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Abstract
We study the transverse momentum dependent (TMD) parton distributions in the newly pro-

posed quasi-parton distribution function framework in Euclidean space. In this framework, the

parton distributions can be extracted from lattice observables in a systematic expansion of 1/Pz

where Pz is the hadron momentum. A soft factor subtraction is found to be essential to make

the TMDs calculable on lattice. We show that the quasi-TMDs with the associated soft factor

subtraction can be applied in hard QCD scattering processes such as Drell-Yan lepton pair pro-

duction in hadronic collisions. This allows future lattice calculations to provide information on the

non-perturbative inputs and energy evolutions for the TMDs. Extension to the generalized par-

ton distributions and quantum phase space Wigner distributions will lead to a complete nucleon

tomography on lattice.

1



1. Introduction. Transverse momentum dependent (TMD) parton distributions have
attracted great attentions in hadron physics research [1]. They provide a unique aspect of
the partonic structure of nucleon, by extending the conventional description of Feynman
parton distribution to the transverse dimension. Experimental investigations of the TMDs
in the last few years have stimulated great theoretical developments, such as the QCD
factorization, the energy (scale) evolution, and the universality of the TMDs [2–6]. These
developments have laid solid foundation in phenomenological applications in hard QCD
processes and hence allow us to extract the TMDs from the experiments.

In addition to the experimental accesses, the lattice QCD shall also be able to compute the
TMDs. Early attempts to formulate the TMDs on lattice have been performed in Refs. [7]
following the definitions of Collins-Soper [4]. These results have generated great interests in
the hadron physics community. In order to obtain the TMDs applicable in phenomenology,
we have to include the soft factor subtraction (see discussions below), which could not be
included in the set-up of Refs. [7]. In this paper, we investigate the TMD formalism based
on the recent proposal [8] to calculate the parton distributions (PDFs) in Euclidean space
directly, in the large momentum effective theory approach (LaMET) [9]. This effective
theory allows parton physics to be calculated in lattice QCD at large hadron momentum
Pz in a systematic approximation. In particular, the PDF observables are evaluated as the
matrix elements of the space-like correlators between the nucleon states which has a finite
momentum Pz. Final results are obtained by a systematic expansion of 1/Pz. The PDFs
extracted in this way are also referred as qusi-PDFs [8].

To compute the parton distributions on lattice is conceptually important in the applica-
tions of QCD in hadron physics [7–12]. Progresses have been made concerning the technique
issues associated with the applications of the quasi-PDFs, mainly on the integrated parton
distributions [10–12]. In the current paper, we will apply the idea of Ref. [8] to the TMD
case and, in particular, build the QCD factorization description of the hard scattering pro-
cess such as Drell-Yan lepton pair production in pp collisions. The goal is to identify the
TMD operators which can be computed on lattice and applied in QCD hard process in a
consistent and rigorous fashion. A key point of the effective theory approach is that the
theoretical uncertainties are under control [8].

The lattice calculations can also help the phenomenological applications of the TMDs.
In particular, if we want to make predictions for future experiments, not only the TMDs at
lower scale but also the relevant energy evolutions become important [13, 14]. In previous
phenomenological studies, various assumptions are made [14–18] and they differ from each
other. If we can compute the TMDs on lattice, it will provide important guidelines for the
phenomenological studies.

We will carry out an explicit one-loop perturbative calculation for the TMDs, and demon-
strate the QCD factorization in terms of the quasi-TMDs for the Drell-Yan process. By doing
so, we will find that a soft factor subtraction in the TMD definition is essential to fulfill the
factorization argument. The soft factor is constructed in such a way that it can be computed
on lattice. This provides a solid foundation for future lattice applications for the TMDs and
many other distributions, such as the generalized parton distributions and quantum phase
space Wigner distributions.

Soft factor is an important aspect of the TMD factorization for hard QCD processes,
which is also related to the regulation for the light-cone singularity in the TMD parton dis-
tributions. In the literature, there have been several proposals, and each of them introduces
a way to construct the soft factor in the final factorization formula [2–5]. Following the

2



quasi-PDF framework, we will derive a unique soft factor subtraction. Most importantly,
both TMDs and the soft factor can be computed on lattice.

The rest of this paper is organized as follows. In Sec.2, we introduce the definition of
the TMDs in Euclidean space, and will show the soft factor subtraction is necessary. In
Sec. 3, we apply the TMDs to the Drell-Yan process and show that the QCD factorization
at one-loop order can be achieved, where the soft factor plays an essential role. We briefly
discuss the Collins-Soper evolution of the TMDs in Sec. 4 and conclude our paper in Sec.
5.

2. TMD Definition and Soft Factor Subtraction. For convenience, we consider the proton
moving in +ẑ direction with momentum,

P = Λp+
M2

2Λ
n , (1)

where Λ = P+ is a large momentum scale andM is the proton mass, and we have introduced
two light-like vectors p = (0−, 1+, 0⊥) = n̄ and n = (1−, 0+, 0⊥): p

2 = n2 = 0 and p · n = 1.
We further introduce a space-like vector nz =

1√
2
(n− p), such that n2

z = −1. Pz is related

to the projection of P along with nz, nz · P = −Pz. In the limit of Pz ≫ M or massless
case, we have Λ =

√
2Pz.

In applying the TMD parton distributions and the associated QCD factorization, we
keep the leading power contribution in the limit of Pz ≫ k⊥ where k⊥ is the transverse
momentum. We neglect all higher power corrections of k⊥/Pz. This power counting analysis
is consistent with the large momentum effective theory arguments to compute the parton
distribution on lattice [9]. In this framework, the TMD quark distribution is written as,

q(xz, k⊥) =
1

2

∫

d3z

(2π)3
eik·z〈PS|ψ(0)L†

nz(0,−∞)γ
zLnz(z,−∞)ψ(z)|PS〉 , (2)

where xz = kz/Pz. In the above definition, Lnz(y,−∞) = Pexp
{

−ig
∫ −∞
0

dλnz · A(λnz + y)
}

represents the gauge link along the ẑ direction 1. It has been known that the TMDs are
process-dependent, and we have chosen the gauge link path to −∞ which indicates that the
above definitions are for the Drell-Yan process. In the TMD factorization, the cross section
and the parton distributions are conveniently written in the b⊥-space, which is the Fourier

transformation respect to the transverse momentum: q(xz, b⊥) =
∫

d2k⊥
(2π)2

e−ik⊥·b⊥q(xz, k⊥).

The TMD quark distribution defined as Eq. (2) contains the soft gluon radiation, which
has to be subtracted in the final factorization formula. Similar to the idea proposed by
Collins in Ref. [2], we introduce the following subtraction,

qsub.(x, b⊥) = qunsub.(x, b⊥)

√

Snx,ny(b⊥)

Snx,nz(b⊥)Snz,ny(b⊥)
, (3)

where qunsub.(xz, b⊥) is the Fourier-transformed un-subtracted PDF in Eq. (2) and S is
defined as

S v̄,v(b⊥) = 〈0|L†
v̄(−∞,0)(b⊥)L

†
v(0,−∞)(b⊥)Lv(0,−∞)(0)Lv̄(−∞,0)(0)|0〉 , (4)

1 We focus our discussions in covariant gauge. In a singular gauge, such as the axial gauge nz · A = 0, we

have to include an extra gauge link in the spatial infinity [19].
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with Lv the gauge link to infinity along the direction v. In the above subtraction, we have
chosen two transverse Wilson lines: n2

x = n2
y = −1 and nx · nz = ny · nz = nx · ny = 0, to

construct the associated soft factor. From the factorization point of view, light-like vectors
for nx,y could be used as well. However, such soft factor can not be calculated on lattice.

An important consequence of subtracting the soft factor from the TMDs defined in Eq. (2)
is that the gauge link self-interaction diagrams (such as Figs. 1(c) and 2(c) shown in the
following section) are canceled out by the similar contribution from the soft factor of the
last term in Eq. (3). These diagrams, in general, can introduce a pinch singularity [5] in
the TMD calculations, and the subtraction is essential to fulfill the factorization for the
associated hard processes 2.

After the subtraction, the TMD quark distribution of Eq. (3) is well defined and calculable
on lattice. This kind of subtraction method in lattice QCD has been applied earlier in the
literature, see, for example, Ref. [20]. This technique will have profound implications in the
quasi-PDFs framework. In the following calculations, we will first focus on the applications
in the TMD factorization.

3. One-loop Calculations and Factorization in Drell-Yan Process. It is instructive to
have one-loop calculations and investigate the associated factorizations in terms of the new
TMDs defined in the last section. For the one-loop calculations, we take an on-shell quark
target. Clearly, the leading order quark distribution can be written as q(0)(xz, k⊥) = δ(1 −
xz)δ

(2)(k⊥), which leads to the expression in b⊥-space: q
(0)(xz, b⊥) = δ(1 − xz). One-loop

corrections contain real and virtual diagrams as shown in Figs. (1,2). First, the calculations
for the virtual diagrams are similar to those in Ref. [3, 14]. We only need to change ζ2 → −ζ2
where ζ2 = (2nz · P )2/(−n2

z),

q(1)(xz , b⊥)|vir =
αs

2π
δ(1− xz)

[

− 1

ǫ2
− 3

2ǫ
+

1

ǫ
ln
ζ2

µ2
+ ln

ζ2

µ2
− 1

2

(

ln
ζ2

µ2

)2

+
1

12
π2 − 2

]

.(5)

For the real diagrams, different from the conventional TMDs, the quasi-TMDs will have
contributions from xz > 1 region, similar to that calculated for the integrated parton distri-
butions [10, 11]. However, these contributions are power suppressed in the limit of k⊥ ≪ Pz.
For example, Fig. 1(a) contributes,

q(1)(xz, k⊥)|Fig. 1(a) =
αs

4π2
CF

1− ǫ

k2⊥

(1− xz)
(

√

k2⊥ + P 2
z (1− xz)2 + Pz(1− xz)

)

√

k2⊥ + P 2
z (1− xz)2

. (6)

Clearly, the contribution in the region of xz > 1 is power suppressed. Therefore, in the limit
of Pz ≫ k⊥, it reduces to

αs

2π2
CF

1− ǫ

k2⊥
(1− xz) , (7)

for 0 < xz < 1, where 2ǫ = 4 − D with D the dimension. In our calculations, we take
dimension regulation to regulate singularities in both ultra-violet and infra-red regions.
Fig. 1(b) contributes,

q(1)(xz, k⊥)|Fig. 1(b) =
αs

4π2
CF

1

k2⊥

xz
1− xz

(

√

k2⊥ + P 2
z (1− xz)2 + Pz(1− xz)

)

√

k2⊥ + P 2
z (1− xz)2

. (8)

2 Similar idea can work out for the case of the TMD factorization studied in Ref. [5] extending the original

Collins-Soper 81 definition of the TMDs in axial gauge [4] to a covariant gauge.
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(a) (b) (c)

FIG. 1: Real diagrams contributions to the TMD quark distributions at one-loop order.

Again, the contribution in the region of xz > 1 is also power suppressed. However, there is
a singularity at xz = 1. In order to evaluate the leading power contribution, we introduce a
plus distribution and take the limit of k2⊥ ≪ P 2

z ,

αs

2π2
CF

1

k2⊥

(

2xz
(1− xz)+

+ δ(1− xz) ln
ζ2

k2⊥

)

. (9)

To derive the above result, we have taken into account the fact that there are contributions
below and above xz = 1 in Eq. (8), and a principal value prescription has been applied to
evaluate the second term in Eq. (9). After this procedure, the leading power contributions
are again limited to the region of 0 < xz ≤ 1.

As we discussed in the previous section, Figs. 1(c) and 2(c) will be cancelled out by similar
diagrams from the soft factor subtraction, and they will not contribute to the subtracted
TMDs. Adding the contributions from Figs. 1(a) and (b) together, we obtain the real
contributions at one-loop order,

qsub.(1)(xz, k⊥)|real =
αs

2π2
CF

1

k2⊥

(

1− ǫ

k2⊥
(1− xz) +

2xz
(1− xz)+

+ δ(1− xz) ln
ζ2

k2⊥

)

. (10)

Fourier transforming into b⊥-space, we will obtain

qsub.(1)(xz, b⊥)|real =
αs

2π
CF

{(

−1

ǫ
+ ln

c20
b2µ2

)[

1 + x2z
(1− xz)+

]

+ (1− xz)

+δ(1− xz)

[

1

ǫ2
− 1

ǫ
ln
ζ2

µ2
+

1

2

(

ln
ζ2

µ2

)2

− 1

2

(

ln
ζ2b2⊥
c20

)2

− π2

12

]}

,(11)

where c0 = 2e−γE . By summing the virtual and real contributions, we find that the total
TMD quark distribution at one-loop order, will be

qsub.(xz, b⊥; ζ) =
αs

2π
CF

{(

−1

ǫ
+ ln

c20
b2⊥µ̄

2

)

Pq→q(xz) + (1− xz)

+δ(1− xz)

[

3

2
ln
b2⊥µ

2

c20
+ ln

ζ2

µ2
− 1

2

(

ln
ζ2b2⊥
c20

)2

− 2

]}

, (12)

in the b⊥-space, where Pq→q(x) =
(

1+x2

1−x

)

+
is the leading order splitting kernel for the quark.

It is interesting to note that the above result is very similar to that obtained in the Ji-Ma-
Yuan 2004 scheme [3], except two major differences. First, in Ji-Ma-Yuan 2004 scheme, the
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(a) (b) (c)

FIG. 2: Virtual diagrams contributions to the TMD quark distributions at one-loop order.

soft factor subtraction was formulated on the cross section level, such that the TMD quark
distribution will have soft factor contribution. This can be seen, for example, by comparing
the above equation to Eq. (20) of Ref. [14]. With soft factor subtraction at the TMD level,
the expression for the quark distribution is much simpler in current scheme. Second, in
Ji-Ma-Yuan 2004, ζ2 is defined through a time-like gauge link, whereas here we have used a
space-like gauge link. The difference is seen from the replacement ζ2 ↔ −ζ2.

To apply the above TMD quark distribution in hard QCD process as Drell-Yan lepton
pair production in pp collisions, we need to calculate the TMD antiquark distribution as
well. Similar to ζ introduced above, for the antiquark distribution we introduce the energy
parameter ζ̄2 = (2nz · P̄ )2/(−n2

z) where P̄ is the momentum for the hadron moving in the
−ẑ direction. The differential cross section depending on the transverse momentum of the
lepton pair can be written in the following factorization form,

W (Q, b⊥) = qsub.(xz, b⊥; ζ)q
sub.(x̄z, b⊥; ζ̄)H(Q, µ) , (13)

in the b⊥-space. The Fourier transform of the above W (Q, b⊥) will lead to the transverse
momentum distribution of the differential cross section. From the factorization, we obtain
the hard factor for the Drell-Yan process as

H(Q) =
αs

2π
CF

[

ln
Q2

µ2
+ π2 − 4

]

, (14)

where we have chosen ζ2 = ζ̄2 = Q2 for simplicity 3.
4. TMD evolution. Similar to the previous formalisms for the TMDs, the TMDs in the

quasi-parton distribution framework in Euclidean space also depend on the energy of the
hadron. This can be seen from the one-loop calculations in the last section, in particular,
from a double logarithms term ln2(ζ2b2⊥) as shown in Eq. (12). The Collins-Soper evolution
can be derived as differential equation respect to ζ2 for the TMDs. Because ζ2 is defined
through the gauge link vector nz and the hadron momentum P , we can evaluate the Collins-
Soper evolution by varying either nz or P . In Collins-Soper 81 [4] and Ji-Ma-Yuan 2004 [3],
it is done through nz. By following a similar method, we expect to be able to derive an
evolution equation of the form,

∂

∂ ln ζ
q(xz, b⊥, ζ) = (K(b⊥, µ) +G(ζ, µ))× q(xz, b⊥, ζ) , (15)

3 After resummation of large logarithms by solving the Collins-Soper evolution equations, the dependence

on ζ and ζ̄ will cancel out and lead to the unique final results for the differential cross sections depending

on the transverse momentum.
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where K and G are the soft and hard parts, respectively. In particular, the derivative respect
to ζ can be evaluated as derivative respect to nz,

ζ
∂

∂ζ
= δvα

∂

∂nα
z

, (16)

where δv is another dimensionless vector: δv− = n−
z , δv

+ = −n+
z , and δv⊥ = 0. So that, we

have δv2 = −n2
z > 0 and δv ·nz = 0. The relevant Feynman rules can be derived in the TMD

limit: Pz ≫ k⊥. These derivations will be very much the same as those in Refs. [3, 4]. With
the above evolution equation, we can resum the large logarithms from high order corrections,
following the Collins-Soper-Sterman resummation formalism.

On the other hand, if we can compute the TMDs from lattice QCD, we can not only
directly calculate the differential cross sections for the SIDIS and Drell-Yan processes from
the TMDs, but also extract the evolution information. In practice, we need to perform
the lattice calculations for several different values of Pz, and we can calculate numerically
the dependence of the TMDs on the energy of the hadrons. This is of importance for
phenomenological applications, for example, to investigate the energy dependence of the
Sivers asymmetries, which is one of the top questions in hadronic spin physics.

5. Conclusion and Discussions. In summary, we have shown that the proposed framework
of Ref. [8] for parton distributions can be applied to the transverse momentum dependent
parton distributions, where the soft factor subtraction plays a very important role. We have
calculated the TMDs at one-loop order, and demonstrated the associated factorization for
the Drell-Yan lepton pair production.

We would like to emphasize that the soft factor subtraction is crucial to achieve the
factorization. More importantly, this soft factor can be calculated from lattice. Future
lattice QCD calculations of the TMDs can serve as important inputs for hard processes, and
can also be used to study the parton distribution in three-dimension fashion. Extending
to the quantum phase space Wigner distributions is straightforward, which, in return, will
provide computational access to the nucleon tomography in parton picture.

In the above calculations, we have shown the perturbative calculations at one-loop order.
From the generic factorization argument, we expect the soft factor subtraction will be also
important to understand the quasi-PDFs at two-loop order and beyond. We will carry out
the detailed analysis in a future publication.

In addition, the soft factor subtraction deals with the self-interaction diagrams from the
gauge links in the quasi-PDF definition as those in Fig. 1(c) and Fig. 2(c). The existence of
these diagrams come from the fact that the gauge links are along the non-light-like directions.
The contributions of these diagrams lead to subtle ultra-violet behaviors in the perturbative
calculations at one-loop order, which have to be carefully handled in the matching between
the quasi-PDFs and the conventional ones [10–12]. Since the subtraction method introduced
above is very general, and should apply to various parton distributions. This will help the
convergence of the matching calculations in these papers.

Needless to say that the LaMET approach to calculating the various PDFs, including the
TMDs discussed in this paper, has just begun to attract the lattice practitioners’ attention.
Calculations requires large momentum configurations for the nucleon, which leads to very
small lattice spacing along z-direction particularly challenging for a meaningful simulation.
Any progress in the LaMET will crucially depend on how we implement this requirement in
lattice computations. Early attempts in Ref. [12] in LaMET shall encourage further efforts
along this direction. It has also been discussed in Ref. [9] that small-x parton distributions
are more challenging to calculate. This argument applies to the TMDs at small-x as well.
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