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There is considerable controversy about the size and importance of non-perturbative contributions
to the evolution of transverse momentum dependent (TMD) parton distribution functions. Standard
fits to relatively high-energy Drell-Yan data give evolution that when taken to lower Q is too rapid
to be consistent with recent data in semi-inclusive deeply inelastic scattering. Some authors provide
very different forms for TMD evolution, even arguing that non-perturbative contributions at large
transverse distance bT are not needed or are irrelevant. Here, we systematically analyze the issues,
both perturbative and non-perturbative. We make a motivated proposal for the parameterization of
the non-perturbative part of the TMD evolution kernel that could give consistency: with the variety
of apparently conflicting data, with theoretical perturbative calculations where they are applicable,
and with general theoretical non-perturbative constraints on correlation functions at large distances.
We propose and use a scheme- and scale-independent function A(bT) that gives a tool to compare
and diagnose different proposals for TMD evolution. We also advocate for phenomenological studies
of A(bT) as a probe of TMD evolution. The results are important generally for applications of TMD
factorization. In particular, they are important to making predictions for proposed polarized Drell-
Yan experiments to measure the Sivers function.

I. INTRODUCTION

Factorization involving transverse-momentum-
dependent (TMD) parton densities and fragmentation
functions is important to understanding a variety of
hard-scattering reactions in QCD. The domain of utility
of such “TMD factorization” is where there is a relevant
measured transverse momentum, qT, that is much less
than the large scale Q of the hard scattering.

Although there has been substantial success (e.g., [1–
5]) in fitting data with TMD factorization in the standard
framework of Collins, Soper and Sterman (CSS) [6–9], a
number of recent papers — e.g., Refs. [10–13] — disagree
with the way this has been done, as we will explain in
more detail in Sec. V. There appear to be substantially
different predictions for lower-energy experiments, and
there even appear to be inconsistencies in how the phe-
nomenology of TMD factorization is to be implemented.

These problems particularly impact proposals for ex-
periments [14–16] for the Drell-Yan process with a trans-
versely polarized hadron. The proposed experiments are
designed (among other things) to test the predicted re-
versal of sign [17] of the Sivers function [18, 19] be-
tween semi-inclusive deeply-inelastic scattering (SIDIS)
and the Drell-Yan process. Predictions for polarized
Drell-Yan use the Sivers functions measured in SIDIS
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at relatively low Q (e.g., Q ∼
√

2.4 GeV at HERMES
[20, 21]). However, to make the predictions one needs to
use correct evolution of the TMD functions to the higher
Q of the polarized Drell-Yan experiments. The same
applies when one wants to analyze data on the Collins
function both from the HERMES and COMPASS exper-
iments and from e+e− annihilation from the Belle [22, 23]
and BABAR [24] experiments.

The main issue concerns the evolution of the TMD
parton densities (from which arises a dilution of the frac-
tional Sivers asymmetry and other similar quantities).
In the CSS framework, the evolution is governed by the
function called1 K̃(bT) [6–9], with bT being a transverse
position variable. The results of standard fits [1, 2] of

the non-perturbative part of K̃ to unpolarized Drell-Yan
data atQ & 9 GeV give what Sun and Yuan [12, 13] argue
to be a too rapid evolution of TMD functions at the lower
values of Q relevant for currently available measurements
of the Sivers function. However, Aybat et al. [26] find
that the rather rapid evolution given by the BLNY fit of
Landry et al. [1] does agree with the change in the Sivers
asymmetry between the values of Q for the HERMES
[20] and preliminary COMPASS [27] data. More recently,
Aidala et al. [28] make a very detailed examination of the
HERMES and COMPASS data. They agree that there
is indeed a discrepancy between this data and the pre-
dictions based on the earlier Drell-Yan data, but argue

1 Essentially the same function is notated −2D by Echevarŕıa et
al. [25], and −Fqq̄ by Becher and Neubert [10].
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that the low- and high-energy data are mostly probing
different regions of transverse position; thus the discrep-
ancy concerns the extrapolation of a parametrization of
non-perturbative physics outside the region where it was
fitted.

Another issue is that there is more than one formu-
lation of TMD factorization, and that these do not al-
ways appear to be compatible. There is the original CSS
formulation in Refs. [6–8] and its new version in Ref.
[9]. There is the related but different formulation by
Ji, Ma and Yuan [29]. There are at least three not ob-
viously identical formulations in the SCET framework:
by Becher and Neubert [10], by Echevarŕıa, Idilbi, and
Scimemi [25] (EIS), and by Mantry and Petriello [30, 31].
Furthermore, although Sun and Yuan [12, 13] explicitly
base their work on the CSS method, the actual formula
they used to fit data differs substantially from those used
in the original fits to Drell-Yan data. Sun and Yuan’s
formula represents a certain approximation that is es-
sentially identical to one given by Boer in Ref. [32, Eq.
(144)]. The different formulae give rather different re-
sults, as seen in a recent paper by Boer [33].

To understand the origin of the proliferation in meth-
ods, it is helpful to note that there is often a clash of
motivations for applying TMD factorization in specific
phenomenological situations.

One increasingly prominent motivation is to study the
intrinsic transverse motion related to non-perturbative
binding and hadronic physics. For this it is desirable to
have a cross section where the effects of intrinsic trans-
verse momentum do not become washed out by pertur-
bative gluon radiation. For these applications, Q is taken
to be large enough for an overall TMD factorization the-
orem to be valid, while also being small enough that per-
turbative radiation does not greatly obscure interesting
non-perturbative dynamics associated with the hadron
wavefunction.2 The measurement of TMD parton densi-
ties and fragmentation functions then gives a useful probe
of non-perturbative transverse momentum dynamics in-
side a hadron. Examples of recent work where this is the
driving motivation include Refs. [34–40].

By contrast, at high-energy hadron colliders, one is of-
ten interested in studying purely perturbative phenom-
ena in cross sections with large transverse momentum,
or in utilizing perturbative QCD calculations as part of
searches for new physics beyond the Standard Model.
TMD factorization contains a useful way of resumming
large logarithms in perturbative calculations. Examples
of recent work where this second motivation is the pri-
mary focus include Refs. [10, 41–44]. In these applica-
tions, sensitivity to non-perturbative transverse momen-
tum phenomena could understandably be seen as a nui-
sance and a source of uncertainty, while these same phe-

2 A standard example is the Sivers function, where associated with
intrinsic non-perturbative transverse momentum is a transverse
single-spin asymmetry with a process-dependent sign.

nomena are the main objects of study in the situation
described in the previous paragraph.

Our perspective is that the two motivations described
above are best seen as complementary rather than con-
flicting. Both the perturbative calculability of the small
bT dependence and the universality of the large bT de-
pendence are important features of the TMD factoriza-
tion theorem, and predictive power is optimized when
both are fully exploited. Verifying the universality of the
large bT behavior can provide valuable insight into as-
pects of the non-perturbative dynamics relevant to stud-
ies of hadron structure. Moreover, even for measure-
ments at relatively large Q, where sensitivity to the non-
perturbative region of bT is expected to be small, non-
perturbative components are potentially necessary if very
high precision calculations are desired.3 Thus, the TMD
factorization theorem, with its accommodation of both
types of behavior, simultaneously addresses both of the
motivations described above within a single formalism.

One of the issues that now becomes prominent is
the nature of the evolution of the TMD functions be-
tween different energies. Notably, there is disagreement
on whether there are non-perturbative contributions to
TMD evolution and how significant they are.

A non-perturbative contribution to the evolution
might appear troublesome at first glance. Non-
perturbative inputs in perturbative calculations are
sources of uncertainty. However, the CS kernel, includ-
ing its non-perturbative components, has what we call
“strong” universality. Namely, it is process independent,
but it is also insensitive to the types of external hadrons
involved, any polarization dependence, the flavors of the
quarks, and the scale Q. (The only dependence is on
the color representation of the colliding parton — there
is, in principle, a different non-perturbative evolution for
quark and gluon TMD pdfs.) In this sense, it has a much
greater degree of universality than, say, collinear pdfs,
which, while independent of the process, are dependent
upon the nature and identity of parent hadron, includ-
ing the polarization, and on the flavor and polarization
of the quark. Once the non-perturbative TMD evolution
is known, it can be used in all situations where a TMD
factorization theorem is valid. Verifying this strongly
universal nature of the non-perturbative evolution is an
important test of the TMD-factorization theorem itself.
Moreover, its relationship to matrix elements of the fun-
damental field operators is known — it is essentially a
non-perturbative contribution to the vacuum expecta-
tion value of a certain kind of Wilson loop. (This follows
immediately from the definitions of the TMD pdfs; see,
for example, [9, Eqs. (13.47, 13.48)].) Therefore, deter-
mining its influence on cross sections provides a probe

3 One example is the W mass where the large bT behavior is an
important source of uncertainty in precision experimental con-
straints. See, for example, page 57 of [45]. See also a discussion
of related issues in Ref. [46].
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of fundamental non-perturbative quark-gluon dynamics,
which can then be compared with non-perturbative ap-
proaches to understanding QCD matrix elements. Such
non-perturbative methods could include, for example,
lattice based calculations [47–49].

Now, the TMD functions are normally used in their
Fourier transformed versions, in terms of a transverse
position variable bT. CSS took it as obvious that a large
enough value of bT is in the region of non-perturbative
physics in QCD. They therefore argued that one must
provide some kind of cutoff on perturbative calculations
and insert a parametrization, to be fit to data, to han-
dle non-perturbative contributions at large bT. Such fits
were done in Refs. [1, 2]. But other papers have either
avoided [10, 12, 13] the use of a non-perturbative con-

tribution to the function K̃(bT) that controls evolution,
or have argued [11] that the non-perturbative contribu-
tion is not needed until well beyond the region of bT
that was regarded as non-perturbative in the earlier fits.
Furthermore, Kulesza, Sterman, and Vogelsang [50] have
presented a method in which the Landau pole manifested
in perturbative calculations in bT-space is avoided by a
contour deformation, and the non-perturbative behavior
associated with large bT is inferred from power law be-
havior obtained in perturbation theory and extrapolated
to large bT. In Refs. [51, 52], the sizes of power correc-
tions were estimated on the basis of renormalon studies.

In this paper, we give a detailed analysis of the issues,
and propose methods and solutions for resolving the dis-
agreements.

First, we survey a sample of the different ways solu-
tions to the evolution equations can be written. This will
illustrate how different but essentially equivalent styles of
presentation may emphasize particular specific features
while preserving the broad, underlying predictive power
of the TMD factorization formalism. For instance, we
will note the connection between a TMD parton model
language and the standard presentation of the results of
the CSS formalism.

Then, as a diagnostic tool, we define a master function4

A(bT) that can be used to quantify the evolution of the
shape of TMD functions, separately from the normal-
ization. This function is scheme- and renormalization-
group-independent, and the function is predicted by
QCD to be independent of all other kinematic variables
(e.g., Q) and of parton and hadron flavor. Because A is
scheme-independent, a comparison of A between different
formalisms and approximations can be used as a diagnos-
tic to determine where in bT the methods disagree. This

4 The function in fact equals the one that CSS [8] called A. But
we now give a more general definition, not tied to a particular
version of the CSS formalism in the perturbative region. In the
CSS formalism our definition gives A = −∂K̃/∂ ln b2T. Contrary
to CSS, we now treat A as a function of bT instead of αs(1/bT),
as is more appropriate when examining its behavior beyond per-
turbation theory.

then indicates which experiments would give sensitivity
to the differences. Since A is a scheme-independent prop-
erty of QCD and is a function of only one variable, we
propose that calculations and fits for TMD evolution can
be presented as including a determination of A in partic-
ular regions of bT, and that it would be useful to obtain a
global fit for A. The result would be a universal function
that controls the evolution with energy of the shape of all
the many TMD functions (for color triplet quarks). As a
first step in such an analysis, we use the master function
A to compare evolution in various formalisms and from
different analyses of data.

Finally, we examine phenomenological and theoretical
issues concerning the non-perturbative large-bT behav-
ior of the TMD pdfs and of K̃. We will argue that the
standard Gaussian parametrizations of the TMD func-
tions give the wrong limiting behavior at asymptotically
large bT. Instead, we agree with Schweitzer et al. [53]
that TMD parton densities and fragmentation functions
should decay exponentially at large bT, with a decay
length corresponding to the mass of the lowest relevant
state.

As regards the CSS evolution kernel K̃, the same argu-
ment suggests that it goes to a constant at large bT (and
hence that our master function A goes to zero). This is
also suggested phenomenologically by the apparent slow-
ness of TMD evolution at low Q, where phenomena are
dominated by the non-perturbative range of large bT. We
will suggest possible parametrizations that can reconcile
our proposed large bT asymptote with previous fits that
use a quadratic b2T dependence for K̃. These quadratic
parametrizations correspond to a Q-dependent width for
the standard Gaussian ansatz for TMD functions. The
quadratic form for K̃ (and hence A) can only be valid
over a limited range of moderately large bT. One should
not continue the b2T form to the larger values of bT that
are important for processes at low Q. The result is then
that the evolution of TMD pdfs is much weaker at low Q
than would otherwise happen.

A related proposal for the non-perturbative form was
given by Collins and Soper [54]. Their form was logarith-
mic instead of quadratic, and the particular formula was
designed to provide a better match to the perturbative
part of K̃ in the extrapolation to large bT.

A number of the ideas in this paper have been discussed
and presented at various conferences and workshops, so
they are already becoming current (e.g., [55]). The par-
ticular aim of the present paper is to give a detailed,
systematic, and unified account of the issues.

The outline of this paper is as follows: First, in Sec.
II, we review the CSS formalism for TMD factorization
in the form given in Ref. [9], together with an analysis
of various forms of solution of the evolution equations.
In Sec. III we review the universality properties of the
functions in the formalism. Then in Sec. IV, we moti-
vate and define the master function A. In Sec. V, we
assess various approximations for K̃ and show the phe-
nomenological difficulties referred to earlier. In Sec. VII,
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we propose new forms for parametrizing the large-bT re-
gion.

II. CSS FORMALISM

In this section we review TMD factorization for the
Drell-Yan cross section in the version of the CSS formal-
ism recently derived in Ref. [9], where can be found jus-
tifications of assertions in this section that are otherwise
unreferenced. (The results presented are for the case that
all quarks are light. In the presence of heavy quarks, as
in real QCD, the modifications have not been completely
worked out, to the best of our knowledge. See, however,
Ref. [56] for work in this direction in the specific case of
heavy quark production.)

It should be emphasized that the CSS formalism in
Ref. [9] is, in fact, equivalent to the earlier formalism
of [6–8], but with a different organization of the factors
that is intended to be more convenient, and with im-
proved operator definitions of the TMD functions. This
implies, in particular, that high order calculations for
quantities like anomalous dimensions performed for the
original version of the CSS formalism can be carried over
to the new version, after allowing for an effective scheme
change. Thus, use of the updated formalisms does not
necessarily imply an increased degree of complexity, rel-
ative to previous work, for doing calculations.

Results of the same structure apply to other processes
of interest, e.g., semi-inclusive deep-inelastic scattering
(SIDIS) [57–59] and inclusive production of two hadrons
in e+e− annihilation [6]. It will be sufficient to use Drell-
Yan scattering as our main example.

Much of the presentation in this section follows previ-
ous treatments. The reader should be warned that some
steps may require familiarity with more complete deriva-
tions such as can be found in Ref. [6–9]. We will empha-

size aspects that are particularly relevant to comparison
with data, to the predictive power of the formalism, and
to the comparison with other formalisms and approxi-
mations. In particular, we will give a careful account
of the nature of quantities that receive non-perturbative
contributions, notably the function K̃ that controls the
evolution of TMD densities.

A. The fundamental equations

The Drell-Yan process is the production of a high-mass
lepton-pair in a high-energy collision of two hadrons, A+
B → l + l̄ +X, with the restriction to production of the
lepton pair through a virtual photon and/or Z boson5 in
the lowest order in electroweak interactions.

Kinematic variables are defined as follows: The mo-
menta of the incoming hadrons are pA and pB , the mo-
mentum of the lepton pair is q, polar angles θ and φ
in the Collins-Soper frame [60] are used to specify the
directions of the lepton momenta, and the element of
solid angle for the lepton direction is dΩ. Certain aux-
iliary variables are convenient for the factorization for-
malism. To define these, we use light-front coordinates
in the overall center-of-mass frame, with A and B moving
in the +z and −z directions. Then q± = (q0 ± q3)/

√
2,

and we let the mass, rapidity, and transverse momen-

tum of the lepton pair be Q =
√
q2, y = 1

2 ln(q+/q−),
and qT. Longitudinal momentum fractions are defined
by xA = Qey/

√
s and xB = Qe−y/

√
s, where

√
s is the

overall center-of-mass energy. Factorization applies up
to power suppressed corrections when s and Q are made
large with fixed xA and xB .

1. Factorization

The factorization formula is:

dσ

d4q dΩ
=

2

s

∑
j

dσ̂j̄(Q,µ, αs(µ))

dΩ

∫
d2bT eiqT·bT f̃j/A(xA, bT; ζA, µ) f̃̄/B(xB , bT; ζB , µ)

+ polarization terms + high-qT term (Y ) + power-suppressed. (1)

Here, f̃j/H(x, bT; ζ, µ) is the TMD density of a quark of
flavor j in hadron H, but Fourier transformed to trans-
verse coordinate space. A suitable definition is given
in Ref. [9, Sec. 13.15], with the change of direction of
the Wilson lines appropriate to the Drell-Yan process

5 The modifications for other related processes, e.g., W production
are, of course, elementary.

[9, Sec. 14.15]. The sum over j is over all flavors of
quark and antiquark. The hard-scattering coefficient is
dσ̂j̄(Q,µ, αs(µ))/ dΩ, normalized like a cross section, for
production of the lepton pair from a quark-antiquark col-
lision, with renormalization scale µ. When the renormal-
ization scale is taken to be of order Q, the hard scatter-
ing is perturbatively calculable because of the asymptotic
freedom of QCD. The parton densities have two scale
arguments: one is the renormalization scale µ, and the
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other is a scale ζ that is used to parametrize how the
effects of soft-gluon radiation are partitioned between
the two TMD parton densities. The two ζ scales obey
ζAζB = Q4.

It is convenient to define a contribution to the bT-space
integrand by

W̃j(bT;Q) ≡ Q2 dσ̂j̄(Q,µ, αs(µ))

dΩ

× f̃j/A(xA, bT; ζA, µ) f̃̄/B(xB , bT; ζB , µ) .

(2)

Note that this quantity includes the hard part, and that
the normalization differs from that of a similar quantity
in Ref. [8]. The overall factor of Q2 in Eq. (2) is to

make W̃j dimensionless. It is also convenient to define a

summed W̃ whose Fourier transform corresponds to the
cross section itself:

W̃ =
∑
j

W̃j . (3)

Then the first line of Eq. (1) is

2

sQ2

∑
j

∫
d2bT e

iqT·bTW̃j(bT;Q) , (4)

i.e.,

2

sQ2

∫
d2bT e

iqT·bTW̃ (bT;Q) . (5)

The hard scattering is computed from graphs for the
massless on-shell quark-antiquark-to-lepton-pair reaction
with subtractions for collinear and soft regions appropri-
ate to the definition of the TMD parton densities that are
used. The leptons’ angular distribution is computed by
using the valid approximation that in the hard scattering
the incoming quark j and antiquark ̄ move in exactly the
+z and −z directions in the Collins-Soper frame.

The cross section, with its angular distribution, can be
expressed in terms of a hadronic tensor Wµν(q, pA, pB)
and corresponding scalar structure functions (W1 etc) in
the standard way [61–64]: Given that only annihilation
through an electroweak boson is involved, the cross sec-
tion is written in terms of the product of Wµν and a
lowest-order leptonic factor. The hadronic tensor is de-
composed in terms of standard basis tensors times scalar
structure functions. There is a corresponding decompo-
sition of the cross section in terms of basis functions for
the dependence on the lepton polar angles, including spin
dependence [65–67]. By matching the basis function ex-
pansion for the full cross section and the hard-scattering
cross section (or some equivalent method), one obtains
from Eq. (1) corresponding TMD factorization formulae
for the structure functions.

The first line in Eq. (1) gives the cross section when
qT � Q, the hadrons are unpolarized, and quark polar-
ization is ignored. In that case the TMD parton densi-
ties are independent of the azimuthal angle of bT. When

hadron and quark polarization are taken into account,
further similar terms arise; these can be characterized
in terms of suitable polarization-dependent TMD densi-
ties [68, 69]. For example, there is the Sivers function
[18, 19], which gives the azimuthal dependence of the
TMD density of unpolarized quarks in a transversely po-
larized proton.

Treatment of the polarization-dependent terms in-
volves a mostly straightforward generalization of the CSS
method: See, for example, Refs. [33, 70, 71].

A further addition to the formula is present, because
the first part of Eq. (1), including the polarization-
dependent terms, gives a valid approximation to the
cross section only when qT � Q. At large qT, ordinary
collinear factorization is valid. Therefore a correction
term is added so that the total is correct to the leading
power of Q for any value of qT; the correction term is
called Y by CSS [6, 8].

2. Summary of subsidiary results

Most of the predictive power of TMD factorization
comes not from the factorization formula (1) alone, but
from its combination with further results, as follows.

First, there are evolution equations (Sec. II A 3,
Eqs. (6–9)) for the ζ and µ dependence of the factors.
These equations enable the parton densities to be written
in terms of parton densities at fixed scales. The parton
densities are universal across processes6.

The second source of predictive power is from pertur-
bative calculations of the kernels of the evolution equa-
tions. These include anomalous dimensions and the
universal function K̃(bT, µ) that controls ζ dependence.
With the aid of a renormalization-group transformation,
K̃(bT, µ) can be calculated perturbatively when bT is not
too large. (See Sec. II A 3, Eqs. (10–12) below.)

The universality of the various non-perturbative func-
tions, as summarized in Sec. III below, gives further pre-
dictions. This especially concerns the function K̃(bT, µ),
which is non-perturbative for large bT.

Another source of predictions is that after evolution is
applied to set ζ and µ2 to be of order Q2, the hard scat-
tering, dσ̂j̄(Q,µ, αs(µ))/dΩ, is perturbative; that is, it
can be expanded in powers of the effective coupling αs(Q)
at a high scale, without the logarithmic enhancements of
coefficients that would otherwise occur.

Finally, there is a kind of operator product expansion
(OPE) for the TMD parton densities at small bT. (See
Sec. II A 4.) In a theory, such as a superrenormalizable
non-gauge theory, where the elementary parton model
is valid, the value of a coordinate-space TMD parton
density at zero bT equals the integral over all transverse

6 Apart from the predicted sign-reversal of T -odd functions, like
the Sivers function, between Drell-Yan and SIDIS.
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momentum of the momentum space TMD function, by
elementary properties of Fourier transforms. The result
is also the corresponding integrated parton density. See
Ref. [9, Sec. 6.8] for details.

But in renormalizable theories and especially QCD,
there is a strong enough singularity at bT → 0, that such
results must be modified (e.g., [9, Ch. 13]) and the ap-
propriate modification is the OPE at small bT. This en-
ables the TMD functions at small bT to be expressed in
terms of ordinary integrated parton densities and pertur-
batively calculable coefficient functions. The coefficient
functions in this OPE are currently known7 to order α2

s

[73, 74]. Intuitively, the OPE can be characterized by
saying that when a momentum-space TMD density is
integrated over transverse momenta up to order Q, the
result is the integrated parton density at scale Q plus
perturbative corrections of order αs(Q).

Naturally, DGLAP evolution also enters here, so that
the OPE plus DGLAP evolution gives the TMD parton
densities at small bT in terms of ordinary parton densities
at a fixed scale.

It should be added that even without any of these sub-
sidiary results, the factorization in Eq. (2) alone provides
predictions, since as regards the dependence on the lon-
gitudinal momentum fraction parameters xA and xB , the
cross section is a function jointly of both variables. But
each parton density depends only on one of these vari-
ables.

3. Evolution equations

The CSS evolution equation for the ζ dependence of
the TMD parton densities is

∂ ln f̃f/H(x, bT; ζ;µ)

∂ ln
√
ζ

= K̃(bT;µ). (6)

The kernel K̃ is independent of the flavor and spin of the
quark, of the nature of the hadron target, and of the mo-
mentum fraction x. It is also the same for fragmentation
functions as well as parton densities, and is the same be-
tween the versions of parton densities for Drell-Yan and
the SIDIS processes, and for all the different polarized
parton densities. A different kernel does appear in gluon
densities, since K̃ depends on the color representation
carried by the parton. Note that both the parton densi-
ties and the kernel K̃ have contributions from the infra-
red or long-distance domain,8 and hence these functions

7 Catani et al. [72] also give the results for a number of high-order
calculations for a version of CSS resummation. Since there may
be a scheme change compared with the formalism that we and
the authors of [73, 74] used, it remains to check consistency of
the different calculations.

8 For K̃, infra-red contributions are power-suppressed at small bT
but not at large bT.

depend on quark masses, as well as on the coupling αs(µ);
but we have not indicated this dependence explicitly.

The renormalization group (RG) equation for the ker-
nel is

dK̃(bT;µ)

d lnµ
= −γK(αs(µ)) , (7)

and for the parton densities, the RG equation is

d ln f̃j/H(x, bT; ζ;µ)

d lnµ
= γj(αs(µ); 1)− 1

2
γK(αs(µ)) ln

ζ

µ2
,

(8)
in the notation of Ref. [9]. The RG coefficient γj is spe-
cific to quark j. However the relevant calculations are
the same for all flavors of spin- 1

2 quark. The ζ depen-
dence on the right-hand side is determined from the fact
that differentiation of a parton density with respect to
µ commutes with differentiation with respect to ζ. (An
alternative notation for the whole of the right-hand side
of (8) is γj(αs(µ); ζ/µ2).)

An RG equation for the hard scattering follows from
the RG invariance of physical cross sections:

d

d lnµ
ln

[
dσ̂j̄(Q,µ, αs(µ))

dΩ

]
= −2γj(αs(µ); 1) + γK(αs(µ)) ln

Q2

µ2
. (9)

In our calculations, we will need the one-loop values
for the above quantities, and the two-loop value of γK :9

γK(αs(µ)) = 2CF
αs(µ)

π

+

(
αs(µ)

π

)2

CF

[
CA

(
67

18
− π2

6

)
− 10

9
TFnf

]
+O(αs(µ)3), (10)

K̃(bT;µ) = − αs(µ)

π
CF

[
ln
b2Tµ

2

4
+ 2γE

]
+O(αs(µ)2), (11)

γj(αs(µ); 1) =
3CF

2

αs(µ)

π
+O(αs(µ)2). (12)

4. Small-bT expansion

At small bT, the unpolarized TMD parton densities
can be expressed in terms of the corresponding integrated
parton densities, fk/H(x;µ), by a kind of OPE:

f̃j/H(x, bT; ζ;µ) =
∑
k

∫ 1+

x−

dξ

ξ
C̃j/k(x/ξ, bT; ζ, µ, αs(µ))

9 See [9] for one-loop calculations of γK from its definition. The
value to three-loop order was found by Moch, Vermaseren, and
Vogt [75]; they compute a quantity they call A, which is our
γK/2 — see their Eq. (2.4). Their value was recently confirmed
by Grozin et al. [76].
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× fk/H(ξ;µ) + O[(mbT)p] . (13)

Here, the sum is over all flavors k of parton: quarks,
antiquarks, and gluons. When bT is small, the coefficient
functions, C̃j/k, can be usefully expanded in perturbation

theory, provided that
√
ζ and µ are comparable to 1/bT,

so that large logarithms involving these parameters are
not present. Corrections to the OPE are suppressed by
a power of bT, as indicated by the last term in (13).

The lowest order coefficient is effectively unity:

C̃j/k(x/ξ, bT; ζ, µ, αs(µ)) = δjk δ(ξ/x−1)+O(αs). (14)

See Ref. [73, 74] for the coefficient functions to order α2
s.

An OPE of the same form as (13) applies also to the
helicity and transversity densities (but generally with co-
efficient functions that differ beyond lowest order). The
proofs work the same way. In each case one can char-
acterize the OPE in the same way as in last part of
Sec. II A 2: It formulates the QCD corrections to the
parton-model idea that the integral of a TMD density
over all transverse momentum is the corresponding inte-
grated density.

As for the other (polarization-dependent) TMD densi-
ties, like the Sivers function, generalizations of Eq. (13)
apply — see e.g., [77, Eq. (9)]. They relate these other
TMD densities to more involved quantities associated

with matrix elements of higher-twist operators (e.g., the
Qiu-Sterman function [78, 79]). As such, they are less
useful, because, if nothing else, the Qiu-Sterman func-
tion is much less well measured than conventional unpo-
larized parton densities. Thus it will often be useful not
to apply an OPE to the Sivers function, etc.

B. Solutions

The evolution equations can be used to reformulate the
factorization formula in such a way that:

• Universality properties are exhibited. In particu-
lar, functions with non-perturbative content, like
parton densities, are at a single fixed scale.

• Perturbatively calculated quantities have no large
logarithms in their expansions in powers of αs.

We present useful solutions in several forms. The differ-
ent forms can be used to emphasize different aspects of
the physics.

As a starting point, we can use the original factoriza-
tion formula (1) with ζ set to Q2, and µ proportional to
Q:

dσ

d4q dΩ
=

2

s

∑
j

dσ̂j̄(Q,µQ, αs(µQ))

dΩ

∫
d2bT eiqT·bT f̃j/A(xA, bT;Q2, µQ) f̃̄/B(xB , bT;Q2, µQ)

+ polarization terms + high-qT term (Y ) + power-suppressed. (15)

Here µQ = C2Q, and, as usual, the constant C2 can be
chosen with the aim of optimizing the accuracy of per-
turbation theory for dσ̂. This formula exhibits a parton-
model form with a perturbatively calculable hard scat-
tering, while characteristic QCD effects are hidden inside
the Q dependence of the parton densities.

A corresponding equation to (15) is used in ordinary
collinear factorization: There one has a perturbatively
calculable hard scattering convoluted with parton densi-
ties at a scale proportional to Q. Then one uses DGLAP
evolution to express the Q-dependent collinear parton
densities in terms of those at a fixed reference scale. We
apply the same strategy to TMD factorization. Differ-
ences in the implementation arise from three sources: (1)
DGLAP evolution results in a complicated convolution to
relate collinear parton densities at different scales; this
convolution is hidden inside numerical computer codes
for its implementation. For the TMD case, the solutions
to the evolution equations are simple enough to be ex-
hibited explicitly. (2) There are two scale arguments ζ
and µ in the TMD case; this just reflects two sources of

scale dependence as implemented in the technical defini-
tion of the TMD parton densities. (3) There is an extra
variable bT in some of the functions, and extra steps in
the analysis are used to treat this.

In the rest of this section, we will first evolve the TMD
parton densities and K̃ so that factorization is presented
in terms of these functions at fixed values of their scale ar-
guments. This displays the universality properties of par-
ton densities and of the CSS kernel K̃, and is especially
suitable when these functions are in a non-perturbative
region. It also exhibits the nature of the evolution with
Q in a rather direct manner, and the strong predictions
that can be obtained even without the use of perturba-
tion theory to compute TMD parton densities and K̃(bT)
at small bT. We will also exhibit a modified form of
this solution which more clearly displays the fact that
measurements to give an unambiguous determination of
K̃(bT) require changes of the center-of-mass energy

√
s,

not merely changes in Q at fixed
√
s.

Next we exploit RG transformations to allow pertur-
bative expansions without logarithms, when appropriate,
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and we arrange for explicitly defined separate functions
that contain the non-perturbative parts. The result is a
version of a formula given by CSS in Ref. [8]. It utilizes

perturbative information both for K̃ and for the OPE for
the TMD densities, and therefore makes maximum use
of the predictive power of perturbative calculations. But
the structure of the formula, (22) below, does not make
clear the fact that it uses TMD parton densities in a form
close to that of the parton model.

We will also present a modified form of this solution
that uses perturbative information only for K̃, and ef-
fectively treats the TMD densities as if they are func-
tions to be obtained from data. The reason for this is
that it is common that low-energy data have been fitted
with TMD parton densities in a pure parton-model for-

malism [39, 80–89]. Normally a Gaussian dependence
on bT is used in such fits; they are intended to take
account of non-perturbative contributions to the TMD
functions. This is an approximation that ignores the pre-
dicted small-bT dependence in real QCD. It is, of course,
important to know how such TMD functions evolve.

The multiplicity of different forms of solution of the
evolution equations gives a potentially confusing set of
different ways of using TMD factorization phenomeno-
logically. In fact, they correspond to different methods
that have appeared in the literature (typically in conjunc-
tion with approximations). What should be clear from
the order of presentation in this paper is that they are
all related to a single unifying factorization framework.

1. Fixed scales

The solution with the parton densities and the CSS kernel at fixed scales is:

dσ

d4q dΩ
=

2

s

∑
j

dσ̂j̄(Q,µQ, αs(µQ))

dΩ

∫
d2bT e

iqT·bT f̃j/A
(
xA, bT;Q2

0, µ0

)
f̃̄/B

(
xB , bT;Q2

0, µ0

)
×
(
Q2

Q2
0

)K̃(bT;µ0)

exp

{∫ µQ

µ0

dµ′

µ′

[
2γj(αs(µ

′); 1)− ln
Q2

(µ′)2
γK(αs(µ

′))

]}
+ polarized terms + large qT correction, Y + p.s.c. (16)

Here Q0 and µ0 are chosen fixed reference scales. They have exactly the same status as a similar parameter that is
used in DGLAP evolution of ordinary parton densities (e.g., [90]), and that is often denoted by Q0. In both cases,
there is a functional form of parton densities at the fixed reference scale (or scales), and evolution has been used
to obtain Q-dependent parton densities, as used in Eq. (15). The solution (16) can be obtained from (15) by first
applying the RG equation (8) for TMD densities and then the CS equation (6), to express the Q-dependent densities
in terms of the densities at the scales used in (16). It will generally be convenient to set µ0 = µQ0

= C2Q0. In
Eq. (16) (and in similar later equations) “p.s.c.” is a short-hand for “power suppressed corrections”.

Although the reference scale µ0 is in principle arbitrary, it should in practice be chosen large enough to be treated
as being in the perturbative region. This allows finite-order perturbative calculations of the anomalous dimensions,
γj and γK to be appropriate for all the values in the integral over µ′. Given the choice µ0 = C2Q0, it will generally
be sensible to choose Q0 to be near the lower end of the range of Q for the data to which one applies factorization.
This is exactly the same as with typical implementations of DGLAP evolution.

In the hard scattering, we have preserved µQ = C2Q, so that it has no large logarithms in its perturbative coefficients,
and can therefore be effectively calculated by low order perturbation theory in powers of αs(µQ).

It is convenient to notate the evolution factor on the second line of (16) as e−S(bT,Q,Q0,µ0), where

S(bT, Q,Q0, µ0) = −K̃(bT;µ0) ln
Q2

Q2
0

+

∫ µQ

µ0

dµ′

µ′

[
−2γj(αs(µ

′); 1) + ln
Q2

(µ′)2
γK(αs(µ

′))

]
. (17)

The two equations (15) and (16) exhibit a very close relationship to a TMD parton model formula. Eq. (15) is of
a parton model form except that: (a) the hard part has perturbative higher order corrections, (b) the TMD parton
densities are scale dependent, and (c) there is a Y -term. But when the cross section is expressed in terms of TMD
parton densities at the reference scales, we find in Eq. (16) a factor e−S that gives the important effects of gluon
radiation.

Furthermore, the solution (16) exhibits universality properties of the TMD densities that are the same as in
the parton model. That is, under all circumstances where a TMD factorization theorem holds the same TMD
densities, functions of x and bT, are used, up to possible factors of −1 for T -odd functions. Both the perturbatively
calculable hard scattering and the factor involving perturbatively calculable anomalous dimensions only affect the

normalization of the cross section, but not its shape as a function of qT. The remaining factor (Q2/Q2
0)K̃(bT;µ0) =
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exp
[
K̃(bT;µ0) ln(Q2/Q2

0)
]

gives a Q-dependent change in shape of the distribution, a very characteristic effect of

gluonic emission in a gauge theory.
As is well known, a minor modification to universality arises because the appropriate TMD parton densities differ

between processes of the Drell-Yan type and those of the SIDIS type. The operators in the definition of the TMD
densities use oppositely directed Wilson lines in the two cases. Most TMD densities are numerically unchanged, but
T -odd densities, like the Sivers function, change sign [17].

It is important to recall that the derivation of Eq. (16) depends on the TMD factorization and evolution equations,
and that these in turn depend on properties of the particular definitions used for the TMD parton densities; see
Ref. [9, Eq. (13.106, 13.108)] and the discussions leading up to this definition. (These remarks apply equally to the
original CSS derivations [6–8].)

2. Measuring CSS evolution

Suppose we temporarily ignored the perturbative information about bT-dependence available at small bT for the
CSS kernel and for the TMD densities. Then one could determine K̃ from a limited set of data with variable Q at
fixed xA and xB (up to errors associated with the unknown power-suppressed corrections). The evolution of the cross
section at every other value of xA, xB and Q would then be determined. The TMD densities can be determined from
data from an experiment at one value of s (aside from the issue of flavor dependence that can be best analyzed with
data from other processes like SIDIS).

However, if one examines data in a single experiment, i.e., at fixed s, the x dependence of the TMD functions is
confounded with the Q dependence of the factor involving K̃, since Q2 = xAxBs. To exhibit the fact that K̃ can only
be determined by varying s with xA and xB fixed, it may therefore be convenient to use CSS evolution to change the
choice of the ζ-argument of the TMD densities so as to make the corresponding K̃-dependent factor a function of s
instead of Q. For this purpose, an appropriate solution is

dσ

d4q dΩ
=

2

s

∑
j

dσ̂j̄(Q,µQ, αs(µQ))

dΩ

∫
d2bT e

iqT·bT f̃j/A
(
xA, bT;x2

AQ
2
0, µ0

)
f̃̄/B

(
xB , bT;x2

BQ
2
0, µ0

)
×
(
s

Q2
0

)K̃(bT;µ0)

exp

{∫ µQ

µ0

dµ′

µ′

[
2γj(αs(µ

′); 1)− ln
Q2

(µ′)2
γK(αs(µ

′))

]}
+ polarized terms + large qT correction, Y + p.s.c. (18)

One might choose Q2
0 = s0, where s0 is the value of s

for some particularly important set of data. Given fixed
values of Q0 and µ0, the functions f̃j/H

(
x, bT;x2Q2

0, µ0

)
are just like differently defined TMD densities. That is,
as regards the kinematic variables x and bT, they are
functions of the same two variables as the TMD functions
in Eq. (16). They have a definite relation to the versions
of the densities used in the previous solution.

Which is the most appropriate form to use in practice
is not so clear. Furthermore, the simple use of these solu-
tions to fit data ignores two sources of perturbatively ac-
cessible information for bT dependence: The calculation
of K̃ and of the coefficient functions in the OPE (13). So
in Sec. II B 3 we will give another form of solution, (22)
below, that is more suitable for using perturbative calcu-
lations in combination with fits in the non-perturbative
domain.

However, that solution obscures an important unify-
ing property that is clearly visible in Eqs. (16) and (18).
This is, quite simply, the existence of the QCD entities
that are the TMD densities and the CSS kernel K̃. When
using (22), we can regard the purpose of the associated

perturbative calculations and of the fitting as providing
useful estimates for the TMD densities and for the func-
tion K̃ as they appear in Eqs. (16) and (18). One can
imagine the result of a global fit of TMD factorization
being presented as tables of the TMD functions and of
K̃(bT), just as with global fits of integrated parton den-
sities. The fitting process could use the complicated for-
mula (22), but the application of the results to predict
cross sections could use a simpler formula, e.g., the orig-
inal factorization formula (1) or one of the fixed scale
formulae (16) and (18). If results of a global fit were
presented for evolved Q-dependent TMD densities (as is
routine for collinear parton densities), then users would
not even have to use (16), (18), or (22); they could just
use the simple parton-model-like form (15). (See Ref. [91]
for recent efforts in this direction.)

Note: With the form of solution given in Eqs. (16)

and (18), it is dangerous to estimate the kernel K̃(bT;µ0)
by a simple fixed order perturbative expansion with the
renormalization scale set to µ0. This is because there is
an integral over all bT, and inevitably there will be large
logarithmic corrections from higher order terms. Thus
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a low-order perturbative expansion of K̃(bT;µ0) can give
inaccurate results, especially if Q/Q0 differs substantially
from unity. Of course, the integral also extends into a
clearly non-perturbative region of large bT.

3. Solution optimized for perturbative calculations

Now we present a solution that corresponds to one pre-
sented by CSS. The aim is to allow the maximum use of
perturbative calculations. First, the small-bT expansion
is applied to the TMD parton densities. Then, to allow
the effective use of fixed-order perturbative calculations,
the evolution equations are applied so that in the func-
tions K̃ and C̃j/f , µ and

√
ζ are of order 1/bT. Thus,

when bT is sufficiently much smaller than 1/ΛQCD, these
functions are given by their expansions in powers of a
small coupling, αs(1/bT), and no large logarithms of µbT,
etc, are present.

Note, however, that perturbatively calculated func-
tions may appear in an exponent—as for K̃ and the
anomalous dimensions. Thus any errors in a perturba-
tive calculation of such a function can be magnified by a
large logarithm.

In any case, perturbative calculations are not appli-
cable at large enough values of bT, which, given our
knowledge of QCD, is a non-perturbative region. An in-
dication of where the non-perturbative region is likely to
be quantitatively is given by an analysis by Schweitzer,
Strikman, and Weiss [53]. Using a chiral effective theory,
they found that there are two relevant non-perturbative
distance scales: a chiral scale 0.3 fm = 1.5 GeV−1 and a
confinement scale 1 fm = 5 GeV−1. At large bT, they find
that a TMD density behaves like an exponential e−bT/l

times a power of bT, with l being a characteristic scale.
The chiral and confinement scales manifest themselves
in the large-bT dependence of the sea and valence quark
densities.

To get maximum predictive information, one should
therefore combine the use of perturbative calculations at
small bT with fits to data to measure K̃ and the TMD
densities at large bT. Undoubtedly, fits to data will even-
tually be supplemented by further constraints from non-
perturbative calculations like those of Ref. [53] from chi-
ral models, and those of Ref. [48] from lattice gauge the-
ory.

Since the integral in Eq. (1) extends from bT = 0 to

bT =∞, one cannot avoid using parton densities and K̃
in the non-perturbative large-bT region10. Therefore it is
necessary to combine non-perturbative information with
perturbative calculations. CSS [8] provided a prescrip-

10 An important, but separate, practical question is whether or not
the integrand in Eq. (1) is large enough in the non-perturbative
region for the details of the non-perturbative parametrization to
matter in the context of particular calculations.

tion11 for doing this; we will call their method the “b∗
method”, after the name of a variable defined by CSS.

They first defined quantities with a smooth upper cut-
off on transverse distance, at a chosen value bmax, with
the use of the following function of bT:

b∗ =
bT√

1 + b2T/b
2
max

. (19)

What are called the perturbative parts of the TMD
densities and of K̃ were defined by replacing bT by b∗.
Then the non-perturbative12 parts were defined as what-
ever is left over. This idea is implemented with the aid of
functions gj/H(x, bT; bmax) and gK(bT; bmax) defined by

gK(bT; bmax) = −K̃(bT, µ) + K̃(b∗, µ) (20)

and

e−gj/H(x,bT;bmax)

=
f̃j/H

(
x, bT; ζ, µ

)
f̃j/H

(
x, b∗; ζ, µ

) egK(bT;bmax) ln(
√
ζ/Q0). (21)

Here Q0 is a chosen reference scale, that simply deter-
mines how much of the TMD density is in e−gj/H and
how much is put into the exponential of gK times a log-
arithm that appears in Eq. (21) and in (22) below. As
indicated by our notation, we will choose Q0 here to have
the same value as in Eq. (16). We treat gj/H and gK as
needing to be fit to data.

Both of gj/H and gK vanish approximately13 like b2T
at small bT, from their definition, and become significant
when bT approaches bmax and beyond.

Both functions are independent of both µ and ζ. This
is because there is an exact cancellation in the terms ob-
tained by applying the CSS and RG equations to the
quantities on the right of Eqs. (20) and (21). The func-
tions do depend, however, on the choice of the value of
bmax and on the particular CSS prescription for segre-
gating non-perturbative information. It is the full TMD
parton densities and the function K̃ that are independent
of bmax and of the use of the b∗ prescription of CSS.

11 The CSS prescription is not the only possibility. See Refs. [4, 92]
for one alternative. In addition Bozzi et al. [41, Eq. (17)], moti-
vated by [93], proposed a modification to improve the behavior
of the formalism at small bT. This involves the replacement of
b2T by b2T + 4e−2γE/Q2 in the parton densities and evolution
factors in (15), (16), and our other solutions, together with a
consequent change in Y , as computed in [41, App. B]. This is
probably a generally useful prescription.

12 “Non-perturbative” is somewhat of a misnomer. If bmax

were chosen to be excessively small, the values of the “non-
perturbative” parts near bT = bmax could be reliably estimated
perturbatively.

13 As we will see in Sec. VI, the existence of perturbatively con-
trolled logarithmic singular behavior of K̃ and f̃ at small bT
implies that gj/H and gK are not exactly quadratic at small bT.
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As regards the possible flavor and x dependence of gK
and gj/H , this follows from that of the corresponding

parent functions, i.e., K̃ and the TMD parton densities.
Since K̃ is independent of quark flavor, hadron flavor,
and parton x, so is gK . But the TMD parton densities

can depend on quark and hadron flavor and on x, so the
same is true of the gj/H functions.

Given these definitions, the evolution equations and
the small-bT expansion can be used to write the factor-
ization formula as

dσ

d4q dΩ
=

2

s

∑
j,jA,jB

dσ̂j̄(Q,µQ, αs(µQ))

dΩ

∫
d2bT

(2π)2
eiqT·bT

× e−gj/A(xA,bT;bmax)

∫ 1

xA

dx̂A
x̂A

fjA/A(x̂A;µb∗) C̃j/jA

(
xA
x̂A

, b∗;µ
2
b∗ , µb∗ , αs(µb∗)

)
× e−ḡ/B(xB ,bT;bmax)

∫ 1

xB

dx̂B
x̂B

fjB/B(x̂B ;µb∗) C̃̄/jB

(
xB
x̂B

, b∗;µ
2
b∗ , µb∗ , αs(µb∗)

)

×
(
Q2

Q2
0

)−gK(bT;bmax)
(
Q2

µ2
b∗

)K̃(b∗;µb∗ )

exp

{∫ µQ

µb∗

dµ′

µ′

[
2γ(αs(µ

′); 1)− ln
Q2

(µ′)2
γK(αs(µ

′))

]}
+ polarized terms + large-qT correction, Y + p.s.c. (22)

Here µb∗ is chosen to allow perturbative calculations of b∗-dependent quantities without large logarithms:

µb∗ = C1/b∗, (23)

where C1 is a numerical constant typically chosen to be C1 = 2e−γE .

4. Fixed scale densities with perturbative organization of CSS evolution

As mentioned in Sec. II A 4, an OPE of the form of (13) applies not only to the unpolarized TMD densities, but also
to the helicity and transversity densities, i.e., to those TMD densities that have a corresponding integrated density (of
the “twist-2” kind). Thus the form of solution in the first part of Eq. (22) applies also to the terms with the helicity
and transversity densities [94].

But for the remaining terms, e.g., those with a Sivers function, the appropriate OPE is of a different form, involving
twist-3 distributions like the Qiu-Sterman function. Therefore for these terms, it is useful to have a version of Eq.
(22) that does not apply the OPE to the TMD densities. Even when the simple OPEs can be applied, it can still
be useful to treat the TMD functions at a fixed scale as being measured from data. In this new form of solution the
solution we retain the TMD parton densities as in Eq. (16), but we do RG improvement on K̃ to use its perturbative
expansion optimally; we also set µ0 = µQ0

= C2Q0, so that we arrange for the evolution factor to be unity at Q = Q0.
The result is

dσ

d4q dΩ
=

2

s

∑
j

dσ̂j̄(Q,µQ, αs(µQ))

dΩ

∫
d2bT e

iqT·bT f̃j/A
(
xA, bT;Q2

0, µQ0

)
f̃̄/B

(
xB , bT;Q2

0, µQ0

)
× exp

{[
−gK(bT; bmax) + K̃(b∗;µb∗)−

∫ µQ0

µb∗

dµ′

µ′
γK(αs(µ

′))

]
ln
Q2

Q2
0

}

× exp

{∫ µQ

µQ0

dµ′

µ′

[
2γj(αs(µ

′); 1)− ln
Q2

(µ′)2
γK(αs(µ

′))

]}
+ polarized terms + large qT correction, Y + p.s.c. (24)

The exponentials are unity when Q = Q0. That allows the fitting of parton densities as in the parton model at this
scale (with small perturbative corrections from the hard scattering). Then the exponentials show how to do evolution
to other energies in terms of perturbative quantities without logarithms, and a single non-perturbative function. The
above solution is related to a form of solution given in Ref. [28].

In both of Eqs. (22) and (24), the strategy in organizing the solution was to arrange that quantities to be calculated
perturbatively are used in a region where the coupling is in a perturbative region and that there are no large logarithms
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in the expansions of these quantities. (The logarithms in ordinary fixed coupling expansions have all moved into the
explicit logarithms and into the integrals over µ′.) Thus the general size of the errors due to truncation of perturbation
expansions can be quantified.

Quantities that are not to be calculated perturbatively in a given form of the solution (e.g., f̃j/A
(
xA, bT;Q2

0, µQ0

)
in Eq. (24)) are assumed to be fitted or treated using non-perturbative methods.

5. Choice of parameters

There are a number of arbitrary parameters in the so-
lutions (16), (18), (22) and (24), notably bmax, µ0 and
Q0. Their occurrence might appear to reduce the predic-
tive power of the formalism. However, these appearances
are misleading.

The trickiest case is that of bmax. It is sometimes said
that bmax is a parameter to be fitted to data, e.g., [11, Sec.
I]. But, as can be seen from the definitions and derivation
summarized above, this is not the case. Equation (22) is
true independently of the choice of bmax. When bmax

is changed, the so-called non-perturbative functions, gK
and gj/H , defined in (20) and (21), change their form.
In fits to data, the results should be equivalent, provided
that the parametrizations used are flexible enough.

However, if limited fixed parametrizations are used for
gK and gj/H , they may work better with one value of
bmax than another. Also, if an excessively small value of
bmax is used, much of the fitting of the functions will be
devoted to recovering their dependence on bT in a region
where perturbative calculations would be adequate. We
will see symptoms of this later.

The status of the other parameters µ0 and Q0 is easier
to explain. These are just like the scale used to specify
a measured value of the strong coupling, or the scale
at which initial parton densities are parametrized for
DGLAP evolution in global fits to ordinary integrated
parton densities. For example, it is commonly chosen to
report the value of the strong coupling at the scale of the
mass of the Z boson. The choice µ = mZ is essentially
arbitrary (provided that it is in a perturbative region).
No matter what scale is chosen, there is one number (a
value of the coupling) that needs to be reported as the
result of a fit to data. Once a particular scale is chosen,
the meaning of the coupling’s numerical value is fixed.
If someone prefers a different choice of scale, then the
original numerical coupling αs(mZ) may be transformed
unambiguously to a value at the new scale, without any
gain or loss of predictive power. The same remarks ap-
ply to our scales Q0 and µ0. The only exception could
be due to the influence of errors caused by truncation of
perturbation series, which is not an issue of principle.

III. UNIVERSALITY PROPERTIES

The issues that motivated this paper concerned the fit-
ting of TMD parton densities and their evolution in one
collection of data and the use of the results to predict
other experimental data. However, in a more compre-

hensive view of TMD factorization, there are properties
of the factors that concern their different kinds of univer-
sality. So in this section, we review the universality prop-
erties. Proofs of the statements made are to be found in
Ref. [9] and elsewhere. The issues are particularly impor-
tant for the non-perturbative functions, but they apply
equally to corresponding perturbatively calculable quan-
tities. Some of the universality properties were not fully
explicitly derived prior to Ref. [9].

First, we examine the function K̃(bT;µ) that controls
TMD evolution (and its corresponding anomalous dimen-
sion γK and “non-perturbative function” gK(bT; bmax)).

Since K̃ is a property of Wilson line operators, it depends
on the color representation of the two partons entering
the hard scattering, but not on quark flavor, hadron fla-
vor, Q, and parton fractional momentum. Thus, for
all processes involving quarks, the same K̃ is used. It
was also proved not to depend on whether the quarks
are initial-state or final-state, so the same K̃ applies to
all versions of the Drell-Yan process, SIDIS, and e+e−-
annihilation. An immediate implication is that in Eq.
(16) etc, the part of the evolution factor that involves

K̃ (and hence γK) is a common (bT-dependent) factor in
the bT-integrand, independent of which term it applies
to in the sum over parton flavors j, jA, and jB .

The most important real-world situation in which a
different value of K̃ is needed is in the Drell-Yan-like
process of Higgs production by gluon-gluon annihilation
in hadron-hadron collisions, since gluons are color octet.

The anomalous dimension γj , for the TMD quark den-
sities, arises from a mass-independent calculation with
spin-1/2 quarks. It is therefore independent of quark fla-
vor (and also of hadron flavor and parton momentum
fraction). However, in hypothetical extensions of QCD,
there could be scalar color-triplet quarks (like squarks in
a supersymmetric theory), and these could have different
anomalous dimensions. Gluons (not to mention gluinos)
have a different anomalous dimension.

The hard scattering depends on the process, but only
on the variables available for the partons initiating the
hard scattering. It is of course perturbatively calcula-
ble, and has well-known dependence on partonic flavor.
There is an interesting partial universality of higher or-
der corrections. For example, in the electromagnetic hard
scattering for Drell-Yan, the ratios of the one- and two-
loop corrections to the lowest-order term are quark-flavor
independent (when quark masses are neglected). Flavor
dependence first arises at order α3

s, where the virtual pho-
ton can couple to a quark loop that has a different flavor
than the quark and antiquark initiating the hard scat-
tering. However, the loop corrections are generally dif-
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ferent between “time-like” processes (e.g., Drell-Yan) and
“space-like” processes (e.g., SIDIS). In addition, there are
potential (and calculable) differences between the hard
scattering for unpolarized quarks and the parts that de-
pend on quark polarization.

As for the complete TMD functions (parton densities
and fragmentation functions), the non-perturbative parts

that do not arise from K̃ are in general all different and
can depend on the flavors of the parton and hadron. The
shape of the non-perturbative bT dependence can depend
on both the values of x and on the flavor. It is therefore in
general incorrect to assume that the non-perturbative bT
dependence is a universal factor times the corresponding
integrated distribution. The non-perturbative modeling
by Schweitzer, Strikman, and Weiss [53] is important in
suggesting a large difference between the bT dependence
for sea and valence quarks.

Each particular TMD parton density is the same in all
processes where it is used, aside from the effects of evolu-
tion, and aside from the predicted reversal of sign [17] of
“time-reversal-odd” functions (Sivers function, etc) be-
tween Drell-Yan and SIDIS.

The universality properties of the non-perturbative
functions gj/A(x, bT; bmax) match those of the corre-
sponding TMD functions. (However, as pointed out
above Eq. (24), the use of functions like gj/A applies,
in its simplest form, only to the TMD densities that cor-
respond to the standard integrated densities, i.e., the un-
polarized, helicity, and transversity densities.)

The expansion coefficients C̃ in the OPE for TMD par-
ton densities depend on the color of the partons involved.
To the extent that quark masses are neglected, the depen-
dence of C̃ on flavor is governed by exact flavor symmetry.
Beyond lowest order, they do depend on the polariza-
tion type of the TMD functions: e.g., unpolarized TMD
parton density as compared with the coefficients for the
corresponding transversity TMD parton densities. They
can be different between the expansions for TMD parton
densities and for TMD fragmentation functions.

IV. A SINGLE MASTER FUNCTION FOR CS
EVOLUTION OF TMD DENSITIES

A. Definition and properties

In this section, we show how to gain a more unified
view of TMD evolution. The starting point is the first
form of solution (16) of the evolution equations. There,
the TMD densities are all independent of Q, and the
Q-dependence, for each combination of flavors of quark
entering the hard scattering in the first two lines, arises
from three sources:

• The Q2K̃(bT,µ0) factor.

• The exponential of anomalous dimensions.

• The coupling αs(µQ) in the hard scattering dσ̂j̄.

We first observe that only the first item gives dependence on bT, and therefore only this item gives a Q-dependent
change in the shape of bT distribution, which would then be reflected in the distribution of the cross section in
transverse momentum. This statement is valid for the contribution of a particular quark flavor. If different quark
flavors have different intrinsic transverse-momentum distributions, then a change in the relative normalization of the
different flavor terms would be a source of Q-dependence in the shape of the transverse-momentum dependence of the
cross section. However, the first two items in the list are flavor independent. Moreover, as regards the hard scattering,
the ratios of one- and two-loop corrections relative to the lowest graph are flavor independent, as we observed in Sec.
III. Thus flavor dependence occurs only in the third item in the above list and only at the rather high order α3

s(Q).

Hence to a good approximation, the Q-dependence in the cross section is merely an overall factor in the summed

integrand, W̃ , as in (5). This factor is a Q-dependent normalization times the Q2K̃(bT,µ0) factor that affects the shape.
This implies that a measurement of the cross section alone is, in principle, sufficient to test the evolution in Q, and
to give a measurement of K̃. Hence, for dealing with evolution, there is essentially no need to do a decomposition by
parton flavor, even though the evolution kernel K̃ is defined as a property of the individual TMD parton densities. In
this sense, the situation is quite different from the one of testing the evolution of ordinary integrated parton densities.

What is also striking is that the same flavor independence and evolution factor apply to all cases involving triplet
quarks: not only to unpolarized Drell-Yan, but also to polarized cases, e.g., with the Sivers function, to SIDIS, and
to back-to-back hadron production in e+e− annihilation.

Now consider the contribution of a particular flavor. We defined W̃j in Eq. (2). Differentiating it with respect to
Q2 (or s) at fixed xA and xB gives

∂ ln W̃j(bT, Q, xA, xB)

∂ lnQ2
=
∂ ln W̃j(bT, Q, xA, xB)

∂ ln s
= K̃(bT;µ) +GDY

j̄ (αs(µ), Q/µ)

= K̃(bT;µ0) +GDY
j̄ (αs(µQ), Q/µQ)−

∫ µQ

µ0

dµ′

µ′
γK(αs(µ

′))
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= −gK(bT; bmax) + K̃(b∗;µb∗) +GDY
j̄ (αs(µQ), Q/µQ)−

∫ µQ

µb∗

dµ′

µ′
γK(αs(µ

′)), (25)

where GDY
j̄ is defined by

GDY
j̄ (αs(µ), Q/µ) =

∂

∂lnQ2

[
ln
Q2 dσ̂j̄(Q,µ, αs(µ))

dΩ

]
. (26)

If µ is set to µQ = C2Q, proportional to Q, we can write

GDY
j̄ (αs(µQ), Q/µQ) =

d

d lnQ2

[
ln
Q2 dσ̂j̄(Q,µQ, αs(µQ))

dΩ

]
+ γj(αs(µQ); 1)− γK(αs(µQ)) ln

Q

µQ
. (27)

Notice that the derivative with respect to lnQ2 in Eq.
(27) is a total derivative, unlike the partial derivative in
Eq. (26). That is, it acts on both the Q and the µQ
arguments of σ̂, and so the first term in the derivative of
the hard cross section in Eq. (27) is of order αs(µQ)2. The
notation on the right-hand side of Eq. (25) corresponds
to a notation in the CSS papers. All the derivatives are
at fixed xA and xB .

Notice also that from our previous argument about
flavor dependence of the hard scattering, the lowest or-
der in which GDY

j̄ is flavor-dependent is αs(Q)4: a fla-
vor dependence of G arises from the Q-derivative of the
coupling in a 3-loop graph (in the electromagnetic case).
Process-dependence of G (e.g., between DY and SIDIS)
would in contrast arise at αs(Q)2, from the process-
dependence of the one-loop hard scattering. Given this
(small) process-dependence, in contrast to the flavor- and
process-independence of the other terms, we have notated
G with “DY” for the process under discussion.

The three forms on the right-hand side of Eq. (25) have
the following significance: In the first line all quantities
are at a fixed common renormalization scale µ. In the
second line, RG improvement is made on G, so that it
can be calculated perturbatively with small errors, while
K̃ is kept at a fixed scale. In the last line a RG im-
provement and the CSS prescription are applied to K̃,
to allow perturbative calculations of K̃ supplemented
by a parametrization of any non-perturbative part, by
gK(bT; bmax).

Everything on the right-hand side of Eq. (25) is the
same as the evolution of the standard exponent −S de-
fined by Eq. (17), except for the addition of a term

d

d lnQ2

[
ln
Q2 dσ̂j̄(Q,µQ, αs(µQ))

dΩ

]
(28)

that is associated with the running coupling in higher-
order corrections to the hard scattering.

The change withQ of the shape of the bT dependence is
governed solely by the K̃(bT;µ0) term. All the remaining
terms on the right of Eq. (25) give only a change in the
normalization, since they are independent of bT. There
appears to be an arbitrariness, because of the choice of
µ0. However, because of the RG equation (7), a change of

µ0 in K̃(bT;µ0) only adds a constant, independent of bT,
and therefore only affects the normalization of the cross-
section but not its shape. Of course, the µ0-dependence
in K̃(bT;µ0) is canceled by µ0 dependence of the integral
over γK in the first line of Eq. (25).

Note that to the good extent that GDY
j̄ can be approx-

imated as flavor-independent, Eq. (25) applies equally to

the full bT-space integrand W̃ =
∑
j W̃j as well as to its

individual flavor components.
It can be useful to discuss the evolution of the shape

of the qT dependence of the cross section, and hence of
the bT dependence of W̃j , separately from the evolution
of the normalization. Therefore it would be useful to
describe it by a function of bT that does not have an
arbitrary additive constant defined only by an abstract
renormalization scheme, unlike K̃.

One possibility would be to subtract the value of K̃ at
one fixed value bc of bT, by defining

K̂(bT) =
∂ ln W̃j(bT, Q, xA, xB)

∂ lnQ2
− value with bT 7→ bc

= K̃(bT;µ0)− K̃(bc;µ0). (29)

Although this subtracted quantity still has an arbitrary
parameter, the parameter is, so to speak, a data-related
quantity. Note that the dependence on the RG scale µ0

cancels. The significance of the definition in the first line
of (29) is that it can be applied in any formalism for
working with a TMD cross section. This is in contrast
to K̃, whose definition is within a specific CSS-like for-

malism. Sometimes presenting results in terms of K̂ will
allow a convenient comparison of different calculations.

Instead, we now propose what may be a better defini-
tion of a universal measure of the evolution of the shape
of TMD functions, with no arbitrary scale at all. The def-
inition is motivated by observing that any Q-dependent
change in the bT-shape of W̃j arises from K̃(bT) not being

a constant. So the derivative of K̃(bT) gives the relevant
information. Therefore, let us define

A(bT) = − ∂

∂ ln b2T

∂

∂ lnQ2
ln W̃j(bT, Q, xA, xB) (30)

with the derivatives again being at fixed xA and xB . Log-
arithmic derivatives are used so that A(bT) is dimension-
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less. We have chosen a convention where A is defined
to be the negative of a derivative of W̃j , so that A will
be a generally positive function. If we make the good
approximation of neglecting the flavor dependence of the
hard-scattering, then we can apply definition (30) to the

flavor summed integrand W̃ instead of its flavor compo-
nents W̃j .

We have constructed the definition of A so that it ap-
plies not only in the formulation of TMD factorization
that we have presented, but in any other similar formal-
ism where the cross section is given as a Fourier transform
of a quantity like W̃j (summed over j). These are typi-
cally some kind of TMD factorization or of resummation
formalism, together with various approximations. There-
fore, in principle, it could depend on all the kinematic
parameters and on flavor as well as having expected de-
pendence on bT. By use of CSS-style TMD factorization,
we will show that the true A in QCD does not depend
on any of these other variables.

From the solution (16) of the evolution equations, from
the definitions (19) and (20) for the b∗ prescription, and

from the RG equation (7) for K̃, we obtain

A(bT) = − ∂K̃(bT;µ0)

∂ ln b2T

= − ∂K̃(bT;µ)

∂ ln b2T
,

=
∂

∂ ln b2T

[
gK(bT; bmax)− K̃(b∗;µ)

]
=
∂gK(bT; bmax)

∂ ln b2T
+
b2∗
b2T
A(b∗;µ)

=
∂gK(bT; bmax)

∂ ln b2T
+
b2∗
b2T
A(b∗;µb∗)

=
∂

∂ ln b2T

[
gK(bT; bmax)− K̃(b∗;µ)

]∣∣∣∣
µ7→µb∗

.

(31)

In the second line, we have changed the value of the renor-
malization scale. Since a RG transformation of K̃ adds to
it a constant, independent of bT, we have RG-invariance
of its derivative with respect to bT, and hence of A:

dA(bT;µ)

d lnµ
= 0, (32)

In the last two lines of (31), we have chosen to set the
value of µ to µb∗ in order give a suitable form for the use
of finite-order perturbation theory, without large loga-
rithms of µb∗. As usual in these situations, although the
exact value ofA does not depend on µ, a finite-order trun-
cation of its perturbative expansion does, by an amount
of order the first omitted term. The notation on the last
line of (31) is to emphasize that the derivative of K̃ is
to be taken at fixed renormalization scale. Only after
that is the renormalization-scale set to its final value of
order 1/b∗. The factors of b2∗/b

2
T arise from the following

calculation:

∂ ln b2∗
∂ ln b2T

=
1

1 + b2T/b
2
max

=
b2∗
b2T
. (33)

We will review the two-loop calculation of A below,
where we also show the equality of our master function
A with the function of the same name defined by CSS.

In the later parts of (31), we have notated A with
an additional scale argument. This indicates that
when perturbative calculations are performed, a RG
scale must be chosen and used with a corresponding
value of the running coupling (and in principle running
masses). More correctly, we should remember that the
full set of arguments of A include all the parameters of
QCD. To indicate, when necessary, the relevant argu-
ments and parameters, we write A(bT) = A(bT;µ) =
A(bT;µ, αs(µ),m(µ)), where the number of arguments
that we actually choose to write depends on the context.
In the situations where we actually use perturbation the-
ory, the (light) quark masses will normally be approxi-
mated by zero. But in a bigger context, including non-
perturbative physics, the arguments must also include
the µ-dependent masses of the quarks. Since A is de-
fined from a RG-invariant quantity W̃j , RG invariance
applies also to A, as in Eq. (32).

Given its definition (30), we can regard the func-
tion A(bT) as a fundamental property of parton physics
in QCD, independently of any particular factorization
scheme and of particular techniques for its calculation.
Therefore, we propose that it is a good master function
for analyzing the evolution of the shape of transverse-
momentum distributions. The function is directly re-
lated to experimental data, from Eq. (30). But on the
theoretical side, it is a property of certain Wilson loops;
this arises via TMD factorization from Eq. (31) and the

definition of K̃ in the recent formulation of TMD factor-
ization in [9].

Both the perturbative calculation of A and the fits of
the large-bT behavior of K̃ agree that A(bT) is gener-

ally positive. This implies that K̃(bT) decreases when bT
increases. Hence when Q is increased, the bT-space inte-
grand W̃ undergoes a larger fractional decrease at larger
bT than at smaller bT. Thus the shape in bT of W̃ un-
dergoes a shift to where it is dominated by ever smaller
bT as Q increases, as is well known, from, e.g., Ref. [2].
Correspondingly, the transverse-momentum distribution
broadens. The function A codes these properties.

An important prediction of QCD is that A is indepen-
dent of the process, of Q, and of the kinematic variables
xA and xB ; it is also independent of quark and hadron
flavor. These are highly non-trivial predictions of QCD
dynamics, since the lack of dependence on these variables
is not guaranteed merely by the definition of A in the first
line of Eq. (30).

Without the CSS b∗ prescription, a purely perturbative
calculation from Eq. (11) gives the one-loop term in A

A(bT) =
αs(C1/bT)CF

π
+O

(
αs(C1/bT)2

)
, (34)
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where we have made the standard choice of scale µ =
C1/bT.

B. Equality with CSS’s A; presentation of two-loop value

Now in Ref. [8], CSS transformed their TMD factorization formula to a form where

W̃j = (Q-independent factor)× exp

{
−
∫ C2

2Q
2

C2
1/b

2
T

dµ′
2

µ′2

[
ACSS(αs(µ

′);C1) ln

(
C2

2Q
2

µ′2

)
+BCSS(αs(µ

′);C1, C2)

]}
, (35)

with the quantities ACSS and BCSS being those defined by CSS. See, for example, Eq. (5.1) of Ref. [8]. Applying our
definition of A, Eq. (30) gives

A(bT;µ) = ACSS(αs(C1/bT);C1). (36)

Thus, we must numerically identify A, as we defined it, with CSS’s quantity of the same name.14 This is not an
accident, of course. CSS’s construction involved a transformation of their original TMD factorization formula so that
the quantities involved could be related to properties of cross sections.

However, despite the numerical equality of our A with ACSS, differences exist in how the arguments of the function
are presented. Our A is treated primarily as a function of bT; but it has as extra parameters the renormalization scale
µ and the parameters of QCD, A = A(bT;µ, αs(µ),m(µ)), subject to RG invariance. It is defined for all bT. By its
definition, A(bT) is scale independent for all bT, as expressed by Eq. (32). Therefore despite the extra arguments, A
should be treated as a function of the single variable bT, when we make plots as in later sections.

In contrast, CSS [8] presented A as a function of αs alone. This is because they focused on the perturbative region
for bT, and ACSS arose in the construction of a particular transformation of their solution of the evolution equations —
see their (3.11)–(3.15). Moreover, because of the transformation they made of their formula, they did not actually use
ACSS(αs) with the coupling evaluated at the scale C1/bT as it appears in Eq. (36). Instead, after the transformation
to obtain (35), they have ACSS(αs(µ)) evaluated at a general scale inside an integral over µ in a purely perturbative
context. Thus it is completely unobvious that ACSS(αs) is to be regarded as a function of bT as we do. Indeed, ACSS

gives the appearance in (35) of being a modified version of γK .
Our definition is in a sense more general, and the use of bT as the primary argument implies that there is a definite

measurable functional form for A in the non-perturbative region, without the need to transform to a function of
coupling, which would appear to be entailed by the CSS definition if taken as it stands. A consequence is that, for
any methods and approximations that are proposed for some kind of TMD factorization, the function A(bT) can be
obtained, and compared with the same function obtained in another method. It is not restricted to perturbative uses.

This equality of our new definition A with that of CSS allows us to use the results of its calculation by Kodaira
and Trentadue [95] and by Davies and Stirling [96]. We find

A(bT) =
αs(µ)CF

π
+

(
αs(µ)

π

)2

CF

[(
67

36
− π2

12

)
CA −

5

9
TRnf +

(
11

12
CA −

1

3
TRnf

)
ln

(
µ2b2T

4e−2γE

)]
+O

(
αs(µ)3

)
.

(37)

This differs from the Davies-Stirling result by the addi-
tion of the logarithmic term to give invariance under a
change of µ. For the Davies-Stirling calculation, the CSS
definition of A was used, which, via Eq. (36), can be
interpreted as our A when µ is set to 2e−γE/bT.

14 Warning: Moch, Vermaseren, and Vogt [75] gave a calculation
at O(α3

s) of a quantity they called A. What they calculate is in
fact 1

2
γK rather than A as defined by CSS (and us). This can be

checked from the definition (2.4) that [75] uses for A. Essentially
the same observation was made by Becher and Neubert in Ref.
[10].

From this we can verify the known 2-loop value of γK ,
given in Eq. (10), by the following manipulations:

γK(αs) = − dK̃

d lnµ

= −∂K̃(bT;µ, αs(µ))

∂ lnµ
− d αs(µ)

d lnµ

∂K̃(bT;µ, αs(µ))

∂αs(µ)

= −∂K̃(bT;µ, αs(µ))

∂ ln bT
− d αs(µ)

d lnµ

∂K̃(bT;µ, αs(µ))

∂αs(µ)

= 2A(bT;µ, αs(µ))− d αs(µ)

d lnµ

∂K̃(bT;µ, αs(µ))

∂αs(µ)
, (38)
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given that quark masses are neglected. Then γK to two
loops, Eq. (10), is obtained from the value of A to two

loops together with the one-loop values of K̃ and of the
evolution of αs. This also agrees with the result given
in Moch, Vermaseren, and Vogt [75] in their Eq. (3.8),
which is for what they call A, but which is 1

2γK in our
notation. They give the 3-loop value in their Eq. (3.9).

The only dependence on the specific method for imple-
menting perturbation theory is in the choice of µ, and,
in particular, in the way of optimizing the relationship to
bT. If µ is set to C1/bT, then αs(C1/bT) is small at small
bT, with finite perturbative coefficients in the expansion
in Eq. (37). If C1 is excessively large or small, the co-
efficients beyond order αs become large and the validity
of a truncated perturbative expansion becomes suspect.
The common choice is C1 = 2e−γE .

V. ASSESSMENT OF APPROXIMATIONS AND
FITS

As we already mentioned, there appears to be incom-
patibility between different articles that have compared
TMD factorization with data. In this section we will first
review a selection of these works. Then we will present
the results in terms of the master function A(bT), de-
fined in Sec. IV, to assess their actual compatibility and
validity, or lack thereof.

A. Review of fits, etc

Some authors (e.g., [1–3, 92]) have used the CSS for-
malism with the form of solution given in Eq. (22) (or
some variant). These fits use data to make fits for
the functions gK(bT; bmax) and gj/H(x, bT) that were in-
tended to parametrize non-perturbative bT dependence
and that were defined in Eqs. (20) and (21). However,
different analyses obtain quite different numerical values.
Others argue (e.g., [10–13, 32]) that they can successfully
completely avoid the use of the b∗ method (or any similar
matching method) and the function gK(bT; bmax).

1. Fits to Drell-Yan data with CSS formalism

Landry et al. [1] made fits to Drell-Yan data using
the CSS formalism, including the CSS treatment of non-
perturbative regions by the b∗ method. They chose bmax

to be15 0.5 GeV−1 = 0.1 fm. Their best fit used quadratic
functions for gj/A and gK , without flavor dependence or
hadron species dependence for gj/A:

exp
[
−gj/A(xA, bT; bmax)− ḡ/B(xB , bT; bmax)−

15 To allow an easy comparison with the size of a proton, we give
numerical distances in units of fm as well as GeV−1.

−gK(bT; bmax) ln(Q2/Q2
0)
]

= exp

{
−
[
g1 + g2 ln

Q

2Q0
+ g1g3 ln(100xAxB)

]
b2T

}
,

(39)

with Q0 = 1.6 GeV. This factor alone, when Fourier-
transformed to transverse-momentum space, would give
a Gaussian shape to the transverse momentum distri-
bution, and the qT distribution would broaden as Q in-
creases. The measured values of the parameters were:

g1 = 0.21+0.01
−0.01 GeV2, (40a)

g2 = 0.68+0.01
−0.02 GeV2, (40b)

g3 = −0.6+0.05
−0.04. (40c)

(BLNY, bmax = 0.5 GeV−1 = 0.1 fm)

It is the g2 coefficient that corresponds to the function
gK(bT; bmax) that embodies the non-perturbative behav-

ior of the CSS evolution kernel K̃. The fitted form of the
function is then

gK(bT; bmax) =
g2

2
b2T =

0.68 +0.01
−0.02

2
b2T.

(BLNY, bmax = 0.5 GeV−1 = 0.1 fm) (41)

Updated fits were made by Konychev and Nadolsky [2].
They quantified the effect of changing bmax on the fits. At
0.5 GeV−1 = 0.1 fm, their value for gK was compatible
with (41). But when bmax was increased, not only did
the fit become somewhat better (with an optimum near
bmax = 1.5 GeV−1 = 0.3 fm), but the coefficient g2 was
substantially smaller, giving:

gK(bT; bmax) =
0.184± 0.018

2
b2T.

(KN, bmax = 1.5 GeV−1 = 0.3 fm, C1 = 2e−γE ) (42)

If one treated these fits as giving the true large-bT be-
havior of gK , and hence of K̃, the two fits would be
strongly incompatible. However, this is not a legitimate
deduction, as can be seen from Fig. 1 (which is Fig. 4 of
Ref. [2]). There the integrand in TMD factorization is
plotted for several different fits, including the ones men-
tioned above. The integrand is the factor bTW̃ (bT) in an
integral of the form∫ ∞

0

bTW̃ (bT)J0(qTbT) dbT, (43)

which is obtained from the TMD factorization formula by
performing the integral over the azimuth of bT to obtain
a Bessel function.

In Fig. 1(a) is shown the situation at large Q, specif-
ically the integrand for production of the Z boson. At
the right-hand edge, at bT = 1.4 GeV−1, the difference
between the fits for gK , such as those in Eqs. (41) and
(42), manifests itself as a difference between the curves
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FIG. 1. bT-space integrand for the Drell-Yan process. These plots are from Fig. 4 of [2] and show the results of using
different values of bmax: (a) for Z production

√
s = 1.96 TeV; (b) for

√
s = 38.8 GeV and Q = 11 GeV. The two fits with

bmax = 1.5 GeV−1 correspond to two different choices for the ratio C3 = µb∗b∗, which gives a measure of sensitivity to
truncation of perturbative expansions. The curve labeled “Qiu-Zhang”, with bmax = 0.3 GeV−1, uses the Qiu-Zhang [3, 92]

parametrization. The normalization of W̃ differs from that defined in Eq. (2).

of more than a factor of two. However although this is
a large relative difference, it is in a region where the in-
tegrand is small, so that the absolute difference is quite
small. Thus the factor-of-two change in the tail of the
integrand only has a small effect on the cross section,
and does not greatly affect fitting within uncertainties
at these large values of Q. The dominant values of bT
that contribute to the cross section are in a perturba-
tive region, around 0.1 to 0.5 GeV−1, i.e., 0.02 to 0.1
fm. Here, the curves are very close to each other. This
makes quantitatively manifest a phenomenon originally
found by Parisi and Petronzio [97]: When Q is sufficiently
large, the whole of the transverse-momentum distribu-
tion, even down to qT = 0 is determined by a range of
bT appropriate to perturbative phenomena. That is, the
only important non-perturbative information is in the use
of ordinary integrated parton densities, and no significant
extra non-perturbative information is needed for the qT

distribution. Thus, the sensitivity to non-perturbative
parameters for the large bT behavior becomes very weak,
provided only that the large bT behavior is parametrized
in a physically reasonable way. One can therefore assert
that at large enough Q, the non-perturbative information
is only used qualitatively, to ensure that the integrand is
so small in the non-perturbative region that its detailed
behavior is unimportant.

However, if one examines lower energy data, the sup-
pression of the large bT region is weaker, and correspond-
ingly the relevant values of bT are larger. For example,
Fig. 1(b) shows that when Q is around 10 GeV, the peak
of the integrand is near bT ' 1 GeV−1 = 0.2 fm, closer to
non-perturbative phenomena. There are noticeable dif-
ferences between the curves for different values of bmax,
but the relative differences are much smaller than the
factor of two differences seen at the edge of graph (a).

Current discussions involve experiments and data at
even lower Q, while still having Q large enough that it
seems reasonable to use TMD factorization. The effects
of evolution imply that these experiments probe substan-
tially larger values of bT that are in a more clearly non-
perturbative region. In these contexts, one is often specif-
ically interested in accessing the large bT region in efforts
to study non-perturbative properties of hadron structure.
However, there is a clear danger that the fits resulting in
Eqs. (41) and (42) were primarily sensitive to smaller val-
ues of bT than are needed for the low Q data. Hence the
extrapolation to larger bT of the quadratic fit beyond the
region where it was determined by the fitted data could
well misrepresent the true consequences of QCD.

In fact a difficulty immediately manifests itself, as par-
ticularly emphasized by Sun and Yuan [13]: There are
regions of Q, xA and xB where one might reasonably
expect factorization to continue to work, but where the
coefficient of b2T in the exponent in Eq. (39), with the
BLNY values, reverses sign to become positive, given the
values in Eq. (40). An example is with Q = 3 GeV and
xA = xB = 0.3. With this reversed sign, the integral over
bT for the cross section is badly divergent at bT = ∞.
Even the Konychev-Nadolsky fit with its lower value of
g2 does not [13] adequately account for the data at lower
Q than where the fit was made. (See also Ref. [28] for a
confirming analysis.)

This suggests the following hypothesis: The fits in
Refs. [1, 2] determine gK and gj/H in a range of rela-

tively low bT, say between about 0.5 and 2 GeV−1, but
their extrapolation to larger bT is wrong. The function
gK that concerns the Q dependence should not continue
to rise like b2T; instead it should flatten. Then the evolu-
tion at low Q is substantially slower than the extrapola-
tion of the old fits would give. This is without necessarily



19

invalidating the earlier fits.

2. Work without non-perturbative evolution function

Several references, e.g., [10–13, 32], use a CSS-like for-
malism, but without a fitted function to parametrize
non-perturbative large-bT evolution. (However, all agree
in using fitted non-perturbative function(s) for the Q-
independent part of the TMD parton densities.)

Echevarŕıa et al. [11] argued that one can avoid the use
of bmax and the corresponding parametrized function gK .
At the most fundamental level, they have TMD factor-
ization and evolution results that are equivalent [98, 99]
to a version of the CSS formalism. So the differences re-
ally only concern how the formalism is exploited. They
apply a resummation procedure to the function K̃(bT)
(which is −2D in their notation). They argue that the
resummed formula applies in a range of bT up to about
a limiting value they term bC . The value of this limit
is given as bC = 6 GeV−1 = 1.2 fm, when the scale µ is
5 GeV.

Beyond this distance scale, they agree that non-
perturbative information in K̃ is needed. However, they
argue that since the coordinate-space parton density is
already small at the limiting value bT = bC , the non-
perturbative information in K̃ is irrelevant. If this argu-
ment is really valid, it increases the predictive power of
TMD factorization.

Unfortunately, this argument is not consistent with
known non-perturbative scales. First, the distance
scale quoted, 1.2 fm, is clearly in a region where non-
perturbative physics is important. For example it is
larger than the confinement scale found in [53] and a
factor of 4 larger than the chiral scale in the same refer-
ence. Moreover, to obtain a small parton density at this
value of bT, Echevarŕıa et al. use a Gaussian ansatz for
the large-bT behavior:

e−b
2
T〈p

2
T〉/4, (44)

where the value of 〈p2
T〉 = 0.38 GeV2 is taken from a fit

in Ref. [87]. The Gaussian factor is evidently describ-
ing non-perturbative effects, which are not in any of the
Feynman graphs used, even with resummation. The dis-
tance scale associated with this factor is

2√
〈p2

T〉
= 3.2 GeV−1 = 0.65 fm. (45)

Quite reasonably this is roughly midway between the chi-
ral and confinement scales determined from very different
theoretical considerations in Ref. [53].

It follows then that Green functions already have sub-
stantial non-perturbative contributions when transverse

distances reach the value in (45). Hence, a perturbative
calculation, even a resummed calculation, cannot be ex-
pected to be accurate at or beyond this scale. Wherever
in bT non-perturbative contributions are important in a
TMD parton density f̃j/H(x, bT), one should also expect

them to be important for the evolution kernel K̃, and one
has not at all evaded the need to use a non-perturbative
contribution to it, either extracted by fitting to data or
by non-perturbative theoretical methods in QCD theory
(or, better, both). In Sec. V C, we will give a further
analysis of the argument given in Ref. [11].

Given the above quantitative estimates of the onset
of non-perturbative physics, the previously used value of
bmax = 1.5 GeV−1 = 0.3 fm is reasonable. A substan-
tially smaller value is excessively conservative, while in-
creasing it by more than about a factor of two goes too
far into the non-perturbative region.

We conclude that Echevarŕıa et al. [11] use perturba-

tively based calculations for K̃ (admittedly with resum-
mation) in a region where non-perturbative effects are
important, and that in other parts of their calculation,
non-perturbative effects are important in the same re-
gion.

Becher and Neubert [10] also use a related formal-
ism without including non-perturbative effects at large
bT. But they only claim that their formalism is valid
when transverse momentum is much larger than the QCD
scale, i.e., qT � ΛQCD. In that situation, the Fourier
transform probes variations of the integrand on a scale
1/qT and it is dominated by relatively small distances of
order 1/qT � 1/ΛQCD, and thus the non-perturbative
contributions can be numerically unimportant.

In contrast, the full TMD factorization method de-
scribed above is valid for transverse momenta down to
zero, and the non-perturbative large-bT region is im-
portant, if Q is not too large. The fact that the non-
perturbative region is important is established by the
essentially universal use of a Gaussian form for TMD
parton densities at large bT in fitting data.

Further work without a non-perturbative function for
evolution is by Sun and Yuan [12, 13]. They use a certain
perturbative approximation to the exponent S of the full
evolution factor, with S being defined as in Eq. (17).
The approximation is essentially the same as one used by
Boer in [32, Eq. (144)] and [33, Eq. (34)]. We will refer
to this as the Boer-Sun-Yuan (BSY) approximation. The
approximation was devised with the aim of expressing the
TMD factorization formula in terms of TMD densities,
f̃j/H

(
xA, bT;x2

AQ
2
0, µ0

)
, with a fixed scale. (More recent

work by Boer in Refs. [100, 101] and by Sun-Yuan in
Ref. [55] no longer uses the BSY method.)

First, given the legitimate choices that µ0 = Q0 and
µQ = Q, the full exponent (17) can be written as
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S(bT, Q,Q0, Q0) =

∫ Q

Q0

dµ′

µ′

[
−2K̃(bT;αs(Q0), Q0)− 2γj(αs(µ

′); 1) + ln
Q2

(µ′)2
γK(αs(µ

′))

]
. (46)

Here, we have made explicit the coupling argument αs(Q0) of the function K̃, since its scale does not match the
scale in the coupling elsewhere in the integrand. This equation is equivalent to the exponent in [29, Eq. (86)]. The
approximations made in Refs. [12, 13, 32] are to replace all quantities in Eq. (46) by their one-loop approximations

and to replace the coupling αs(Q0) in K̃ by αs(µ
′), to give

SBSY(bT, Q,Q0, Q0) ≡ 2CF

∫ Q

Q0

dµ′

µ′
αs(µ

′)

π

[
ln

Q2

(µ′)2
+ ln

b2TQ
2
0

4
+ 2γE −

3

2

]
. (47)

This approximation is questionable for three reasons.
First, the actual value of the coupling αs(Q0) in K̃ has
been replaced by αs(µ

′). Second, the perturbation series

for K̃ has been truncated at one loop, despite the fact
that higher orders will have higher powers of ln(bTQ0),
so it is not obvious that the higher order corrections are
small compared with lowest order. The exponent is used
in an integral over all bT, so the integral includes re-
gions of bT where the logarithms are arbitrarily large.
Finally, we recall that in analyzing HERMES and COM-
PASS data, important regions of bT are in the domain
of non-perturbative phenomena, and therefore where a
perturbative approximation is generally invalid.

Observe that the bT dependence in Eq. (47) results in
a power-law bT dependence in e−S proportional to

(
1

b2T

)a(Q,Q0)

, (48)

where

a(Q,Q0) = 2CF

∫ Q

Q0

dµ′

µ′
αs(µ

′)

π
(49)

We get a divergence at bT = 0 that is worse than what
is present in a correct formula, and we get a suppression
at large bT.

Of course, the in-principle inadequacy of the approxi-
mation does not in itself show that the approximation is
actually numerically inadequate in its application to data
over a limited range of Q. To see its effects in practice,
we need to evaluate the size of the error, which we will
do later.

As already mentioned, the reasoning leading to the
BSY approximation was aimed at expressing the TMD
factorization formula in terms of TMD densities at a fixed
scale. This is better achieved by our Eq. (18), where a

RG transformation has been applied to K̃ to remove large
logarithms. However, that formula also shows that the
need to parameterize the non-perturbative contribution
to evolution has not at all been evaded.

3. Comparisons with SSA data at fairly low Q

In contrast to the established good fits for Drell-Yan
at relatively large Q, the situation at the lower values of
Q for the HERMES and COMPASS data is rather con-
fusing, especially for the spin-dependent TMD functions.

Aybat, Prokudin and Rogers [26] (APR) used the re-
sults of the Landry et al. [1] fit given in Eq. (41) for evolu-
tion, and used a fit by Anselmino et al. [102] for the Sivers
function at HERMES at 〈Q2〉HERMES ' 2.4 GeV2. (Av-
erage values of kinematic variables were used in the cal-
culations.) The result seemed to be a successful predic-
tion/postdiction of COMPASS data at 〈Q2〉COMPASS '
3.8 GeV2. However, the Sivers function extracted from
COMPASS data was sensitive to significantly smaller x
values than the HERMES data. Hence, while the ap-
parent consistency with the BLNY gK(bT; bmax) seen by
APR is compelling, the relatively large variations be-
tween HERMES and COMPASS data were most likely
due to a combination of variations in both x-dependence
and evolution in Q, rather than a test of Q evolution
alone. See, for example, the discussion of this on page
six of Ref. [27] where it is explained how restricting to
smaller y likely enhances the influence of very small Q
and larger x, leading to a larger Sivers effect and greater
direct agreement with HERMES data without explicit
evolution.

Anselmino et al. [103] made a comprehensive analysis
of both the HERMES and COMPASS data. They found
improved fits with TMD evolution than without, but the
effect does not seem as dramatic as in the results of APR,
even though they used same BLNY form (41) for TMD
evolution.

A related group of authors [88] fit the transversity and
Collins functions to data from HERMES, COMPASS and
Belle, covering a substantial range of Q, but did not need
to use TMD evolution to get a good fit.

Finally, Sun and Yuan [12, 13] were able to get agree-
ment with much data with their approximation (47) for
the evolution exponent. This exponent gives much less
rapid evolution than is implied from the Landry et al. [1]
fit. It should be noted that the lowest Q used by Landry
et al. is about the highest Q considered by Sun and Yuan.
This is the clue that we will exploit to motivate the idea
that compatibility between the results might be obtained



21

once one allows for the fact that they probe different
ranges of bT.

B. Comparison using master function A

We now use A(bT) to analyze some of the phenomeno-
logical approaches.

1. BLNY and KN

First, in Fig. 2 we show comparisons between the KN
and BLNY fits, described in Sec. V A 1, and a purely per-
turbative calculation. The two sets of plots in the figure
differ only in their horizontal scales for bT. Graph (a)
has a linear scale out to bT = 5 GeV−1 = 1 fm, and thus
emphasizes the non-perturbative region. Graph (b) has
a logarithmic scale, and goes only up to bT = 1 GeV−1 =
0.2 fm; it thus shows a primarily perturbative region for
bT. In graph (a), we have also indicated some significant
scales for non-perturbative physics, from Ref. [53].

A baseline for all the comparisons is the perturbative
value in Eq. (37). With the two-loop approximation and
the indicated choice of scale for the strong coupling, we
will call this the “purely perturbative, but RG-improved
calculation” of A. It is plotted in red in the figures. We
calculate the strong coupling with three active flavors,
the standard 2-loop formula in terms of Λ3 = 339 MeV,
with the value of Λ3 being from a recent summary of
world data by Bethke [104].

At low bT, the coupling is small, and the QCD pre-
diction for A is accurate up to higher-order corrections.
When bT is decreased to zero, A(bT) slowly decreases to
zero, like 1/ ln(1/ΛbT). But when bT is increased suffi-
ciently, a fixed-order approximation diverges at the Lan-
dau pole, as illustrated by the red line in Fig. 2(a); a
perturbative approximation is evidently not trustworthy
there.

The BLNY and KN fits use the CSS b∗ prescription
and a quadratic form for gK(bT; bmax). From Eq. (31) we
get

A(bT)BLNY, KN =
g2

2
b2T

+
1

1 + b2T/b
2
max

(Two-loop A(b∗) from (37))

+O
(
αs(µb∗)3

)
. (50)

For the BLNY fit, the blue dashed curves in each of the
plots in Fig. 2 give the perturbative part of A , i.e., the
second line of Eq. (50). When bT is well below the cutoff
bmax,BLNY = 0.5 GeV−1, this perturbative part matches
the purely perturbative value in red. But at larger bT it
decreases to zero; the corresponding contribution to K̃
goes to a constant.

When the fitted quadratic term for gK is added — see
Eq. (41) for the coefficient — we get the blue dash-dotted

curve. This starts by compensating the effect of the bmax

cut-off on the perturbative term, and then rapidly gets
large.

For the KN fit, with bmax = 1.5 GeV−1, the corre-
sponding results are shown by the black curves. The
black dashed curve is the cut-off perturbative part, and
the black dot-dashed curve is the result of adding in the
fitted function for gK , Eq. (42).

Observe first that the full BLNY curve matches the
purely perturbative term very closely up to bT =
0.5 GeV−1, even though the perturbative term in Eq. (50)
has already been substantially reduced by the b∗ cut off.
The difference between the full BLNY value for A and
the cut-off perturbative term is the gK function, which
BLNY fitted to data. Thus one can reasonably say that
BLNY verifies a perturbative prediction.

The KN fit matches the purely perturbative calculation
slightly less well at 0.5 GeV−1. But then it matches its
trend substantially further out than does the BLNY fit,
to a bit beyond 1.5 GeV−1, admittedly in a region where
the accurate applicability of perturbation theory might
be debatable. Beyond that it falls below the perturbative
curve. KN’s fit has a notably better fit to the data, as
measured by χ2, so we should regard the KN fit as more
correctly corresponding to reality.

Recall from Fig. 1 that the bT-space integrand de-
creases rapidly beyond around 1.5 GeV−1, for the lower
energy data, and that the decrease starts even earlier for
collider data. Thus, although there are large differences
at large bT between the A functions in the two fits, the
data used are not sensitive to the higher values of bT, say
beyond 2 GeV−1; this insensitivity is even more marked
at higher energy, as is seen in Fig. 1(a).

For a more incisive measurement at large bT one must
use data at lower Q, such as is provided by HERMES
and COMPASS.

2. Boer-Sun-Yuan

We now examine the consequences of the Boer-Sun-
Yuan (BSY) approximation [12, 13, 32], which gave
Eq. (47) for the exponent in the bT integrand. We apply
the definition of A, the first line of Eq. (30), to the value

of W̃ that corresponds to Eq. (47). This gives

A(bT;Q)BSY ≈
αs(Q)CF

π
. (51)

Now a highly non-trivial prediction of TMD factorization
in QCD is that A(bT) is independent of other kinematic
variables, notably Q, when TMD factorization is applied
to leading power in qT/Q. So the Q-dependence in (51)
is already in contradiction with the prediction.

To show some of its implications, we have plotted in
Fig. 3 values for the BSY A at Q = 1 GeV (roughly ap-
propriate for HERMES) and at Q = 10 GeV (roughly
appropriate for the lower energy Drell-Yan data used
in the KN and BLNY fits). These are respectively the
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FIG. 2. The A(bT) function defined in Eq. (30) for the BLNY and KN fits, together with some of its components. The
thick, solid, red curve shows a purely perturbative, but RG-improved, calculation, using the LO and NLO terms in Eq. (37).
The thin, blue, dashed curve shows the same quantity with the CS taming procedure, i.e., the second line in (50), with
the value bmax = 0.5 GeV−1 for the BLNY fit. The thin, blue, dot-dashed curve shows the result after also adding in the
gK(bT; bmax = 0.5 GeV−1) function from BLNY [1], i.e., it is the actual A(bT) for the BLNY fit. The thick, black, dashed and
dot-dashed curves similarly show the cut-off perturbative component and the full A for the KN fit [2] with bmax = 1.5 GeV−1.
In (a), we plot the results with a linear scale out to 5 GeV−1 = 1 fm. In (b), we show the same functions, but with a logarithmic
horizontal scale extending to 1 GeV−1 = 0.2 fm, to show better the region of small bT, to which large Q interactions are most
sensitive.
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FIG. 3. Like Fig. 2, but showing a comparison between the Boer-Sun-Yuan (BSY) approximation, the KN fit, and the purely
perturbative, RG-improved, calculation. The thick, red, solid curve is the NLO perturbative calculation. The thick, black,
dot-dashed, and thin, blue dot-dashed curves are the same KN and BLNY curves as in Fig. 2. The solid brown curve is for A
at Q = 1.0 GeV in the BSY [13] method, from Eq. (51). The dashed blue curve is the BSY calculation for Q = 10.0 GeV.
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brown solid and blue dashed curves. In addition, we show
the purely perturbative term (red solid line) and the full
KN and BLNY fitted values (black and blue dot-dashed
lines).

To assess the effect of A on the cross sections under
different kinematic conditions, we need to know the typ-
ical values of bT that are important. We measure these
by the point at which the integrand bTW̃ (bT) falls to half
its peak value. (We note that at asymptotically large Q,
the peak occurs at around bT ∼ 1/Q, but the width falls
as a slower power of Q [97]; this is quite different than
for a Gaussian.) At the Z, the left-hand graph in Fig. 1
gives a width of about 0.5 GeV−1. For Q around 11 GeV,
the right-hand plot gives a width of about 1.8 GeV−1.

In contrast, transverse momentum distributions at
HERMES and COMPASS are fit reasonably well by
Gaussians:

e−p
2
T/〈p

2
T〉, (52)

with the mean-square transverse momentum 〈p2
T〉 being

around 0.2 GeV2 to 0.3 GeV2. Fourier transformed, this
gives

e−b
2
T〈p

2
T〉/4, (53)

which gives a width in position space of very roughly
2/
√
〈p2

T〉, perhaps 4 GeV−1.
In Fig. 3, the brown curve, for Q = 1 GeV, which is

appropriate for low energy data, intersects the KN and
perturbative curves at bT ' 1 GeV−1, and falls below
them at higher bT. Thus their results give slower evolu-
tion than KN at the lowest values of Q.

When the energy is increased, the BSY form of A be-
comes the blue dashed curve. This matches the QCD-
predicted form at around bT ' 0.1 GeV−1, and is well
below the QCD perturbative prediction in a region of bT
that is relevant for the successful KN and BLNY fits,
where the fits themselves confirmed the accuracy of the

perturbative predictions for bT . 1 GeV−1. As Sun and
Yuan themselves acknowledge, their approximation is not
adequate for the higher energy data. The best that their
approximation can manage is that the fall of the resulting
function A with Q roughly matches the values of the true
A at the values of bT probed at that Q; these distances
decrease as Q increases.

From the success of the BLNY and KN fits, together
with the knowledge that perturbative QCD predictions
are valid in the perturbative region of bT, we should re-
gard the values of A(bT) given by the KN fit as reliable
in the region bT . 2 GeV−1, roughly. Larger values of bT
are unimportant for the Drell-Yan data fit by KN. But
it is larger values of bT that dominate for the conditions
of the HERMES and COMPASS experiments. There-
fore we should expect that the true A turns down above
about 2 GeV−1. This would also match the conclusions
of Aidala et al. [28]. Most importantly, we should be able
to achieve this while preserving the goodness of fit for the
high-energy Drell-Yan data, not to mention predictions
for cross sections at high-energy hadron-hadron colliders.

In the future, in may become practical to analyze data
directly in coordinate space, as proposed in Ref. [105].
This would circumvent the complications associated with
Fourier transforms or convolution integrals.

3. Qiu-Zhang

In Fig. 4, we show comparisons for the result for A(bT)
in the Qiu-Zhang fit in Refs. [3, 92]. The Qiu-Zhang re-
sult is the brown line with a step at bmax = 0.5 GeV−1.
They use a sharp cut off at bT = bmax instead of CSS’s
smooth cut off. Below bmax, they use exactly the per-
turbatively calculated formula. Above bmax, they freeze
bT at bmax, and multiply the bT-space integrand by a
parametrized form corresponding to TMD factorization
and evolution:

W̃ (bT, . . . ) =

{
W̃ (pert)(bT, . . . ) if bT < bmax,

W̃ (pert)(bmax, . . . )F
NP
QZ (b, . . . ) if bT > bmax,

(54)

where

FNP
QZ (bT, . . . ) = exp

{
− ln

(
Q2b2max

c2

)[
g1

(
b2αT − b2αmax

)
+ g2

(
b2T − b2max

)]
− ḡ2

(
b2T − b2max

)}
, (55)

and α, g1, g2, and ḡ2 are parameters to be fit to data.

The perturbative formula is used for small bT. By con-
struction, W̃ is continuous at bT = bmax. The result
seen in Fig. 4 is that A(bT) contains a discontinuity at
bT = bmax.

C. Echevarŕıa-Idilbi-Schäfer-Scimemi

These authors (EISS) [11] argue that the practical ef-

fect of the non-perturbative part of K̃ is small. This con-
clusion is obtained from an argument that the range of
bT in which perturbative calculations are valid is a factor
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FIG. 4. Like Fig. 2(a), but now we show the comparison between A(bT) for the Qiu-Zhang model of Refs. [3, 92] (brown line
with step), the purely perturbative RG-improved calculation (red), and the full A functions from the BLNY fit (thin blue dot-
dashed) and the KN fit (thick black dot-dashed). Since by construction, the Qiu-Zhang method agrees with the RG-improved
perturbative calculation below the bmax cut off, we do not bother with the logarithmic plot for low bT.

of two or more larger that has normally been considered
appropriate. Although underlying their derivations are
TMD factorization and evolution formulae that are ex-
actly equivalent to those we presented in Sec. II A, their
method of solution is very different.

In our solutions (following CSS), we used the RG equa-

tion (7) to evolve K̃ to a scale µ of order 1/bT, in order
to avoid large logarithms of µbT in the perturbative ex-
pansion of K̃ in powers of αs(µ). Expressed in terms of

the quantity DR(bT;µ) = − 1
2K̃(bT;µ) used by EISS, this

gives

DR(bT;µ) = DR(bT;C1/bT) +
1

2

∫ µ

C1/bT

dµ′

µ′
γK(αs(µ

′)).

(56)
For a numerical estimate of DR(bT;µ), our method

is to use the right-hand-side of Eq. (56) with trun-
cated perturbative calculations for DR(bT;C1/bT) and
for γK(αs(µ

′)), and with a truncated perturbation ex-
pansion of the β function that controls the running of
the coupling by

dαs(µ)/4π

d lnµ
= β(αs(µ)) = −2

∞∑
n=0

βn

(
αs(µ)

4π

)n+2

.

(57)
Errors in the resulting approximation can be estimated
from the truncation errors in the three perturbative ex-
pansions used. When µ is fixed in a perturbative region
and bT is increased beyond 1/µ, the largest of the er-
rors is controlled by the size of αs(C1/bT). When bT
is large enough, the inapplicability of perturbation the-

ory is signaled by a Landau singularity in the value used
for αs(C1/bT), and a corresponding singularity in the
approximated DR(bT;µ). Strictly speaking, a full argu-
ment for the inapplicability of perturbation theory at
large distances arises not from the large size of the ef-
fective coupling, by itself, but also from the knowledge
that perturbation series in quantum field theory are often
asymptotic series rather than actually convergent series.
This results in an ultimate limit to the accuracy of per-
turbative approximations, no matter how many terms in
the series are used.

Instead, EISS use an explicit resummation of loga-
rithms for the perturbative expansion of DR(bT;µ), i.e.,
for the left-hand-side of (56). The logarithms are powers
of L⊥(µbT) = ln(µ2b2T/4e

−2γE ). In massless perturba-
tion theory for DR the coefficient of (αs(µ))n is a poly-
nomial of degree n in L⊥:

DR(bT;µ) =

∞∑
n=1

n∑
p=0

Dnpa
nLp⊥, (58)

where a(µ) = αs(µ)/4π. The leading-logarithm (LL)
resummation is the sum of the terms with the maxi-
mal number of logarithms, the next-to-leading-logarithm
(NLL) term is the sum of the terms with one fewer log-
arithm, etc. To implement resummation, EISS define
X(µbT, bT) = a(µ)β0L⊥(µbT), and then reorganize the
perturbation series as

DR(bT;µ) =

∞∑
n=0

anDn(X), (59)
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where

Dn(X) =

∞∑
j=jmin(n)

Dj+n,j

βj0
Xj . (60)

Here jmin(0) = 1, and jmin(n) = 0 for n ≥ 1. The
term with Dn sums the nth-to-leading logarithms. The
LL approximation is D0(X), the NLL approximation is
D0(X) +aD1(X), etc. EISS provide formulae for resum-
mations at the LL, NLL, and next-to-next-to-leading-
logarithm (NNLL) approximations. They give a deriva-
tion in their App. B from the RG equation for DR, and
its solution (56).

If one-loop approximations are used for γK , for the
β-function that controls the running of the αs, and for
DR(bT;C1/bT) with C1 = 2e−γE , then the right-hand-
side of (56) gives the same results as the LL resummation.

But beyond that level, there are generally differences
between using the resummation formula (59) truncated
to some order in a, and directly using the right-hand-side
of the solution (56) with corresponding truncations in the
quantities that appear in it.

Ultimately what matters for making predictions for a
cross sections is the size (or expected size) of the errors in
whatever approximation is used to estimate DR(bT;µ).

A symptom of one source of error is visible in EISS’s
Fig. 1 in Ref. [11]. Here are shown plots of the results

of their resummations, for µ =
√

2.4 GeV and for µ =
5 GeV. (In the plot, the symbol Qi is used instead of
our µ.) If the exact DR(bT;µ) were plotted as a function
of bT for two different values of µ, then the two curves
would differ only by a simple vertical shift. This follows
directly from the right-hand-side of (56), which implies
that

DR(bT;µ2)−DR(bT;µ1) =
1

2

∫ µ2

µ1

dµ′

µ′
γK(αs(µ

′)). (61)

These results follow from the RG equation for DR:

dDR(bT;µ)

d lnµ
=

1

2
γK(αs(µ)). (62)

In going from µ =
√

2.4 GeV to µ = 5 GeV the shift is
upward, since γK is dominated by its positive LO term.
We now examine [11, Fig. 1]. At small bT, below about
2 GeV−1 or even 3 GeV−1, the upward shift is easily seen.
But at larger bT, the plots disagree with the prediction:
The calculated DR decreases substantially instead of in-
creasing as µ increases.

Of course, an approximate calculation of DR need
not exactly obey a property known to hold for the ex-
act quantity. But the deviations from the predicted bT-
independent shift give a lower bound on the error in the
approximation. From the plots, we deduce that the cal-
culation is no longer trustworthy as bT approaches about
3 GeV−1. This therefore falsifies EISS’s assertion that
their resummation is valid up to around bc = 6 GeV−1

when µ = 5 GeV.

That the NLL and higher approximations do not give
a simple vertical shift can be seen by differentiating
D0 + aD1 with respect to µ (or Qi). From the formulae
given by EISS, it is found that the value of the deriva-
tive depends on L⊥ and hence on bT. The result is of
order a2 (or higher) times a function of X. Thus it is of
a form that would be compensated by including higher
order terms in the expansion in non-leading logarithms.

We next obtain the expected size of the truncation
errors for (59) both from the explicit formulae given by
EISS for D0, D1 and D2, and from their derivation in
App. B of Ref. [11]. The properties we will list below can
be seen explicitly in EISS’s formulae up to n = 2. They
can be proved to hold for all n, which is not too hard to
do starting from the derivation in their App. B.

Each higher term has one factor more of a(µ), i.e., of
αs(µ). But it is not this factor alone that is the true
expansion parameter relevant for the size of the higher
terms. Each term can be written as a polynomial in
1/(1−X(bTµ, µ)) and ln(1−X(bTµ, µ)). When bTµ gets
large enough, X(bTµ, µ) approaches 1, so that the terms
exhibit a Landau singularity. The leading singularity for

the a(µ)n term is proportional to

[
ln(1−X(bTµ, µ))

1−X(bTµ, µ)

]n
,

when n ≥ 1. That is, each extra power of a(µ) is accom-

panied by one extra power of
ln(1−X(bTµ, µ))

1−X(bTµ, µ)
. Hence

the effective expansion parameter, when X(bTµ, µ) gets

near to 1, is not a(µ), but
a(µ) ln(1−X(bTµ, µ))

1−X(bTµ, µ)
. This

is roughly the effective coupling (divided by 4π) at a
scale proportional to 1/bT, i.e., a(C1/bT). [Note that
if the 1-loop approximation is used for β, then the cor-
responding approximation to the effective coupling is
αs(C1/bT) = αs(µ)/(1−X(bTµ, µ)).]

We therefore deduce that the series in leading and non-
leading logarithms becomes inapplicable when a/(1 −
X(bTµ, µ)) is of order unity, i.e., when 1 − X(bTµ, µ)
is of order a(µ). This implies that the other terms in the
polynomial in 1/(1 − X(bTµ, µ)) and ln(1 − X(bTµ, µ))
are a smaller relative correction since they are smaller in
size than the term with the leading singularity.

The result is that the error in a truncation of the ex-
pansion in leading and non-leading logarithms is gov-
erned by the same parameter a(C1/bT) that determines
the sizes of truncation errors in the direct use of the solu-
tion of the evolution equation, i.e., the truncation errors
for the right-hand side of Eq. (56).

So nothing in terms of accuracy has been gained by
a use of literal resummation instead of the use of the
right-hand-side of (56) with truncations in perturbative
expansions of quantities that have no logarithms. What
is lost is relative simplicity in the formulae and a trans-
parency in the nature of the errors.

Another important issue is EISS’s treatment of heavy
quarks. Their resummation is obtained from calculations
in Ref. [75] of massless Feynman graphs. Now, we know
that propagators of heavy particles decay exponentially
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FIG. 5. Typical two-loop graph with a heavy quark loop that
contributes to K̃. The notation is as in Ref. [9]: The cross
denotes a derivative of a space-like Wilson line with respect
to its rapidity.

at large distances, like e−mbT (aside from a power law
that is irrelevant here). The distances we are concerned
with are for potential non-perturbative contributions to
K̃ or DR, i.e., for bT above about 1 GeV−1. In this region
of bT, the exponential e−mbT is very important for both
the charm and bottom quarks. For an approximation
using massless quarks to be suitable, this region of bT is
such that one must decouple the heavy quarks first. That
is, the appropriate number of active quark flavors is 3.

Furthermore, when mqbT is not small for some quark of
mass mq, the dependence on bT is non-trivial; one cannot
expect a simple logarithmic dependence. An example of a
two-loop graph with a heavy quark that contributes to K̃
is shown in Fig. 5. This and similar graphs have a heavy
quark loop correcting a gluon propagator in any of the
Wilson-line matrix elements that occur in the definition
of K̃.

EISS first estimate the location of the Landau singular-
ity by setting the number of active flavors to 5, and using
the value16 Λ5 = 157 MeV for the scale parameterizing
the running coupling. They calculate a corresponding
distance scale bΛQCD

' 7 GeV−1; this calculation corre-
sponds to bΛQCD

= 2e−γE/Λ5.
But, as we observed, the appropriate number of active

flavors is 3. Then one should use [104] Λ3 = 339 GeV,
more than a factor of two larger. This brings the corre-
sponding distance scale down bΛQCD ' 3 GeV−1 = 0.6 fm,
which is much more in line with standard ideas of dis-
tance scales where non-perturbative physics is important.

Having obtained a form for DR (or K̃) at some low
scale µi, one naturally wishes to evolve it to a much larger
value of µ, whenever processes with large Q are to be
treated. As is usual with similar matrix elements (e.g.,
densities of light quarks), one should then evolve it by Eq.
(7), used in regions with different numbers of active quark
flavors, together with the relevant matching conditions.
This evolution preserves the property that the difference
(61) between DR at different scales is independent of bT.
(As mentioned earlier, a full treatment of the effects of
heavy quarks on TMD factorization remains to be worked
out; we hope to deal with this in a future article.)

16 Note that the value of Λ5 used by EISS is somewhat smaller than
the measured value [104].

In any case, it is entirely incorrect to use a massless
approximation in perturbative calculations of DR when
mqbT is not small. So performing a resummation with 4
or 5 active flavors, as EISS do, is incorrect when bT is in
the region of 1 GeV−1 upwards.

We have one final concern with the EISS approach.
This is that it implements the transition from the pertur-
bative part of DR to the non-perturbative part through
a sharp cutoff at a certain position bT = bc. For bT
below bc, EISS calculate DR from resummed perturba-
tion theory alone, and use a parametrized form only for
larger bT. However, as explained in the next section,
such a sharp boundary between perturbative and non-
perturbative regions does not correspond to what hap-
pens in actual quantum field theory. CSS’s motivation
for a smooth cutoff remains valid. (Of course, there is
the possibility that RG-improved or resummed perturba-
tion theory remains accurate at larger bT than has been
assumed earlier.)

Hence, we conclude that, in contrast with the implica-
tion of the EISS results, one does indeed need to allow for
a non-perturbative parameterization in the phenomeno-
logically important range of bT beginning above roughly 1
or 2 GeV−1. A separate question, to be discussed below,
is whether changes are needed compared with previously
accepted parameterizations.

We note that the more recent phenomenological work
of Ref. [106], which utilizes the EISS method, does in fact
consider a non-perturbative part for DR. However, the
problems discussed above remain in their calculations.

VI. SMALL-bT BEHAVIOR OF gK

The function gK(bT; bmax) was defined in Eq. (20) as

(the negative of) the difference between the exact K̃ and
a cut-off version restricted to a roughly perturbative re-
gion of bT. It is power suppressed when bT is much less
than bmax. CSS deliberately chose a smooth cutoff, be-
cause a normal calculation of K̃ uses RG-improved per-
turbation theory with truncations of the RG functions
β(αs) and γK(αs) (or some resummation with similar
accuracy). The accuracy of such a calculation gradually
degrades as bT increases. Non-perturbative phenomena
are not restricted to a sharp range of bT but contribute
at all bT; but they are expected to be power-suppressed
at small bT.

Hence, when Eq. (22) is actually used to fit data, there
is a subtle shift in the meaning of gK(bT; bmax). Instead
of gK defined in Eq. (20), the fits should be regarded as
actually measuring the following quantity17

ĝK(bT; bmax) = −K̃(bT, µ0)exact + K̃(b∗, µ0)approx.. (63)

17 It is not entirely clear which value µ0 of the renormalization scale
should be used here; but that only affects an additive constant,
with no dependence on bT.
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Here the perturbatively approximated K̃ is defined as follows. From the RG equation for K̃ we find

K̃(bT;µ0;αs(µ0)) = K̃(bT;µb∗ ;αs(µb∗))−
∫ µ0

µb∗

dµ′

µ′
γK(αs(µ

′)), (64)

where the renormalization scale in K̃ on the right-hand side is chosen to avoid large logarithms in its perturbation
series. Then we define K̃(b∗, µ0)approx. by applying to the right-hand side of (64) truncated perturbation theory for

K̃, γK , and for the function β controlling evolution of the coupling. (Note that this form of approximation preserves

the property of the exact K̃(bT;µ0) that its dependence on bT and µ0 is the sum of a function of bT and a function
of µ0.) Thus a fit of gK can allow both for non-perturbative phenomena and for uncalculated higher-order terms in

the perturbative part of K̃.
To better understand the changed gK , we write it in two forms:

ĝK(bT; bmax) =
[
−K̃(bT, µ0)exact + K̃(b∗, µ0)exact

]
+
[
−K̃(b∗, µ0)exact + K̃(b∗, µ0)approx.

]
(65a)

=
[
−K̃(bT, µ0)exact + K̃(bT, µ0)approx.

]
+
[
−K̃(bT, µ0)approx. + K̃(b∗, µ0)approx.

]
. (65b)

On the first line, the quantity in the first brackets is gK as originally defined, and the second brackets contain the error
in using truncated perturbative methods to compute K̃(b∗). On the second line, the first brackets show the difference

between the exact K̃ and a truncated perturbatively-based estimate, while the second brackets give a perturbative
approximation to gK .

If bmax is chosen conservatively (as in the BLNY fits), then perturbatively based calculations of K̃ are applicable for
the whole region of bT less than bmax, and even at somewhat larger bT. Actual fits for gK , or rather ĝK , particularly
with a simple quadratic approximation, are a compromise, between reproducing gK in a region where it is predicted,
and fitting gK at larger bT where it is less perturbative. Even so, we expect to estimate, roughly, the small-bT behavior
of gK from perturbative calculations. We can regard such an estimate as giving a property of the first term on the
right-hand side of (65a), i.e., of gK itself. Alternatively it gives a property of the second term on the right-hand side
of (65b). The validity of perturbation theory when bT is small is coded in a small value for the other term on each

line, which is a difference between the exact K̃ and its perturbative estimate.
Real non-perturbative physics is at larger bT, and, as we will see in more detail in Sec. VII, a simple extrapolation

of gK from small bT is likely to be wrong.
Once a less conservative value of bmax is chosen, more of the fitting is concerned with effects beyond those predicted

by low-order perturbation theory. This is exhibited on the right-hand side of (65a), where the first term is the exact gK
and the second term gives the error in replacing the exact value of K̃(b∗, µ0) by a perturbatively-based approximation.

We now show how to predict approximately the quadratic behavior of gK when bT . bmax. This amounts to an
examination of the second term on the right-hand side of (65b). We will find that the results roughly reproduce the
values of the coefficient g2 in Eq. (39) that were fitted by BLNY and KN.

If K̃ were an analytic function of bT around bT = 0, then gK as defined by Eq. (20) would be correctly given by a

quadratic in bT at small bT. But in fact K̃ has a mild singularity at bT = 0, as is verified by doing a renormalization-
group improvement, as in (64). Because the effective coupling αs(µb∗) is not analytic at bT = 0, neither is K̃.
This mildly modifies the quadratic small-bT behavior of gK . But normally we are not concerned with accurately
approximating gK at very small bT, precisely because gK is small there and has little effect on the cross section. What
we need to obtain is an approximation that is useful when bT gets closer to bmax.

To get a simple approximation, we first set µ = µb∗ in the definition of gK , to remove large logarithms:

gK(bT; bmax) = −K̃(bT;µb∗ ;αs(µb∗)) + K̃(b∗;µb∗ ;αs(µb∗)) . (66)

We assume that bT is less than bmax. Then there are no
large logarithms involving bT or b∗. Using the lowest-
order formula for K̃ gives

gK(bT; bmax) ' αs(C1/b∗)CF
π

ln
(
1 + b2T/b

2
max

)
. (67)

This has b2T behavior at small bT but a slower rise above

bmax. It is the form used in Ref. [54] to optimize matching
between the perturbative calculation and gK(bT; bmax) at
moderate bT.

To compare with fitted values of gK with gK = 1
2g2b

2
T,
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we propose two methods. One is to expand at small bT:

gK(bT; bmax) ' αs(C1/b∗)CF
π

b2T
b2max

, (68)

and then to replace C1/b∗ by C1/bmax, since fits for gK
concerns bT not far from bmax. Then we equate the co-
efficients of b2T in this formula and in the fitted gK , to
obtain

g2 '
2αs(C1/bmax)CF

πb2max

(by small bT expansion). (69)

The other method is to equate the derivatives with re-
spect to b2max at bT = bmax; this may be more represen-
tative of how gK affects the evolution of the cross section
because this is where gK gives a substantial correction
to the cut-off K̃. The result gives an estimate that is a
factor of two smaller:

g2 '
αs(C1/bmax)CF

πb2max

(by derivative at bmax). (70)

Neither method can exactly reproduce the fitted gK ,
since the perturbative estimate for gK has a different
functional form than the fitted gK ; the best we can do is
an approximate match.

To obtain numerical values, we use the two-loop
parametrization of αs(µ) from Ref. [107] with 3 active fla-
vors of quark. We make the standard choice C1 = 2e−γE .
For the two standard values bmax = 0.5 GeV−1 and
bmax = 1.5 GeV−1, we find

CF
π

1

b2max

αs(C1/bmax)

∣∣∣∣
bmax=0.5 GeV−1

≈ 0.45 GeV2, (71)

CF
π

1

b2max

αs(C1/bmax)

∣∣∣∣
bmax=1.5 GeV−1

≈ 0.13 GeV2. (72)

We compare with the measured values:

g2 values in quadratic parametrizations:

bmax Fitted Expansion
Method

Derivative
Method

0.5 GeV−1 0.68+0.01
−0.02 GeV2 0.9 GeV2 0.45 GeV2

1.5 GeV−1 0.18± 0.02 GeV2 0.26 GeV2 0.13 GeV2

We see a rough agreement, with the two methods of
matching a value of g2 to (67) giving results that bracket
the measured value. We deduce that some of the work
in the fits simply reproduces perturbative predictions in
a region where the predictions have a useful, if approx-
imate validity. We also deduce that the values of bmax

are conservative. If one wants to genuinely measure the
non-perturbative part of gK , one needs a more general
parameterization and one needs to ensure that data is
used that is sensitive to higher values of bT. We will
address this issue in the next section.

Of course, the above estimates are crude and meant
only to check for general consistency. At large bT,

Eq. (67) is not expected to be an accurate parametriza-
tion of gK(bT; bmax). First, it is based on an extrapo-
lation of a low order perturbative calculation. Second,
at large bT it depends strongly on bmax. The complete
TMD factorization formalism is bmax independent, and
fully optimized fits should approximately reflect this if
they are to account for large bT behavior.

Notice that the arguments for approximately quadratic
behavior for gK(bT) at small bT equally apply to the func-
tions gj/H defined in Eq. (21). This small bT behavior
corresponds, after exponentiation, to a Gaussian for a
TMD parton density.

We should emphasize that our result that perturbation
theory approximately reproduces the fitted values of g2

does not imply that it should get them exactly correct:
The fitted values have also to allow for both uncalculated
higher-order perturbative terms and for genuinely non-
perturbative effects.

VII. LARGE-bT BEHAVIOR OF CORRELATION
FUNCTION

A. General properties

Appropriate parameterizations for the non-
perturbative large-bT behavior of TMD parton densities
and of the CSS kernel K̃ need to be informed by the
expectations from the general principles of quantum
field theory. All of these quantities are certain kinds of
Euclidean correlation function. Therefore we generally
expect them to decay exponentially (supplemented by a
power law):

1

bT
α e
−mbT (73)

for large distance bT. Here m is the mass of the lowest
mass state that can be exchanged in the relevant channel.
The exponent α depends on the dimensionality of the
problem.

Contributions to the correlation functions arise from
quantities like 〈P |op(bT)|X〉〈X|op(0)|P 〉. Exceptions to
the property of exponential decay only arise when the
theory has massless particles, or when we have vacuum
matrix elements. Non-perturbative QCD has only mas-
sive states, so the exception of masslessness does not ap-
ply. The issue of vacuum matrix elements does not arise
for quark and gluon densities in a hadron, but it does
happen for K̃, at least in perturbation theory, as we will
discuss later.

The decaying exponential behavior of coordinate-space
parton densities at large bT is illustrated by the calcu-
lations by Schweitzer et al. [53] in a chiral model. It
can also be illustrated by simple perturbative calcula-
tions with massive fields.18

18 Parton densities are matrix elements of gauge-invariant quark



30

From many one-loop calculations of the TMD quanti-
ties of interest, we know that a typical integral giving bT
dependence is of the form:∫

d2kT
eikT·bT

k2
T +m2

. (74)

Note that m is generally an x-dependent function of ac-
tual particle masses. We can systematically obtain the
large-bT behavior by deforming the integral over kT into
the space of complex momenta, so as to make the real
part of the exponent negative. The dominant behavior is
from the neighborhood of the pole at k2

T = −m2. Simple
power counting gives the dominant region of kT as

kT ∼
(
im+O(1/bT), O(

√
m/bT))

)
, (75)

where Euclidean coordinates kT = (kx, ky) are used in a
situation where bT = (bT, 0) is in the x-direction.

Since the lowest mass state is a property of the theory,
this suggests (but does not strictly prove) that the expo-
nential (and probably the accompanying power of bT) is
valid for the TMD parton density independently of ζ (or

Q). This implies that the nonperturbative part of K̃ goes
to a constant at large bT, to preserve the exponential and
the power-law behavior of bT in Eq. (73). Naturally, the
numerical coefficient of the exponential decreases when ζ
(and hence Q) increases; this corresponds to the known
qualitative behavior of TMD parton densities.

For K̃ this matches what is obtained from perturbative
calculations with a massive gluon (with the mass mimick-
ing the effect of massive states in non-perturbative QCD).
Relevant formulae can be found in Ref. [9]. Graphs with
only emission of virtual particles, i.e., with the vacuum
for the final state, are independent of bT. Graphs with
particle emission into the final state decay exponentially.
The commonly assumed quadratic behavior of K̃ and
Gaussian behavior of TMD parton densities can only be
an approximation, valid at best only for moderate bT.

We therefore propose that the following constraints be
applied to non-perturbative parameterizations:

1. The non-perturbative TMD parton density at a
starting value of ζ has the above exponential be-
havior, as coded in a linear large-bT behavior of
the functions gj/H in Eq. (21).

2. For the functions gj/H , there should therefore be
a transition from approximately quadratic low-bT
behavior to linear high-bT behavior.

3. The nonperturbative part of K̃ goes to a constant
at large bT.

4. This constant is negative, so that the large bT tail
is reduced as ζ increases.19

5. Correspondingly the master function A goes to
zero: A(∞) = 0.

Thus a key property of the dynamics of non-perturbative
QCD is the number K̃(∞;µ0) (at a chosen reference scale
µ0). This should be extracted from fits to data. The
value at other scales is given by the RG applied in a
perturbative region. Thus

K̃(∞;µQ) = K̃(∞;µ0)−
∫ µQ

µ0

dµ′

µ′
γK(αs(µ

′)). (76)

As for the function gK(bT; bmax), it follows from its
definition that at a minimum it should obey:

• At large bT, gK(bT; bmax) goes to a constant, such

that K̃(bT;Q) goes to a negative constant.

• At small bT, gK(bT; bmax) is (approximately)
quadratic, with roughly the coefficient found in Sec.
VI.

Note that Tafat [52] argues that K̃ is proportional to
bT at large bT. We do not adequately understand the
justification of Tafat’s argument. In any case, all such
properties are subject to experimental test.

B. Dependence of gK on bmax

Since the exact K̃ is independent of bmax, it is useful
to devise methods of parameterizing gK to achieve this
to a useful accuracy, with the aid of perturbative calcu-
lations like those in Sec. VI. This will add (approximate)
constraints on gK beyond the two just listed. In the next
section we will show a parameterization obeying the con-
straints.

The extra constraints are to arrange automatic bmax

independence in certain important regions, and that gK
agrees with its perturbative calculation when the pertur-
bative calculation is valid:

and gluon operators in hadron states. What the appropriate non-
perturbative final states |X〉 should be is not entirely obvious in
a theory with color confinement. This issue also gives a potential
loophole in the argument for exponential decay at large bT.

19 The value of K̃(bT, µ) does depend on the RG scale µ. At large
scales, the RG evolution and the positivity of the LO term in the
anomalous dimension γK ensures that K̃ is strongly negative at
large bT. But the negativity should apply even at fairly low µ.
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1. The form of gK(bT; bmax) is such that

asy
bT�bmax

d

dbmax
gK(bT; bmax)

∣∣∣∣
parametrized

= asy
bT�bmax

d

dbmax
gK(bT; bmax)

∣∣∣∣
truncated PT

. (77)

Here the notation asy (for “asymptote”) denotes the extraction of the approximately quadratic behavior at small
bT, with neglect of higher power corrections. The notation “truncated PT” on the right-hand side indicates an
application of the calculational methods of Sec. VI, but possibly taken to higher order.

2. When bT →∞, the value of gK(∞; bmax) is to be arranged so that K̃(∞) is independent of bmax.

To implement this, consider the RG-improved form (64) for K̃. We differentiate with respect to bmax, and take
the limit bT →∞. We also replace the perturbative part of the right-hand side by its truncated approximation.
Since the full K̃ is independent of bmax, we find

d

d ln bmax
gK(bT =∞; bmax) =

[
dK̃(bmax;C1/bmax)

d ln bmax
− γK(αs(C1/bmax))

]
truncated PT

, (78)

which is our second requirement on the parametrization of gK . It determines the bmax dependence of
gK(bT=∞; bmax).

C. Simple Parametrization of gK(bT ; bmax)

Here we propose a very simple example of a single-
parameter form for gK(bT; bmax) that follows the strategy
established by the above conditions. While not unique,
it is useful for illustrating the basic properties that are
desired for a parametrization of gK(bT ; bmax). The gen-
eral principle is that we enforce bmax-independence in the
asymptotic small- and large-bT limits, and that the per-
turbatively predicted small-bT behavior is reproduced.
The functional form of gK interpolates smoothly between
the small- and large-bT regions, and one parameter de-
termines the numerical value of K̃ at bT = ∞. Modifi-
cations and additions to this function can be proposed
later if required to get a better fit to data.

The proposed form is

gK(bT; bmax)

= g0(bmax)

(
1− exp

[
− CFαs(µb∗)b2T
πg0(bmax) b2max

])
, (79)

where g0(bmax) is a function of bmax that we will deter-
mine. Expanding in small b2T � b2max gives

gK(bT; bmax)

=
CF
π

b2T
b2max

αs(µb∗) +O

(
b4TC

2
Fαs(µb∗)2

b4maxπ
2g0(bmax)

)
, (80)

which matches the O(αsb
2
T/b

2
max) term in Eq. (68), in-

dependently of what the function g0(bmax) is. Thus, gK
both agrees with the predicted small bT behavior and
gives bmax independence of the full K̃ in this region. See
also Ref. [108] for more discussion of the motivation for
Eq. (79).

Note that a (RG improved and truncated) perturba-

tion expansion for K̃(b∗) is only valid if bmax is not so

large that one encounters the Landau pole before the
b∗ taming sets in. On the other hand, if bmax is too
small, then an expansion of a perturbative treatment of
(−K̃(bT, µ)+K̃(b∗, µ)) around small b2T/b

2
max is sensitive

to quartic b4T and higher power terms, even in regions
of small bT where a perturbative description is valid.
Thus, Eq. (79) is optimized for choices of bmax roughly
in the transition region between perturbative and non-
perturbative bT.

To enforce that K̃(bT=∞) is independent of bmax, we
solve Eq. (78) with the leading order expressions for γK
and K̃ from Eqs. (10, 11). This gives

g0(bmax) = g0(bmax,0)+
2CF
π

∫ C1/bmax

C1/bmax,0

dµ′

µ′
αs(µ

′) . (81)

Here, bmax,0 is a reference value for bT used to fix g0; it is
effectively an integration constant. If one chooses a par-
ticular value of bmax when fitting the TMD factorization
formula to data, then the single numerical value g0(bmax)
is a parameter of the fit. If a second fit were made with
a different value of bmax, then we expect the fitted value
of g0(bmax) at the new bmax to be given (approximately)
in terms of the old value by Eq. (81).

At large bT, the resulting K̃ goes to a constant, as
planned, and at small bT, gK is an approximate power
series in b2T. In principle, we may also include a treatment
of bmax independence in higher powers of bT in the region
of intermediate bT. Since the resulting corrections are
small, we regard the current approximation as adequate
for the moment. If in Eq. (79) we take the limit g0 →
∞, this is equivalent to setting gK(bT; bmax) to zero and

describing the entire range of K̃(bT;Q) using the cutoff

form K̃(b∗;Q). If, in addition, we take the limit bmax →
∞, and use the perturbative formula for K̃, then the



32

result for K̃(bT;µQ) in Eq. (64) is to use the perturbative
RG-improved version for all bT.

Improvements can of course be made by using higher
order terms in the perturbative expansion of K̃ and γK .

We now display an example of results obtained us-
ing the parametrization in Eq. (79). In Fig. 6, we

have plotted the K̃(bT;Q) obtained using Eq. (79) and
Eq. (81). For the reference value of bmax, we choose
bmax,0 = 1.5 GeV−1. The goal of this paper is only to il-
lustrate the general method, so we need only to estimate
a reasonable value for g0(bmax = 1.5 GeV−1). To do this,
we note that, if one assumes that perturbation theory is
at least roughly applicable up to bT ∼ 1.5 GeV−1, then
the leading quadratic terms should dominate in the ex-
pansion in Eq. (80) for the region of bT . 1.5 GeV−1.
Thus, for the quartic terms in Eq. (80) to be small at
bT ∼ bmax we must have

CFαs(µb∗)

πg0(bmax)
. 1 , (82)

or,

g0(bmax = 1.5 GeV−1) & CFαs(C1/1.5)

π
≈ 0.3 . (83)

Therefore, for the sake of illustration, we will use
g0(bmax = 1.5 GeV−1) = 0.3. In the future, this pa-
rameter should be extracted from actual fits.

We have chosen to plot K̃(bT;Q) in Fig. 6(a) at the
relatively low scale of Q = 2.0 GeV. The result of us-
ing bmax = 1.5 GeV−1 is shown as the solid blue curve
while the result of switching to bmax = 0.5 GeV−1 us-
ing Eq. (81) is shown as the red dot-dashed curve.
For comparison, Fig. 6(a) also shows the calculation of

K̃(b∗;Q = 2 GeV) in the LO RG improved approxima-
tion, but with no gK(bT; bmax) term at all (thin blue dot-
ted and red dashed curves for bmax = 1.5 GeV−1 and
bmax = 0.5 GeV−1 respectively). Finally, we have shown
the calculation with the KN (bmax = 1.5 GeV−1) and
BLNY (bmax = 0.5 GeV−1) parametrizations (thick black
dotted and dashed curves), which use the quadratic form
for gK(bT; bmax) from Eqs. (39,42). Fig. 6(a) illustrates
how the parametrization from Eq. (79) undergoes a com-
paratively small variation with bmax, relative to methods
that use a quadratic gK(bT; bmax) or no gK(bT; bmax) at
all.

Most of the residual variation in the parametrization
from Eq. (79) is confined to the intermediate region be-
tween about bT ∼ 1.0 GeV−1 and bT ∼ 3.0 GeV−1

where one expects sensitivity to the precise details of the
physics involved in the transition between a perturba-
tive and a purely non-perturbative description of the bT-
dependence. At both very large and very small bT there
is no sensitivity to bmax, as imposed by our construction.

The true K̃(b∗;µ) is independent of bmax everywhere,
so the gap between, for example, the blue and red thick
curves in Fig. 6(a) at around bT ∼ 2.0 GeV−1 is symp-
tomatic of the limitations of the simplistic parametriza-
tion of Eq. (79). Our present aim is simply to design a

simple functional form that greatly reduces the bmax de-
pendence. It is suggestive of improvements that can be
made, by including higher order calculations and greater
knowledge of the non-perturbative effects, that reduce
the dependence even further.

In Fig. 6(b), we have again plotted the K̃(bT;Q) ob-
tained using Eq. (79) and Eq. (81), for bmax = 1.5 GeV−1

and bmax = 0.5 GeV−1, but now we show the result of
using Q = 2, 10, and 100 GeV. The variation in Q results
only in a vertical shift of K̃(bT;Q). This is an exact
property of the CS kernel, and the vertical shift needs
to be accounted for when addressing the evolution of the
normalization of the cross section.

As explained in Sect. IV, the physical consequences of
K̃(bT;Q) for the evolution of the shape of transverse dis-
tributions are conveniently illustrated through the mas-
ter function A(bT) defined in Eq. (30). Therefore, in
Fig. 7(a) we have plotted the versions of the function
A(bT) that correspond to the curves in Fig. 6(a).

In principle, like K̃(bT;Q), A(bT) should also be ex-
actly independent of bmax. The problem of the instabil-
ity of the quadratic parametrization for gK(bT; bmax) is
made clear in Fig. 7(a) in the large bT region. There, we
see dramatic differences between the results of the two
standard parameterizations, with different bmax. These
differences result in large changes in the evolution with Q
of the shape of the integrand function W̃ (bT). The vari-
ation in A(bT) with bmax obtained with the parametriza-
tion in Eq. (79) is noticeable but much smaller, and it
approaches zero at very large bT.

Note that the variation of bmax in Fig. 7(a) corresponds
to a rather large variation in the lower cutoff on the hard
scale: 0.75 GeV . C1/bmax . 2.25 GeV. For the smallest
values of bmax, the expansion of the perturbative expres-
sion for (−K̃(bT, µ) + K̃(b∗, µ)) is sensitive to quartic
powers of bT/bmax (and higher powers) even for quite
small values of bT.

If we instead restrict to a slightly narrower window
of 0.70 GeV . C1/bmax . 1.25 GeV, sensitivity to bmax

becomes essentially negligible, as illustrated by Fig. 7(b).

D. Evolution of the normalization

Many discussions of TMD evolution focus on the varia-
tion with Q of the shape of transverse momentum distri-
butions. Among the reasons are that this is a particularly
recognizable effect of evolution, while accurate measure-
ments of normalizations are more difficult. In addition,
the quadratic form commonly used for gK(bT) predicts
important shape changes even at low Q. However it is
also useful to ask how the normalization evolves.

Our proposal that K̃(bT) goes to a constant as bT →∞
changes this situation in an interesting way. The effect
of the non-perturbative part of K̃ is now to change the
normalization of the Fourier transformed cross section W̃
at large bT instead of changing its shape dramatically.
The variation of normalization with Q is approximately
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FIG. 6. (a) Comparison of different treatments of gK(bT; bmax) in calculation of K̃(bT;Q) for Q = 2.0 GeV. The solid
blue and dot-dashed red curves are the calculation using the gK(bT; bmax) parametrization from Eq. (79) with, respectively,
bmax = 1.5 GeV−1 and 0.5 GeV−1. The value at bT = ∞ is set by g(bmax=1.5 GeV−1) = 0.3. The thin dotted blue and dashed

red curves are the LO RG improved calculations of K̃(b∗;Q) using bmax = 1.5 GeV−1 and 0.5 GeV−1 and no gK(bT; bmax).
The black dotted and dashed curves are using the KN and BLNY fits for gK(bT; bmax) with bmax = 1.5 GeV−1 and 0.5 GeV−1

respectively.
(b) Calculation of K̃(bT;Q) using Eq. (79) with bmax = 1.5 GeV−1 and 0.5 GeV−1 and several values of Q: Q = 2, 10 and
100 GeV. Note the change in the meaning of the line types between graphs (a) and (b).
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FIG. 7. (a) The values of the function A(bT) that corresponds to K̃(bT) for the curves in Fig. 6(a).
(b) The function A(bT) for a selection of bmax values in the range 0.7 GeV . C1/bmax . 1.25 GeV. They use (79) and (80),
with our parameter values. For b . 2.5GeV−1, we have checked that A(bT) varies by less than 20% with the changes in the
cutoff scale corresponding to the range plot (b), so long as 0.2 . g0(1.5GeV−1) . 0.6.
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a power law as we now show. Measurement of this power
law would be particularly useful for determining the value
of K̃ at bT =∞.

It follows from Eq. (22) that the shape of the bT-
space integrand at large bT is determined by the func-
tions gj/H(bT), which can be regarded as parameteriz-
ing the intrinsic transverse momentum distribution of the
quarks.

By replacing K̃(bT) by its asymptotic value K̃(∞), we
now show that the effect of evolution is to give the nor-
malization an approximate power dependence on Q. This
can be seen from Eq. (25), where for large bT

∂ ln W̃ (bT, Q, xA, xB)

∂ lnQ2

' K̃(∞;µ0)+G(αs(µQ), Q/µQ)−
∫ µQ

µ0

dµ′

µ′
γK(αs(µ

′)).

(84)

The variation of the right-hand-side with lnQ is an order-
αs(Q) effect. If to a first approximation we neglect this
variation, we find a power law:

W̃ (bT, Q, xA, xB) ' W̃ (bT, Q0, xA, xB)

(
Q2

0

Q2

)a
, (85)

with

a = −K(∞;Q0)−G(αs(Q0), Q/Q0)

= gK(∞; bmax)− K̃(bmax;C1/bmax)

−G(αs(Q0), Q/Q0) +

∫ Q0

C1/bmax

dµ′

µ′
γK(αs(µ

′)) .

(86)

As Q increases, the right-hand side of (84) becomes more
negative, so the decrease of the normalization becomes
even stronger. At small-bT, the situation is totally differ-
ent, of course, as can be read off the plots in Fig. 6, for
example. The power-law only applies at large-bT.

At low values of Q, around a GeV or two at the lower
limit of TMD factorization’s applicability, the power law
just derived gives a corresponding decrease in the cross
section at small transverse momentum. The approximate
Bjorken scaling of the total cross section is restored by
a compensating change at larger transverse momentum,
which comes from relatively small bT.

VIII. SUMMARY AND CONCLUSION

There is a wide variety of sometimes apparently contra-
dictory methods and results in the theoretical treatment
and analysis of transverse-momentum-dependent cross
sections, especially as regards the nature and importance
of non-perturbative contributions from large transverse
distances. We presented a systematic analysis of the is-
sues. The basis of the logic is a TMD factorization theo-
rem, together with the associated evolution equations etc

for the TMD parton densities (and fragmentation func-
tions). Several different forms of solution were presented,
each emphasizing particular aspects of the physics. These
have mostly been seen in the literature before, but here
they are unified by the link to scale-dependent TMD den-
sities as the foundation of the reasoning.

The evolution of the shape of TMD functions is pri-
marily governed by a function K̃(bT, µ), which appears
under different names in some SCET-based formalisms.
Although this function is strongly universal, it is non-
trivial to gain a unified view of it.

From an experimental point of view, the range of bT
dominantly probed depends on the kinematic region of
the data, so that no single experiment can measure or test
K̃ for all bT. Moreover, K̃ is scale-dependent. Although
the scale-dependence is just a perturbatively calculable
upward shift as µ increases, independent of bT, it does
add an important complication in measuring K̃ and in
testing measured and predicted values.

We proposed a master function A(bT) as a measure of

the evolution of the shape of TMD functions. Unlike K̃,
it is independent of both scheme and scale (but is related

to K̃ by a derivative). We showed how the function A(bT)
can be used to diagnose disagreements between different
methods and approximations for TMD cross sections. We
suggest that the results of calculations and fits should
include a presentation of the resulting values of A(bT),
and one aim should be to find the values of A(bT), in

addition to K̃(bT;Q), for all bT, as an important property
of QCD.

A further complication concerns the predictability of
K̃. At low bT, perturbative calculations, supplemented
by RG improvement or by explicit resummation, are
accurate. As bT is increased, these predictions gradu-
ally become less accurate, and at large enough bT (be-

yond about 2 or 3 GeV−1), K̃ becomes essentially non-
perturbative. We pointed out that the use of resumma-
tion instead of RG improvement does not at all change
this situation; the accuracy of either kind of pertur-
batively based calculation is governed by the value of
αs(1/bT).

Sensitivity to large bT in A(bT), for its part, opens
new avenues of opportunity for probing non-perturbative
properties of QCD. The relevant objects are the vac-
uum expectation values of Wilson loops, which are basic
non-perturbative subjects of interest in, for example, lat-
tice QCD methods and have already attracted interest in
TMD studies [47–49].

When Q is increased, the dominant range of bT needed
to calculate the cross section shifts to ever smaller values.
Thus even dramatic differences in the form of K̃ at large
bT typically have little effect on TMD cross sections at
large enough Q, because at large bT the bT integrand is
exponentiated to a small value. There is a stability to
the evolution towards larger Q. In contrast, backward
evolution in Q is unstable. It is found that evolution
with Q is in fact considerably less rapid at low Q than
is given by a backward evolution from standard fits to
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Drell-Yan data.
(Even at relatively large Q, however, some knowledge

of the large-bT behavior may be desirable if very high
degrees of precision are needed.)

From general principles about correlation functions at
large distances, we argued that K̃(bT, µ) should go to a
constant as bT → ∞. This contrasts with the widely
used quadratic parameterizations. We proposed a new
form for a one-parameter approximation for interpolat-
ing between the perturbative result for K̃ at small bT and
a constant at large bT. An important task is to fit the
constant from data that are sensitive to evolution with bT
in the range of 3 to 4 GeV−1 upwards. Our parameteri-
zation is intended to approximately agree with standard
DY fits in the region of bT to which they are sensitive,
while giving slower evolution of the shape of the cross sec-
tion at lower Q. It is also arranged to give automatically
weak sensitivity to CSS’s parameter bmax. Of course, our
parameterization can be supplemented by higher order
perturbative calculations where available, and by extra
parameterized functions for the non-perturbative part.
But the new parameterization is designed so that these
corrections should be relatively weak.

It is worth emphasizing that important and interesting
physics is encoded in both the large and small bT regions
of cross sections like Eq. (1). Depending on the specific
underlying motivation for applying TMD factorization,
different ranges of bT may be of greater or lesser interest,
and the relative importance of small and large bT con-
tributions depends on the size of Q. However, a good
TMD factorization formalism incorporates both types of
behavior and smoothly relates a diverse range of different

observables with different degrees of relative sensitivity
to large and small bT.

As a conclusion, we propose that one important aim
of theoretical and phenomenological work in QCD should
be to obtain accurate values of A(bT) and also of K̃(bT, µ)
over a wide range of bT. The results will have a similar
significance to the well-known global fits of collinear par-
ton densities and fragmentation functions, which provide
definitive values, and uncertainties, for these functions.20

We propose that K̃ goes to a constant at large bT instead
of being quadratic in bT.

One important benefit of presenting results directly
for A(bT) and K̃(bT, µ) should be a much better un-
derstanding of how the transition occurs from perturba-
tive behavior at small bT to non-perturbative behavior at
large bT. This transition should be gradual rather than
very sudden. The strongly universal nature of any non-
perturbative contribution to K̃, mentioned earlier, gives
broad implications for these results.
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