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We present a simple approach to combine NNLO QCD calculations and parton showers, based
on the UNLOPS technique. We apply the method to the computation of Drell-Yan lepton-pair
production at the Large Hadron Collider. We comment on possible improvements and intrinsic
uncertainties.

I. INTRODUCTION

The combination of fully exclusive next-to-leading order (NLO) calculations in perturbative Quantum Chromody-
namics with resummed predictions from parton showers has been in the focus of interest for the past decade. A wide
range of matching [1–5] and merging [6–13] methods has been developed and implemented in Monte-Carlo event gener-
ators [14]. By now they are standard tools for simulating final states at hadron colliders such as the LHC. However, so
far only three proposals were made that extend these methods to next-to-next-to-leading order (NNLO) in the strong
coupling expansion [8, 15, 16], and only two of them were implemented. They allow NNLO accurate particle-level
simulations of two-jet production at LEP [8] and Higgs production via gluon fusion at hadron colliders [15]. Event
generators for Drell-Yan lepton pair production at NNLO QCD matched to parton showers are not available. Due to
the high relevance of this process as a standard candle for the LHC and possible future hadron colliders, we address
the problem in this publication, and we also provide a simple formulation for matching at NNLO, improving upon
the UNLOPS method suggested in [10]. We use the Monte-Carlo event generator SHERPA [17], including a parton
shower [18] based on Catani-Seymour dipole subtraction [19], combined with the BLACKHAT library [20] for one-loop
matrix elements. This implementation is publicly available.

Our matching scheme, which we call UN2LOPS, preserves both the logarithmic accuracy of the parton shower and
the fixed-order accuracy of the NNLO calculation.1 It is a generic method to augment NNLO calculations with
the primitive resummation encoded in an existing parton shower. At NLO, a considerable difference exists between
matching methods, pertaining to the treatment of the finite remainder of higher-order corrections. This difference
must be reduced at NNLO. The excellent convergence of the perturbative series in the Drell-Yan process further
reduces potential differences. We therefore expect that UN2LOPS will serve as a useful benchmark for future, more
sophisticated NNLO matching schemes. The parton shower employed in our calculations already includes full color and
spin information in the first emission term and the associated Sudakov factor [4]. It is therefore improved compared
to the standard large-Nc approximation with spin averaging.

The outline of this paper is as follows: Section II gives an introduction to the problem of matching at NLO
and outlines our simplified approach. Section III extends the simplified UNLOPS method to NNLO, which we dub
UN2LOPS. Section IV contains first results from applying the method to Drell-Yan lepton pair production at the
LHC. We also present some benchmark results for a high-energy LHC and a possible future proton-proton collider at
100 TeV center-of-mass energy. Section V contains some concluding remarks.

II. A SIMPLE EXAMPLE

To set the stage for the discussion of our method at NNLO we reformulate in this section the UNLOPS method and
simplify its event generation algorithm. The extension to NNLO is then nearly straightforward. It will be presented
in Sec. III.

The leading-order expression for an observable O is written as

〈O〉(LO) =

∫
dΦ0 B0(Φ0)O(Φ0) , (1)

where Φ0 is the differential Born phase-space element, and B0(Φ0) is the Born differential cross section, including
symmetry and flux factors as well as parton luminosities. We now add and subtract Sudakov-reweighted real-emission

1 For the purpose of this publication, we assume that the parton shower is NLL accurate, by including all effects described in [21]. Color
coherence is implemented through dipole splitting operators rather than angular ordering. By maintaining the parton shower accuracy
in the matching we mean preserving the logarithmic structure up to NLL in the Sudakov exponent as well as local four-momentum
conservation as given by the shower kinematics.
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tree-level cross sections, denoted by B1 [7].[∫
dΦ0 B0(Φ0)O(Φ0)−

∫
tc

dΦ1 Π0(t1, µ
2
Q) B1(Φ1)O(Φ0)

]
+

∫
tc

dΦ1 Π0(t1, µ
2
Q) B1(Φ1)O(Φ1) . (2)

To the accuracy of the parton shower, this method is equivalent to the modified subtraction in MC@NLO [1] and
POWHEG [2], as discussed at the end of this section. In the second term in the square bracket, the observable O is
taken at the reduced phase space point, determined by clustering the one-parton state Φ1 to Φ0 using an algorithm
that corresponds to inverting the parton shower [22]. In other words, both terms in the square bracket enter the
prediction for O with Born kinematics, while the last term enters with real-emission kinematics. This method is
called a modified NLO subtraction scheme [1].

We have defined the parton-shower no-branching probability for an n-parton state,

Πn(t, t′; Φn) = exp

{
−
∫ t′

t

dΦ̂1 Kn(Φn, Φ̂1)

}
. (3)

where Kn is the sum of differential branching probabilities, including luminosity and flux factors for initial-state
evolution as appropriate [23]. In the case of DGLAP evolution, we have [14, 24]

Kn(Φn, Φ̂1) =

nin∑
i=1

∑
b=q,g

αs
2π

Paib(z)
fb(xi/z, t)

z fai(xi, t)
Θ(z − xi) +

nin+nout∑
i=nin+1

∑
b=q,g

αs
2π

Paib(z) (4)

Note that Kn depends on Φn through the Bjørken variables xi. The multi-particle phase space elements factorize as
dΦn+1 = dΦndΦ̂1, with dΦ̂1 the phase-space element for the emission of a single additional parton. We can write

dΦ̂1 = dtdz dφ/(2π)J(t, z, φ), where t is the evolution variable of the parton shower, z is the splitting variable, and
J is a Jacobian factor. tc denotes the infrared cutoff, and µ2

Q is the resummation scale. Note that the parton shower
employed here covers the full emission phase space, except for the region t < tc. For ease of notation we have defined
t1 = t(Φ1).

Equation (2) describes the one-parton state in the simplest possible matching approach. We can use the unitarity
constraint on the parton-shower,

Π0(tc, µ
2
Q) = 1−

∫
tc

dΦ1 K0(Φ̂1) Π0(t1, µ
2
Q) , (5)

to rearrange the terms depending on O(Φ0):∫
dΦ0 B0(Φ0)O(Φ0)−

∫
tc

dΦ1 Π0(t1, µ
2
Q) B1(Φ1)O(Φ0)

=

∫
dΦ0 B0(Φ0)Π0(tc, µ

2
Q)O(Φ0)−

∫
tc

dΦ1 Π0(t1, µ
2
Q)
[
B1(Φ1)− B0(Φ0) K0(Φ0, Φ̂1)

]
O(Φ0) .

(6)

The term in square brackets is not logarithmically enhanced, as B1 → B0K0 in the infrared limit. Therefore, Eq. (2)
reproduces the parton-shower resummation. At the same time, using B1 instead of B0K0 does not affect the differential
cross section as a function of the Born kinematics, Φ0.

Additional emissions can be generated by replacing O(Φ1) with the parton-shower generating functional F1(t1, O),
where

Fn(t, O) = Πn(tc, t)O(Φn) +

∫ t

tc

dΦ̂1 Kn(Φ̂1) Πn(t̂, t)Fn+1(t̂, O) , where t̂ = t(Φ̂1) . (7)

We now replace the Born differential cross section in Eq. (2) by the differential NLO cross section

B̄(Φ0) = B0(Φ0) + Ṽ0(Φ0) + I0(Φ0) +

∫
dΦ̂1

[
B1(Φ0, Φ̂1)− S0(Φ0, Φ̂1)

]
. (8)

Ṽ0 denotes the UV finite part of the virtual corrections, including collinear mass factorization counterterms, I0 are
integrated NLO subtraction terms [19], and S0 the corresponding real subtraction terms. The matched result is given
by {∫

dΦ0 B̄tc0 (Φ0) +

∫
tc

dΦ1

[
1−Π0(t1, µ

2
Q)
]
B1(Φ1)

}
O(Φ0) +

∫
tc

dΦ1 Π0(t1, µ
2
Q) B1(Φ1)F1(t1, O) , (9)
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where we have defined the vetoed cross section

B̄tc0 (Φ0) = B̄0(Φ0)−
∫
tc

dΦ̂1 B1(Φ0, Φ̂1) . (10)

Equation (9) already contains the essence of our method. The three terms can be generated in a Monte Carlo
simulation as follows: B̄tc0 is a fixed-order contribution, which does not undergo parton showering. B1 is assigned a
parton shower “history” using the clustering procedure first proposed in [22]. The zero-parton state defined in this
clustering undergoes truncated parton shower evolution. By definition, the survival probability is Π0(t1, µ

2
Q), while

the corresponding branching probability is 1 − Π0(t1, µ
2
Q). Thus, if an emission is generated, the event is kept in

the selected zero-parton state, as indicated by the observable dependence O(Φ0) in the first term of Eq. (9). If no
emission is generated, the event undergoes parton showering, starting from the one-parton state. This procedure is
an improvement of UNLOPS and ensures that no counter-events with negative weights must be generated during the
matching.

Up to now we have ignored renormalization and factorization scale dependence in B1. While terms generated by
the running of the strong coupling are formally of higher order and therefore do not modify the fixed-order accuracy of
the matched result, they are important to restore the logarithmic accuracy of the parton shower. The same reasoning
applies to scaling violations in the PDFs. Scales can be adjusted to their parton shower values by reweighting,
eventually leading to the improved UNLOPS matching formula

〈O〉(UNLOPS) =

{∫
dΦ0 B̄tc0 (Φ0) +

∫
tc

dΦ1

[
1−Π0(t1, µ

2
Q)w1(Φ1)

]
B1(Φ1)

}
O(Φ0)

+

∫
tc

dΦ1 Π0(t1, µ
2
Q)w1(Φ1) B1(Φ1)F1(t1, O) .

(11)

In the case of Drell-Yan lepton pair production we need to match a single initial-state parton splitting a → {a′, j}.
The weight w1(Φ1) is then defined as [10]

w1(Φ1) =
αs(b t1)

αs(µ2
R)

fa(xa, t1)

fa(xa, µ2
F )

fa′(xa′ , µ
2
F )

fa′(xa′ , t1)
where β0 ln

1

b
=

(
67

18
− π2

6

)
CA −

10

9
TR nf . (12)

fa(xa) and fa′(xa′) denote the PDFs associated with the external and intermediate parton, respectively. The scale
factor b includes effects of the 2-loop cusp anomalous dimension in the parton shower [21].

The event generation procedure is modified as follows: Weights of 1-jet events are multiplied by 1 + 2|w1 − 1|. In a
fraction 1/(2 + 1/|w1−1|), the event is weighted by sgn(w1−1), and the point is discarded if an emission is generated
in the truncated parton shower. If the event is kept, it is reduced to Born kinematics and the sign of its weight
inverted with probability 1/2. This procedure sums – in a Monte-Carlo fashion – over two event types, which either
contain factors of Π0 or 1 − Π0, or else the terms ±Π0(w1 − 1). This can lead again to the generation of negative
weights, however their fraction is much reduced compared to the original UNLOPS scheme.

Equation (11) still holds if the phase-space separation is not achieved in terms of the parton-shower evolution
parameter, i.e. if the integration boundaries for B̄tc0 and

∫
tc

dΦ1 B1 are not given by tc. In this case, one can split

the real-emission contribution into a pure fixed-order part and a contribution where parton-shower resummation is
applied. In the following, we therefore define Πn(t, t′) = Πn(tc, t

′) for all t < tc.
We conclude this section with a comparison to the POWHEG method [2]. Assuming that the parton-shower evolution

kernels for the first emission can be replaced by K0 → K̄0 = w1 B1/B0, we obtain from Eq. (11)

〈O〉(UNLOPS) →
∫

dΦ0 B0(Φ0) F̄0(µ2
Q, O) +

∫
dΦ0

[
B̄0(Φ0)− B0(Φ0)

]
O(Φ0) . (13)

The main difference compared to the POWHEG result,

〈O〉(POWHEG) =

∫
dΦ0 B̄0(Φ0) F̄0(µ2

Q, O) , (14)

is that the finite remainder of higher-order corrections (after UV renormalization and IR subtraction), B̄0 −B0, does
not undergo parton showering in UNLOPS, while it does in POWHEG. A comparison with MC@NLO leads to the
same conclusion. While it is not obvious from the matching conditions at NLO, whether UNLOPS or POWHEG is the
more natural prescription, the NNLO matching conditions require that UNLOPS at NNLO behaves identical to both
MC@NLO and POWHEG in this regard, i.e. that the finite remainder multiplies, F0(µ2

Q, O), rather than O(Φ0). We
will return to this question at the end of section III.
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III. UN2LOPS WITH PHASE-SPACE SLICING

We first describe our calculation of the NNLO vetoed cross section, corresponding to Eq. (10). It is performed in
the qT cutoff method, based on the ideas of qT subtraction [25]. All soft and collinear singularities of NNLO origin

cancel within the zero-qT bin, leading to a finite differential cross section, ¯̄B
qT,cut

0 . The remainder is computed as an
NLO result for the original Born process plus one additional jet.

The NNLO cross section with a small cut on observables like qT of the gauge boson has a simple factorization
formula, which can be described up to power corrections in the cutoff, qT,cut, by effective field theory. This form
is generally more compact than the full NNLO result. The cutoff method has been used previously to compute top
decay fully exclusively at NNLO [26]. We adopt the framework developed in [27] to obtain the vetoed cross section.
All components needed for two loop results for the Drell-Yan process have recently been computed [28], and verified
against the hard collinear coefficients [29] used by the original qT subtraction method.

The contribution at qT > qT,cut is computed as a standard NLO QCD result, using Catani-Seymour dipole sub-
traction to regularize infrared divergences [19]. This type of calculation has been fully automated [30]. We use
SHERPA [17, 31] for tree-level like contributions and BLACKHAT [20] for virtual corrections. We match this compu-
tation to the parton shower using a variant of the MC@NLO method, which is described in [4]. The corresponding
expression for the qT > qT,cut cross section depending on an infrared-safe observable O is

〈O〉(NLO)
>qT,cut

=

∫
qT,cut

dΦ1B̃1(Φ1) F̃1(t1, O) +

∫
qT,cut

dΦ2H1(Φ2)F2(t2, O) , (15)

where the one-jet differential NLO cross section and hard remainder are defined as

B̃1(Φ1) = B1(Φ1) + Ṽ1(Φ1) + I1(Φ1)−
∫
tc

dΦ̂1 S1(Φ1, Φ̂1) Θ(t2(Φ̂1)− t1(Φ1)) ,

H1(Φ2) = B2(Φ2)− S1(Φ2) Θ(t1(Φ2)− t2(Φ2)) .

(16)

The generating functional of the MC@NLO is

F̃1(t, O) = Π̃1(tc, t1)O(Φ1) +

∫
tc

dΦ̂1
S1(Φ1, Φ̂1)

B1(Φ1)
Π̃1(t̂, t1)F2(t̂, O) , (17)

with the no-branching probability given by parton-shower unitarity:

Π̃1(t, t′,Φn) = exp

{
−
∫ t′

t

dΦ̂1
S1(Φ1, Φ̂1)

B1(Φ1)

}
. (18)

Note that we choose qT,cut ≤ 1 GeV, which is below the cutoff of the initial-state parton shower.
Equation (15) produces the correct dependence on the observable O at next-to-leading QCD for qT > qT,cut. It can

thus be used to complement the exclusive NNLO calculation in the zero-qT bin. However, the two calculations cannot
be naively added as in Eq. (11), since this would spoil the O(α2

s) accuracy of the full result. This problem was also
addressed by NLO merging methods [8–11], and by the MINLO scale setting procedure [32]. The O(αs) contribution to
the fixed-order expansion of the parton shower must first be subtracted, which can be achieved efficiently by omitting
the first emission in a truncated shower [9], or by explicit subtraction [8, 10]. Correspondingly, any O(αs) contribution
must be subtracted from the corrective weight, Eq. (12). The full formula describing our combination method can be
written as

〈O〉(UN2LOPS) =

∫
dΦ0

¯̄B
qT,cut

0 (Φ0)O(Φ0)

+

∫
qT,cut

dΦ1

[
1−Π0(t1, µ

2
Q)
(
w1(Φ1) + w

(1)
1 (Φ1) + Π

(1)
0 (t1, µ

2
Q)
)]

B1(Φ1)O(Φ0)

+

∫
qT,cut

dΦ1 Π0(t1, µ
2
Q)
(
w1(Φ1) + w

(1)
1 (Φ1) + Π

(1)
0 (t1, µ

2
Q)
)

B1(Φ1) F̄1(t1, O)

+

∫
qT,cut

dΦ1

[
1−Π0(t1, µ

2
Q)
]

B̃R
1 (Φ1)O(Φ0) +

∫
qT,cut

dΦ1Π0(t1, µ
2
Q) B̃R

1 (Φ1) F̄1(t1, O)

+

∫
qT,cut

dΦ2

[
1−Π0(t1, µ

2
Q)
]

HR
1 (Φ2)O(Φ0) +

∫
qT,cut

dΦ2 Π0(t1, µ
2
Q) HR

1 (Φ2)F2(t2, O)

+

∫
qT,cut

dΦ2 HE
1 (Φ2)F2(t2, O)

(19)
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We have defined B̃R = B̃− B and the regular and exceptional part of the hard remainder

HR
1 (Φ2) = H1(Φ2)Θ (t1 − t2) Θ (t2 − tc) , HE

1 (Φ2) = H1(Φ2)−HR
1 (Φ2) . (20)

The exceptional contributions HE
1 contain phase space regions for which no ordered parton shower history can be

identified, as well as two-parton states that do not allow an interpretation as having evolved from a zero- or one-parton
state via QCD-type parton splittings. Exceptional contributions do not undergo the truncated parton showering used
to produce Π0(t1, µ

2
Q), as they do not generate logarithmic corrections at parton shower accuracy. Ambiguities in the

matched result due to exceptional configurations will be important for matching at higher logarithmic accuracy, and
can be resolved as soon as the parton shower is amended with the necessary sub-leading logarithmic corrections and
electroweak splittings. This will allow to treat such states in the same manner as the regular configurations.

The subtraction terms for the no-branching probability of the parton shower, and for the weight w1, are given by

Π
(1)
0 (t, t′) =

∫ t′

t

dΦ̂1
αs(µ

2
R)

αs(b t̂)
K1(Φ1, Φ̂1)

w
(1)
1 (Φ1) =

αs(µ
2
R)

2π

[
β0 log

b t1
µ2
R

− log
t1
µ2
F

∑
c

(∫ 1

x

dz

z
Pca(z)

fc(x/z, µ
2
F )

fa(x, µ2
F )
−
∫ 1

x′

dz

z
Pca′(z)

fc(x
′/z, µ2

F )

fa′(x′, µ2
F )

)]
.

(21)

They are generated by the Monte-Carlo procedure outlined below Eq. (12). Note that 1−Π0

(
w1 +w

(1)
1 + Π

(1)
0

)
is of

order α2
s. Therefore, it is easy to see that the method does not spoil the accuracy of the fixed-order calculation. To

investigate if the logarithmic accuracy of the parton shower resummation is maintained, we take the collinear limit,
t1 → 0. In this limit, HE

1 only generates logarithms that are beyond the parton shower approximation, and it can
thus be ignored. Consequently, for qT > qT,cut, we are left with∫

qT,cut

dΦ1 Π0(t1, µ
2
Q)w1(Φ1) B1(Φ1) F̄1(t1, O) +

∫
qT,cut

dΦ1 Π0(t1, µ
2
Q) R1(Φ1, O) (22)

where

R1(Φ1, O) =

(
B1(Φ1)

(
w

(1)
1 (Φ1) + Π

(1)
0 (t1, µ

2
Q)
)

+ B̃R
1 (Φ1)

)
F̄1(t1, O) +

∫
dΦ̂1 HR

1 (Φ1, Φ̂1)F2(t2, O) (23)

The first term in Eq. (22) is, to the required accuracy, equivalent to the parton shower result. Thus it remains to
be shown that R1 contains only subleading terms. In the soft and collinear limit, HR

1 does not contribute at the

required accuracy [1]. Quark propagators in B̃R
1 can to first order be approximated as (1 − Π

(1)
0 (t, µ2

Q) − w
(1)
1 +

αs/(2π)β0 log(b t/µ2
R))/p/ [33], where p is the quark momentum. Coupling renormalization leads to corrections of the

form αs/(2π)β0 log(t/µ2
R), where t is the relative transverse momentum in the gluon emission [34]. The two-loop

cusp anomalous dimension, simulated by means of the scale factor b in Eq. (12), is naturally present in B̃R
1 . The

subtraction terms, Eq. (21), thus cancel all universal NLO corrections in B̃R
1 , which have already been included in

the parton shower. The remainder is beyond the required accuracy. Using the unitarity condition for parton shower
evolution, this argument extends to the region qT < qT,cut. Note that because of the unitarity condition, also no
spurious logarithms are generated in the inclusive cross section, and the NNLO accuracy is maintained exactly.

We now return to the difference between UNLOPS and POWHEG/MC@NLO discussed in Sec. II. When performing
a one-jet matched NLO calculation in the UNLOPS implementation of [10], the non-universal terms in the first part
of Eq. (23) do not undergo parton showering above the merging scale. The UN2LOPS prescription instead introduces
parton shower corrections to these terms throughout the real emission phase space, and it includes a Sudakov form
factor for a truncated shower to resum effects of unresolved emissions above the scale of the hard jet. This new
matching condition is justified if we view the parton shower as an all-order calculation dressing a hard input state,
which has a fixed-order expansion by itself, with the effects of soft and collinear radiation2. It can also be understood
in the following way: In the collinear limit, the factorization of one-loop matrix elements leads to virtual corrections
of the form V0K0 + B0K(1)

0 , where K(1)

0 are the one-loop splitting kernels. When including the respective integrated
subtraction terms and no-branching probabilities of the truncated parton shower, the remainder of the first term
turns into (B̄0−B0)K0 Π0, and can be interpreted as a parton shower combined with the finite remainder of the NLO
corrections in the zero-qT bin. This eliminates the difference between Eqs. (14) and (13).

2 A similar interpretation holds for factorization formulae in analytic resummation, for which a fixed-order hard function is convoluted
with all-order soft and collinear functions, see for example [27] and [35].



6

Ecms 7 TeV 14 TeV 33 TeV 100 TeV

VRAP 973.99(9)+4.70
−1.84 pb 2079.0(3) +14.7

−6.9 pb 4909.7(8) +45.1
−27.2 pb 13346(3) +129

−111 pb

SHERPA 973.7(3) +4.78
−2.21 pb 2078.2(10)+15.0

−8.0 pb 4905.9(28)+45.1
−27.9 pb 13340(14)+152

−110 pb

TABLE I. Total cross sections for 60 GeV ≤ mll ≤ 120 GeV at varying center-of-mass energy for a pp-collider. Uncertainties
from scale variations are given as sub-/superscripts. Statistical uncertainties from Monte-Carlo integration are quoted in
parentheses.

Following this argument, one may conclude that the finite O(α2
s) corrections contained in zero-qT configurations of

Eq. (19) should also be “spread” across the one-parton (and two-parton) phase space by the parton shower, provided
that the resulting change of the radiation pattern is at most O(α3

s). The difference between including and not
including such parton shower corrections is within the intrinsic uncertainty of NNLO matching schemes. We see no
strong reason for implementing them in the simulation of the Drell-Yan process, due to the excellent convergence of
the perturbative series. The assessment may differ in other reactions, like Higgs-boson production via gluon fusion,
where higher-order corrections are large.

IV. RESULTS

This section presents results using an implementation of the UN2LOPS algorithm in the event generator SHERPA [17],
We use a parton shower [18] based on Catani-Seymour dipole subtraction [19]. NLO virtual corrections for the one-jet
process are provided by the BLACKHAT library [20]. Dipole subtraction is performed using Amegic [31, 36]. For
comparison to experimental data we use Rivet [37]. We use the MSTW 2008 PDF set [38] and the corresponding
definition of the running coupling. We work in the five flavor scheme. Electroweak parameters are given in the Gµ
scheme as mZ = 91.1876 GeV, ΓZ = 2.4952 GeV, mW = 80.385 GeV, ΓW = 2.085 GeV and GF = 1.1663787 ·
10−5 GeV−2.

In order to cross-check our implementation we first compare the total cross section in the mass range 60 GeV ≤
mll ≤ 120 GeV to results obtained from VRAP [39]. Table I shows that the predictions agree within the permille-
level statistical uncertainty of the Monte-Carlo integration. We also compared the central values to results from
DYNNLO [25] and found full agreement. Additionally, we have checked that our predictions are identical when
varying qT,cut between 0.1 GeV and 1 GeV. The default value is qT,cut =1 GeV. Figure 1 compares differential cross
sections from FEWZ [40] and SHERPA for the rapidity and invariant mass spectra of the Drell-Yan lepton pair. We
computed the NLO reference results using NNLO PDFs. This is indicated in the figure by the label NLO’. It is
interesting to observe the excellent agreement with the genuine NNLO predictions.

Figure 2 shows predictions from the matched calculation. We now include a simulation of higher-order QED
corrections [41]. It is interesting to compare the matched prediction to the fixed-order NNLO result for the transverse
momentum spectrum of the electron. In the region pT,e < 45 GeV the result is generically NNLO correct, while for
pT,e > 45 GeV, it is effectively only NLO correct. Correspondingly, the uncertainty band is larger at high transverse
momentum. The fixed-order prediction lies well within the NNLO scale uncertainty of the matched result, except for
the transition region pT,e&45 GeV, where real emission corrections play the dominant role.

Figure 3 compares the transverse momentum spectrum of the Drell-Yan lepton pair to data from the CMS [42] and
ATLAS collaboration [43]. These measurements are insensitive to generic NNLO corrections, which are generated
only in the zero-qT bin in our approach. However, they probe the form of the Sudakov form factor as simulated by
the matched calculation, and they are therefore useful to judge whether the radiation pattern of the parton shower
is preserved. The results indicate that higher-logarithmic corrections originating in B̃R

1 and H1 are numerically small
and do not spoil our prediction. Note that the parton-shower parameters in the matched calculation have not been
tuned to fit either of these distributions. The large perturbative uncertainties in the first bin of both distributions
do not lead to large uncertainties in the total cross section, but they indicate that higher-logarithmic resummation
might be needed in order to improve the low-pT,Z region.

V. OUTLOOK

We have presented a simple method for matching NNLO calculations in perturbative QCD to existing parton
showers, based on the UNLOPS technique. In contrast to the original implementation of UNLOPS, the event generation
algorithm does not lead to large cancellations, and convergence of the Monte Carlo integration is much improved.
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uncertainties obtained by varying µR/F/Q (µQ) in the range mll/2 ≤ µ ≤ 2mll.

Remaining uncertainties of the method are related to the treatment of finite remainders of the virtual corrections after
UV renormalization and IR subtraction, and to the treatment of exceptional configurations in the hard remainder of
double real corrections. Our method can be applied to arbitrary processes, and it can be systematically improved by
using parton showers with higher logarithmic accuracy, which is currently an area of active research. The combination
with higher-multiplicity NLO matched simulations is straightforward and can be achieved in both the UNLOPS [10]
and MEPS@NLO [9] schemes.

We also provide an independent implementation of a fully differential NNLO calculation of Drell-Yan lepton pair
production, using the qT -cutoff method. Both the parton-level event generator and the shower-matched calculation
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are made publicly available in the framework of the SHERPA event generator. This also allows the production of
LHEF files [44] or NTuple files [45] containing NNLO event information at parton level.
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