal and opposite to those with the neutral
mesons. In the estimate of the uncertainty we conservatively do not exploit the cancellation but take the absolute
value in each case.
We note that care must be taken when using Eqs. (71) and (73) for the finite-volume corrections to β in Sec. VIII

of [6]. In Eq. (52) above, the two terms in the factor in the denominator of the integrand q2 − (ω1 + ω2)
2 come

with opposite signs. How this arises in finite-volume Euclidean correlation functions is explained in Appendix A
following [5]. The corresponding terms in the denominator of Eq. (73) in [6] appear (incorrectly) with the same sign.

C. β(mK ,mπ,mπ)

Kinematically this case is simpler than the two β integrals which were evaluated in Sec.VB since the external
particle (K) is now at rest which eliminates the angular dependence from the integral. Furthermore, both internal
π+ propagators satisfy antiperiodic boundary conditions. In this case however, the integral for β has a pole at
ωπ = mK/2, so the Poisson summation formula will give both the exponential and power-like corrections. The power
corrections are included as the Lellouch-Lüscher factor F in Eq. (40) and we do not include these in the estimate of
the finite-volume uncertainty. The evaluation of the remaining exponential corrections following the approach of [26]
is explained in Appendix A.
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Quantity 483 Lattice 643 Lattice

L 5.48 fm 5.36 fm

∆l(m2
π) 14.32MeV2 16.39MeV2

∆l(m2
K) (9.05× 10−4)MeV2 (1.03× 10−3)MeV2

∆l(m2
η) (1.32× 10−4)MeV2 (1.52× 10−4)MeV2

∆β(mπ ,mK ,mη) 3.0× 10−7 3.0× 10−7

∆β(mπ ,mK ,mπ) 5.0× 10−5 5.2× 10−5

∆β(mK ,mπ,mπ) 6.67× 10−5 6.97× 10−5

∆M(27,1)

M(27,1)
0.022 0.024

∆M(8,8)

M(8,8)
0.024 0.026

TABLE V: Contributions to our estimate of the exponentially-suppressed finite-volume errors.

D. Combining the finite-volume corrections

To one-loop order we write the systematic error associated with the finite-volume corrections in terms of the ratios
∆Mlog/MLO. These are given by:

∆M27
log

M27
LO

=
1

f2(m2
K −m2

π)

[

− 1

12
m4

K

(

1− m2
K

m2
π

)

∆β(m2
π ,m

2
K ,m2

η)

+m2
K

(
5

4

m4
K

m2
π

− 13

4
m2

K + 2m2
π

)

∆β(m2
π ,m

2
K ,m2

π) +

(m4
K − 3m2

πm
2
K + 2m4

π)∆β(m2
K ,m2

π,m
2
π) +

(

−1

4

m4
K

m2
π

− 1

12
m2

K +
1

3
m2

π

)

∆ℓ(m2
η)

+

(−m4
K

m2
π

− 4m2
K + 4m2

π

)

∆ℓ(m2
K) +

(
5

4

m4
K

m2
π

− 45

4
m2

K + 11m2
π

)

∆ℓ(m2
π)

]

(54)

and

∆M88
log

M88
LO

=
1

f2

[(
5

4

m4
K

m2
π

− 2m2
K

)

∆β(m2
π ,m

2
K ,m2

π) + (m2
K − 2m2

π)∆β(m2
K ,m2

π,m
2
π)

+
1

4

m4
K

m2
π

∆β(m2
π ,m

2
K ,m2

η)−
(

4 +
1

2

m2
K

m2
π

)

∆ℓ(m2
K)

+

(
5

4

m2
K

m2
π

− 8

)

∆ℓ(m2
π)−

3

4

m2
K

m2
π

∆ℓ(m2
η)

]

. (55)

The numerical values of these ratios for the 483 and 643 ensembles are shown in Tab.V.

VI. THE ERROR BUDGET

In this section we discuss the two remaining systematic errors: those which arise because the meson masses and the
two-pion energy are not quite physical and those introduced by the perturbative Wilson coefficients. Finally all of the
systematic errors in our results for the real and imaginary parts of A2 are summarized Tables IX and X, respectively.
The volume, boundary conditions and quark masses have been chosen to enable simulations of physical K → ππ

decays. Nevertheless, since the volume and quark masses have to be chosen a priori, the output values of the meson
masses and two-pion energies will be a little different from the physical values (see Tab. I). In order to estimate the
corresponding uncertainty we follow the procedure described in [2, 27] and outlined below. We use measurements on
60 quenched configurations on a 243 lattice with a−1 = 1.31GeV performed with 3 values of the light-quark masses, 5
strange-quark masses and the application of antiperiodic boundary conditions in ntw =0, 1, 2 and 3 directions. These
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ntw 0 1 2 3

A0 17.53(16) 17.14(73) 14.9(2.3) 24.5(9.5)

A1 0.0273(12) 0.1038(60) 0.202(18) 0.196(82)

B0 2.124 2.124 2.124 2.124

B1 0.00692 0.00692 0.00692 0.00692

ReC0(GeV) 1.016(55)× 10−7 1.43(11)× 10−7 1.53(25)× 10−7 1.78(54)× 10−7

ReC1(GeV) 1.697(89)× 10−6 1.29(18)× 10−6 1.45(38)× 10−6 4.22(97)× 10−6

ReC2(GeV) 2.53(51)× 10−9 1.08(12)× 10−8 1.68(25)× 10−8 −2(67)× 10−10

ImC0(GeV) −1.06(31)× 10−12 −4.6(3.3)× 10−13 4.4(7.4)× 10−13 2(11)× 10−13

ImC1(GeV) 5.54(79)× 10−11 3.39(91)× 10−11 2.1(1.6)× 10−11 −1.8(3.2)× 10−11

ImC2(GeV) −1.689(64)× 10−12 −1.392(66)× 10−12 −1.24(12)× 10−12 −7.5(1.9)× 10−13

TABLE VI: Parameters used for extrapolations on the 243 quenched ensembles.

(27,1) (8,8) (8, 8)mx

zLO
i 0.26696 4.260055× 10−5 −1.0063× 10−5

yLO
i −0.0035185 −2.026445× 10−4 2.447741× 10−4

zNLO
i 0.290342 4.70099× 10−5 −5.22390× 10−5

yNLO
i −0.00397252 −8.09555× 10−5 3.26016× 10−4

TABLE VII: Wilson coefficients at 3GeV in the MS scheme at leading order (LO) and next-to-leading order (NLO).

measurements are used to determine the coefficients in the following phenomenological formulae:

m2
xy = B0(mx +my) +B1, (56)

E2
ππ(ntw) = A0(ntw)ml +A1(ntw), (57)

A2 = C0(ntw)ms + C1(ntw)ml + C2(ntw), (58)

where ml and ms are the masses of the light and strange quarks, mxy is the mass of the meson consisting of x and
y valence quarks (which can be either light or strange) and ntw is the number of directions in which the antiperiodic
boundary conditions would have to be imposed on the quenched lattice to get the correct two-pion energy. Note that
ntw does not have to be an integer, and is given instead by p2 = ntwπ

2/L2, where p is the centre-of-mass momentum
of each pion. The full list of coefficients A, B and C obtained from these quenched configurations was presented in
[27] and is reproduced in Tab.VI.
We can use the coefficients in Tab.VI to determine A2 on the quenched ensembles for any choice of {mπ,mK , Eππ}.

We exploit this possibility for three sets of parameters: (i) the physical masses mK = Eππ = 493.7MeV, mπ =
139.6MeV; (ii) the values from the 483 simulation given in the third row of Tab. I and (iii) the values from the 643

simulation given in the fourth row of Tab. I. We denote the corresponding three estimates of A2 by Aq;phys
2 , Aq;48

2

and Aq;64
2 respectively, where the superscript q reminds us that the results were obtained on the quenched ensembles.

We use the differences Aq;48
2 − Aq;phys

2 and Aq;64
2 − Aq;phys

2 as estimates of the systematic error due to unphysical
kinematics.
The results are:

Re(Aq;phys
2 ) = 2.25× 10−8GeV, Im(Aq;phys

2 ) = −1.344× 10−12GeV, (59)

Re(Aq;48
2 ) = 2.29× 10−8GeV, Im(Aq;48

2 ) = −1.341× 10−12GeV, (60)

Re(Aq;64
2 ) = 2.36× 10−8GeV, Im(Aq;64

2 ) = −1.329× 10−12GeV. (61)

The differences in Eqs. (59) - (61) translate to an estimated 1.8% error on Re(A2) and 0.2% error on Im(A2) on the
483 ensemble and a 4.5% difference for Re(A2) and 1.1% difference for Im(A2) on the 643 ensemble. These numbers
are obtained from the difference of the simulated results from those at the physical point (normalized by the result
at the physical point). These uncertainties are included in Tabs. IX and X under the label “unphysical kinematics”.
To estimate the error in the Wilson coefficients, we compare the results for A2 using Wilson coefficients calculated

at leading order and next to leading order. We have used the set of coefficients evaluated in the MS scheme at 3GeV,
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LO NLO

Re(A2) 48
3 1.293(11)× 10−8 1.386(12)× 10−8

Im(A2) 48
3 −5.551(45)× 10−13 −6.174(49)× 10−13

Re(A2) 64
3 1.3410(89)× 10−8 1.4386(95)× 10−8

Im(A2) 64
3 −6.037(71)× 10−13 −6.548(78)× 10−13

TABLE VIII: Comparison of matrix elements calculated with leading order (LO) and next-to-leading order (NLO)
Wilson coefficients.

ReA2 systematic errors 483 643 cont.

NPR (nonperturbative) 0.1% 0.1% 0.1%

NPR (perturbative) 2.9% 2.5% 2.9%

Finite volume corrections 2.2% 2.4% 2.4%

Unphysical kinematics 1.8% 4.5% 4.5%

Wilson coefficients 6.8% 6.8% 6.8%

Derivative of the phase shift 1.1% 0.6% 1.1%

Total 8% 9% 9%

TABLE IX: Systematic error breakdown for ReA2

which are shown in table VII [28], and the standard parametrization of Wilson coefficients was used, i.e. Ci = zi+ τyi

where τ is the ratio of CKM matrix coefficients τ = − V ∗
tsVtd

V ∗
usVud

. The results for matrix elements calculated at leading

and next-to-leading orders are shown in Tab.VIII. From the differences between the entries in the columns marked
as LO and NLO we estimate that the uncertainties are 6.8% for Re(A2) on both sets of ensembles and 10% (8%) for
Im(A2) on the 483 (643) ensembles.
Tables IX and X show our estimates of systematic errors associated with the results for Re(A2) and Im(A2) presented

in this paper. The evaluation of the continuum limit of A2 is discussed in following section. As will be seen, the
systematic error associated with this extrapolation is negligible with respect to the statistical errors. Consequently
no discretization error is shown in Tables IX and X. The values in the column marked “cont.” are the errors assigned
to our continuum-extrapolated results, and are simply the larger of the corresponding entries from the 483 and 643

columns. We can see that the dominant contribution to the systematic error for both real and imaginary parts of A2

on both ensembles comes from the uncertainty in Wilson coefficients.

VII. CONTINUUM EXTRAPOLATION

In this section we discuss the extrapolation of the results obtained on the 483 and 643 ensembles to the continuum
limit. We divide this discussion into two parts. In the first we present the complete physical results for the complex
amplitude A2 in the continuum limit. As we will observe, the dominant error in our result comes from the perturbative
error assigned to the Wilson coefficients. This may be reduced in the future if higher order perturbation theory results
become available or if lattice step-scaling methods are used to allow present perturbative results to be applied at a
higher energy scale. Therefore, in the second part we determine the continuum limit of the individual matrix elements
themselves, normalized in the regularization-independent (/q, /q) and (γ, γ) schemes.

A. Continuum limit of Re(A2) and Im(A2)

As already mentioned in Sec. VI the quark masses used in these ensembles are very slightly larger than their physical
values. This is illustrated in Tab.XI, in which we compare the physical and simulated values of the dimensionless
quantities mπ/mΩ and mK/mΩ, which are highly sensitive to the light and heavy quark masses respectively. In
order to determine the values of the lattice spacing we must therefore perform a short chiral extrapolation; this is
achieved using a simultaneous chiral and continuum ‘global fit’ that incorporates data from both ensembles. Since the
(renormalized) quark masses on the two ensembles are very similar, we must include additional ensembles in order
to have a sufficient spread of masses for the determination of the chiral dependence. The full set of ensembles and
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ImA2 systematic errors 483 643 cont

NPR (nonperturbative) 0.1% 0.1% 0.1%

NPR (perturbative) 7.0% 6.2% 7.0%

Finite volume corrections 2.4% 2.6% 2.6%

Unphysical kinematics 0.2% 1.1% 1.1%

Wilson coefficients 10% 8% 10%

Derivative of the phase shift 1.1% 0.6% 1.1%

Total 12% 10% 12%

TABLE X: Systematic error breakdown for Im A2

48I 64I phys.

mπ/mΩ 0.08296(17) 0.08220(19) 0.08073

mK/mΩ 0.29740(32) 0.29982(37) 0.29643

TABLE XI: The ratios of the pion and kaon mass to the Omega baryon mass on the 483 and 643 ensembles as well
as the physical value.

details of this procedure can be found in [7].
The determination of A2 presented here was performed using 76 configurations of the 483 ensemble, whereas the

lattice spacings in [7] were computed using 80. In order to preserve the full correlations between the jackknife samples
of A2 and the corresponding superjackknife samples of the lattice spacing, we repeated the global fit analysis using the
same 76 configurations. The details of the binning are also different. In [7] we binned the 483 data over 5 successive
measurements (100 MD time units) in order to take into account the observed autocorrelations in the data, whereas
in the present calculation, as explained in Sec. II, we construct 19 bins each of 4 configurations. These differences lead
to determined values of the lattice spacings in Eq. (62) below which are a little different from those in [7]. For the 643

ensembles we use the same set of 40 configurations for the evaluation of A2 and the same binning as in the global fit
in [7].
In order to estimate the systematic errors due to the chiral extrapolation and finite volume in the determination of

the lattice spacings, we have performed our fits using three different chiral ansätze: NLO SU(2) chiral perturbation
theory, with and without finite-volume corrections (referred to as the ChPTFV and ChPT forms respectively), and
a linear ansatz (referred to as the ‘analytic’ form). In practice we found the lattice spacings obtained from all three
ansätze to be consistent to within a fraction of the statistical error due to the dominance of the near-physical data,
hence we treat these systematic errors as negligible. The final results for the values of the lattice spacing are:

a−1
64 = 2.3584(70) GeV and a−1

48 = 1.7280(41) GeV , (62)

where the errors are statistical only.
The lattice matrix elements Mi scale as a3 and so small differences in the lattice spacing become amplified. We

have performed the continuum extrapolation of A2 using the lattice spacings obtained with each of the three chiral
ansätze; the extrapolated values are given in Tab. XII. In figure 9 we show the continuum extrapolation in the (/q, /q)
scheme using the lattice spacings obtained with the ChPTFV chiral ansatz. We use results obtained with this ansatz
as our central values for each lattice spacing and for the extrapolated value in the continuum.
We obtain an estimate of the component of the chiral extrapolation error arising from the lattice spacing determina-

tion by taking the difference between the continuum values obtained using the ChPTFV and analytic lattice spacings.
The full jackknife differences are 0.3(2.6)× 10−10 and 0.1(1.2)× 10−14 for the real and imaginary parts respectively.
As with the lattice spacings, we cannot resolve these differences within the statistical error, hence we set the chiral
error to zero. On the other hand the jackknife differences between the ChPTFV and ChPT ansätze are resolvable
as they differ only in small Bessel function corrections and are thus highly correlated: we obtain 3.4(1.0) × 10−11

and 1.59(47)× 10−15 for the real and imaginary parts respectively. Nevertheless, these errors are only 5–8% of the
statistical error and can therefore also be neglected. This leads to the result:

Re(A2) = 1.501(39)× 10−8 GeV and Im(A2) = −6.99(20)× 10−13 GeV , (63)

where the errors are statistical.
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FIG. 9: The continuum extrapolation of Re(A2) (left) and Im(A2) (right). The points at finite lattice spacing are
taken from Tab. III for the (/q, /q) intermediate renormalization scheme.

Ansatz Re(A2) (×10−8 GeV) Im(A2) (×10−13 GeV)

ChPTFV 1.501(39) -6.99(20)

ChPT 1.494(38) -6.96(19)

analytic 1.494(43) -6.96(21)

TABLE XII: The continuum values of Re(A2) and Im(A2) determined using the lattice spacings obtained with each
of the three chiral ansätze.

Our final result for A2 is obtained by assigning the 9% and 12% systematic errors from Tabs. IX and X as the
systematic errors to be associated with the values for Re(A2) and Im(A2) given in Eq. (63):

Re(A2) = 1.50(4)stat(14)syst × 10−8 GeV; Im(A2) = −6.99(20)stat(84)syst × 10−13 GeV . (64)

In order to estimate the unknown quantity ImA0, we combine our results for A2 with the experimental values
of ReA0 = 3.3201(18) × 10−7GeV and ǫ′/ǫ = (1.65 ± 0.26) × 10−3 [29]. To this end we start by evaluating the
ratio ImA2/ReA2, taking account any statistical correlations between the real and imaginary parts by performing the
analysis within the jackknife procedure. On the two ensembles we find

(
ImA2

ReA2

)

483
= −4.45(5)stat(65)syst × 10−5 and

(
ImA2

ReA2

)

643
= −4.55(5)stat(62)syst × 10−5. (65)

The systematic errors for this ratio are given in Table XIII; they are generally combined in quadrature except for that
due to the derivative of the phase shift because the Lellouch-Lüscher factor cancels in the ratio. It is interesting to
note that if instead of adding the errors in the Wilson Coefficients for ReA2 and ImA2 in quadrature as in Tab.XIII,
we had calculated the ratios with the coefficients at leading and next-to-leading order respectively and taken the
difference as a measure of the uncertainty we would have obtained a much smaller answer (3.6% instead of 12%).
Since the operators which give the dominant contributions to the real and imaginary parts are different, and in the
absence of an understanding which might suggest a correlation between their Wilson coefficients, we prefer to be
cautious and take the larger uncertainty. We find a similar feature in the NPR perturbative error.
The continuum extrapolation of the dimensionless ratio ReA2/ImA2 is milder than that of ReA2 and ImA2 sepa-

rately and we obtain

(
ImA2

ReA2

)

continuum

= −4.67(72)× 10−5. (66)
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Systematic errors in ImA2/ReA2 483 643 cont

NPR (nonperturbative) 0.1% 0.1% 0.1%

NPR (perturbative) 7.6 % 6.7 % 7.6 %

Finite volume corrections 3.5 % 3.5 % 3.5 %

Unphysical kinematics 1.8 % 4.6% 4.6%

Wilson coefficients 12.0 % 10.5 % 12.0%

Derivative of the phase shift 0 0 0

Total 14.7% 13.7% 15.3%

TABLE XIII: Systematic error breakdown for ImA2/ReA2.

i j

j

i

π

πKi i

j

j

π

πK

FIG. 10: Dominant contractions contributing to Re(A2) - C1 (left) and C2 (right)

Using this ratio, we can calculate the electroweak penguin contribution to ǫ′/ǫ, given by:

(
ǫ′

ǫ

)

EWP

≡ ω√
2 |ǫ|

ImA2

ReA2
= −6.6(10)× 10−4, (67)

where we have used the values ω ≡ ReA2

ReA0
= 0.04454(12) and |ǫ| = 2.228(11)× 10−3 from [2]. This value for (ǫ′/ǫ)EWP

is consistent with our previously quoted value −6.25(44)(119)× 10−4 [2]. Finally, for ImA0 we find

ImA0 = ReA0

(

ImA2

ReA2
−

√
2|ǫ|
ω

ǫ′

ǫ

)

= −5.40(64)× 10−11GeV . (68)

The results in Eqs. (67) and (68) were obtained using our result for ImA2/ReA2 in Eq. (66). If instead we take
ImA2 from our calculation, Eq. (64), and combine it with the experimental result ReA2 = 1.4787(31)× 10−8GeV we
obtain, ImA2/ReA2 = −4.73(58)× 10−5, (ǫ′/ǫ)EWP = −6.69(82)× 10−4 and ImA0 = −5.42(63)× 10−11GeV.

B. Continuum limit of the RI-SMOM matrix elements

From the error budget in Tab.XIII we see that the dominant uncertainty is due to the Wilson coefficients, which
we take to be the difference between the leading and next-to-leading order contributions as defined in [30], where the
calculations were based on [31–33]. In case the Wilson coefficients in the RI-SMOM schemes become known with

better precision in the future, we present in Tab.XIV the K+ → π+π0 matrix elements MK+

i defined in Eq. (7), with
the operators Qi in Eqs. (8) - (10) renormalized in the (/q, /q) and (γ, γ) renormalization schemes at a renormalization
scale of 3GeV. These matrix elements together with the new Wilson coefficients would enable an improved evaluation
of A2, without the need to recompute the matrix elements. The systematic errors for the (27,1) operator are estimated
using the entries in Tab. IX with the NPR(perturbative) and Wilson coefficient errors set to zero. This gives the errors
of 2.8%, 5.1% and 5.2% for the 483 and 643 ensembles and in the continuum limit respectively. For the (8,8) operators
using the entries in Tab. X, the same procedure leads to systematic errors of 2.6%, 2.9% and 3.0% for the 483 and
643 ensembles and in the continuum respectively.
For completeness we also convert these three K+ → (ππ)I=2 matrix elements into those in the original 10 operator
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FIG. 11: Cancellation of dominant contributions to Re(A2) on the 483 ensembles with a K - ππ separation of 27 and
the 643 ensembles with separation 36.

Ensemble Scheme MK+

(27,1) [GeV3] MK+

(8,8) [GeV3] MK+

(8,8)mx [GeV3]

483 (/q, /q) 0.04761(39)(133) 0.7026(52)(183) 3.892(28)(101)

643 (/q, /q) 0.04848(32)(247) 0.8412(88)(244) 4.140(44)(120)

483 (γ, γ) 0.04473(37)(128) 0.7112(53)(185) 3.471(26)(90)

643 (γ, γ) 0.04664(31)(238) 0.8477(88)(246) 3.724(40)(108)

Continuum (/q, /q) 0.0506(13)(26) 1.003(22)(30) 4.43(12)(13)

Continuum (γ, γ) 0.0489(13)(25) 1.007(23)(30) 4.02(10)(12)

TABLE XIV: Results for the K+ → (ππ)I=2 matrix elements MK+

i (defined in Eq. (7)) in two non-exceptional
RI-SMOM renormalization schemes at the scale 3GeV. The first error is statistical, while the second one is the

systematic uncertainty estimated as described in the text.

basis as defined in [34]:

MK+

(27,1) = 3MK+

1 = 3MK+

2 = 2MK+

9 = 2MK+

10 (69)

MK+

(8,8) = 2MK+

7 and MK+

(8,8)mx = 2MK+

8 (70)

where MK+

i ≡ 〈(ππ)I=2 | Qi | K+〉.

VIII. CONCLUSIONS

Before briefly summarising our results and discussing prospects for future calculations we confirm our finding, first
presented in [3], that there is a significant cancellation between the two dominant contributions to ReA2. As explained
above, Re(A2) is dominated by the matrix element of the (27, 1) operator and is proportional to the sum of the two
contractions C1 and C2 in Fig. 10. Whilst näıve factorization, frequently used for phenomenological estimates, suggests
that C1 = 3C2 because of the color suppression in C2, we find a strong cancellation between these two contributions.
For the 483 and 643 ensembles studied in this paper, we illustrate this cancellation in Fig. 11. (In Sec. III we explain
that the numerical results in this paper were obtained from correlation functions with even values of tππ. The choice
of tππ = 27 for the 48 ensembles in Fig. 11 is made to ensure that the cancellation is illustrated at the same value of
tππ in physical units on the two sets of ensembles.) As explained in [3] we believe that this cancellation is a significant
component in explaining the ∆I = 1/2 rule. Although we haven’t completed the calculation of A0 at this stage, we
note that the contributions of the (27, 1) operator all contribute with the same sign. A similar partial cancellation
occurs between the two corresponding contractions in the evaluation of the BK parameter of neutral kaon mixing as
pointed out in [35] and subsequently confirmed in [3, 36].
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Our ab initio determination of A2 shows clearly that phenomenological approaches based on the dominance of näıve
factorization are not consistent. We note however, that there were non-lattice studies based on chiral perturbation
theory and the 1/N expansion, where N is the number of colors, which indicated that C2 may have the opposite sign
to C1 [37, 38]. Of course, as illustrated in our results above, the 1/N expansion per se is not a good approximation;
C2 is suppressed by 1/N and yet is comparable to C1. In different ways, the authors of [37, 38] combine the expansion
with leading short and long-distance logarithms. In [37] the authors use an ansatz for matching the perturbative
short-distance contributions and long-distance effects based on a chiral Lagrangian for mesons. In [38] the authors
compare the experimental value of ReA2 with the leading term of the expansion to deduce that C2 should be negative.
For recent discussions of these two early approaches, stimulated by our lattice QCD result [1, 2] and written by subsets
of their original authors, we refer the reader to [39, 40].
Our earlier calculation of A2 was performed on an ensemble at a single coarse lattice spacing, a−1 = 1.364GeV [1, 2],

and so not surprisingly the dominant systematic uncertainty was due to discretization errors. We estimated these to
be about 15%, although with only a single lattice spacing this could only be an estimate. In the present paper we
repeat and refine the earlier calculation which is now performed on two finer ensembles with different lattice spacings,
allowing for a continuum extrapolation. We have determined ReA2 to be 1.50(4)stat(14)sys × 10−8GeV. This is
consistent with the experimental values of 1.4787(31)×10−8 GeV from charged kaon decays and 1.570(53)×10−8 GeV
from neutral kaon decays. We have also calculated the imaginary part of A2 to be −6.93(20)stat(84)sys × 10−13 GeV,
which was unknown until [1, 2]. (We recall that the corresponding results from our earlier work were ReA2 =
1.38(5)stat(26)sys × 10−8GeV and ImA2 = −6.54(46)stat(120)sys × 10−8GeV .) Our results for Im and Re A2 imply,
(ǫ ′/ǫ)EWP = −6.6(10) × 10−4. This can be compared to the result obtained via Finite Energy Sum Rules [41],
Re(ǫ′/ǫ)EWP = −(11.0± 3.6)× 10−4 (see also results based on vacuum saturation [41, 42]).
The errors are currently dominated by systematic uncertainties, the largest of which is due to the uncertainty in

the (perturbative) evaluation of the Wilson coefficients (see Tabs. IX and X). It is testimony to the huge progress in
the precision of lattice calculations that this is the case. We have aimed to be conservative in estimating this error,
taking the difference between the lowest order and the next-to-lowest order as the uncertainty. The natural way to
decrease this error is to perform higher-order perturbative calculations in the standard model but it may also be
possible to use step scaling to increase the renormalization scale in the intermediate schemes (such as the RI-SMOM
schemes used in this study) and hence to increase the scale at which the matching to the MS scheme is performed
and at which the Wilson coefficients are calculated. It will be interesting to explore this possibility.
In order to have a fully quantitative understanding of the ∆I = 1/2 rule and to determine ǫ′/ǫ and to compare

the result to the experimental value ǫ′/ǫ = (1.65± 0.26)× 10−3 we need to perform the evaluation of A0 at physical
kinematics. A key ingredient which makes the calculation of A2 feasible is the use of the Wigner-Eckart theorem
described in Sec. III. Together with the choice of volume and the use of antiperiodic boundary conditions for the d-
quark in all 3 spatial directions, it ensures that the energy of the two-pion ground state is equal to mK . Unfortunately
this approach cannot be directly applied to the calculation of A0, in particular the breaking of isospin symmetry by
the boundary conditions invalidates the calculation. For example, the π0 remains at rest with the antiperiodic
boundary conditions, whereas the charged pions have non-zero momentum. More sophisticated boundary conditions
mixing quarks and anti-quarks and an isospin rotation, the so called G-parity boundary conditions [11, 43–46], must
therefore be used instead for both the valence and the sea quarks. The evaluation of A0 with G-parity boundary
conditions is well underway and exciting progress has recently been reported in [4] and we anticipate the first complete
calculation of A0, albeit on a single lattice spacing, within the next year.
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Appendix A: β(mK ,mπ,mπ) and the Lellouch-Lüscher Factor

In Sec. V we use chiral perturbation theory to estimate the finite-volume corrections in our calculation of A2 and
consider the differences between the finite-volume sums and infinite-volume integrals in ℓ(m2) and β(q,m1,m2) defined

in Eqs. (47) and (48). In the case with q = (mK ,~0) and m1 = m2 = mπ, β(mK ,mπ,mπ) in Minkowski space has an
imaginary part which leads to finite-volume corrections in Euclidean space which decrease only as inverse powers of
the volume and not exponentially. These power corrections are the one-loop chiral perturbation theory (NLO ChPT)
contributions to the Lellouch-Lüscher factor F in Eqs. (40) and (41). This factor is included fully in our analysis
and so we must not include it again from NLO ChPT. A detailed study of how the Lellouch-Lüscher factor arises in
one-loop ChPT was performed in [5], but we hope that it will be useful to summarise the main points here.
In Minkowski space, performing the k0 integration in the centre-of-mass frame we obtain

β(mK ,mπ,mπ) =

∫
d3~k

(2π)3
1

ω(~k) [m2
K − 4ω2(~k) + iε]

, (A1)

where ω2(~k) =
∣
∣
∣~k
∣
∣
∣

2

+m2
π.

In finite-volume Euclidean space we evaluate the correlation function illustrated in Fig. 12. The kaon propagator is
irrelevant for our discussion and so we amputate it, and consider the two pions to be created at the origin, to rescatter
and to be annihilated on the timeslice at ty. After performing the integrals over ~y1, ~y2 (with phase factors ei~q·~y1 and

e−i~q·~y2 respectively) and ~x and exploiting the resulting δ functions, we obtain for this contribution to the correlation
function:

I ≡
∫ ∞

−∞

dt

∫
d3~k

(2π)3

4∏

i=1

dEi

E2
i + ω2

i

ei(E1−E2)t ei(E3−E4)(ty−t) , (A2)

where in a finite volume the integral over ~k is replaced by the corresponding sum. Here ω2
1 = ω2

2 = ω2(~k) =
∣
∣
∣~k
∣
∣
∣

2

+m2
π

and ω2
3 = ω2

4 = ω2(~q) = |~q|2 +m2
π so that ω3,4 are not integration variables.

The energy integrals can now be performed by contour integration; there are 3 contributions depending on the
value of t.

1. The first contribution is from the interval −∞ < t < 0 and gives

I1 =
e−2ω(~q) ty

32ω2(~q)

∫
d3~k

(2π)3
1

ω2(~k) (ω(~k) + ω(~q))
. (A3)
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2. The second contribution comes from the region 0 < t < ty and gives

I2 =
e−2ω(~q) ty

32ω2(~q)

∫
d3~k

(2π)3
1

ω2(~k) (ω(~k)− ω(~q))
(1− e−2(ω(~k)−ω(~q)) ty ) . (A4)

3. Finally we have the contribution from the region ty < t < ∞ which gives

I3 =
1

32ω2(~q)

∫
d3~k

(2π)3
e−2ω(~k) ty

ω2(~k) (ω(~k) + ω(~q))
. (A5)

The contribution to the amplitude is given by the coefficient of

e−2ω(~q)ty

4ω2(~q)
.

In finite volume the integrals over ~k are replaced by the corresponding sums and we obtain the following three
contributions.

T1 =
1

8L3

∑

~k

1

ω2(~k) (ω(~k) + ω(~q))
(A6)

from the region t < 0.

T2 =

(
νqty
L3

)
1

4ω2(~q)
+

1

8L3

∑

|~k|6=|~q|

1

ω2(~k)(ω(k)− ω(q))
, (A7)

from the region 0 < t < ty, where νq is the degeneracy of states with ~k = ~q. The term proportional to ty is the
FV correction to the two-pion energy and it can be checked that this is correctly given by the Lüscher quantization
condition [5]. Finally from the region ty < t < ∞ we have

T3 =
( νq
L3

) 1

16ω3(q)
. (A8)

We now separate the terms with |~k| = |~q | from those where |~k| 6= |~q |. When |~k| = |~q |, we find a contribution

νq
L3

1

4ω2(~q)

{
1

4ω(~q)
+

1

4ω(~q)

}

, (A9)

where the first term in the braces corresponds to T1 and the second corresponds to T3. The contribution from T3 is
cancelled by the FV correction to the matrix element of the two-pion interpolating operator at ty [5] whereas the one
from T1 is a contribution to the FV effects in the amplitude.

The contributions from |~k| 6= |~q | come from T1 and T2 and can be combined to give

1

4L3

∑

|~k|6=|~q|

1

ω(~k) (ω2(~k)− ω2(~q))
. (A10)

Thus in Euclidean finite volume we obtain

S′
1 +

νq
16L3E3

, (A11)

where it is convenient to define

S′
n =

ωn−1(~q)

4L3

∑

|~k|6=|~q|

1

ωn(~k) (ω2(~k)− ω2(~q))
(A12)
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and the corresponding integrals by

Jn =
ωn−1(~q)

4
P
∫

d3~k

(2π)3
1

ωn(~k) (ω2(~k)− ω2(~q))
. (A13)

Relating this sum to the corresponding integral gives the LL-factor [5]. We now make this more specific and
determine the exponentially small corrections. In the difference S′

1 − S′
0 there is no term with a pole at ω(k) = ω(q)

so that this difference can be related to the corresponding integral using the Poisson summation formula and the
exponentially small finite-volume corrections can be identified

S′
1 − S′

0 = − 1

4L3ω(~q)

∑

|~k|6=|~q|

1

ω(~k)(ω(~k) + ω(~q))
(A14)

= − 1

4L3ω(~q)

∑

~k

1

ω(~k)(ω(~k) + ω(~q))
+

νq
8L3ω3(~q)

= J1 − J0 +
νq

8L3ω3(~q)
+ e1,0 . (A15)

Thus we see that the finite volume and infinite-volume results are related by

S′
1 +

νq
16L3E3

= J1 − J0 + S′
0 +

3νq
16L3E3

+ e1,0 , (A16)

where e1,0 represent the exponentially small corrections,

e1,0 = − 1

8π2ω(~q)L

∑

~n,n6=0

1

n

∫ ∞

0

k dk
sin(nkL)

ω(k)(ω(k) + ω(q))
, (A17)

and n and k are |~n | and |~k | respectively. It was shown in [5] that −J0 + S′
0 +

3νq
16L3E3 is precisely the one-loop

contribution to the Lellouch-Lüscher factor. The residual exponentially small finite-volume effects are given by e1,0.
(The ultraviolet divergence cancels in the difference J0 − S′

0, but if the zeta function regularization is used, as in [22],
then J0 = 0.)
We have presented the above detailed discussion because we believe that there is a misunderstanding in the literature.

In Eqs. (71) and (73) of [6], the authors take the finite-volume corrections in β(mK ,mπ,mπ) in Euclidean space to
be the difference between the momentum integral and the corresponding sum over the integrand in Eq. (A1) but with
the replacement m2

K − 4ω2(k) → m2
K + 4ω2(k) in the denominator. Since there would now be no singularity in the

denominator, the finite-volume corrections would be exponential and there would be no Lellouch-Lüscher factor. The
above derivation demonstrates instead the origin of the power corrections in the volume.
Throughout the above discussion we assumed periodic boundary conditions in all three spatial directions so that

ki = ni × (2π/L) where ni is an integer. In our determination of A2 we use antiperiodic boundary conditions in all
three directions so that

e1,0 = − 1

8π2ω(q)L

∑

~n,n6=0

(−1)nx+ny+nz

n

∫ ∞

0

k dk
sin(nkL)

ω(k)(ω(k) + ω(q))
. (A18)
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