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A symmetry-preserving Dyson-Schwinger equation treatment of a vector-vector contact interac-
tion is used to compute dressed-quark-core contributions to the nucleon σ-term and tensor charges.
The latter enable one to directly determine the effect of dressed-quark electric dipole moments
(EDMs) on neutron and proton EDMs. The presence of strong scalar and axial-vector diquark cor-
relations within ground-state baryons is a prediction of this approach. These correlations are active
participants in all scattering events and thereby modify the contribution of the singly-represented
valence-quark relative to that of the doubly-represented quark. Regarding the proton σ-term and
that part of the proton mass which owes to explicit chiral symmetry breaking, with a realistic d-u
mass splitting the singly-represented d-quark contributes 37% more than the doubly-represented
u-quark; and in connection with the proton’s tensor charges, δTu, δTd, the ratio δTd/δTu is 18%
larger than anticipated from simple quark models. Of particular note, the size of δTu is a sensitive
measure of the strength of dynamical chiral symmetry breaking; and δT d measures the amount of
axial-vector diquark correlation within the proton, vanishing if such correlations are absent.
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I. INTRODUCTION

In recent years a global approach to the description
of nucleon structure has emerged, one in which we may
express our knowledge of the nucleon in the Wigner dis-
tributions of its basic constituents and thereby provide
a multidimensional generalisation of the familiar parton
distribution functions (PDFs). The Wigner distribution
is a quantum mechanics concept analogous to the clas-
sical notion of a phase space distribution. Following
from such distributions, a natural interpretation of mea-
sured observables is provided by construction of quan-
tities known as generalised parton distributions (GPDs)
[1–8] and transverse momentum-dependent distributions
(TMDs) [9–15]: GPDs are linked to a spatial tomogra-
phy of the nucleon; and TMDs allow for its momentum

tomography. A new generation of experiments aims to
provide the empirical information necessary to develop a
phenomenology of nucleon Wigner distributions.
At leading-twist there are eight distinct TMDs, only

three of which are nonzero in the collinear limit; i.e., in
the absence of parton transverse momentum within the
target, k⊥ = 0: the unpolarized (f1), helicity (g1L) and
transversity (h1T ) distributions. In connection with the
last of these, one may define the proton’s tensor charges
(q = u, d, . . .)

δT q =

∫ 1

−1

dxhq
1T (x) =

∫ 1

0

dx
[

hq
1T (x)− hq̄

1T (x)
]

, (1)

which, as illustrated in Fig. 1, measures the light-front
number-density of quarks with transverse polarisation
parallel to that of the proton minus that of quarks
with antiparallel polarisation; viz., it measures any bias

in quark transverse polarisation induced by a polarisa-
tion of the parent proton. The charges δT q represent a
close analogue of the nucleon’s flavour-separated axial-
charges, which measure the difference between the light-
front number-density of quarks with helicity parallel to
that of the proton and the density of quarks with helic-
ity antiparallel [16]. In nonrelativistic systems the he-
licity and transversity distributions are identical because
boosts and rotations commute with the Hamiltonian.

The transversity distribution is measurable using
Drell-Yan processes in which at least one of the two col-
liding particles is transversely polarised [17]; but such
data is not yet available. Alternatively, the transversity
distribution is accessible via semi-inclusive deep-inelastic
scattering using transversely polarised targets and also in
unpolarised e+e− processes, by studying azimuthal cor-
relations between produced hadrons that appear in op-
posing jets (e+e− → h1h2X). Capitalising on these ob-
servations, the transversity distributions were extracted
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FIG. 1. The tensor charge, Eq. (1), measures the net light-
front distribution of transversely polarised quarks inside a
transversely polarized proton.
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through an analysis of combined data from the HER-
MES, COMPASS and Belle collaborations [18]; and those
distributions have been used to produce an estimate of
the proton’s tensor charges, with the following flavour-
separated results:

δTu = 0.39+0.18
−0.12 , δT d = −0.25+0.30

−0.10 , (2)

at a renormalisation scale ζA = 0.9GeV. Given that the
tensor charges are a defining intrinsic property of the
nucleon, the magnitude of the errors in Eqs. (2) is unsat-
isfactory. It is therefore critical to better determine δTu,
δTd. Consequently, following upgrades at the Thomas
Jefferson National Accelerator Facility (JLab), it is an-
ticipated [19] that experiments [20, 21] in Hall-A (SoLID)
and Hall-B (CLAS12) will provide a far more precise de-
termination of the tensor charges.
Naturally, measurement of the transversity distribu-

tion and the tensor charges will not reveal much about
the strong interaction sector of the Standard Model un-
less these quantities can be calculated using a framework
with a traceable connection to QCD. This point is em-
phasised with particular force by the circumstances sur-
rounding the pion’s valence-quark PDF. As reviewed else-
where [22], numerous authors suggested that QCD was
challenged by a PDF parametrisation based on a precise
πN Drell-Yan measurement [23]. However, the appear-
ance of nonperturbative calculations within the frame-
work of continuum QCD [24, 25] forced reanalyses of the
cross-section, with the inclusion of next-to-leading-order
evolution [26] and soft-gluon resummation [27], so that
now those claims are known to be false and the pion’s
valence-quark PDF may be viewed as a success for QCD
[28]. The comparisons between experiment and computa-
tions of the pion and kaon parton distribution amplitudes
and electromagnetic form factors have reached a similar
level of understanding [29, 30].
Herein, therefore, we compute the proton tensor

charges using a confining, symmetry-preserving Dyson-
Schwinger equation (DSE) treatment of a single quark-
quark interaction; namely, a vector⊗ vector contact-
interaction. This approach has proved useful in a variety
of contexts, which include meson and baryon spectra,
and their electroweak elastic and transition form factors
[31–41]. In fact, so long as the momentum of the probe is
smaller in magnitude than the dressed-quark mass pro-
duced by dynamical chiral symmetry breaking (DCSB),
many results obtained in this way are practically indistin-
guishable from those produced by the most sophisticated
interactions that have thus far been employed in DSE
studies [42–45].
It is apposite to remark here that confinement and

DCSB are two key features of the Standard Model; and
much of the success of the contact-interaction approach
owes to its efficacious expression of these emergent phe-
nomena. They are explained in some detail elsewhere
[42–45] so that here we only make a few remarks.
Confinement may be expressed via dynamically-driven

changes in the analytic structure of QCD’s propagators

and vertices. In fact, contemporary theory predicts that
both quarks and gluons acquire mass distributions, which
are large at infrared momenta (see, e.g., Refs. [46–51]).
The generation of these mass distributions leads to the
emergence of a length-scale ς ≈ 0.5 fm, whose existence is
evident in all modern studies of dressed-gluon and -quark
propagators and which signals a marked change in their
analytic properties. In this realisation, confinement is a
dynamical process that we implement in our treatment of
the contact interaction by employing a proper-time reg-
ularisation with the inclusion of an infrared cutoff. This
ensures the absence of quark production thresholds in
colour singlet amplitudes via elimination of the associ-
ated singularities [52].
DCSB is the source of more than 98% of the mass of

visible material in the Universe. It is very likely con-
nected intimately with confinement. However, whereas
the nature of confinement is still debated, DCSB is
a theoretically established nonperturbative feature of
QCD [53], which has widespread, measurable impacts on
hadron observables, e.g., Refs. [30, 36, 38, 54–59], so that
its expression in QCD is empirically verifiable.
Apart from the hadron physics imperative, the value

of the nucleon tensor charges can be directly related to
the visible impact of a dressed-quark electric dipole mo-
ment (EDM) on neutron and proton EDMs [60]. Novel
beyond-the-Standard-Model (BSM) scalar operators may
also conceivably be measurable in precision neutron ex-
periments so that one typically considers both the nu-
cleon scalar and tensor charges when exploring bounds
on BSM physics [61]. The sum of the scalar charges of
all active quark flavours is simply the nucleon σ-term,
which we therefore also compute herein.
Relying on material provided in numerous appen-

dices, we provide a brief outline of our computational
framework in Sec. II: both the Faddeev equation treat-
ment of the nucleon and the currents which describe
the interaction of a probe with a baryon composed
from consistently-dressed constituents. This presentation
scheme enables us to embark quickly upon the descrip-
tion and analysis of our results for the scalar and tensor
charges, Secs. III and IV, respectively. In Sec. V we use
our results for the tensor charges in order to determine
the impact of valence-quark EDMs on the neutron and
proton EDMs. Section VI is an epilogue.

II. NUCLEON FADDEEV AMPLITUDE AND

RELEVANT INTERACTION CURRENTS

Our description of the nucleon’s dressed-quark-core is
based on solutions of a Faddeev equation, which is illus-
trated in Fig. 2 and detailed in Apps.A, B. The approach
is grounded on the observation that in quantum field
theory a baryon appears as a pole in a six-point quark
Green function. The pole’s residue is proportional to the
baryon’s Faddeev amplitude, which is obtained from a
Poincaré covariant Faddeev equation that sums all possi-
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FIG. 2. Poincaré covariant Faddeev equation. Ψ is the Fad-
deev amplitude for a nucleon of total momentum P = pq+pd.
The shaded rectangle demarcates the kernel of the Faddeev
equation: single line, dressed-quark propagator; Γ, diquark
correlation (Bethe-Salpeter) amplitude; and double line, di-
quark propagator. (See Apps.A, B for details.)

ble quantum field theoretical exchanges and interactions
that can take place between three dressed-quarks [62].
The appearance of nonpointlike colour-antitriplet

quark+quark (diquark) correlations within the nucleon
is a dynamical prediction of this framework [63]. These
correlations are nonpointlike, with the charge radius of a
given diquark being typically 10% larger than its mesonic
analogue [33]. Hence, diquarks are soft components
within baryons. As explained in App.B, the dominant
correlations in the nucleon are scalar (0+) and axial-
vector (1+) diquarks because, for example, they have the
correct parity and the associated mass-scales are smaller
than the baryons’ masses [36]. Notably, evidence in sup-
port of the presence of diquarks in the proton is accumu-
lating [35, 56, 59, 64–70].
In order to determine the scalar and tensor charges

of the nucleon described by this Faddeev equation, the
Q2 = 0 values of three interaction currents are needed:
elastic electromagnetic, which determines the canonical
normalisation of the nucleon’s Faddeev amplitude; scalar;
and tensor. The computation of these quantities is de-
tailed in App. C.

III. SIGMA-TERM

The contribution of a given quark flavour (q = u, d, . . .)
to a nucleon’s σ-term is defined by the matrix element

σq = mq 〈N(p)|q̄1q|N(p)〉 , (3)

where |N(p)〉 is the state vector of a nucleon with four-
momentum p. The σ-term is independent of the renor-
malisation scale used in the computation, even though
the individual pieces in the product on the right-hand-
side (rhs) are not. As explained in App. E, the scale
appropriate to our symmetry-preserving regularisation
of the contact interaction is ζH ≈ M , where M is the
dressed-quark mass.
Our computed value of the nucleon’s σ-term is reported

in Eq. (C49); viz.,

σN = σu + σd = m 3.05 = 21MeV. (4)

This result is consistent with that obtained using the
Feynman-Hellmann theorem in connection with the re-

sults from which Ref. [34] was prepared. An interesting
way to expose this is to recall Eq. (B28), which states
that our analysis describes a nucleon that is 77% dressed-
quark+ scalar-diquark and 23% dressed-quark+ axial-
vector diquark. In the isospin symmetric limit, which
we typically employ, it follows that

σN = 0.77
[

σQ + σqq0
]

+ 0.23
[

σQ + σqq1
]

(5)

= σQ + 0.77 σqq0 + 0.23 σqq1 , (6)

where

σQ = m
∂M

∂m
= 9.6MeV, (7a)

σqq0 = m
∂mqq0

∂m
= 16MeV, (7b)

σqq1 = m
∂mqq1

∂m
= 10MeV, (7c)

again computed using material in Ref. [34]. Inserting
Eqs. (7) into Eq. (6), one obtains σN = 24MeV.1 Appar-
ently, so far as the contribution of explicit chiral symme-
try breaking to the mass of the nucleon’s dressed-quark
core is concerned, the contact-interaction nucleon is a
simple system. This analysis also shows that our dia-
grammatic computational method is sound; and hence
Eq. (4) is the rainbow-ladder (RL) truncation2 predic-
tion of a vector⊗ vector contact-interaction treated in the
Faddeev equation via the static approximation. (Inclu-
sion of meson-baryon loop effects will increase the result
in Eq. (4) by approximately 15% [73].)
In addition, the fact that Eqs. (4) and (6) yield similar

results emphasises the important role of diquark correla-
tions because if the nucleon were just a sum of three mas-
sive, weakly-interacting dressed-quarks, then one would
have

σ3M
N = 3 σQ = 29MeV , (8)

which is 21% too large.
Adopting a different perspective, we note that the

value in Eq. (4) is roughly one-half that produced by
a Faddeev equation kernel that incorporates scalar and
axial-vector diquark correlations in addition to propaga-
tors and interaction vertices that possess QCD-like mo-
mentum dependence [73]. It compares similarly with the
value inferred in a recent analysis [74] of lattice-QCD re-
sults for octet baryon masses in 2 + 1-flavour QCD:

σN = 45± 6MeV . (9)

In order to understand the discrepancy, consider
Eqs. (7). The value of σQ matches expectations based
on gap equation kernels whose ultraviolet behaviour is

1 The origin of the 11% mismatch is explained in Sec. C 1 g.
2 The rainbow-ladder truncation is the leading-order term in the
most widely used, global-symmetry-preserving DSE truncation
scheme [71, 72].
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consistent with QCD [73, 75]. On the other hand, with
such interactions one typically finds σqq0 & σqq1 & σρ =
25MeV. We therefore judge that Eq. (4) underestimates
the physical value of σN ; and that the mismatch orig-
inates primarily in the rigidity of the diquark Bethe-
Salpeter amplitudes produced by the contact interaction,
which leads to weaker m-dependence of the diquark (and
hence nucleon) masses than is obtained with more real-
istic kernels.3 Notwithstanding this, Eq. (4) is a useful
benchmark, providing a sensible result via a transparent
method.
Further valuable information may be obtained from

the results in App.C 2 if one supposes that the ratio of
contact-interaction d- and u-quark contributions is more
reliable than the net value of σN . In this connection,
note that for a proton constituted as a weakly interact-
ing system of three massive dressed-quarks in the isospin
symmetric limit

σ3M
N,d

σ3M
N,u

=
1

2
. (10)

Comparing this with our computed value

σN,d

σN,u
= 0.65 , (11)

one learns that diquark correlations work to accentu-
ate the contribution of the singly-represented valence-
quark to the proton σ-term relative to that of doubly-
represented valence-quarks: the magnification factor is
1.3.
Let’s take this another step and assume that σ̂N,u, σ̂N,d

in App. C 2 respond weakly to changes in m. This is valid
so long as solutions of the dressed-quark gap equation
satisfy

dM

dm

∣

∣

∣

∣

(mu+md)/2

mu,md≪M≈ dM

dm

∣

∣

∣

∣

mu,md

, (12)

which is found to be a good approximation in all available
studies (see, e.g., Refs. [76, 77]). One may then estimate
the effects of isospin symmetry violation owing to the dif-
ference between u- and d-quark current-masses. Taking
the value of the mass ratio from Ref. [78], one finds

mu

md
= 0.48± 0.1 ⇒ md σ̂N,d

mu σ̂N,u
= 1.35+0.47

−0.30 . (13)

Alternatively, one might use the mass ratio inferred from
a survey of numerical simulations of lattice-regularised
QCD [79], in which case

mu

md
= 0.47± 0.04 ⇒ md σ̂N,d

mu σ̂N,u
= 1.38+0.17

−0.14 . (14)

3 Consider that if one uses σqq0 = σqq1 = 30MeV, then σN ≈

40MeV.

We predict, therefore, that the d-quark contribution to
that part of the proton’s mass which arises from explicit
chiral symmetry breaking is roughly 37% greater than
that from the u-quark. This value is commensurate with
a contemporaneous estimate based on lattice-QCD [80].
It is noteworthy that if the proton were a weakly in-
teracting system of three massive dressed-quarks, then
Eq. (14) would yield 1.06+0.13

−0.11; and hence one finds again
that the presence of diquark correlations within the pro-
ton enhances the contribution of d-quarks to the proton’s
σ-term.

IV. TENSOR CHARGE

The tensor charge associated with a given quark
flavour in the proton is defined via the matrix element
(q = u, d, . . .)

〈P (p, σ)|q̄σµνq|P (p, σ)〉 = δT q ū(p, σ)σµνu(p, σ) , (15)

where u(p, σ) is a spinor and |P (p, σ)〉 is a state vec-
tor describing a proton with momentum p and spin σ.4

With δTu, δTd in hand, the isoscalar and isovector tensor
charges are readily computed:

g
(0)
T = δTu+ δTd , g

(1)
T = δTu− δTd . (16)

Importantly, the tensor charge is a scale-dependent quan-
tity. Its evolution is discussed in App. F.
Our analysis of the proton’s tensor charge in

a symmetry-preserving RL-truncation treatment of
a vector⊗ vector contact-interaction is detailed in
App.C 3. At the model scale, ζH , which is determined
and explained in App. E, we obtain the results in Ta-
ble C.3, which represent a parameter-free prediction: the
current-quark mass and the two parameters that define
the interaction were fixed elsewhere [33], in a study of π-
and ρ-meson properties.
It is natural to ask for an estimate of the systematic

error in the values reported in Table C.3. As we saw
in Sec. III, the error might pessimistically be as much
as a factor of two. However, that is an extreme case be-
cause, as observed in the Introduction, one generally finds
that our treatment of the contact interaction produces
results for low-momentum-transfer observables that are
practically indistinguishable from those produced by RL
studies that employ more sophisticated interactions [31–
41]. It is therefore notable that analyses of hadron
physics observables using the RL truncation and one-loop
QCD renormalisation-group-improved (RGI) kernels for
the gap and bound-state equations produce results that
are typically within 15% of the experimental value [42].

4 In the isospin symmetric limit: δp
T
u := δT u = δnT d, δp

T
d := δT d =

δn
T
u.
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We therefore ascribe a relative error of 15% to the results
in Table C.3 so that our predictions are:

δTu δTd g
(0)
T g

(1)
T

ζH ≈ M 0.69(10) −0.14(2) 0.55(8) 0.83(12)
. (17)

One means by which to check our error estimate is
to repeat the calculations described herein using a mod-
ern RGI kernel [81] in the gap and bound-state equa-
tions. That has not yet been done but one may never-
theless infer what it might yield. Consider first Refs. [82],
which compute the dressed-quark-tensor vertex using a
RL-treatment of a QCD-based kernel: one observes that
the dressed-quark’s tensor charge is markedly suppressed;
namely, with a QCD-based momentum-dependent ker-
nel, a factor of approximately one-half appears on the
rhs of Eq. (C50). This DCSB-induced suppression would
tend to reduce the values in Eq. (17). On the other hand,
the use of a more sophisticated momentum-dependent
kernel in the bound-state equations increases the amount
of dressed-quark orbital angular momentum in the pro-
ton, an effect apparent in the reduction of the fraction
of proton helicity carried by dressed u- and d-quarks
when one shifts from a contact-interaction framework
to a QCD-kindred approach [56, 59]. Hence, the ten-
sor charges are determined by two competing effects, the
precise balance amongst which can only be revealed by
detailed calculations.
In this context, however, it is worth noting that simi-

lar DCSB-induced effects are observed in connection with
gA, the nucleon’s axial charge. The axial-charge of a
dressed-quark is suppressed [16, 83], owing to DCSB; but
that is compensated in the calculation of gA by dressed-
quark orbital angular momentum in the nucleon’s Fad-
deev wave-function, with the computed value of the nu-
cleon’s axial-charge being 20% larger than that of a
dressed-quark. The net effect is that a computation of
gA using the framework of Refs. [59] can readily produce
a result that is within 15% of the empirical value [16, 42].
This suggests that our error estimate is reasonable.
The predictions in Eq. (17) are quoted at the model

scale, whose value is explained in App. E. In order to
make a sensible comparison with estimates obtained in
modern simulations of lattice-regularised QCD, those re-
sults must be evolved to ζ2 = 2GeV. We therefore list
here the results obtained under leading-order evolution
to ζ2 = 2GeV, obtained via multiplication by the factor
in Eq. (F4):

δTu δTd g
(0)
T g

(1)
T

ζ2 0.55(8) −0.11(2) 0.44(7) 0.66(10)
. (18)

The error in Eq. (F4) does not propagate significantly
into these results.
Notably, the dominant contribution to δTu arises from

Diagram 1: tensor probe interacting with a dressed u-
quark with a scalar diquark as the bystander. The ten-
sor probe interacting with the axial-vector diquark, with
a dressed-quark as a spectator, Diagram 4, produces the

next largest piece. However, that is largely cancelled by
the sum of Diagrams 5 and 6: tensor probe causing a
transition between scalar- and axial-vector diquark cor-
relations within the proton whilst the dressed-quark is a
bystander. It is a large negative contribution for both
δTu and δTd: indeed, owing to a significant cancellation
between Diagrams 2 and 4 in the d-quark sector, which
describe the net result from quark+ axial-vector-diquark
contributions, the sum of Diagrams 5 and 6 provides al-
most the entire result for δTd.
A particularly important result is the impact of the

proton’s axial-vector diquark correlation. As determined
in App.C 3 f, with a symmetry-preserving treatment of
a contact interaction, δTd is only nonzero if axial-vector
diquark correlations are present. Significantly, in dynam-
ical calculations the strength of axial-vector diquark cor-
relations relative to scalar diquark correlations is a mea-
sure of DCSB [36]. In the absence of axial-vector diquark
correlations [Eqs. (C73), Eq. (F4)]

δT6 1u δT6 1d g
(0)
T6 1 g

(1)
T6 1

ζ2 0.61(9) 0 0.61(9) 0.61(9)
; (19)

i.e., δTd vanishes altogether and δTu is increased by 11%.
We expect that the influence of axial-vector diquark cor-
relations will be qualitatively similar in the treatment of
more sophisticated kernels for the gap and bound-state
equations. A hint in support of this expectation may
be drawn from the favourable comparison, depicted in
Fig. 3, between the predictions for δTu in Eq. (19), “4”,
and the result of Ref. [60], “5”. The latter employed a
proton and tensor-current that suppressed but did not
entirely eliminate the contribution from axial-vector di-
quark correlations. This same comparison also supports
the verity of our error estimate.
Additionally, it is valuable to note that the magnitude

of δTu is a direct probe of the strength of DCSB and
hence of the strong interaction at infrared momenta. This
could be anticipated, e.g., from Eqs. (C55), (C64), the ex-
pressions for Diagrams 1 and 4, which produce the dom-
inant positive contributions to δTu: both show a strong
numerator dependence on the dressed-quark mass, M ;
andM/m ≫ 1 is a definitive signal of DCSB. To quantify
the effect, we reduced αIR in the gap and Bethe-Salpeter
equations by 20% and recomputed all relevant quanti-
ties. This modification reduced the dressed-quark mass
by 33%: M = 0.368 → M< = 0.246GeV. Combined with
knock-on effects throughout all correlations and bound-
states, the 20% reduction in αIR produces [Table C.4 and
Eq. (F4)]

M → M< δTu δTd g
(0)
T g

(1)
T

ζ2 0.44 −0.12 0.32 0.56
, (20)

which expresses a 20% decrease in δTu. As we signalled,
the greatest impact of the cut in αIR and hence M is a re-
duction in the size of the contributions from Diagrams 1
and 4: the former describes the tensor probe interacting
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FIG. 3. Flavour separation of the proton’s tensor charge: “1”
– illustration of anticipated accuracy in planned JLab exper-
iment [20], with central values based on Eq. (2); “2” – results
in Eq. (2), drawn from Ref. [18]; “3” phenomenological esti-
mate in Ref. [84] “4” – prediction herein, Eq. (18); “5” – result
obtained herein with omission of axial-vector diquark correla-
tions, Eq. (19); “6-13” – estimates from Refs. [60, 85–91], re-
spectively. By way of context, we note that were the proton a
weakly-interacting collection of three massive valence-quarks
described by an SU(4)-symmetric spin-flavour wave function,
then [91] the quark axial and tensor charges are identical, so
that δTu = 4/3 and δT d = −1/3 at the model scale. These
values are located at “14”.

with a dressed-quark whilst a scalar diquark is a specta-
tor; and the latter involves a tensor probe exploring an
axial-vector diquark with a dressed-quark bystander.
As remarked in the Introduction, the tensor charge is a

defining intrinsic property of the proton and hence there
is great interest in its reliable experimental and theo-
retical determination. In Fig. 3 we therefore compare
our predictions with results from other analyses [60, 84–
91]. Evidently, of all available computations, our contact-
interaction predictions are in best agreement with the
phenomenological estimates in Eq. (2).
Another interesting point is highlighted by a com-

parison between our predictions and the values ob-
tained when the proton is considered to be a weakly-
interacting collection of three massive valence-quarks de-
scribed by an SU(4)-symmetric spin-flavour wave func-

tion [91]: δ
SU(4)
T u = 2eu and δ

SU(4)
T d = ed cf. our results,

Eq. (17), δTu = 0.52(2eu), δT d = 0.42(ed). The presence
of diquark correlations in the proton amplitude signifi-
cantly suppresses the magnitude of the tensor charge as-
sociated with each valence quark whilst simultaneously
increasing the ratio δTd/δTu by approximately 20%.

V. ELECTRIC DIPOLE MOMENTS

In typical extensions of the Standard Model, quarks
acquire an EDM [92, 93]; i.e., an interaction with the

photon that proceeds via a current of the form:

d̃q qγ5σµνq , (21)

where d̃q is the quark’s EDM and here we consider
q = u, d. The EDM of a proton containing quarks which
interact in this way is defined as follows:

〈P (p, σ)|J EDM
µν |P (p, σ)〉 = d̃p ū(p, σ)γ5σµνu(p, σ) , (22)

where

J EDM
µν (x) = d̃u ū(x)γ5σµνu(x)+ d̃d d̄(x)γ5σµνd(x) . (23)

At this point it is useful to recall a simple Dirac-matrix
identity:

γ5σµν =
1

2
εµναβσαβ , (24)

using which one can write

J EDM
µν =

1

2
εµναβ

[

d̃u ūσαβu+ d̃d d̄σαβd
]

. (25)

It follows that

〈P (p, σ)|J EDM
µν |P (p, σ)〉

=
1

2
εµναβ

[

d̃u δTu + d̃d δTd
]

ū(p, σ)σαβu(p, σ) (26)

=
[

d̃u δTu + d̃d δTd
]

ū(p, σ)γ5σµνu(p, σ) ; (27)

namely, the quark-EDM contribution to a proton’s EDM
is completely determined once the proton’s tensor charges
are known:

d̃p = d̃u δTu + d̃d δTd . (28)

With emerging techniques, it is becoming possible to
place competitive upper-limits on the proton’s EDM us-
ing storage rings in which polarized particles are exposed
to an electric field [94].
An analogous result for the neutron is readily inferred.

In the limit of isospin symmetry,

〈N(p, σ)|ūσµνu|N(p, σ)〉 = 〈P (p, σ)|d̄σµνd|P (p, σ)〉 ,
〈N(p, σ)|d̄σµνd|N(p, σ)〉 = 〈P (p, σ)|ūσµνu|P (p, σ)〉 ;

(29)

and hence

d̃n = d̃u δTd + d̃d δTu . (30)

Using the results in Eq. (17), we therefore have

d̃n = −0.14 d̃u + 0.69 d̃d , d̃p = 0.69 d̃u − 0.14 d̃d . (31)

It is worth contrasting Eqs. (31) with the results one
would obtain by assuming that the nucleon is merely a
collection of three massive valence-quarks described by
an SU(4)-symmetric spin-flavour wave function. Then,
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by analogy with magnetic moment computations, a pro-
cedure also made valid by Eq. (24):

d̃n = −1

3
d̃u +

4

3
d̃d , d̃p =

4

3
d̃u − 1

3
d̃d , (32)

values which are roughly twice the size that we obtain.
The impact of our predictions for the scalar and tensor

charges on BSM phenomenology may be elucidated, e.g.,
by following the analysis in Refs. [61, 95].

VI. CONCLUSION

We employed a confining, symmetry-preserving,
Dyson-Schwinger equation treatment of a vector⊗ vector
contact interaction in order to compute the dressed-
quark-core contribution to the nucleon σ-term and tensor
charges. The latter enabled us to determine the effect of
dressed-quark electric dipole moments (EDMs) on the
neutron and proton EDMs.
A characteristic feature of DSE treatments of ground-

state baryons is the predicted presence of strong scalar
and axial-vector diquark correlations within these bound-
states. Indeed, in some respects the baryons can be
viewed as weakly interacting dressed-quark+diquark
composites. The diquark correlations are active par-
ticipants in all scattering events and therefore serve to
modify the contribution to observables of the singly-
represented valence-quark relative to that of the doubly-
represented quark.
Regarding our analysis of the proton’s σ-term, we

estimate that with a realistic d-u mass splitting, the
singly-represented d-quark contributes 37% more than
the doubly-represented u-quark to that part of the pro-
ton mass which owes to explicit chiral symmetry breaking
[Eqs. (13), (14)].
Our predictions for the proton’s tensor charges, δTu,

δTd, are presented in Eq. (18). In this case, compared
to results obtained in simple quark models, diquark cor-
relations act to reduce the size of δTu, δT d by a factor
of two and increase the ratio δTd/δTu by roughly 20%.
Two additional observations are particularly significant.
First, the magnitude of δTu is a direct measure of the
strength of DCSB in the Standard Model, diminishing
rapidly with the difference between the scales of dynam-
ical and explicit chiral symmetry breaking. Second, δTd
measures the strength of axial-vector diquark correlations
in the proton, vanishing with P1+/P0+ ; i.e., the ratio of
axial-vector- and scalar-diquark interaction probabilities,
which is also a measure of DCSB.
Our analysis of the Faddeev equation employed a sim-

plifying truncation; viz., a variant of the so-called static
approximation. A natural next step is recalculation of
the tensor charges after eliminating that truncation. Sub-
sequently or simultaneously, one might also employ the
approaches of Refs. [59, 96] in order to obtain DSE pre-
dictions with a more direct connection to QCD.
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Appendix A: Contact interaction

Our treatment of the contact interaction begins with
the gap equation

S(p)−1 = iγ · p+m

+

∫

d4q

(2π)4
g2Dµν(p− q)

λa

2
γµS(q)

λa

2
Γν(q, p), (A1)

wherein m is the Lagrangian current-quark mass, Dµν is
the vector-boson propagator and Γν is the quark–vector-
boson vertex. We work with the choice

g2Dµν(p− q) = δµν
4παIR

m2
G

, (A2)

where mG = 0.8GeV is a gluon mass-scale typical of
the one-loop renormalisation-group-improved interaction
introduced in Ref. [81] and similar to that obtained in
numerical simulations of lattice-regularised QCD [97].
Notably, too, the fitted parameter αIR/π = 0.93 is
commensurate with contemporary estimates of the zero-
momentum value of a running-coupling in QCD [98, 99].
Equation (A2) is embedded in a rainbow-ladder (RL)
truncation of the DSEs, which is the leading-order in
the most widely used, global-symmetry-preserving trun-
cation scheme [71, 72]. This means

Γν(p, q) = γν (A3)

in Eq. (A1) and in the subsequent construction of the
Bethe-Salpeter kernels.
One may view the interaction in Eq. (A2) as being in-

spired by models of the Nambu–Jona-Lasinio type [100].
However, our treatment is atypical. Moreover, as noted
in the Introduction, one normally finds Eqs. (A2), (A3)
produce results for low-momentum-transfer observables
that are practically indistinguishable from those pro-
duced by more sophisticated interactions [31–41]. Using
Eqs. (A2), (A3), the gap equation becomes

S−1(p) = iγ ·p+m+
16π

3

αIR

m2
G

∫

d4q

(2π)4
γµ S(q) γµ , (A4)
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an equation in which the integral possesses a quadratic
divergence. When the divergence is regularised in a
Poincaré covariant manner, the solution is

S(p)−1 = iγ · p+M , (A5)

where M is momentum-independent and determined by

M = m+M
4αIR

3πm2
G

∫ ∞

0

ds s
1

s+M2
. (A6)

We define Eq. (A4) by writing [52]

1

s+M2
=

∫ ∞

0

dτ e−τ(s+M2)

→
∫ τ2

ir

τ2
uv

dτ e−τ(s+M2) (A7)

=
e−(s+M2)τ2

uv − e−(s+M2)τ2
ir

s+M2
, (A8)

where τir,uv are, respectively, infrared and ultraviolet
regulators. It is apparent from Eq. (A8) that a finite
value of τir =: 1/Λir implements confinement by ensuring
the absence of quark production thresholds [101]. Since
Eq. (A2) does not define a renormalisable theory, then
Λuv := 1/τuv cannot be removed but instead plays a dy-
namical role, setting the scale of all dimensioned quanti-
ties. Using Eq. (A7), the gap equation becomes

M = m+M
4αIR

3πm2
G

Ciu(M2) , (A9)

where,

Ciu(ω) = ω [Γ(−1, ωτ2uv)− Γ(−1, ωτ2ir)] , (A10)

with Γ(α, y) being the incomplete gamma-function.
At this point we also list expressions for the other reg-

ularised integrals that we employ herein:

Ciu
n (ω) = (−1)n

ωn

n!

dn

dωn
Ciu(ω) , (A11)

Diu(ω) =

∫

R

ds
s2

s+M2

= 2ω2 [Γ(−2, ωτ2uv)− Γ(−2, ωτ2ir)] , (A12)

E iu(ω) =

∫

R

ds
s3

s+M2

= 6ω3 [Γ(−3, ωτ2uv)− Γ(−3, ωτ2ir)] , (A13)

Ǧiu
1 (ω) =

∫

R

ds
s

(s+ ω)
3 =

1

2

d2

dω2
Ciu(ω) , (A14)

Ǧiu
2 (ω) =

∫

R

ds
s2

(s+ ω)
3

= C̄iu
1 (ω)− ω

2

d2

dω2
Ciu(ω) , (A15)

Ǧiu
3 (ω) =

∫

R

ds
s3

(s+ ω)3

= Ciu(ω)− 2 Ciu
1 (ω) + Ciu

2 (ω) , (A16)

Ǧiu
4 (ω) =

∫

R

ds
s4

(s+ ω)
3 = Diu(ω)

− 2ω Ciu(ω) + 3ω Ciu
1 (ω)− ω Ciu

2 (ω) , (A17)

Ǧiu
5 (ω) =

∫

R

ds
s5

(s+ ω)
3 = E iu(ω)− 2ωDiu(ω)

+ 3ω2 Ciu(ω)− 4ω2 Ciu
1 (ω) + ω2 Ciu

2 (ω) ,
(A18)

where {Gi = Ǧi/(16π
2), i = 1, . . . , 5}.

The parameters that specify our treatment of the con-
tact interaction were determined in a study of π- and
ρ-meson properties [33]; viz., αIR/π = 0.93 and (in GeV)

m = 0.007 , Λir = 0.240 Λuv = 0.905 , (A19)

using which, Eq. (A9) yields

M = 0.368GeV. (A20)

With the aim of exploring the impact of DCSB on
our results, herein we also consider results obtained with
αIR/π = 0.74, in which case

M → M< = 0.246GeV. (A21)

Appendix B: Faddeev Equation

We describe the dressed-quark-cores of the nucleon via
solutions of a Poincaré-covariant Faddeev equation [62].
The equation is derived following upon the observation
that an interaction which describes mesons also generates
quark-quark (diquark) correlations in the colour-3̄ chan-
nel [63]. The fidelity of the diquark approximation to the
quark-quark scattering kernel has been verified [67].
In RL truncation, the colour-antitriplet diquark corre-

lations are described by an homogeneous Bethe-Salpeter
equation that is readily inferred from the analogous me-
son equation; viz., following Ref. [63] and expressing the
diquark amplitude as

Γc
qq(k;P ) = Γqq(k;P )C†Hc, (B1)

with

{H1 = iλ7, H2 = −iλ5, H3 = iλ2} , ǫc1c2c3 = (Hc3)c1c2 ,
(B2)

where {λ2,5,7} are Gell-Mann matrices, then

Γqq(k;P ) = −8π

3

αIR

m2
G

∫

d4q

(2π)4
γµχqq(q;P )γµ , (B3)

where χqq(q;P ) = S(q)Γqq(P )S(q−P ) and Γqq is the di-
quark Bethe-Salpeter amplitude, which is independent of
the relative momentum when using a contact interaction
[33].
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Scalar and axial-vector quark-quark correlations are
dominant in studies of the nucleon:

Γ0+

qq (P ) = iγ5Eqq0(P ) +
1

M
γ5γ · PFqq0(P ) , (B4)

iΓ1+

qq µ(P ) = iγT
µEqq1(P ), (B5)

where Pµγ
T
µ = 0. These amplitudes are canonically nor-

malised:

Pµ = 2tr

∫

d4q

(2π)4
Γ0+

qq (−P )
∂

∂Pµ
S(q + P )Γ0+

qq (P )S(q);

(B6)
and

Pµ =
2

3
tr

∫

d4q

(2π)4
Γ1+

qq α(−P )
∂

∂Pµ
S(q + P )Γ1+

qq α(P )S(q).

(B7)
A J = 1

2 baryon is represented by a Faddeev amplitude

Ψ = Ψ1 +Ψ2 +Ψ3 , (B8)

where the subscript identifies the bystander quark and,
e.g., Ψ1,2 are obtained from Ψ3 by a cyclic permutation
of all the quark labels. We employ a simple but realistic
representation of Ψ. The spin- and isospin- 12 nucleon is
a sum of scalar and axial-vector diquark correlations:

Ψ3(pi, αi, τi) = N 0+

3 +N 1+

3 , (B9)

with (pi, αi, τi) the momentum, spin and isospin labels
of the quarks constituting the bound state, and P =
p1 + p2 + p3 the system’s total momentum.
The scalar diquark piece in Eq. (B9) is

N 0+

3 (pi, αi, τi) = [Γ0+(
1

2
p[12];K)]τ1τ2α1α2

×∆0+(K) [S(ℓ;P )u(P )]τ3α3
, (B10)

where: the spinor satisfies Eq. (G4), with M the mass
obtained by solving the Faddeev equation, and it is also a
spinor in isospin space with ϕ+ = col(1, 0) for the charge-
one state and ϕ− = col(0, 1) for the neutral state; K =
p1 + p2 =: p{12}, p[12] = p1 − p2, ℓ := (−p{12} + 2p3)/3;

∆0+(K) =
1

K2 +m2
qq

0+

(B11)

is a propagator for the scalar diquark formed from quarks
1 and 2, with mqq

0+
the mass-scale associated with this

correlation, and Γ0+ is the canonically-normalised Bethe-
Salpeter amplitude described above; and S, a 4×4 Dirac
matrix, describes the relative quark-diquark momentum
correlation.
The axial-vector component in Eq. (B9) is

N 1+(pi, αi, τi) = [ti Γ1+

µ (
1

2
p[12];K)]τ1τ2α1α2

×∆1+

µν (K) [Ai
ν(ℓ;P )u(P )]τ3α3

, (B12)

where the symmetric isospin-triplet matrices are

t
+ =

1√
2
(τ0+τ3) , t0 = τ1 , t− =

1√
2
(τ0−τ3) , (B13)

and the other elements in Eq. (B12) are straightforward
generalisations of those in Eq. (B10) with, e.g.,

∆1+

µν (K) =
1

K2 +m2
qq

1+

(

δµν +
KµKν

m2
qq

1+

)

. (B14)

One can now write the Faddeev equation for Ψ3:
[

S(k;P ) u(P )
Ai

µ(k;P ) u(P )

]

= − 4

∫

d4ℓ

(2π)4
M(k, ℓ;P )

[

S(ℓ;P ) u(P )
Aj

ν(ℓ;P ) u(P )

]

. (B15)

The kernel in Eq. (B15) is

M(k, ℓ;P ) =

[

M00 (M01)
j
ν

(M10)
i
µ (M11)

ij
µν

]

, (B16)

with

M00 = Γ0+(kq − ℓqq/2; ℓqq)S
T(ℓqq − kq)

× Γ̄0+(ℓq − kqq/2;−kqq)S(ℓq)∆
0+(ℓqq) , (B17)

where: ℓq = ℓ, kq = k, ℓqq = −ℓ+ P , kqq = −k + P , the
superscript “T” denotes matrix transpose, Γ̄ is defined in
Eq. (G9); and

(M01)
j
ν = t

j Γ1+

µ (kq − ℓqq/2; ℓqq)S
T(ℓqq − kq)

× Γ̄0+(ℓq − kqq/2;−kqq)S(ℓq)∆
1+

µν (ℓqq), (B18)

(M10)
i
µ = Γ0+(kq − ℓqq/2; ℓqq)S

T(ℓqq − kq) t
i

× Γ̄1+

µ (ℓq − kqq/2;−kqq)S(ℓq)∆
0+(ℓqq), (B19)

(M11)
ij
µν = t

j Γ1+

ρ (kq − ℓqq/2; ℓqq)S
T(ℓqq − kq) t

i

× Γ̄1+

µ (ℓq − kqq/2;−kqq)S(ℓq)∆
1+

ρν (ℓqq). (B20)

The dressed-quark propagator is described in Sec. A
and the diquark propagators are given in Eqs. (B11),
(B14), so the Faddeev equation is complete once the
diquark Bethe-Salpeter amplitudes are computed from
Eqs. (B3) – (B7). However, we follow Ref. [34] and em-
ploy a simplification of the kernel; viz., in the Faddeev
equation, the quark exchanged between the diquarks is
represented as

ST(k) → g2N
M

, (B21)

where gN = 1.18. This is a variant of the so-called “static
approximation,” which itself was introduced in Ref. [102]
and has subsequently been used in studying a range of
nucleon properties [103]. In combination with diquark
correlations generated by Eq. (A2), whose Bethe-Salpeter
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amplitudes are momentum-independent, Eq. (B21) gen-
erates Faddeev equation kernels which themselves are
momentum-independent. The dramatic simplifications
which this produces are the merit of Eq. (B21). Never-
theless, we are currently exploring the veracity of this
truncation.
The general forms of the matrices S(ℓ;P ) and

Ai
ν(ℓ;P ), which describe the momentum-space correla-

tion between the quark and diquark in the nucleon, are
described in Refs. [104, 105]. However, with the interac-
tion described in Sec. A augmented by Eq. (B21), they
simplify greatly; viz.,

S(P ) = s(P )1 , (B22a)

iAj
µ(P ) = aj1(P )γµγ5 + iaj2(P )γ5P̂µ , j = +, 0 , (B22b)

with the scalars s, ai1,2 independent of the relative quark-

diquark momentum and P̂ 2 = −1.
The mass of the ground-state nucleon is then deter-

mined by a 5×5 matrix Faddeev equation; viz., Ψ = KΨ,
with the eigenvector defined via

Ψ(P )T =
[

s(P ) a+1 (P ) a01(P ) a+2 (P ) a02(P )
]

, (B23)

and the kernel (k± = ±√
2)

K(P ) =














K00
ss k− K01

sa1
K01

sa1
k− K01

sa2
K01

sa2

k− K10
a1s 0 k+ K11

a1a1
0 k+ K11

a1a2

K10
a1s k+ K11

a1a1
K11

a1a1
k+ K11

a1a2
K11

a1a2

k− K10
a2s 0 k+ K11

a2a1
0 k+ K11

a2a2

K10
a2s k+ K11

a2a1
K11

a2a1
k+ K11

a2a2
K11

a2a2















,

(B24)

whose entries are given explicitly in Eqs. (B20), (B21) of
Ref. [35]. Given the structure of the kernel, the eigenvec-
tors exhibit the pattern:

a+i = −
√
2a0i , i = 1, 2. (B25)

Using the parameters and results described in and
connection with Eqs. (A19), (A20), the diquark Bethe-
Salpeter equations produce the following diquark masses
(in GeV)

mqq0+ = 0.78 , mqq1+ = 1.06 , (B26)

and canonically normalised amplitudes:

Eqq0+ = 2.742 , Fqq0+ = 0.314 , Eqq1+ = 1.302 . (B27)

With this input to the Faddeev equation, one obtains [34–
36] mN = 1.14GeV and the following unit-normalised
eigenvector5

s(P ) a+1 (P ) a01(P ) a+2 (P ) a02(P )
0.88 −0.38 0.27 −0.065 0.046

. (B28)

5 Eqq0+ , Fqq0+ listed in Table I(A) of Ref. [35] are incorrect. The
values listed in Eq. (B27) were actually used therein.

As explained elsewhere [34–36], the mass is greater than
that determined empirically because our Faddeev equa-
tion kernel omits resonant contributions; i.e., does not
contain effects that may phenomenologically be associ-
ated with a meson cloud. It is for this reason that our
Faddeev equation describes the nucleon’s dressed-quark
core. Notably, meson cloud effects typically work to re-
duce a hadron’s mass [106].
Using the reduced coupling value described in connec-

tion with Eq. (A21), the diquark Bethe-Salpeter equa-
tions produce the following diquark masses (in GeV)

mqq0+ = 0.70 , mqq1+ = 0.98 , (B29)

and canonically normalised amplitudes:

Eqq0+ = 2.165 , Fqq0+ = 0.139 , Eqq1+ = 1.093 . (B30)

With this input to the Faddeev equation, one obtains
mN = 1.02GeV and the following unit-normalised eigen-
vector

s(P ) a+1 (P ) a01(P ) a+2 (P ) a02(P )
0.88 −0.38 0.27 −0.065 0.046

. (B31)

Plainly, a 20% cut in the infrared value of the coupling
diminishes the strength of DCSB by 33%. This feeds into
reductions of the diquark Bethe-Salpeter amplitudes and
a 10% cut in the nucleon mass. On the other hand, the
nucleon’s Faddeev amplitude, which describes its inter-
nal structure, is almost unchanged. The same pattern is
seen in studies of the temperature dependence of nucleon
properties [39].

Appendix C: Interaction Currents

In order to translate the diagrams drawn in this Ap-
pendix into formulae, it is helpful to bear the following
points in mind.

(1) In front of a closed fermion trace; i.e., a vertex, one
should, as usual, include a factor of (−1).

(2a) States entering a diagram are described by the am-
plitudes

Γ0+

qq (P ) = γ5 (iEqq0+ +
1

M
γ · P Fqq0+ ) , (C1a)

Γ1+

qqµ(P ) = iEqq1+γ
T
µ , (C1b)

S(P ) = s 1 , (C1c)

Aj
µ(P ) = aj1γµγ5 + iaj2γ5P̂µ . (C1d)

(N.B. In this Appendix we have absorbed the “i” of

Eqs. (B5), (B22) into the labels Γ1+

qqµ(P ) and Aj
µ.)

(2b) States leaving a diagram are described by the am-
plitudes

Γ0+

qq (−P ) = γ5 (iEqq0+ − 1

M
γ · P Fqq0+) , (C2a)
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Γ1+

qqµ(−P ) = iEqq1+γ
T
µ , (C2b)

S(−P ) = s 1 =: S̄ , (C2c)

Aj
µ(−P ) = aj1γ5γµ + iaj2γ5P̂µ . (C2d)

In these equations,

γT
µ = γνPµν(P ) , Pµν(P ) = δµν +

PµPν

m2
qq1+

. (C3)

(3) In the traces arising from a closed fermion loop, we
have: ējN̄ for charge form factors, where ē0 = 1

3e, ē+ =
4
3e, where e is the positron charge; and 2N̄ for scalar and

tensor form factors. Note that N̄ = 2 for diquark initial
and final states.

1. Electromagnetic Current

In computing the charge form factor of any hadron, one
must employ the dressed-quark-photon vertex [107, 108].
That vertex may be obtained by solving an inhomo-
geneous Bethe-Salpeter equation whose unrenormalised
form is determined by the inhomogeneous term γµ. The
complete solution for the contact-interaction’s vector ver-
tex in RL truncation can be found in Refs. [32, 37]; but
that result is not necessary herein because we only re-
quire the result at Q2 = 0, which is fixed by the Ward
identity. With the contact interaction, that means

Vq
µ(Q)

Q2=0
= eqγµ , (C4)

where eq is the quark’s electric charge.
The Q2 = 0 value of the elastic electromagnetic pro-

ton current determines the canonical normalisation of
the nucleon’s Faddeev amplitude [109]. Given the Fad-
deev equation in Fig. 2, the complete result is obtained
by summing the six one-loop diagrams that we now de-
scribe. There would be more diagrams if the interaction
were momentum dependent [109].

a. Diagram 1 – em

The first contribution is depicted in Fig. C.1, which
translates into the following expression

eQp,1Λ
+(p)γµΛ

+(p) = N Λ+(p) S̄
∫

d4ℓ

(2π)4

×S(ℓ+ p)euγµS(ℓ+ p)∆0+(−ℓ)S Λ+(p) (C5)

= 2N Λ+(p) s2
∫ 1

0

dx (1− x)

∫

d4ℓ

(2π)4

{iγ · (ℓ+ xp)−M} euγµ {iγ · (ℓ+ xp)−M}
[ℓ2 − x(1 − x)m2

N + (1− x)M2 + xm2
qq0 ]

3
Λ+(p) ,

(C6)

ℓ+ p

p p

−ℓ

0
+

ℓ+ p

FIG. C.1. Diagram 1: The probe interacts with a quark
within the proton and the 0+ diquark is a bystander.

where here and hereafter we (often) suppress the parity-+
superscript on the diquark label, S is the scalar-diquark
piece of the Faddeev amplitude and N is the (as yet
undetermined) canonical normalisation constant for the
Faddeev amplitude that ensures that the proton charge
is unity; i.e., Qp = 1.

Applying the projection operator

Pµ =
1

2
γµ , (C7)

and performing the trace, one obtains

eQp,1 = eu N s2
∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

ℓ2 + 2(M + xmN )2

[ℓ2 − x(1 − x)m2
N + (1− x)M2 + xm2

qq0 ]
3

(C8)

→ eu N s2
∫ 1

0

dx (1 − x)

{

Giu
2

(

x(x − 1)m2
N

+(1− x)M2 + xm2
qq0

)

+ 2(M + xmN )2

×Giu
1

(

x(x − 1)m2
N + (1− x)M2 + xm2

qq0

)

}

,(C9)

where Giu
1 (ω), Giu

2 (ω) are defined in Eqs. (A14), (A15),
respectively, and eu = 2

3e. This expression evaluates to

eQp,1 = D1 eu N
= 0.0182622 euN = 0.0121748 eN . (C10)

b. Diagram 2 – em

The second contribution is almost identical to that de-
picted in Fig. C.1: the only change being that in this
instance a 1+ diquark is the bystander. However, ow-
ing to isospin symmetry, which we assume herein, and
Eq. (B25), this term yields

eQp,2 = (2 ed + eu)D
0
2 N

= (2 ed + eu) 0.00195845N = 0 , (C11)

where D0
2 is the contribution obtained with a {ud}-

diquark spectator.
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ℓ+ p

p p−ℓ

ℓ+ p

0
+

0
+

FIG. C.2. Diagram 3: The probe interacts with the 0+ di-
quark within the proton and the dressed-quark is a bystander.

c. Diagram 3 – em

The third contribution is depicted in Fig. C.2, which
represents the following expression

eQp,3 Λ
+(p)γµΛ

+(p)

= N Λ+(p) S̄
∫

d4ℓ

(2π)4
∆0+(ℓ+ p)

× V0
µ(ℓ+ p)∆0+(ℓ+ p)S(−ℓ)S Λ+(p) (C12)

= −2N Λ+(p) s2
∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

× iγ · (−ℓ+ (1− x)p)−M

[ℓ2 − x(1 − x)m2
N + (1− x)m2

qq0 + xM2]3

× V0
µ(ℓ+ xp) Λ+(p) . (C13)

The vertex is given by (N̄ = 2)

V0
µ(P ) = −ē0N̄

∫

d4q

(2π)4
tr
{

S(q + P/2)γµS(q + P/2)

× Γ0+

qq (P )S(q − P/2)Γ̄0+

qq (−P )
}

(C14)

= 2ē0N̄

∫ 1

0

dx (1 − x)

∫

d4q

(2π)4

× tr
{

[iγ · (q + xP )−M ] γµ [iγ · (q + xP )−M ]

× γ5

(

iEqq0 +
1

M
γ · P Fqq0

)

× [iγ · (q + (x− 1)P )−M ]

× γ5

(

iEqq0 −
1

M
γ · P Fqq0

)}

×
(

q2 − x(1 − x)m2
qq0 +M2

)−3

, (C15)

where, again, ē0 = 1
3e; and P is the incoming as well

as the outgoing momentum of the 0+ diquark, owing to
our need to only consider vanishing momentum transfer
Q → 0, and we choose P to be an on-shell momentum.
Applying the projector in Eq. (C7) and evaluating the
trace, one obtains

eQp,3 = D3 ē0 N
= 0.008733364 ē0N = 0.00291112 eN . (C16)

d. Diagram 4 – em

The fourth contribution is almost identical to that de-
picted in Fig. C.2: the only change being that in this
instance the 1+ diquark is probed, so that one has

eQp,4 Λ
+(p)γµΛ

+(p)

= N
∑

j∈0,+

Λ+(p)Aj
α(−p)

∫

d4ℓ

(2π)4
∆1+

αα′(ℓ+ p)

× V j
α′µβ′(ℓ + p)∆1+

β′β(ℓ+ p)S(−ℓ)Aj
β(p) Λ

+(p) (C17)

= −2N
∑

j∈0,+

Λ+(p) γ5

(

aj1γα + iaj2p̂α

)

∫ 1

0

dx (1 − x)

×
∫

d4ℓ

(2π)4
iγ · (−ℓ+ (1− x)p)−M

[ℓ2 − x(1− x)m2
N + (1 − x)m2

qq1 + xM2]3

× Pαα′(ℓ+ xp)Vj
α′µβ′(ℓ+ xp)Pβ′β(ℓ + xp)

×
(

aj1γβ + iaj2p̂β

)

γ5 Λ
+(p) . (C18)

The vertex is (N̄ = 2)

Vj
αµβ(P ) = −ējN̄

∫

d4q

(2π)4
tr
{

S(q + P/2)γµS(q + P/2)

× Γ1+

qqβ(P )S(q − P/2)Γ̄1+

qqα(−P )
}

(C19)

= −2ējN̄E2
qq1

∫ 1

0

dx (1− x)

∫

d4q

(2π)4

× tr{[iγ · (q + xP )−M ] γµ [iγ · (q + xP )−M ]

× γT
β (P ) [iγ · (q + (x− 1)P )−M ] γT

α (P )}
× [q2 − x(1 − x)m2

qq1 +M2]−3 , (C20)

where, as noted above, ē0 = 1
3e and ē+ = 4

3e, and P is
the incoming as well as outgoing momentum of the 1+ di-
quark. Applying the projector in Eq. (C7) and evaluating
the trace, one obtains

eQp,4 = (2 ē+ + ē0)D
0
4 N

= (2 ē+ + ē0) 0.00090133N = 0.002704 eN , (C21)

where D0
4 is the contribution from the {ud}-diquark.

e. Diagram 5 – em

This contribution is depicted in Fig.C.3. In this case

Qp,5eΛ
+(p)γµΛ

+(p) = 0 , (C22)

because the vertex vanishes at zero momentum transfer;
i.e.,

Vµα = 0 . (C23)

Consequently

Qp,5 = 0 . (C24)
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ℓ+ p

p p−ℓ

ℓ+ p

α

0
+

1
+

FIG. C.3. Diagram 5: The probe is absorbed by a 0+-diquark,
which is thereby transformed into a 1+ diquark.

f. Diagram 6 – em

This is the conjugate contribution to that depicted in
Fig. C.3; namely, a 1+ diquark absorbs the probe and is
thereby transformed into a 0+ diquark. In a symmetry
preserving treatment of any reasonable interaction, this
contribution is identical to that produced by Diagram 5.

g. Current Conservation

If a truly Poincaré invariant regularisation is employed,
then one has Ward identities relating the charges in
Eqs. (C10), (C21) and (C11), (C16)

D1 = D3 , D
0
2 = D0

4 , (C25)

which ensure: simple additivity of the quark and diquark
electric charges, and thereby guarantee a unit-charge
isospin=(+1/2) baryon through a single rescaling factor
[109]; and a neutral isospin=(−1/2) baryon without fine
tuning. Owing to the cutoffs we have introduced, how-
ever, these identities are violated: Eq. (C10) cf. (C16),
Eq. (C11) cf. (C21). Following Ref. [35], we ameliorate
this flaw by enforcing the Ward identities:

D1,3 → D13 = (D1 +D3)/2 = 0.01350 , (C26a)

D2,4 → D24 = 3(D0
2 +D0

4)/2 = 0.00429 . (C26b)

This corresponds to introducing a rescaling factor for
each of the diagrams involved: Di → κiDi, κ1,3 =
D13/D1,3, κ2,4 = D24/D2,4. Diagrams 5 and 6 are unaf-
fected because they are equal and do not contribute to a
baryon’s charge.

h. Canonical Normalisation

The results computed from all diagrams considered in
connection with the proton’s charge are collected in Ta-
ble C.1. As noted above, the canonical normalisation is
fixed by requiring

Qp =
6
∑

i=1

Qp,i = 1 , (C27)

from which it follows that

N =
1

0.01777
= 56.27 . (C28)

Qp,i/N Qκ
p,i/N

Diagram 1 0.01217 0.0090

Diagram 2 0 0

Diagram 3 0.00291 0.00450

Diagram 4 0.00270 0.00426

Diagram 5 0

Diagram 6 0

Sum 0.0178 0.0178

TABLE C.1. Column 1: Summary of the results computed
from all diagrams considered in connection with the proton’s
charge. Column 2: Results scaled as described in Sec. C 1 g.

2. Scalar Current

When computing the scalar charge of any hadron, one
must employ the dressed-quark-scalar vertex. That ver-
tex, too, is obtained by solving an inhomogeneous Bethe-
Salpeter equation: in this case, the unrenormalised form
is determined by the inhomogeneous term 1. The com-
plete solution for the contact-interaction’s scalar vertex
in RL truncation can be found in Refs. [37], and atQ2 = 0
this yields:

Vq
1
=

1

1 +
4αIR

3πm2
G

(

2 Ciu
1 (M2)− Ciu(M2)

)
1 = 1.37 1 ,

(C29)
where M is the dressed-quark mass in Eq. (A20).

As a check on this result, we note again that since the
vertex is only required at Q2 = 0, one can appeal to a
Ward identity [110], which takes the form

V1(Q)
Q2=0
= 1

∂M

∂m
(C30)

when the contact interaction is used. Employing the re-
sults from which Ref. [34] was prepared, this expression,
too, yields the numerical value in Eq. (C29).

The nucleon’s scalar charge is also known as the
nucleon σ-term; and using our implementation of the
contact interaction, one need consider only relevant
analogues of the six diagrams described explicitly in
App.C 1. In this case, Diagrams 1–4 provide a nonzero
contribution and the complete result is obtained from the
sum.

a. Diagram 1 – scalar

This is the contribution produced by the scalar probe
interacting with a the dressed-quark whilst the 0+ [ud]-
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diquark is a spectator:

σ̂q,1 Λ
+(p)1Λ+(p) = N κ

1 Λ+(p) S̄
∫

d4ℓ

(2π)4
S(ℓ+ p)

× Vq
1
S(ℓ+ p)∆0+(−ℓ)S Λ+(p) (C31)

= 2N κ
1 Λ+(p) s2

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

× {iγ · (ℓ+ xp)−M} Vq
1
{iγ · (ℓ + xp)−M}

[ℓ2 − x(1 − x)m2
N + (1− x)M2 + xm2

qq0 ]
3
Λ+(p) ,

(C32)

where N κ
1 = κ1N , with κ1 defined in connection with

Eqs. (C26), N given in Eq. (C28). Applying the projector

P =
1

2
1 , (C33)

and evaluating the trace, one obtains

σ̂u,1 = σ̂q,1 = 0.309 , σ̂d,1 = 0 . (C34)

It was plain from the outset that this diagram would
only produce a contribution to σ̂u,1 because the d-quark
is sequestered inside the scalar diquark.

b. Diagram 2 – scalar

In this case we have the scalar probe interacting with
the dressed-quark and the 1+ diquarks being spectators:

σ̂qj,2 Λ
+(p)1Λ+(p)

= N κ
2 Λ+(p)Aj

α(−p)

∫

d4ℓ

(2π)4
S(ℓ+ p)Vq

1

× S(ℓ+ p)∆1+

αβ(−ℓ)Aj
β(p) Λ

+(p) (C35)

= 2N κ
2 Λ+(p) γ5

(

aj1γα + iaj2p̂α

)

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

× {iγ · (ℓ+ xp)−M} Vq
1
{iγ · (ℓ+ xp)−M}

[ℓ2 − x(1− x)m2
N + (1− x)M2 + xm2

qq1 ]
3

× Pαβ(ℓ − (1− x)p)
(

aj1γβ + iaj2p̂β

)

γ5 Λ
+(p). (C36)

Applying the projector in Eq. (C33) and evaluating the
trace, one finds, owing to Eq. (B25),

σ̂u,2 = σ̂q0,2 = 0.0318 , σ̂d,2 = σ̂q+,2
= 0.0636 = 2σ̂u,2 .

(C37)

c. Diagram 3 – scalar

The third diagram describes the scalar probe inter-
acting with the 0+ [ud]-diquark and the dressed-quark
acting merely as an onlooker:

σ̂q,3 Λ
+(p)1Λ+(p) = N κ

3 Λ+(p) S̄
∫

d4ℓ

(2π)4
∆0+(ℓ + p)

× V0
1
(ℓ+ p)∆0+(ℓ+ p)S(−ℓ)S Λ+(p) (C38)

= −2N κ
3 s2

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4
Λ+(p)

× [iγ · (−ℓ+ (1− x)p) −M ]V0
1
(ℓ + xp) Λ+(p)

[ℓ2 − x(1 − x)m2
N + (1− x)m2

qq0 + xM2]3
. (C39)

The vertex is given by (N̄ = 2)

V0
1
(P ) = −2N̄

∫

d4q

(2π)4
tr
{

S(q + P/2)Vq
1
S(q + P/2)

× Γ0+

qq (P )S(q − P/2)Γ̄0+

qq (−P )
}

(C40)

= 4N̄

∫ 1

0

dx (1 − x)

∫

d4q

(2π)4
tr
{

[iγ · (q + xP )−M ]

× Vq
1
[iγ · (q + xP )−M ] γ5

(

iEqq0 +
1

M
γ · P Fqq0

)

× [iγ · (q + (x− 1)P )−M ] γ5

(

iEqq0

− 1

M
γ · P Fqq0

)}(

q2 − x(1− x)m2
qq0 +M2

)−3

.

(C41)

Applying the projector in Eq. (C33) and evaluating the
trace, one obtains

σ̂u,3 =
σ̂q,3

2
= 1.0419 = σ̂d,3 . (C42)

d. Diagram 4 – scalar

The fourth diagram describes the scalar probe interact-
ing with a 1+ {uu}- or {ud}-diquark where the dressed-
quark acts merely as an onlooker:

σ̂qj,4 Λ
+(p)1Λ+(p)

= N κ
4 Λ+(p)Aj

α(−p)

∫

d4ℓ

(2π)4
∆1+

αα′(ℓ + p)V1

α′β′(ℓ + p)

×∆1+

β′β(ℓ + p)S(−ℓ)Aj
β(p) Λ

+(p) (C43)

= −2N κ
4 Λ+(p) γ5

(

aj1γα + iaj2p̂α

)

∫ 1

0

dx (1− x)

×
∫

d4ℓ

(2π)4
iγ · (−ℓ+ (1− x)p)−M

[ℓ2 − x(1 − x)m2
N + (1− x)m2

qq1 + xM2]3

× Pαα′(ℓ + xp)V1

α′β′(ℓ+ xp)Pβ′β(ℓ + xp)

×
(

aj1γβ + iaj2p̂β

)

γ5 Λ
+(p) . (C44)

The vertex is given by (N̄ = 2)

V1

αβ(P ) = −2N̄

∫

d4q

(2π)4
tr
{

S(q + P/2)Vq
1
S(q + P/2)

× Γ1+

qqβ(P )S(q − P/2)Γ̄1+

qqα(−P )
}

(C45)

= −4N̄E2
qq1

∫ 1

0

dx (1 − x)

∫

d4q

(2π)4
tr{[iγ · (q + xP )
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σ̂u σ̂d σ [MeV]

Diagram 1 0.309 0 2.163

Diagram 2 0.032 0.063 0.666

Diagram 3 1.042 1.042 14.587

Diagram 4 0.465 0.094 3.914

Diagram 5 0 0 0

Diagram 6 0 0 0

Total Result 1.85 1.20 21.33

TABLE C.2. Summary of the results computed from all
diagrams considered in connection with the proton’s scalar
charge.

−M ]Vq
1
[iγ · (q + xP )−M ] γT

β [iγ · (q + (x− 1)P )

−M ] γT
α }[q2 − x(1 − x)m2

qq1 +M2]−3 (C46)

→ 16MN̄E2
qq1V

q
1
Pαβ(P )

∫ 1

0

dx (1 − x)

×
(

M2 − x(x− 2)m2
qq1

)

Giu
1

(

x(x − 1)m2
qq1 +M2

)

,

(C47)

where P is again both the incoming and outgoing mo-
mentum of the 1+ diquark.
Applying the projector in Eq. (C33) and evaluating the

trace, one finds

σ̂u,4 =
σ̂q0,4

2
+ σ̂q+,4

= 0.465 , σ̂d,4 =
σ̂q0,4

2
= 0.0938 .

(C48)

e. Proton σ-term

The results obtained from all diagrams considered in
connection with the proton’s scalar charge are collected
in Table C.2. The proton σ-term is

σN = m

6
∑

i=1

[σ̂u,i + σ̂d,i] = 21.33MeV. (C49)

In the isospin symmetric limit, the neutron σ-term is
identical.

3. Tensor Current

When computing the tensor charge of any hadron,
one must employ the dressed-quark-tensor vertex. How-
ever, as explained elsewhere [34], any dressing of the
tensor vertex must depend linearly on the relative mo-
mentum [111] and such dependence is impossible using a
symmetry-preserving regularisation of a vector⊗ vector
contact interaction. Hence, in our case, the quark-tensor
vertex is unmodified from its bare form; viz.,

Vq
µν = σµν . (C50)

Naturally, when computing the proton’s tensor charge
using our implementation of the contact interaction, one
need only consider relevant analogues of the six dia-
grams described explicitly in App. C 1. In this case,
Diagrams 1,2,4,5,6 provide nonzero contributions. Di-
agram 3 yields zero because Poincaré invariance entails
that a scalar diquark cannot possess a tensor charge.

a. Diagram 1 – tensor

As usual, we first consider the case of the tensor
probe interacting with the dressed-quark and the 0+ [ud]-
diquark being a spectator:

δ1qΛ
+(p)σµνΛ

+(p) = N κ
1 Λ+(p) S̄

∫

d4ℓ

(2π)4
S(ℓ+ p)σµν

× S(ℓ+ p)∆0+(−ℓ)S Λ+(p) (C51)

= 2N s2
∫ 1

0

dx (1− x)

∫

d4ℓ

(2π)4
Λ+(p) {iγ · (ℓ+ xp)

−M} σµν {iγ · (ℓ + xp)−M}Λ+(p)

× [ℓ2 − x(1 − x)m2
N + (1− x)M2 + xm2

qq0 ]
−3 .

(C52)

Applying the projector

Pµν =
1

12
σµν , (C53)

and evaluating the trace, one obtains

δ1q = 2N1 s
2

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

× (M + xmN )2

[ℓ2 − x(1 − x)m2
N + (1− x)M2 + xm2

qq0 ]
3

(C54)

→ 2N s2
∫ 1

0

dx (1 − x)(M + xmN )2

× Giu
1

(

x(x − 1)m2
N + (1− x)M2 + xm2

qq0

)

,

(C55)

where Giu
1 (ω) is defined in Eq. (A14). As a result we find

δT1u = δ1q = 0.581 , δT1d = 0 . (C56)

b. Diagram 2 – tensor

When the tensor probe interacts with the dressed-
quark and the 1+ diquarks are spectators, one has

δ2qj Λ
+(p)σµνΛ

+(p)

= N κ
2 Λ+(p)Aj

α(−p)

∫

d4ℓ

(2π)4
S(ℓ+ p)σµν

× S(ℓ+ p)∆1+

αβ(−ℓ)Aj
β(p) Λ

+(p) (C57)
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= 2N κ
2 Λ+(p) γ5

(

aj1γα + iaj2p̂α

)

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

× {iγ · (ℓ+ xp)−M} σµν {iγ · (ℓ+ xp)−M}
[ℓ2 − x(1 − x)m2

N + (1− x)M2 + xm2
qq1 ]

3

× Pαβ(ℓ − (1− x)p)
(

aj1γβ + iaj2p̂β

)

γ5Λ
+(p). (C58)

Applying the projector in Eq. (C53) and evaluating the
resulting trace, one finds, owing to Eq. (B25):

δT2d = δ2q+ = 2δ2q0 = −0.0359 = 2δT2u . (C59)

c. Diagram 4 – tensor

The next nonzero contribution arises from the tensor
probe interacting with a 1+ {uu}- or {ud}-diquark where
the dressed-quark acts merely as an onlooker:

δ4qj Λ
+(p)σµνΛ

+(p)

= N κ
4 Λ+(p)Aj

α(−p)

∫

d4ℓ

(2π)4
∆1+

αα′ (ℓ+ p)V2
α′µνβ′(ℓ + p)

×∆1+

β′β(ℓ+ p)S(−ℓ)Aj
β(p) Λ

+(p) (C60)

= −2N κ
4 Λ+(p) γ5

(

aj1γα + iaj2p̂α

)

∫ 1

0

dx (1 − x)

∫

d4ℓ

(2π)4

× iγ · (−ℓ+ (1− x)p)−M

[ℓ2 − x(1 − x)m2
N + (1− x)m2

qq1 + xM2]3

× Pαα′(ℓ + xp)V2
α′µνβ′(ℓ + xp)

× Pβ′β(ℓ + xp)
(

aj1γβ + iaj2p̂β

)

γ5 Λ
+(p) . (C61)

The vertex is (N̄ = 2)

V2
αµνβ(P ) = −2N̄

∫

d4q

(2π)4
tr
{

S(q + P/2)σµνS(q + P/2)

× Γ1+

qqβ(P )S(q − P/2)Γ̄1+

qqα(−P )
}

(C62)

= −4N̄E2
qq1

∫ 1

0

dx (1− x)

∫

d4q

(2π)4
tr

[

[iγ · (q + xP )

−M ]σµν [iγ · (q + xP )−M ] γT
β

× [iγ · (q + (x− 1)P )−M ] γT
α

]

× [q2 − x(1− x)m2
qq1 +M2]−3 (C63)

→ 16iMN̄E2
qq1

(

Pαµ(P )Pβν(P )− Pαν(P )Pβµ(P )
)

×
∫ 1

0

dx (1 − x)
{(

M2 − x(x− 2)m2
qq1

)

Giu
1 (ω)

+ Giu
2

(

x(x − 1)m2
qq1 +M2

)}

(C64)

where P is the incoming and outgoing momentum of the
1+ diquark, and Giu

1 (ω), Giu
2 (ω) are defined in Eqs. (A14),

(A15). Applying the projector in Eq. (C53) and evaluat-
ing the resulting trace, one finds

δT4u =
δ4q0
2

+ δ4q+ = 0.292 , δT4d =
δ4q0
2

= 0.0589 .

(C65)

d. Diagram 5 – tensor

This is the contribution to the tensor charge arising
when a scalar diquark absorbs the tensor probe and is
thereby transformed into a 1+ diquark. Naturally, in a
symmetry preserving treatment of any reasonable inter-
action, this contribution is identical to that produced by
Diagram 6. Concretely, one has:

δ5qΛ
+(p)σµνΛ

+(p)

= N κ
5 Λ+(p)A0

α(−p)

∫

d4ℓ

(2π)4
∆1+

αβ(ℓ + p)V10
βµν(ℓ+ p)

×∆0+(ℓ+ p)S(−ℓ)S Λ+(p) (C66)

= −2N κ
5 Λ+(p) γ5

(

a01γα + ia02p̂α

)

∫ 1

0

dx

∫ 1

0

dy y

∫

d4ℓ

(2π)4

× [iγ · (−ℓ+ yp)−M ]V10
βµν(ℓ + (1− y)p)

× Pαβ(ℓ + (1− y)p) sΛ+(p)[ℓ2 + y(y − 1)m2
N

+ xym2
qq1 + (1 − x)ym2

qq0 + (1− y)M2]−3 . (C67)

The transition vertex is V10
βµν(P, P ) where (N̄ = 2)

V10
βµν(P, P

′) = −2N̄

∫

d4q

(2π)4
tr
{

S(q + P ′)σµνS(q + P )

× Γ0+

qq (P )S(q)Γ̄1+

qqβ(−P ′)
}

(C68)

= 4iN̄Eqq1

∫ 1

0

dx

∫ 1

0

dy y

∫

d4q

(2π)4

× tr
{

[iγ · (q + yP ′ − xyP )−M ]σµν

× [iγ · (q − (1− y)P ′ + (1− xy)P )−M ]

× γ5

(

iEqq0 +
1

M
γ · P Fqq0

)

× [iγ · (q − (1− y)P ′ − xyP )−M ] γT
β (P

′)
}

×
(

q2 − (1 − x)y(1− y)m2
qq1

− x(1 − x)y2m2
qq0 +M2

)−3

, (C69)

where P and P ′ are the incoming and outgoing momenta
of the diquarks, respectively. (Some details about the
on-shell procedure can be found in App.D.) Applying
the projector in Eq. (C53), evaluating the resulting trace
and combining the result with that from Diagram 6, one
finds

δT,5+6u = δT,5+6d = δq5 = −0.164 . (C70)
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δTu δT d g
(0)
T g

(1)
T

Diagram 1 0.581 0 0.581 0.581

Diagram 2 −0.018 −0.036 −0.054 0.018

Diagram 3 0 0 0 0

Diagram 4 0.292 0.059 0.351 0.233

Diagram 5+6 −0.164 −0.164 −0.329 0

Total Result 0.691 −0.141 0.550 0.832

TABLE C.3. Summary of results computed from all diagrams
considered in connection with the proton’s tensor charge.
They represent values at the model scale, ζH ≈ M , described
in App.E.

e. Proton tensor charge

The results obtained from all diagrams considered in
connection with the proton’s tensor charges are collected
in Table C.3. Notably, the values of the tensor charges
depend on the renormalisation scale associated with the
tensor vertex. This is discussed in App. F.

f. Proton tensor charge – scalar diquark only

It is interesting to consider the impact of the axial-
vector diquark on the tensor charges. This may be ex-
posed by comparing the results in Table C.3 with those
obtained when the axial-vector diquark is eliminated
from the nucleon. We implement that suppression by
using the following nucleon Faddeev amplitude:

s(P ) a+1 (P ) a01(P ) a+2 (P ) a02(P )

1.0 0 0 0 0
, (C71)

and then repeating the computations in Apps. C 1, C 3.
Naturally, in this case only Diagrams 1 and 3 can possibly
yield nonzero contributions to any quantity.
Recomputing the canonical normalisation, we obtain

N6 1 =
1

0.0174
= 57.50 , (C72)

which is 2% larger than the complete result in Eq. (C28).
Regarding the tensor charges, Diagram 3 also vanishes

in this instance so that the net result is simply that pro-
duced by Diagram 1:

δT6 1u δT6 1d g
(0)
T6 1 g

(1)
T6 1

0.765 0 0.765 0.765
. (C73)

Comparison with Table C.3 shows that with a symmetry-
preserving treatment of a vector⊗ vector contact inter-
action, the d-quark contribution to the proton’s tensor
charge is only nonzero in the presence of axial-vector di-
quark correlations and these correlations reduce the u-
quark contribution by 10%.

δTu δT d g
(0)
T g

(1)
T

Diagram 1 0.495 0 0.495 0.495

Diagram 2 −0.020 −0.039 −0.059 0.020

Diagram 3 0 0 0 0

Diagram 4 0.236 0.047 0.283 0.189

Diagram 5+6 −0.160 −0.160 −0.319 0

Total Result 0.551 −0.151 0.400 0.703

TABLE C.4. Summary of results computed from all diagrams
considered in connection with the proton’s tensor charge using
input based on αIR/π = 0.74, quoted at the model scale,
ζH ≈ M , described in App.E.

g. Proton tensor charge – Reduced DCSB

In order to expose the effect of DCSB on the tensor
charges, we repeated all relevant calculations above be-
ginning with the value of αIR used to produce Eq. (A21)
and thereby obtained the results listed in Table C.4.

Appendix D: On-shell Considerations for the

Transition Diagrams

For the practitioner it will likely be helpful here to
describe our treatment of the denominator that arises
when using a Feynman parametrisation to compute the
transition diagrams. Namely, one has

1

(q + P ′)2 +M2

1

(q + P )2 +M2

1

q2 +M2

= 2

∫ 1

0

dx

∫ 1

0

dy y{(q + (1− y)P ′ + xyP )2

+ (1− y)yP ′2 + xy(1 − xy)P 2

− 2(1− y)xyP ′ · P +M2}−3 . (D1)

At this point, a shift of the integration variable q →
q − (1 − y)P ′ − xyP yields

2

∫ 1

0

dx

∫ 1

0

dy y{q2 + (1− y)yP ′2 + xy(1 − xy)P 2

− 2(1− y)xyP ′ · P +M2}−3 . (D2)

Next, we employ on-shell relations, which for Dia-
gram 5 are given by

P ′2 = −m2
qq1 , P

2 = −m2
qq0 . (D3)

Then, since Q2 ≡ (P ′ − P )2 = P ′2 + P 2 − 2P ′ · P = 0:

P ′ · P = −m2
qq0 +m2

qq1

2
. (D4)

Hence, the Feynman integral associated with Diagram 5
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is

2

∫ 1

0

dx

∫ 1

0

dy y{q2 − (1 − x)y(1− y)m2
qq1

− x(1 − x)y2m2
qq0 +M2}−3 . (D5)

Diagram 6 is obtained via mqq0 ↔ mqq1 .

Appendix E: Model Scale

In modern studies of QCD’s gap equation, which use
DCSB-improved kernels and interactions that preserve
the one-loop renormalisation group behaviour of QCD,
the dressed-quark mass is renormalisation point invari-
ant. As in QCD, however, the current-quark mass is not.
Therefore, in quoting a current-quark mass in Eq. (A19),
a question immediately arises: to which scale, ζH , does
this current-quark mass correspond?
As noted in App.A, the contact-interaction does not

define a renormalisable theory and the scale ζH should
therefore be part of the definition of the interaction. We
define ζH so as to establish contact between the current-
quark mass in Eq. (A19) and QCD.
Current-quark masses in QCD are typically quoted at

a scale of ζ2 = 2GeV. A survey of available estimates
indicates [78]

m(ζ2) =
mu(ζ2) +md(ζ2)

2
= 3.5+0.7

−0.2 ; (E1)

and this value compares well with that determined from
a compilation of estimates using numerical simulations of
lattice-regularised QCD [79]:

m(ζ2) =
mu(ζ2) +md(ζ2)

2
= 3.4± 0.2 . (E2)

On the other hand, we have determined an average value
of the u- and d-quark masses appropriate to our interac-
tion that is m(ζH) := m = 7MeV.
The scale dependence of current-quark masses in QCD

is expressed via

m(ζ′)

m(ζ)
=

[

αs(ζ
′)

αs(ζ)

]γm

, (E3)

where αs(ζ) is the running coupling and γm = 12/(33−
2nf), with nf the number of active fermion flavours,
is the mass anomalous dimension. Plainly, the running
current-quark mass increases as the scale is decreased.
Using the one-loop running coupling, with nf = 4 and

ΛQCD = 0.234GeV [81], then

m(ζH) ≈ 2m(ζ2) for ζH = 0.39± 0.02GeV ; (E4)

and thus we have determined the model-scale. Given the
arguments in Refs. [22, 28, 112], the outcome ζH ≈ M is
both internally consistent and reasonable. (We use the
one-loop expression owing to the simplicity of our frame-
work. Employing next-to-leading-order (NLO) evolution
leads simply to a 25% increase in ζH with no material
phenomenological differences.)

Appendix F: Scale Dependence of the Tensor Charge

Whilst the values of the tensor charges are gauge- and
Poincaré-invariant, they depend on the renormalisation
scale, ζ, employed to compute the dressed inhomoge-
neous tensor vertex

Γµν(k;Q; ζ) = S1(k;Q; ζ)σµν + . . . , (F1)

at zero total momentum, Q = 0. (k is the relative
momentum.) The renormalisation constant ZT (ζ,Λ) is
the factor required as a multiplier for the Bethe-Salpeter
equation inhomogeneity, σµν , in order to achieve S1(k

2 =
ζ2;Q = 0; ζ) = 1.
At one-loop order in QCD [113]:

Γµν(k;Q; ζ)
ζ2≫Λ2

QCD

=

[

αS(ζ
2
0 )

αS(ζ2)

]ηT

Γµν(k;Q; ζ0) , (F2)

where ηT = (−1/3)γm. The pointwise behaviour of
Γµν(k;Q = 0; ζ) is illustrated in Ref. [82].
Equation (F2) entails

δq(ζ)
ζ2≫Λ2

QCD

=

[

αS(ζ
2
0 )

αS(ζ2)

]ηT

δq(ζ0) , (F3)

and hence that δq decreases as ζ increases. It follows, for
example and in connection with our analysis, that

δq(ζ2)

δq(ζH)
= 0.794± 0.015 , (F4)

with ζH drawn from Eq. (E4).

Appendix G: Euclidean Conventions

In our Euclidean formulation:

p · q =

4
∑

i=1

piqi ; (G1)

{γµ, γν} = 2 δµν ; γ
†
µ = γµ ; σµν =

i

2
[γµ, γν ] ; (G2)

tr [γ5γµγνγργσ] = −4 ǫµνρσ , ǫ1234 = 1 . (G3)

A positive energy spinor satisfies

ū(P, s) (iγ · P +M) = 0 = (iγ · P +M) u(P, s) , (G4)

where s = ± 1
2 is the spin label. The spinor is normalised:

ū(P, s) u(P, s) = 2M , (G5)

and may be expressed explicitly:

u(P, s) =
√
M − iE





χs

~σ · ~P
M − iE χs



 , (G6)
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with E = i
√

~P 2 +M2,

χ+ =

(

1

0

)

, χ− =

(

0

1

)

. (G7)

For the free-particle spinor, ū(P, s) = u(P, s)†γ4.
The spinor can be used to construct a positive energy

projection operator:

Λ+(P ) :=
1

2M

∑

s=±

u(P, s) ū(P, s) =
1

2M
(−iγ · P +M) .

(G8)

A charge-conjugated Bethe-Salpeter amplitude is ob-
tained via

Γ̄(k;P ) = C† Γ(−k;P )TC , (G9)

where “T” denotes a transposing of all matrix indices and
C = γ2γ4 is the charge conjugation matrix, C† = −C.
We note that

C†γT
µ C = −γµ , [C, γ5] = 0 . (G10)
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