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The McLerran-Venugopalan model describes a highly boosted hadron/nucleus as a sheet of ran-
dom color charges which source soft classical Weizsäcker-Williams gluon fields. We show that due
to fluctuations, individual configurations are azimuthally anisotropic. We present initial evidence
that impact parameter dependent small-x JIMWLK resummation preserves such anisotropies over
several units of rapidity. Finally, we compute the first four azimuthal Fourier amplitudes of the
S-matrix of a fundamental dipole in such background fields.

I. INTRODUCTION

To explain azimuthal asymmetries observed in high-energy pA collisions [1–5] Refs. [6–8] argued that individual
configurations of the light-cone electric fields of the target should be anisotropic, leading to a non-trivial azimuthal
distribution of a projectile parton scattered off such a target. That is, configuration by configuration, two-dimensional
rotational symmetry is broken by E-field “domains” of finite size in the impact parameter plane. These, in contrast to
Weiss magnetic domains separated by domain walls, arise purely due to fluctuations of the valence (large-x) random
color charge sources for the soft, small-x E field.

Assuming such azimuthal anisotropy of the light-cone electric fields several features of the data could be described,
at least qualitatively [7, 8]. On the other hand, a direct calculation of the anisotropic distributions, in particular for
a large nucleus and small x (i.e. high energy), has so far been lacking. It is our goal here to compute scattering of
a dipole off a large nucleus, and specifically, to determine its angular dependence. That is, we compute the (first
four) Fourier amplitudes of the dipole S-matrix with respect to the azimuthal orientation of the dipole. We should
stress that we do not address the fluctuations of S(r,b) in impact parameter space b (see Ref. [9] for a recent study)
but rather its dependence on the size and orientation of the dipole vector r which is the variable conjugate to the
transverse momentum of the parton in the final state.

II. THE MODEL

In the McLerran-Venugopalan model [10] the large-x valence partons are viewed as random, recoilless color charges
ρa(x) which source the semi-classical small-x gluon fields. We first provide a brief description of how these color
charge configurations are generated on a lattice; more detailed discussions can be found in the literature [11, 12].

The effective action describing color charge fluctuations is taken to be quadratic,

Seff [ρa] =

∫
dx− d2x

ρa(x−,x) ρa(x−,x)

2µ2
(1)

with µ2 ∼ g2A1/3 proportional to the thickness of a nucleus [10]; here A denotes the number of nucleons in the
nucleus. The variance of color charge fluctuations determines the average saturation scale Q2

s ∼ g4µ2 [13]. The
coarse-grained effective action (1) applies to (transverse) area elements containing a large number of large-x “valence”
charges, µ2∆A⊥ ∼ ∆A⊥Q

2
s/g

4 � 1.
Hence, in the first step we construct a random configuration of color charges on a lattice according to the distribution
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exp(−S[ρ]). Their (non-Abelian) Weizsäcker-Williams fields are pure gauges; in covariant gauge,

Aµa(x−,x) = −δµ+ g

∇2 ρ
a(x−,x) . (2)

This also satisfies A− = 0 and thus the only non-vanishing field strength is F+i = −∂iA+. The (light-cone) electric
field is

Ei =

∫
dx−F+i = −∂i

∫
dx−A+ . (3)

The propagation of a fast charge in this field is described by an eikonal phase given by a light-like SU(3) Wilson line
V (x):

V (x) = P exp

{
ig2

∫
dx−

1

∇2 t
aρa(x−,x)

}
, (4)

where P denotes path-ordering in x−. The absolute value squared of this amplitude gives the S-matrix for scattering
of this charge off the given target field configuration,

Sρ(r,b) ≡ 1

Nc
trV †(x)V (y) , r ≡ x− y , 2b ≡ x + y . (5)

Thus, following the ideas leading to the MV model we assume that every particular scattering event probes one
particular configuration in the target, i.e. that the S-matrix is computed with a frozen ρa(x). The main purpose of
this paper is to analyze the dependence of the S-matrix on the angular orientation of the dipole vector r, conjugate
to the transverse momentum, at fixed transverse impact parameter (coordinate) b.

The S-matrix for a fundamental charge is complex (for three or more colors). Its real (imaginary) part corresponds
to C-even (C-odd) exchanges [14]:

1−Dρ(r) ≡ ReSρ(r) =
1

2Nc
tr
[
V †(x)V (y) + V †(y)V (x)

]
, (6)

Oρ(r) ≡ ImSρ(r) =
−i

2Nc
tr
[
V †(x)V (y)− V †(y)V (x)

]
. (7)

C conjugation transforms ρa(x) → −ρa(x) and V (x) → V ∗(x). The dipole scattering amplitude Dρ(r) = Dρ(−r) is
even under r→ −r and generates even azimuthal v2n harmonics while the odderon Oρ(r) = −Oρ(−r) generates odd
v2n+1 [7] of the one-particle distribution.

It is useful to consider the limit of small dipoles, rQs � 1. Then the real part of the S-matrix from Eq. (6) is

ReSρ(r)− 1 =
(ig)2

2Nc
tr (r ·E)

2
+O(r4) . (8)

To compute the elliptic (dipole) asymmetry, Refs. [6–8] considered the following angular dependence of the two-point
function

g2

2Nc

〈
trEi(b1)Ej(b2)

〉
=

1

4
Q2
s ∆(b1 − b2)

(
δij + 2A

(
âiâj − 1

2
δij
))

, (9)

where â corresponds to the “event plane” orientation, and ∆(b1 − b2) describes the E-field correlations in the
transverse impact parameter plane. It is implicit that for each configuration E(b) is rotated to point in a particular,
fixed direction â before performing the ensemble average. In fact, Eq. (9) is the MV model analogue of the gluon
TMD for an unpolarized target [15, 16],

δijfg1 (x,k2) +

(
k̂ik̂j − 1

2
δij
)
h⊥g1 (x,k2) . (10)

Thus, the amplitude A from Eq. (9), which we shall denote A2(r) below, is basically h⊥g1 at small x. However, beyond
the MV model the relation between these functions may be more involved.

The action (1) is C-even and so 〈Oρ(r)〉 = 0 while 〈Dρ(r)〉 ∼ r2Q2
s (at small r) is proportional to the thickness of

the nucleus, A1/3. A C-odd operator

1

κ3
dabcρaρbρc (11)



3

with κ3 ∼ g3A2/3 could be added to the action1 which would then induce an expectation value ∼ A1/3 for the
odderon [17]. This is beyond the scope of the present paper, we focus here on azimuthal anisotropies due to fluctuations
of the charge densities ρa(x) and their associated electric fields Ea(x). The main point is that even though the ensemble
averaged S-matrix is isotropic and real (even under charge conjugation) that fluctuations generate anisotropies and
C-odd contributions locally in impact parameter space for individual configurations.

III. IMPLEMENTATION

To generate the random configurations ρa(x−,x) via Monte-Carlo techniques we discretize the longitudinal and
transverse coordinates. The number of sites in the longitudinal direction is taken to be N− = 100 while the number
of sites in either transverse direction is N⊥ = 1024. All of our results presented here have been obtained with
g2µa = 0.05, hence g2µL = 51.2, where a ≡ L/N⊥ denotes the transverse lattice spacing. We have determined
numerically that Qs ≈ 0.7125g2µ as defined from

〈Sρ〉 (r =
√

2/Qs) = exp(−1/2). (12)

The physical value for the lattice spacing could be determined by assigning a physical value to Qs; instead, we choose
to measure distance scales in units of 1/Qs or 1/g2µ and so this step is not required.

We use periodic boundary conditions in the transverse directions and solve the Poisson equation (2) by Fast Fourier
Transform. The amplitude of the zero mode of ρa(k) is set to zero before inversion which ensures color neutrality of
each configuration. Alternatively, one could introduce a mass cutoff m � Qs in the Coulomb propagator in eq. (2).
Either way, the dynamics of modes with k well above the IR cutoff is the same.

We have generated about 104 configurations; for each of them we measured Dρ(r) and O(r) at b = 0. Both
functions were decomposed into their Fourier series to extract the amplitudes of azimuthal anisotropy:

Dρ(r) = N (r)

(
1 +

∞∑
n=1

A′2n(r) cos(2nφr)

)
, (13)

Oρ(r) = N (r)

∞∑
n=0

A′2n+1(r) cos((2n+ 1)φr) . (14)

The function N (r) is the isotropic part of the dipole S-matrix, see for example Ref. [12]. For a small dipole, 〈N〉(r) ∼
1
4r

2Q2
s, up to logarithms.

The S-matrix Sρ(r) rotates randomly from configuration to configuration. This manifests as a random shift φr →
φr −ψ in eqs. (13,14). Hence, on average over all configurations 〈A′n〉 = 0 for all n. This is a consequence of the fact,
already mentioned above, that the ensemble average of the S-matrix is real and isotropic.

Azimuthal harmonics vn in hadronic collisions are defined from multi-particle correlation functions in such a way
that they are invariant under a global shift of the azimuthal angles of all particles by the same amount. Conse-
quently, we discard this random phase by defining An = π

2 |A
′
n|; the factor of π/2 arises as the inverse average of∫

d∆φ/(2π) | cos n∆φ| = 2/π. In other words, we define the amplitudes An such that fluctuations do not average
out. We finally obtain their expectation values over the ensemble of configurations, 〈A1〉, · · · , 〈A4〉, as well as the
variances of A1 and A2.

IV. RESULTS

Before presenting our results for the azimuthal amplitudes we show two examples for Sρ(r) in Figs. 1 and 2. Either
of these corresponds to one particular (random) configuration of color charges. The real parts display predominantly
a ∼ cos(2φ) angular dependence, with φ the angle between r and E(b = 0). On the other hand, the imaginary part
for the configuration shown in Fig. 1 is predominantly ∼ cos(φ) while that from Fig. 2 is mainly ∼ cos(3φ), modulo a
random phase shift as mentioned above. The figures show, also, that the angular structures appear at a resolution on
the order of r g2µ ∼ 1; this is consistent with the requirement µ2 ∆A⊥ � 1 mentioned above (which sets the regime
of applicability of the effective theory) at weak coupling: 1/g2 � 1.

1 Beyond a perturbative treatment of the cubic Casimir one would have to add the quartic Casimir, too, so that the action is bounded
from below [18].



4

FIG. 1: The S-matrix in the fundamental representation as a function of the dipole vector r = (rx, ry) at fixed impact parameter
b = 0 for one particular random configuration of color charges ρa(x).

FIG. 2: Same as Fig. 1 for a second configuration of color charges ρa(x).

Figure 3 shows our results for the averaged amplitudes of the first four azimuthal harmonics. As expected, the
biggest one is the quadrupole amplitude 〈A2〉 which reaches >∼ 20% at r <∼ 1/Qs. Such values are in the range of the
asymmetries extracted phenomenologically [7] for high-multiplicity p+Pb collisions at LHC energies. However, here
we have not made any attempts to bias the configurations towards “high multiplicities”. The fact that the variance√
〈(δA2)2〉 is not much smaller than 〈A2〉 indicates that some configurations generate much larger elliptic asymmetries

than others. Also, we observe that 〈A2〉 is approximately constant for r < 1/Qs since up to quadratic order the real
part of the S-matrix is

D(r) =
g2

2Nc
tr (r ·E)2 − 1

2

g4

4N2
c

[
tr (r ·E)2

]2
+ · · · (15)

at small r. To derive this expression one performs a gradient expansion of Re trV (x)V †(y), assuming that the electric
field is smoothly varying over scales of order r. The leading term on the r.h.s., if scaled by 1/r2, is independent of r
which is consistent with the observed constant 〈A2〉 at small r.
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FIG. 3: The averaged amplitudes 〈An〉(r) vs. the dipole size r for n = 1, · · · , 4. The fit to 〈A2〉 corresponds to the function
from Eq. (16).

The numerical result for 〈A2(r)〉 agrees well with h⊥g1 (x, r) derived in Ref. [16]:

h⊥g1 (x, r2) ∝ 1

r2Q2
s

[
1− exp

(
−r

2Q2
s

4

)]
. (16)

The agreement suggests that (in the MV model) 〈A2(r)〉 essentially corresponds to the distribution of linearly polarized
gluons, at least for sufficiently small dipoles. Below we shall see that the functions differ at large r.

The second term in Eq. (15) generates a hexadecupole asymmetry at the next to leading order in r2. However, the
numerical result for A4(r) shown in Fig. 3 is essentially constant at small r. We interpret this as due to corrections
to the gradient expansion which leads to Eq. (15); a ∼ cos(4φ) angular component appears already at O(r2) albeit
with a much smaller amplitude than the ∼ cos(2φ) harmonic.

We now turn to the odd amplitudes A1 and A3. As already mentioned above, the expectation value of the odderon
over a C-even ensemble such as that generated by the action (1) is of course zero. Nevertheless, each particular
configuration of semi-classical small-x fields (2) does contain a C-odd component and iO(r) as defined in Eq. (7) is
non-zero. This is due to fluctuations of the saturation momentum Qs in impact parameter space [19],

iO(r) ∼ i αs r ·∇b (1−D(r,b)) ' i αs r3Q2
s Qc B cosφr

[
1− r2

4

(
Q2
c cos2 φr

3
+Q2

s

)]
. (17)

The expression on the r.h.s. corresponds to an expansion in powers of r; Qc is a cutoff for the spectrum of fluctuations
of Qs(b) which was otherwise assumed to be scale invariant, and B is their amplitude [7]. Eq. (17) shows that for
small dipoles, after we divide by the isotropic normalization factor N (r) ∼ r2, that we should expect A1 ∼ r as well
as a smaller A3 ∼ r3. The lattice results appear consistent with 〈A1〉 ∼ r at r � 1/Qs but so is 〈A3〉, albeit with a
smaller slope. Future simulations on larger lattices may be able to push to smaller r, and the analytical derivation of
Eq. (17) based on a simple fluctuation spectrum could perhaps be refined as well.

Just as for the elliptic asymmetry we have also computed the standard deviation of the amplitude A1. Again,
we find that

√
〈(δA1)2〉 is not much smaller than 〈A1〉, i.e. that some configurations generate much larger dipole

asymmetries than others.
We have also analyzed the effect of “smearing” the impact parameter of the projectile over a region corresponding

to its size [20]. If the E-field anisotropy exhibits a non-zero correlation length in the impact parameter plane [6–
8], specifically a correlation length that exceeds the size of the dipole, then the azimuthal moments should remain
approximately the same.

Hence, we have also computed the azimuthal amplitudes An from “smeared” configurations:

Dρ(r,b) =

∫
d2b′

πr2
Θ (r − |b− b′|) Dρ(r,b

′) , (18)

and similarly for iOρ(r,b). On the r.h.s. the points x = b′ + r/2 and y = b′ − r/2 are now determined by r and b′.
Equation (18) averages the S-matrix over an area πr2. The result is shown in Fig. 4 which can be compared to Fig. 3
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FIG. 4: Same as Fig. 3 (note modified scale on the vertical axes) for “smeared” S-matrix.

from above. Except for a slight suppression of their magnitudes, we do not observe any substantial modification of
the amplitudes 〈An〉.
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FIG. 5: The averaged amplitudes 〈An〉(r) vs. the dipole size r for n = 1, · · · , 4. This figure focuses on the behavior at large
r � 1/Qs. Left: fixed impact parameter b = 0; right: impact parameter averaged over an area πr2.

The behavior for large dipoles is different, c.f. Fig. 5. For a fixed impact parameter the harmonic amplitudes
approach a common non-zero function at large r � 1/Qs. This is consistent with universal (angular) scale invariant
fluctuations of the azimuthal dependence of the S-matrix. Indeed, if D(r,b) and O(r,b) are first averaged over an
area πr2, see Eq. (18), then the resulting 〈An〉 are strongly suppressed. This shows that the direction of E is not
correlated over distances far beyond ∼ 1/Qs. Also, as already mentioned above, at large r the function 〈A2〉(r) is

seen to differ from h⊥g1 (x, r2).
We should stress that the behavior of 〈An〉 at r � 1/Qs is shown only to reveal their expected universality due to

scale invariant fluctuations (on a circle) within the model used here. The result applies in the regime far below the
lattice IR cutoff scale L or whichever other IR cutoffs one may choose when implementing the theory. On the other
hand, in practice Qs is expected to be on the order of a few GeV only at current collider energies and so distances of
order 10/Qs are not much shorter than the confinement scale. The MV model used here does not provide a controlled
approximation to QCD near the confinement scale.
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V. HIGH-ENERGY EVOLUTION

In this section we consider effects due to resummation of boost-invariant quantum fluctuations of the fields. This
is done through the so-called JIMWLK [21, 22] functional renormalization group evolution which resums observables
to all orders in αs log(1/x) = αsY . Performing a step ∆Y in rapidity opens phase space for radiation of gluons which
modifies the classical action (1). This corresponds to a “random walk” in the space of Wilson lines V (x) [22–24]:

∂Y V (x) = V (x)
i

π

∫
d2u

(x− u)iηi(u)

(x− u)2
− i

π

∫
d2vV (v)

(x− v)iηi(v)

(x− v)2
V †(v)V (x) . (19)

The Gaussian white noise ηi = ηiat
a satisfies 〈ηai (x)〉 = 0 and

〈ηai (x) ηbj(y)〉 = αs δ
abδijδ

(2)(x− y). (20)

The “left-right symmetric” form of Eq. (19) was introduced in [24, 25]. We solve the random walk numerically
assuming, for simplicity, a fixed but small coupling αs = 0.14 so that the speed of evolution is not too rapid2. Once
an ensemble of Wilson lines on the transverse lattice has been evolved to rapidity Y , we can again compute the dipole
scattering amplitude SY (r), its azimuthal Fourier decomposition and the corresponding saturations scale Qs(Y ) using
Eq. (12). We stress that even though we consider a target of infinite transverse extent, that the evolution equation is
solved on a transverse lattice which does allow for impact parameter dependent fluctuations.
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r QS(Y)
1 10

FIG. 6: JIMWLK evolution of 〈A2〉(r) and 〈A4〉(r) (left) resp. of 〈A1〉(r) and 〈A3〉(r) (right). In either plot the lower order
harmonic corresponds to the upper set of curves.

In Fig. 6 (left) we show the evolution of 〈A2〉(r) and 〈A4〉(r). Mean-field evolution of the dipole has been shown
to wash out initial elliptic anisotropies rather quickly [6]. On the other hand, here we only observe a relatively slow
decrease of 〈A2〉(r) with Y . This is rather intuitive since both the initial anisotropies at Y = 0, as well as those of
the evolved JIMWLK configurations are generated by fluctuations of the “valence charges” in the transverse impact
parameter plane. Furthermore, we observe that those harmonics which are small initially, i.e. 〈A1〉(r), 〈A3〉(r) and
〈A4〉(r), in fact increase with rapidity at small r. There is again a universal behavior at very large r.

VI. SUMMARY

Following the conjecture by Kovner and Lublinsky [6], we have analyzed azimuthal anisotropies of the S-matrix
S(r) for scattering of a dipole off a large nucleus. They arise due to fluctuations of the configuration of valence color
charges ρa(x) in the transverse impact parameter plane3.

2 The “time” variable for fixed coupling evolution is αsY .
3 An alternative picture in terms of O(N2

c ) fluctuations of the energy-momentum tensor of a holographic shock wave has been discussed
in Ref. [26]. Reference [27] considers the azimuthal structure of gluon bremsstrahlung off the fast beam-jet sources.
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For a projectile in the fundamental representation of color SU(3) these fluctuations generate both charge conjugation
even as well as odd configurations. For small dipoles, r <∼ 1/Qs the McLerran-Venugopalan [10] model gives 〈A2〉 and
〈A4〉 which are approximately constant (r independent). Also, the amplitude of the elliptic harmonic is much larger
than that of the quadrangular harmonic, 〈A2〉 � 〈A4〉. Odd harmonics appear at higher order in r [7, 19] and so their
amplitudes decrease with decreasing r. The fluctuations of both A1 and A2 are comparable to their mean values,
indicating that some configurations exhibit much larger anisotropies than others.

For large dipoles, r � 1/Qs, we find that all amplitudes 〈A1〉(r), · · · , 〈A4〉(r) asymptotically approach a universal
function if the S-matrix is evaluated at fixed impact parameter. This points at angular scale invariant fluctuations of
the direction of E over large distances. Accordingly, if the S-matrix is averaged over an area πr2 the resulting cos(nφ)
amplitudes are strongly suppressed.

Impact parameter dependent fluctuations during QCD evolution in rapidity largely preserve the azimuthal ampli-
tudes. Our calculations confirm that individual small-x target field configurations do exhibit angular dependence
which would play an important role in understanding azimuthal vn harmonics in pp and pA collisions [6–8]. In par-
ticular, the amplitude of elliptic anisotropies 〈A2〉 ∼ 15 − 20% is on the order of the v2 harmonic observed in p+Pb
collisions at the LHC. Moreover, similar studies as the one performed here might be able to shed some light on the

behavior of the linearly polarized gluon distribution h⊥g1 (x, r2) at small x; work in that direction is in progress.
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