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Abstract

Traditional searches for R-parity conserving natural supersymmetry (SUSY) require large trans-

verse mass and missing energy cuts to separate the signal from large backgrounds. SUSY models

with compressed spectra inherently produce signal events with small amounts of missing energy

that are hard to explore. We use this difficulty to motivate the construction of “deconstructed”

transverse mass variables which are designed preserve information on both the norm and direction

of the missing momentum. We demonstrate the effectiveness of these variables in searches for the

pair production of supersymmetric top-quark partners which subsequently decay into a final state

with an isolated lepton, jets and missing energy. We show that the use of deconstructed trans-

verse mass variables extends the accessible compressed spectra parameter space beyond the region

probed by traditional methods. The parameter space can further be expanded to neutralino masses

that are larger than the difference between the stop and top masses. In addition, we also discuss

how these variables allow for novel searches of single stop production, in order to directly probe

unconstrained stealth stops in the small stop- and neutralino-mass regime. We also demonstrate

the utility of these variables for generic gluino and stop searches in all-hadronic final states. Over-

all, we demonstrate that deconstructed transverse variables are essential to any search wanting to

maximize signal separation from the background when the signal has undetected particles in the

final state.

PACS numbers: 14.65.Jk, 14.65.Ha, 12.60.-i, 12.60.Jv
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I. INTRODUCTION

For the first time in history, the TeV scale is being directly probed by the Large Hadron

Collider (LHC). Already, a 125.5 GeV Higgs-boson-like particle has been discovered [1, 2].

With the ongoing confirmation of this particle as the Standard Model (SM) Higgs boson,

the experimentally successful Standard Model (SM) will be complete. However, a serious

theoretical inconsistency remains: It is well known that radiative corrections, generated

dominantly by top quark loops, push the SM Higgs boson to have a mass of the order of

the Planck scale (1019 GeV). This implies that these corrections must be “fine-tuned” in

order to recover the observed Higgs mass at the LHC. Natural models of new physics [3–18]

ameliorate this problem by adding light top partners to the SM which cancel (some or all of)

the top quark-induced radiative corrections to the Higgs boson mass. For example, in the

Minimal Supersymmetric Standard Model (MSSM), the role of the top partner is fulfilled by

the stops, at least one of which may be expected to be light from naturalness considerations.

In this paper, we describe a new search technique for light top partners, concentrating on

stops in R-parity conserving supersymmetric models. Despite this focus, we note this search

strategy is applicable to a wide range of natural models with light top partners.

A significant fraction of the parameter space for light stops has been ruled out by various

LHC searches [19–21]. Most of these searches focus on the decay t̃ → t + χ. The most

important parameter in such searches is the mass difference between the stop and the lightest

neutralino [22],

∆Mt̃ χ = mt̃ −mχ . (1)

As ∆Mt̃ χ grows smaller and approaches mtop, the decaying stops inherently generate only

a small amount of missing energy, as the daughter neutralino of a stop is produced with

little momentum. Traditional stop searches typically rely on large missing energy cuts to

separate signal from background. Natural SUSY can thus still be inaccessible in the case of

compressed mass spectra, i.e.,

mt̃ ∼ mχ +mtop. (2)

In these instances, signal events from pair-produced stops are similar to the overwhelming

SM tt̄ background unless one implements analysis techniques that exploit any residual dif-

ferences. We provide such an analysis technique in this paper. We also apply our technique

to the case of very compressed mass spectra, where ∆Mt̃ χ < mtop. For these spectra, in the
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absence of a light chargino, the typical decay pattern of a stop is t̃ → b + W+ + χ0, again

with limited missing energy.

At the LHC, the most sensitive search channel for stops is the single lepton + jets + MET

final state, in which pair-produced stops yield one top quark decaying to a lepton, neutrino

and b quark and another fully hadronic top quark [19, 20, 23–25]. (Here the leptons are

either electrons or muons.) We focus on this lepton+jets final state. The missing transverse

momentum in the signal events receives contributions from the neutrino from the W boson

decay as well as from the two neutralinos. However, the same final state is produced by

lepton+jets tt̄ decays in the SM, with the missing energy provided solely by the neutrino

(as well as detector effects). Moreover, the LHC is a top quark factory with a large SM

production cross section [24, 26], and tt̄ is generally the dominant background for one-

lepton stop searches. In particular, for this study, top quark pair events with taus produced

from W bosons have additional missing transverse energy from the tau decay, and we will

see that they generate an important additional background that can easily be rejected.

Motivation for Deconstructed Transverse Masses: The most important quantity

in searches for new physics in final states with multiple undetected particles is the miss-

ing momentum, in particular its correlations with other objects in an event. Experimental

searches use transverse mass cuts to separate the signal from SM backgrounds in these

searches. These cuts, however, often destroy the information about the missing momentum

and its correlations. Thus, we “deconstruct” the transverse mass variables to preserve the

maximal amount of information about the missing momentum in order to maximize the

separation of signal and background. By exploring magnitudes and angular correlations

of visible particles and missing momentum simultaneously, the deconstructed variables im-

prove signal-background separation compared to transverse mass cuts. Our study of stop

pair production (in the compressed limit) provides a platform to show how these variables

can increase the sensitivity of the current searches. Overall, the deconstruction can be

generalized to other transverse masses and similar objects, improving the signal sensitivity

in a wide array of analyses. Before moving on, we note that other strategies have been

proposed to access stop pair production in this region of compressed mass spectra: A vari-

ant on the traditional transverse mass variables [27] as well as additional transverse mass

variables [22, 28].

This paper is organized as follows: We first detail the signal and background processes for
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our stop pair analysis in Section II. We also describe how we simulate detector effects, lepton

and jet reconstruction and our basic acceptance cuts. In Section III, we detail the decon-

struction of the transverse mass variables. A detailed discussion of our final event selection

in several different signal regions is presented in Section IV. Stealth stops are addressed

through a single stop search in Section V. Section VI contains additional applications for

deconstruction techniques, including a discussion of all-hadronic final states. Section VII

summarizes our findings.

II. PRELIMINARIES

In this section, we describe the signal and major background processes for stop pair

production in the lepton+jets mode. We include details of the event generation and detector

simulations. We also discuss our basic selection cuts. We set the top mass to 173 GeV [29].

A. Stop Pair Production Signal Processes

We explore the pair production of the supersymmetric partner of the top quark, the stop,

assuming that the stop decays to the lightest neutralino with a branching fraction of 100%.

The decay occurs either through

t̃→ t+ χ t̃→ b+W+ + χ , (3)

where the latter process occurs for the case where mt̃ < mt + mχ and χ is the neutralino

dark matter. We focus on processes with one lepton in the final state. The full partonic

process is given by

p+ p → t̃+ t̃∗ → t+ t̄+ χ+ χ→ `+ 2b+ 2j + E/T (4)

p+ p → t̃+ t̃∗ → b+ b̄+W+ +W− + χ+ χ→ `+ 2b+ 2j + E/T ,

where the second line accounts for off-shell top quarks. We include on- and off-shell top

quarks in the analysis to cover the difficult-to-access compressed region, see Section IV E.

The cross section for this process is independent of the neutralino mass as long as the decay

is kinematically possible.

While this paper focuses on a supersymmetric scenario, there are non-supersymmetric

analogues to which our analysis procedure equally applies. For example, in little Higgs
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models with T -parity [17], heavy top quark partners can be produced analogously to stops

and subsequently decay into a top quark and dark photon (dark matter candidate). The

cross section for this process is typically about 50% larger than that for stop pair production.

We generate signal events for several combinations of mt̃ and mχ using SHERPA 1.4.3

[30] or MadGraph 5 [31] for the event generation. MadGraph uses the CTEQ6 set of parton

distribution functions (PDF) [32]; Sherpa uses the CTEQ10 PDF set [33]. We scale the

signal cross sections to next-to-leading order in the strong coupling with next-to-leading log

resummation [34]. Off-shell decays are included in our event generation. When generating

stops that undergo a three-body decay, we increase the Breit-Wigner cutoff parameter to a

large value (∼ 104) in the MadGraph run card to include intermediate particles (top quark

and W boson) that go significantly off shell. The cross sections for the three signal mass

points under consideration are given in Table I.

TABLE I: Stop pair production cross section at NLO at a 8 TeV proton-proton collider [34].

stop, neutralino mass cross section [pb]

mt̃ = 350 GeV, mχ = 200 GeV 0.81

mt̃ = 400 GeV, mχ = 200 GeV 0.36

mt̃ = 500 GeV, mχ = 200 GeV 0.086

B. Background Processes

The main background to the lepton+jets signal signature is from SM top pair production

(tt̄), with smaller backgrounds from W+jets and top pair production in association with a

W or Z boson (tt̄V ) and other backgrounds from single top, diboson, and QCD multijet

production [35].

We focus on the dominant tt̄ background here without loss of generality and use

SHERPA [30] to simulate tt̄+jets. All top quark decays are included except for fully hadronic

decays, and are separated into lepton+jets (lq) and dilepton (ll) modes. In particular, we

include top decays where the W boson decays to tau leptons. We will see in Section IV that

dilepton events with one tau that decays hadronically constitute a significant background.

We use the CTEQ6 set of parton distribution functions (PDF) [32]. The top pair background
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is normalized to the NNLO cross section [26].

Showering for all signal and background processes is provided by Pythia 6 [36]. All events

are processed by a detector simulation described in Section II C, which in particular provides

the smearing of E/T that appropriately enhances the amount of tt̄ in the signal region.

C. Jet and Lepton Reconstruction

We account for detector effects using a simplified detector simulation [37, 38] as fol-

lows. Final state interacting particles (excluding muons, neutrinos and SUSY particles) with

transverse momentum pT ≥ 100 MeV and |η| ≤ 3 are clustered into jets using the Anti-kT

algorithm in the FastJet framework [39]. The jet energy E is smeared according to ∆E/E =

0.5/
√
E⊕0.03. Electron energies are smeared according to ∆E/E = 0.1/

√
E⊕0.007; muon

energies are smeared according to ∆E/E = 0.04.

After the smearing step, electrons and muons are selected if they have pT > 10 GeV

and |η| ≤ 2.5. Jets are selected if they have pT ≥ 25 GeV, |η| ≤ 2.5 and minimum

∆R(ej) ≥ 0.2 to an electron, where ∆R is the standard definition of the separation cone

∆Rij =
√

(ηi − ηj)2 + (φi − φj)2. Leptons must be separated from jets by ∆R(lj) > 0.4. E/T

is calculated using smeared electrons, muons and jets (with |η| ≤ 5) before any vetoes, and

by construction balances the transverse momentum of the entire event. Jets are tagged as

b-jets if the truth record shows a weakly-decaying B-hadron with pT ≥ 5 GeV and |η| ≤ 2.5

with ∆R (j, B) ≤ 0.3 [66]. We do not account for pileup and other detector effects.

D. Event Selection

Following the criteria used by ATLAS [19] and CMS [40], events are selected if they have

at least four jets, exactly one lepton (electron or muon) with pT > 25 GeV and |η| < 2.5,

and missing transverse energy E/T > 150 GeV. At least one jet must be b-tagged. The jets

are required to pass cuts of pT (jet 1) > 80 GeV, pT (jet 2) > 60 GeV, pT (jet 3) > 40 GeV

and pT (jet 4) > 25 GeV. Events with leptons with 10 GeV < pT < 25 GeV are rejected in

order to reduce the dilepton and tau backgrounds. We further impose requirements on ∆φ

between the E/T and each of the two jets with the largest pT , namely ∆φ(jet 1, E/T ) ≥ 0.8 and

∆φ(jet 2, E/T ) ≥ 0.8.
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III. DECONSTRUCTED TRANSVERSE MASSES

When searching for signal processes with multiple undetected particles in the final state,

the missing momentum is the most important quantity needed to separate the signal from

the background. To maximize this separation, we emphasize that both the magnitude

and direction of the missing momentum are needed. The central idea of deconstruction

is to consider both of these observables and, in particular, to not inadvertently destroy

information with cuts that tie these observables together. A common cut that does the latter

is the traditional transverse mass cut. In essence, deconstructed transverse mass variables

allow the transverse mass cut to vary on an event-by-event basis in order to maximize the

signal.

The transverse mass variable was first defined as a way to reconstruct the W boson mass

even in the presence of a neutrino in the final state [41]. Since our goal is to maximize

the separation of signal from background, new transverse mass variables are mandatory. To

understand how to construct these variables, consider the signal and tt̄ background processes.

All describe a final state with a leptonically decaying W boson plus n-jets. The W boson

decays into a high-pT electron or muon. The W transverse mass, or the transverse mass of

the lepton-E/T system, is defined as

mT =

√
2ET`E/T − 2 ~pT` · ~p/T , (5)

where ~pT` is the transverse momentum of the lepton and ET` = |~pT`|. The missing momen-

tum and energy are defined as ~p/T = −∑i ~pT visible and E/T = | ~p/T |, respectively. By conven-

tion, the mT equation makes the implicit assumption that only neutrinos are contributing to

the observed missing energy. To separate the signal containing additional invisible particles

besides neutrinos from the background, a cut is often implemented,

mT > m0
T > mW . (6)

Here the m0
T value is chosen to maximize the signal-background separation. Given the

uniform cut on mT and the structure of the transverse mass variable under the square root

in equation (5), it is clear that some information about the missing energy and momentum

vector is discarded. To refine the separation between signal and background, we first rewrite

equation (5) as

1− m2
T

2ET`E/T
= cosφ. (7)
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Here cosφ is the transverse angle between the lepton pT and the missing transverse momen-

tum,

cosφ =
~pl T · ~p/T
pl T p/T

. (8)

Then, rather than using m0
T as a strict cut, we define

Q ≡ 1− m0
T
2

2ET`E/T
. (9)

Q and cosφ are now independent variables. We have therefore “deconstructed” the trans-

verse mass from Eq. 5 into an angular component (Eq. 8) and a dimensionless magnitude

component (Eq. 9). By using Q and cosφ simultaneously with E/T , we can obtain additional

sensitivity over the usual transverse mass cut.

In events where additional particles escape the detector together with the neutrino from

the W boson decay, the total missing transverse energy vector is

~E/T = ~pν T +
∑
χ

~pχT . (10)

With this, the transverse mass variable generalizes to

m2
T = 2El T E/T

(
1− cosφlE/T

)
. (11)

The missing transverse energy is shown in Fig. 1(a) for events passing the selection cuts

(Section II D) for top quark pair production samples and for different SUSY samples that

each contain two non-detected dark matter particles in addition to the top quark pair. The

distribution in lepton+jets top pair events peaks at the lowest E/T , with dilepton top pair

events having higher E/T . The SUSY signals peak at higher E/T values, but there is significant

overlap of distributions, and E/T alone is not a powerful discriminator. Fig. 1(b) shows the

lepton pT for the same events. For the heavier stops, the distributions extend to higher pT

than for the tt̄ background. However, for the more compressed spectrum (mt̃ = 400 GeV,

mχ = 200 GeV), this difference is rather small at large lepton pT . Thus, lepton pT by itself is

also not a sufficient criterion to distinguish between signal and background. The transverse

mass mT from Eq. 11 is shown in Fig. 1(c). The distribution in lepton+jets top pair events

cuts off at around 100 GeV, slightly above the W boson mass, as expected. Dilepton top

pair events have an additional contribution to the E/T vector from the additional neutrino,

allowing the mT distribution to extend further above the kinematic limit set by the W
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FIG. 1: Distribution of (a) E/T , (b) pl T and (c) mT for top pair production and two different stop

signal masses after event selection, all normalized to have the same area, for events passing the

selection cuts in Sec. II D with a reduced E/T cut of 25 GeV. The neutralino mass is set to 200 GeV.

(Color online)

mass (MW ). Similarly, the SUSY signal has additional particles contributing to E/T and

its distribution extends much higher. Note that for a compressed spectrum scenario, the

transverse mass variable does not extend as high and this variable therefore loses its power,

as for lepton pT . This effect limits current experimental analyses.

The distribution of Q is shown in Fig. 2(a). Top pair events generally have a lower value

of Q than the SUSY signals, with tt̄ dilepton events peaking higher than tt̄ lepton+jet events

due to the presence of two neutrinos. We will see that top pair events with one hadronically

decaying τ contribute significantly at higher Q, in direct competition with SUSY signals.
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FIG. 2: Distribution of (a) Q and (b) cosφ for top pair production and two different stop signal

masses after the event selection of Sec. II D with a reduced E/T cut of 25 GeV, all normalized to

have the same area. The neutralino mass is set to 200 GeV. (Color online)

The distribution of cosφ is shown in Fig. 2(b). Signals and backgrounds peak at cosφ = 1,

with a smaller peak at cosφ = −1. In the semileptonic stop signal, the lepton and E/T tend

to be produced back-to-back more, relative to the corresponding top background. This is

because the neutralinos in the signal, which provide an additional source of E/T , tend to

be emitted opposite the tops produced in stop decays. The full usefulness of this angular

correlation will become apparent only when plotting it in two dimensions vs Q and vs E/T .

1. Neutrino pν L Reconstruction

The parameters Q and cosφ also have a meaning in the reconstruction of the neutrino

momentum along the beam direction (pν L) in SM lepton+jets tt̄ events. This longitudinal

neutrino momentum cannot be measured directly and instead must be inferred, typically

using a W boson mass constraint. This leads to a quadratic equation, which has two

solutions,

p±νL =
1

2 p2l T

(
Apl L ± El

√
A2 − 4 p 2

l T p
2
ν T

)
, (12)

where A = M2
W + 2 ~pl T · ~pν T , MW = 80.4 GeV is the input SM mass of the W boson [42],

pl L is the longitudinal lepton momentum, and El = pl is the lepton energy.

This neutrino momentum calculation breaks down and the neutrino longitudinal momen-
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tum becomes unphysical when

M2
W < 2

(
pl Tpν T − ~pl T · ~pν T

)
, (13)

i.e. when the reconstructed transverse mass exceeds the SM mass, mlν T > MW . That

can occur in SM events because the W boson has a natural width or because the neutrino

transverse momentum was not reconstructed correctly due to the presence of additional

neutrinos or detector effects. The unphysical region in Eq. 13 can easily be interpreted in

terms of Q and cosφ. With m0
T = MW , the unphysical region is given by

Q
(
m0
T = MW

)
> cosφ . (14)

2. Correlation

The variables we introduce are correlated; cuts on one variable can affect the distribution

of another variable. This is intentional as the correlations are what improves the separation

of signals from backgrounds. As can be seen from Eq. 13, Q = cosφ if the longitudinal

momenta of both lepton and neutrino are zero. In general, the value of Q is bounded from

above at one and asymptotes to this value for events with high pT W bosons. In principle

there is no lower bound on Q, though experimental requirements on lepton pT and E/T

effectively limit Q to be greater than O (−10) for m0
T ∼ MW . For a W boson decaying at

rest, the lepton and neutrino will be back-to-back (cosφ = −1) and the momenta of the

lepton and neutrino will be half of MW each. Hence in this case Q ≤ −1.

Figure 3 shows the correlation between Q and cosφ for top quark pair events in the

lepton+jets and dilepton channels. As the selection cuts of Sec. II D are applied, we note

in particular that the dilepton events have only one reconstructed lepton, which is used to

calculate the deconstructed transverse mass variables. The majority of events cluster near

cosφ = 1 and Q = 0.6, corresponding to events where the lepton and neutrino point roughly

in the same direction, and where the longitudinal neutrino momentum is small. Entries

below the black line given by Q = cosφ with M0
T = MW = 80.4 GeV have physical solutions

for the longitudinal neutrino momentum in Eq. 12, while entries above the line do not.

Figure 3(a) shows the expected correlation along this diagonal line for lepton+jet events.

For dilepton events shown in Fig. 3(b), that correlation is absent. The presence of a second

neutrino in dilepton events also results in a narrow band close to cosφ = −1, i.e. where
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FIG. 3: Deconstructed transverse mass for top quark pair production for events passing selection

cuts in the (a) lepton+jets decay mode, (b) di-lepton decay mode. The black diagonal line is defined

by Q = cosφ, i.e. mT = 80.4 GeV. The region above the black line corresponds to mT > 80.4 GeV.

The event count per bin follows rainbow colors in linear scale. (Color online)
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200 GeV. The black diagonal line is defined by Q = cosφ, i.e. mT = 80.4 GeV. The region above

the black line corresponds to mT > 80.4 GeV. The event count per bin follows rainbow colors in

linear scale. (Color online) 13



lepton and E/T are back-to-back. Figure 4 shows the same correlation for SUSY stop pair

lepton+jets events at two different stop masses. In these SUSY events, where the top quark

pair is produced together with additional non-interacting particles, these additional particles

are summed into E/T , which modify both the magnitude and the direction of the E/T vector.

There is little correlation between Q and cosφ along the diagonal line, as expected from the

presence of additional sources of E/T . Instead, there are two peaks, close to cosφ = 1 and

cosφ = −1, with the peak at cosφ = −1 getting more pronounced as mt̃ increases. It is the

presence and location and shape of this additional peak that provides enhanced separation

of stop events from the tt̄ background, and this is the basis for our event selection.

Traditionally, dark matter searches have focused on the increase in the magnitude of

E/T and on removing SM lepton+jets backgrounds through a cut on mT . A high E/T cut is

adequate as long as the dark matter particle is produced with a large transverse momentum.

However, such a cut removes much of the phase space of interest here where the dark matter is

not significantly boosted in the transverse direction. Equation 13 tells us we can do better:

Consider a region of phase space where E/T is relatively small but the missing transverse

energy vector is back-to-back with the transverse lepton momentum. In this case, Eq. 13

becomes positive definite

M2
W . 4 pl TE/T (15)

which is easily satisfied for sufficiently large pl T .

The transverse mass tends to be a powerful variable in searches for new physics with top

events because the presence of the neutralino dark matter particles increases mT and moves

the signal away from the large backgrounds where mT comes from a W boson decay [22]. A

cut on mT was used in previous searches for stop pair production [23, 24, 43]. The power

of such a cut can be understood from Figs. 3 and 4: A cut on mT corresponds to selecting

events above the diagonal line in the Q− cosφ plane starting in the upper right hand corner

at Q = 1, cosφ = 1. The black lines in Fig. 3 correspond to a cut mT ≥ 80.4 GeV. In

general, the cut mT ≥ mC corresponds to the events above the line defined by

Q (mT ) =
m2
T

m2
C

cosφ+ 1− m2
T

m2
C

. (16)

Such a mT cut removes the background peak at the upper right, while preserving the

signal peak in the upper left. However, the shape of the signal and the shape of the tt̄
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dilepton background are quite different from the diagonal behavior. Their separation can

be improved through appropriate contour cuts in Q vs. cosφ.

An additional correlation can be exploited to provide additional separation between signal

and background for events in the upper left-hand corner of Figs. 3 and 4. By looking at the

correlation of cosφ not only with Q but also with E/T , the kinematic separation of signal

and background becomes more obvious. We now look at the effect of using this correlation

between cosφ and E/T after making a transverse mass cut, which removes events in the upper

right regions of Figs. 3 and 4. This serves as a first demonstration of the utility of a cut in

the cosφ-E/T plane, in contrast to a cut in Q vs. cosφ, which amounts to an event-by-event

mT cut. In the next section, we show the full power of simultaneous cuts on Q, E/T , and

cosφ.
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(b) t̃t̃∗, mt̃ = 400 GeV, mχ = 200 GeV

FIG. 5: E/T vs cosφ distribution for events that pass selection cuts and satisfy 140 GeV< mT <

250 GeV and a top mass window cut. The rainbow color log scale indicates the number of events

per bin, which is identical in the two distributions. (Color online)

Figure 5 shows the distribution of E/T vs cosφ for events with 140 GeV< mT < 250 GeV

and passing a top mass window cut (see Sec. IV C), i.e. removing the large peak near

cosφ = 1 in the Q vs. cosφ distributions. This mT window cut reveals that the signal has

events not only near cosφ = −1, but filling almost the full cosφ range. This is also visible

as a horizontal band in distributions in Fig. 4. The tt̄ background by contrast is mostly

centered at low E/T and near cosφ = −1. Thus, the best separation of stop signal from tt̄

background is achieved by exploring the correlation amongst Q, E/T and cosφ.
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IV. STOP PAIR ANALYSIS

We demonstrate the power of the deconstructed transverse mass in stop pair production

for stop/χ mass combinations of mt̃ = 500 GeV, mχ = 200 GeV; mt̃ = 400 GeV, mχ =

200 GeV and mt̃ = 350 GeV, mχ = 200 GeV. Event yields are computed for 20 fb−1 of

proton-proton collision data at the 8 TeV LHC.

A. Hadronic Top Mass

In the same manner as in [25], we form the three-jet mass of the hadronic top candidate

mjjj by positing the hadronic W candidate as the closest pair of jets with an invariant mass

≥ 60 GeV. The closest jet to the W candidate is used to form the invariant mass mjjj.

We emphasize that this definition does not suffer from any combinatorial issues. The mjjj

distributions for the three signal masses are shown in Fig. 6. For mt̃ − mχ ≥ mtop, the

distributions are consistent with a peak near mtop. For mt̃−mχ ≤ mtop, e.g. mt̃ = 350 GeV

and mχ = 200 GeV, the distribution peaks significantly below mtop. This signal sample is

still accessible despite the low reconstructed top mass as will be discussed in Section IV E.
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FIG. 6: Reconstructed 3-jet mass for stop pair production at the 8 TeV LHC, for mχ = 200 GeV

and different stop masses. The selection cuts of Sec. II D with a reduced E/T cut of 25 GeV have

been applied. (Color online)
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B. Tau Lepton Rejection

Top quark decays involving tau leptons are an important background in this analysis that

can be addressed effectively through a tau ID veto. A large fraction of the tt̄ background

in the stop signal region consists of events where a W boson decays to a tau lepton which

subsequently decays hadronically. Figure 3(b) shows the Q− cosφ distribution for top pair

dilepton events; Figure 7(a) shows dilepton events with at least one τ present in the W

decay chain. Figure 7(b) shows the complement where W → τ ν have been removed.
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(a) tt̄→ ll′, where l = e, µ, τ

and l′ = τ → hadrons
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FIG. 7: Deconstructed transverse mass for top pair dilepton events that pass the selection cuts of

Sec. II D with a reduced E/T cut of 25 GeV, for dilepton events that (a) contain at least one tau

lepton and (b) contain no taus. The black diagonal line is defined by Q = cosφ. The event count

per bin follows rainbow colors in linear scale. (Color online)

Events where one top quark decays to a light lepton (electron or muon) and the other one

decays to a tau have a similar distribution in Q− cosφ as the signal shown in Fig. 4. Most

of these events contain taus which subsequently decays hadronically. The presence of three

neutrinos in these events give them kinematic properties similar to the signal, making tt̄ tau

events difficult to distinguish from the signal through cuts alone. However, these events can

be effectively rejected by simply looking for a hadronically reconstructed tau. In dedicated

tau analyses for ATLAS and CMS, the efficiency to correctly identify the presence of a tau

through its hadronic decay is approximately 80%, with a hadronic jet rejection of better than
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a factor of ten [44–46]. We turn this around and apply a hadronic tau veto, reducing events

containing a hadronic tau decay by a factor five. In this paper, we implement hadronic τ

rejection in the tt̄ background by scaling down events containing a hadronic τ decays by

a factor 0.2. The signal and non-τ events are also reduced to account for the hadronic jet

mis-identification. These non-τ samples are weighted by 0.8, appropriate for the four-jet

events in this analysis.

This tau rejection is effective at reducing the background component that is most difficult

to otherwise reject. As the color scale in Fig. 7 indicates, τ dilepton tt̄ events outnumber

non-τ dilepton tt̄ events by about a factor seven. The hadronic τ -veto reduces this difference

to where hadronic τ and other dilepton events have about the same yield.

C. Signal Region SR0

We demonstrate the efficacy of the deconstructed variable approach by comparing it to

a nominal LHC-experiment-like analysis setup. We define the signal region SR0 that has a

minimal set of cuts in addition the basic event selection. This SR is similar to the signal

region “SRtN1” from [25] and the “tn.diag” region from [19] and serves as a baseline for

comparisons. Two additional selection criteria are applied:

• Hadronic top mass cut: 130 GeV≤ mjjj ≤ 205 GeV.

• Transverse mass cut: 140 GeV≤ mT ≤ 250 GeV.

Fig. 8 shows the distribution of Q vs cosφ for events passing the hadronic top mass cut.

The region between the red lines corresponds to the transverse mass cut. The effectiveness

of this cut in reducing the tt̄ background can be clearly seen. However, the limits of the

transverse mass cut can also be seen as there remains background in the region close to

cosφ = −1. Moreover, while the mT window is appropriate for mt̃ = 400 GeV, the upper

cut is too low for mt̃ = 500 GeV. Event yields for signal and backgrounds passing both cuts

are tabulated in Table II.
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FIG. 8: Q vs cosφ distribution for events passing basic selection cuts and a hadronic top mass

window cut. The black diagonal line is defined by Q = cosφ. Events inside the contour bounded

by the dashed red lines are selected by the SR0 transverse mass cut. The event count per bin

follows rainbow colors in log scale. (Color online)

D. Signal Region SR1

We demonstrate the improvement coming from the deconstructed variables as well as

hadronic tau rejection through two additional sets of cuts, one for resolved, on-shell top

quarks (SR1), and one for off-shell top quarks (SR2). Signal region SR1 targets mt̃ −mχ ≥
mtop, i.e. signal mass combinations mt̃ = 400 GeV, mχ = 200 GeV and mt̃ = 500 GeV,

mχ = 200 GeV.

Since there is sufficient mass difference between mt̃ and mχ to produce on-shell top quarks,
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we retain the SR0 top mass cut 130 GeV ≤ mjjj ≤ 205 GeV (c.f. Fig. 6). We veto hadronic

tau decays (c.f. Section IV B). Fig. 9 shows the distribution of Q vs cosφ for these events.
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FIG. 9: Q vs cosφ distribution for events with 130 GeV ≤ mjjj ≤ 205 GeV and tau veto. The

event count per bin follows rainbow colors in log scale. (Color online)

The tt̄ background shape and event yields are different from Fig. 8(a) mainly due to

the tau veto. The signal distributions have the same shape as in Fig. 8 except for a small

reduction in yields. The black line indicates the cut in the Q − cosφ plane, which is no

longer a simple straight line. Between cosφ = −0.6 and cosφ = 1, the line corresponds to a

transverse mass cut mT > 140 GeV, but the crucial region close to cosφ = −1 has improved

background rejection.

In Fig. 9, we show an illustrative cut in the Q-cosφ plane that may now be taken,
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taking advantage of the two-dimensional distribution to go beyond a simple transverse mass

cut. The cut contour is chosen to minimize the background while maintaining high signal

acceptance. This can be accomplished by following the contour of equal height for the tt̄

background shown in Fig. 9(a). A full experimental analysis, of course, would fully optimize

this cut, considering also systematic uncertainties. The events in the region of the Q-cosφ

plane above this cut, indicated by the black line in Fig. 9, are selected to populate the

E/T -cosφ distribution in Fig. 10.
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(b) t̃t̃∗, mt̃ = 400 GeV, mχ = 200 GeV
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(c) t̃t̃∗, mt̃ = 500 GeV, mχ = 200 GeV

FIG. 10: E/T vs cosφ distribution for events passing the Q − cosφ contour cut from Fig. 9. The

black line indicates the E/T − cosφ selection cut. The event count per bin follows rainbow colors in

log scale. (Color online)

The E/T -cosφ distribution reveals the full power of deconstruction. Most of the signal and

background events overlap in the signal region of the Q−cosφ distribution in Fig. 9, but are
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clearly separated when switching the vertical axis from Q to E/T . The top pair background in

Fig. 10(a) extends to high E/T values predominantly at cosφ = −1 and is reduced for higher

cosφ values. The signal by contrast has a much flatter distribution in cosφ and extends

to very high E/T values. Note that the color scale is the same for both plots in Fig. 10.

This distribution is the first that shows regions of phase space where the signal is larger

than the background. A cut contour is again chosen as the contour of equal height for the

tt̄ background, which minimizes the background while maintaining high signal acceptance.

Events above the black line are selected and the final yields are tabulated in Table II.

Compared to SR0, the tt̄ background is reduced by a factor of O (40), while the signal

only goes down by a factor of O (2). About a factor of ten of this additional background

rejection comes from the deconstructed variables. Another factor four rejection is due to the

hadronic tau veto, implying that most of the tt̄ events in the signal region indeed contain a

hadronically decaying tau.

This analysis of the deconstruction variables shows that large gains can be obtained

in signal-background separation by fully exploiting the correlation of the missing energy

with other objects in the event. Analyses that use multivariate analysis tools rather than

simple cuts to isolate the stop signal [20] will inherently take advantage of some of these

correlations. However, only including all three of Q, E/T and cosφ will unleash the full power

of deconstruction.

E. Signal Region SR2

Our treatment so far as well as all experimental analyses select events with on-shell

top quarks produced in the decay of the stop. However, in the compressed region where

mt̃−mχ ≤ mtop, this is not the case anymore and the analysis procedure needs to be adjusted.

The production cross section for stop pair production is the same whether mχ ≤ mt̃ −mtop

or mχ ≥ mt̃ −mtop. Moreover, the stop decay branching to bWχ is 100% in both cases for

the models considered here.

Here we present the compressed signal region SR2 with the example of a stop and neu-

tralino mass combination mt̃ = 350 GeV, mχ = 200 GeV. For this pairing the top quark will

always be off-shell and the top mass window cut is adjusted to 100 GeV ≤ mjjj ≤ 170 GeV.

This reduces the tt̄ background somewhat, but the largest effect is that the stop signal is

22



increased compared to the higher top mass window cut from SR1 as can be seen in Fig. 6.

We continue to require a hadronic tau veto. Fig. 11 shows the distribution of Q vs cosφ for

tt̄ background and stop signal events.
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FIG. 11: Q vs cosφ distribution for events with 100 GeV ≤ mjjj ≤ 170 GeV and passing the tau

veto. The event count per bin follows rainbow colors in log scale. (Color online)

The shape of the tt̄ distribution is similar to Fig. 9. The stop signal has a less pronounced

peak around cosφ = −1 than the higher-mass signals, though still a large number of events

in the region. The events in the region of the Q-cosφ plane above the black contour are

23



selected to populate the E/T − cosφ plane in Fig. 12.
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(b) t̃t̃∗, mt̃ = 350 GeV, mχ = 200 GeV

FIG. 12: E/T vs cosφ distribution for events passing the Q − cosφ contour cut from Fig. 11. The

black line indicates the E/T − cosφ selection cut. The event count per bin follows rainbow colors in

log scale. (Color online)

Similar to the Fig. 10 for SR1, the tt̄ background again peaks close to cosφ = −1 and

low E/T , while the signal extends out to higher cosφ and higher E/T . However, comparing

Fig. 12(b) to Fig. 10(a), it is clear that the low stop mass leads to lower E/T and thus less

separation from the background. Note, however, that the color scale is the same for both

plots in Fig. 12, and even at this stop mass, there are regions of phase space where the

signal is larger than the tt̄ background. Events above the black line are selected and the

final yields are tabulated in Table II.

F. Pair Production Summary

Event yields for the different regions are tabulated in Table II.

Compared to the default selection SR0, the top pair background is reduced by a factor

30, while the stop signal for mt̃ = 500 GeV is reduced by only a factor two and that for

mt̃ = 400 GeV by a factor four. These signal event yields are low, but should be sufficient

for experiments to exclude these mass points after some adjustments and after adopting the

techniques presented in this paper.

The event yield for the compressed region (mt̃ = 350 GeV) is likely too low to be accessible
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TABLE II: Event yields for different selection cuts for tt̄ background and stop signals at the 8 TeV

LHC with 20 fb−1 of collisions.

Sample Event yield

SR0 SR1 SR2

tt̄ background 144 5.2 2.6

Stop signals:

mt̃ = 350 GeV, mχ = 200 GeV 12 1.9

mt̃ = 400 GeV, mχ = 200 GeV 19 4.4

mt̃ = 500 GeV, mχ = 200 GeV 21 10

in the current 8 TeV dataset. However, intermediate mass combinations that are in the

middle of the currently uncovered region (like mt̃ = 380 GeV, mχ = 200 GeV) should

be accessible even in the existing data. Moreover, the cross section goes up by almost a

factor five at the 13 TeV LHC, and larger datasets are expected to be collected. Thus, the

compressed region should start to be covered using 8 TeV data and completely filled in with

13 TeV data.

Finally, we comment that we have not included systematic errors. A full treatment of

such uncertainties is beyond the scope of this work. However, we note that in comparison

to our default selection criteria in SR0, the background yields that we have obtained in

SR1 and SR2 are significantly reduced. Smaller numbers of expected background events, in

turn, would lessen the effect of systematic error in SR1 and SR2, relative to SR0. While

systematic errors should of course be included in a complete analysis, the reduction in

background afforded by the use of deconstructed transverse mass variables suggests that

using such variables facilitates the construction of searches whose uncertainties are more

statistics-dominated.

V. SINGLE STOP PRODUCTION

There is another parameter region for stop production that is difficult to access experi-

mentally [19, 20], a small window around

mt ≤ mt̃ . 200 GeV 0 ≤ mχ ≤ 20 GeV. (17)
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When the neutralino is nearly massless and the stop mass close to the top mass, then

stop pair production and decay provides a small correction to the much larger SM top pair

process and is difficult to distinguish kinematically. Thus, this region will continue to be

difficult to probe in pair production. We propose a search for single stop production and

argue for its potential to directly probe this region of parameter space. Covering this region

of parameter space has also been the aim of recent work [47] which focuses on precision

measurements of SM top-pair production to indirectly constrain the stop and neutralino

masses. In that work the extent at which the left- and right-handed stops (as well as the

associated neutralinos) can contaminate the SM top mass measurement is important.

Here we instead propose a novel, direct probe of this region of parameter space that

covers most of the parameter space in equation (17) already with the 8 TeV data set at the

LHC.

A. Single Stop Production Signal Processes

Representative Feynman diagrams for the production of single stop quarks in association

with jets and in association with a W boson are shown in Fig. 13.
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FIG. 13: Representative Feynman diagrams for production of an off-shell single top quark t∗ with

decay to a single stop quark, which in turn decays to an on-shell top quark, for (a) the jt mode

(Eq. 18) and (b) the Wt mode (Eq. 19).

Single stop quarks are produced in the decay of off-shell top quarks from SM single top
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production,

p+ p→ j(+j) + t (off–shell), (18)

p+ p→ W + t (off–shell), (19)

where the first process includes the large t-channel and smaller s-channel contributions, and

the second process is the associated Wt production process. Here, j includes gluons and light

quarks. Implicitly, our analysis also includes the analogous processes with top anti-quarks

in the above equations. The off-shell top quarks decay via

t (off–shell) → t̃+ χ→ χ+ χ̄+ t (20)

t (off–shell) → t̃+ χ→ χ+ χ̄+W + b , (21)

including on-shell as well as off-shell top quarks in the decay of the t̃ as in Eq. 4.

Because the stop goes off-shell, the coupling [48] plays an important role. The Lagrangian

for the top-stop coupling is given by

L = t

(
GL PL +GR PR

)
χ t̃+ h.c. , (22)

where PL,R are the projection operators. We take the benchmark that the coupling is of

order the electroweak coupling, GL = GR = gew, which produces the decay widths shown in

Table. III. The decay widths are all much smaller than the SM top decay width of 1300 MeV.

This additional top decay mode does not affect the decay of on-shell top quarks due to the

limited available phase-space. In our analysis, we consider the following benchmark (stop,

neutralino) mass pairs (in GeV): (175, 1), (190, 10) and (215, 40).

These single stop production processes have a reasonable production cross section as long

as the intermediate top quark decaying to stop is not too far off-shell, exactly the situation

relevant for the parameter space given in equation (17). The production cross section for

single stops, computed at leading order, using Madgraph 5 [31] and the CTEQ6 PDF set [32],

is shown in Table III for the three benchmark stop/neutralino mass pairs. The top quark

mass is set to 173 GeV.

In comparison, the NLO with next-to-next-to-leading log corrections cross section for SM

production of single top quarks in the t-channel is 87 pb [49], and that in the Wt-channel

is 22 pb [49]. The largest contribution to single stop production comes from SM t-channel

production of an off-shell top quark (Fig. 13(a). For the phase space most relevant to Eq. 17,
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TABLE III: Off-shell top to stop decay width and single stop production cross sections at LO at a

8 TeV proton-proton collider.

stop, neutralino mass off-shell t→ t̃χ cross section [pb]

decay width jt̃ W t̃

mt̃ = 175 GeV, mχ = 1 GeV 0.67 MeV 1.08 0.20

mt̃ = 190 GeV, mχ = 10 GeV 32 MeV 0.40 0.020

mt̃ = 215 GeV, mχ = 40 GeV 72 MeV 0.33 0.013

the cross section is sufficiently large to produce over 20,000 events in 20 fb−1 of LHC 8 TeV

data. The single stop production cross section decreases as the sum of stop and neutralino

masses moves up and the top quark becomes increasingly virtual. Nevertheless, there is a

sufficient number of signal events produced for all three benchmark scenarios to attempt

isolating the signal. Moreover, there will be sensitivity to this region of phase space even if

the tt̃ coupling is lower than electroweak coupling.

B. Background Processes

The final state for the single stop signal processes has one hard lepton (electron or muon),

missing energy and two or three jets, one of which is from a b quark. The largest backgrounds

to this signature come from top quark pair (tt̄), SM single top (t-channel) and W+jets pro-

duction. Smaller backgrounds come from SM Z+jets, diboson and QCD multijet production,

as well as top pair or single top production in association with a W or Z boson. The back-

ground from top or W boson production in association with a Z boson decaying to neutrinos

also contributes.

Here we consider the three most relevant backgrounds. The tt̄ background is described

in Sec. II B, and in particular dilepton events also constitute a large background to single

stop production. For the W+jets background, we include

p+ p→ W + (1− 3)j p+ p→ W + Z , (23)

which implicitly include b quarks and diboson production with Z boson decays to quarks

and neutrinos. For the SM single top background, we include the processes from Eqs. 18

and 19, but producing only on-shell top quarks.
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In all, we note that single stop production may outperform stop pair production in this

region of parameter space because the dominant SM backgrounds are generated by the

weaker electroweak processes.

C. Event Selection

All signal and background events are generated at parton level with Madgraph, no

hadronization is included. We account for detector effects as described in Sec. II C, ex-

cept that the smearing is applied to partons rather than jets. The basic event selection cuts

are similar to those in stop pair production as discussed in Sec. II D, but are adjusted to be

similar to ATLAS and CMS SM single top measurements [50–53]. We require an isolated,

hard lepton (electron or muon) with pT > 25 GeV and |η| < 2.5. The missing transverse

energy cut is E/T > 30 GeV, lower than in stop pair production searches to retain more of

the single stop signal events. We require two or three jets with pT > 30 GeV and increase

the jet pT threshold to 35 GeV for forward jets with |η| > 2.75. At least one jet must be

b-tagged. The jets and leptons are required to be well separated,

∆Rlj > 0.4 ∆Rjj > 0.4. (24)

which is more conservative than [51–54]. We also make a cut on the transverse mass,

mT > 80 GeV. The number of signal and background events after these selection cuts is

given in Table IV.

The total background is large, with about 30,000 events. Nevertheless, there are a suffi-

cient number of signal events remaining to isolate the signal further, especially for the lowest

stop mass point.

D. Deconstructed Transverse Mass

Preserving the full information about the missing energy vector is even more important in

single stop production than in stop pair production since there are fewer final state objects

and larger backgrounds from SM processes. We deconstruct the transverse mass in single

stop events according to Sec. III.

Figure 14 shows the Q − cosφ distribution for selected background events (except that

the mT cut has not been applied to show the full range of the distributions).
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(a) tt̄ (b) W+jets

(c) Single top

FIG. 14: Q vs cosφ distribution for background events passing basic selection, for (a) top quark

pair events including both lepton+jets and dilepton decay modes, (b) W+jets and (c) single top.

The black diagonal line is defined by Q = cosφ. Events inside the contour bounded by the dashed

line are selected by the single stop cuts. The event count per bin follows rainbow colors in log

scale. (Color online)
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TABLE IV: Event yields for single stop signals and different backgrounds passing basic selection

cuts at the 8 TeV LHC with 20 fb−1 of collisions.

Basic event selection

Sample Event yield

Signals:

mt̃ = 175 GeV, mχ = 1 GeV 592

mt̃ = 190 GeV, mχ = 10 GeV 77

mt̃ = 215 GeV, mχ = 40 GeV 70

Backgrounds:

tt̄ 3700

W+jets 10200

Single top 16100

The tt̄ background has the same features as can be seen in Fig. 8(a), with peaks near

cosφ = 1 and near cosφ = −1 and a diagonal distribution consistent with a W boson

decay. However, the distribution here is broader, and the peak near cosφ = 1 is much

less pronounced. This is due to the requirement of two or three jets, which reduces the

lepton+jets contribution and enhances the dilepton contribution. The W+jets and single

top backgrounds show a diagonal trend consistent with the decay of a W boson. This is

the same trend also visible in tt̄ lepton+jet events in Fig. 3(a). Since there are no multiple-

neutrino events in SM single top production, the peak near cosφ = −1 is absent in single

top. It is barely visible in W+jets, where it is populated by WZ+jets events with Z → νν

decay.

Figure 15 shows the Q− cosφ distribution for the three signal mass pairs. Compared to

stop pair production in Fig. 8, there is no peak near cosφ = 1 and the events are instead

clustered near cosφ = −1. In single stop production, the low mass of the two neutralinos

results in a preferred kinematic configuration where they are back-to-back with the lepton

from the W boson from the top quark decay.
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(a) t̃, mt̃ = 175 GeV, mχ = 1 GeV (b) t̃, mt̃ = 190 GeV, mχ = 10 GeV

(c) t̃, mt̃ = 215 GeV, mχ = 40 GeV

FIG. 15: Q vs cosφ distribution for single stop signal events passing basic selection. The black

diagonal line is defined by Q = cosφ. Events inside the contour bounded by the dashed line are

selected by the single stop cuts. The event count per bin follows rainbow colors in log scale. (Color

online)

32



E. Single Stop Signal Region

We employ the deconstructed variables to separate the single stop signals from the large

backgrounds. Since there is only one stop quark, hadronic top reconstruction is not possible

and a tau veto is not necessary and not required. Events above the dashed line in Figs. 14

and 15 form the single stop signal region. The resulting number of signal and background

events are listed in Table V.

TABLE V: Event yields in the single stop signal region for single stop signals and different back-

grounds at the 8 TeV LHC with 20 fb−1 of collisions.

Signal region

Sample Event yield

Signals:

mt̃ = 175 GeV, mχ = 1 GeV 129

mt̃ = 190 GeV, mχ = 10 GeV 21

mt̃ = 215 GeV, mχ = 40 GeV 22

Backgrounds:

tt̄ 302

W+jets 22

Single top 4.3

The background from W+jets and single top is reduced by two orders of magnitude

compared to Tab. IV, while the signal only goes down by a factor of four. The tt̄ background

is dominant, though even at this stage, there is already sensitivity to the 175 GeV mass

point. The 190 GeV mass point signal yield is comparable to the 215 GeV yield despite the

larger cross section because the on-shell top quark in the decay chain in equation (20) better

recoils off of the heavier neutralino masses. Thus, the 215 GeV signal is more concentrated

at cosφ = −1 and therefore easier to separate from background. Additional separation

can be obtained, in particular for the two higher masses, from additional cuts, for example

exploiting the E/T − cosφ correlation. Already with the straightforward cuts included here,

the stealth stop region of stop mass close to the top mass and low neutralino mass can be

accessed directly with the currently available LHC data.
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VI. ADDITIONAL APPLICATIONS OF DECONSTRUCTION

Beyond searching for stop pair production in the compressed limit, deconstructed trans-

verse mass variables may be useful in a variety of searches for new physics. Thus far we have

focused on the production of stops in processes with a lepton (electron or muon) in the final

state and in regions of parameter space that is hard to access. In this section we expand

the application of deconstruction to other examples. In general, deconstruction is useful any

time there is information encoded in the magnidude and direction of two objects in an event,

in particular when the underlying particles forming those two objects are different between

signal and background. For events containing a leptonically decaying W boson, these two

objects are the lepton and the E/T vector, and deconstruction extricates the signal from the

background through correlations in two two-dimensional planes. But the two objects could

also be two jets or more complex objects.

A. Deconstructed All-Hadronic Final States

Thus far we have focused on the production of stops in processes with a W boson decaying

to a lepton and neutrino. In this section, we describe deconstruction can also apply to all-

hadronic multi-jet final states. The signal signature contains multiple jets and one or two

undetected dark matter candidates, resulting in large E/T . The background to this signature

is large, but does not contain undetected high-pT particles. Any E/T is generated only from

detector mis-reconstruction or mis-identification or from undetected low-pT particles. Thus,

E/T is much lower in the background and constitutes a powerful discriminant between signal

and background. Here we present the basic idea of how deconstruction can help separate

stop pair signal events from tt̄ all-hadronic backgrounds. A full analysis will be developed

in [55].

We focus on the hadronic decays stops and consider the signal process

p+ p→ t̃+ t̃∗ → jets + χ+ χ (25)

and assume each stop decays solely to a top and neutralino. The final state contains six

hard partons, though experiments typically require at least four jets to maximize the signal

acceptance [56, 57].
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These signal events do not contain a lepton, thus a W boson transverse mass reconstruc-

tion seems pointless. However, an analogy to the deconstructed variables in Section III can

be constructed. When a top quark plays the role of the lepton, then the decay t̃→ t+ χ is

analogous to W → l + ν, thus we define

Q = 1− m0
T
2

2ET topE/T
, (26)

where ET top = m2
top + p2T top, i.e. the mass of the top quark can not be neglected. A variant

of this stop transverse mass variable was also used in [56]. We consider a stop/neutralino

mass combination of 400/200 GeV as an example. We therefore set M0 = 400 GeV. The top

quark is chosen as the one with the largest pT . Thus, cosφ measures the transverse angle

between the hardest top quark and the missing momentum.

Stop pair signal and tt̄ background events are generated at parton level with Madgraph,

no hadronization is included. We account for detector effects as described in Sec. II C,

except that the smearing is applied to partons rather than jets. We require six jets with

pT > 40 GeV, at least one of which must be b-tagged. The jets are clustered into exactly two

“mega-jets” (representing the two top quarks) by requiring that the invariant mass of each

mega-jet is close to the top mass [56, 57]. One jets in each mega-jet must have a pT > 80

GeV.

The major backgrounds to this signal is from tt̄, W+jets and multi-jet events. Typically,

a large missing transverse energy cut is applied to reduce these backgrounds. We do not

apply a cut on E/T and instead demonstrate the difference in shape of the Q− cosφ contour

between signal and tt̄ background.

Figure 16 shows the Q − cosφ distribution for the signal and the hadronically decaying

tt̄ background. The solid diagonal line corresponds to a transverse mass cut of 400 GeV,

which is effective at reducing the background but which also loses a lot of signal. The

background peaks near cosφ = −1, back-to-back with the leading mega-jet as expected

when E/T arises mainly from mis-reconstruction and limited resolution. Other backgrounds

containing neutrinos, including tt̄ backgrounds where the W boson decays to an electron or

muon or tau, will have peaks both near cosφ = −1 as well as cosφ = 1.

The dashed black lines in Fig. 16 enclose the region where the signal shape differs the most

from the background shape. The vertical part of the boundary approximately follows the

contour of equal background height, similar to the contour in Fig. 9, while the diagonal part
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(a) mt̃ = 400 GeV, mχ = 200 GeV (b) tt̄

FIG. 16: Q vs cosφ distribution for hadronic stop signal and tt̄ background events passing basic

selection. The black diagonal line is defined by Q = cosφ. Selecting events in the triangle defined

by the dashed line ensures the greatest separation between signal and background. The event count

per bin follows rainbow colors in log scale. (Color online)

has equal signal height. This region corresponds to lower Q (and transverse mass) values,

but higher cosφ values. This is similar to the lepton+jets final state (c.f. Section IV E),

where the best signal-background separation was also obtained for cosφ values away from

+1 and −1. We note again that full experimental analysis, would fully optimize this cut,

considering also systematic uncertainties.

B. Deconstructed Razor

Deconstruction language can also be adapted to the formalism of a razor analysis [58, 59],

which also uses mega-jets in an all-hadronic final state. Razor analyses are commonly used

for events with n-jet events and large amounts of missing energy. Again, the analysis defines

mega-jets in order to form a basic di-jet topology. The following kinematic variables are

then defined from the two mega-jets j1 and j2:

M2
R ≡ (pj1 + pj2)

2 − (pj1z + pj2z )2 (27)

(MR
T )2 ≡

(
E/T (pj1T + pj2T )− ~E/T · (~p j1T + ~p j2T )

)/
2. (28)
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Here MR
T is a transverse mass variable. These variables are used to construct the ratio,

R2 =

(
MR

T

MR

)2

. (29)

The simplest way to deconstruct razor is to define(
MR

TS

)2
=

1

2
E/T (pj1T + pj2T )

(
MR

TV

)2
= −1

2
~E/T · (~p j1T + ~p j2T ), (30)

and write two new ratios

R2
V =

(MR
TV

)2

M2
R

R2
S =

(M2
TS

)2

M2
R

(31)

where R2 = R2
V + R2

S. The combination of MR
TS

, MR
TV

, RV and RS provides information on

both the magnitude and the direction of the missing energy. Two-dimensional distributions

of these variables provides the potential for additional signal-to-background separation in

comparison to a traditional razor analysis. We demonstrate this in future work.

C. Deconstructed Top Quark

In addition to a modification of the reconstructed W boson transverse mass, the presence

of dark matter particles also modifies the reconstruction of the leptonically decaying top

quark. We form a top mass discriminant analogously to Eq. 13,

χt = p2bl LAt +
(
E2
bl − p2bl L

)
(At − 4EblE/T ) , χt = 1−

(
1− E2

bl/p
2
bl L

)
×
(

1− 4E2
blE/

2
T

A2

)
, (32)

where A2 is given by

A2 =
(
m2
t −M2

bl + 2~pbl T · ~E/T
)2

. (33)

Here, bl is the reconstructed lepton-b quark system and mt = 173 GeV is the input top

quark mass [29]. As before, T and L refer to the transverse and longitudinal components of

the momentum, respectively.

The variable χt encodes information on the magnitude and direction of the missing trans-

verse energy. It provides some additional information in the analysis beyond the variables

from Sec. III by also involving a jet (the b quark from the top decay, and thus has a different

sensitivity to mis-reconstructed jet energies. χt is the discriminant of the quadratic equa-

tion formed in reconstructing the top mass, and χt < 0 corresponds to a situation where the
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input b, lepton, and E/T vectors cannot be used to reconstruct a physical top, due to either

smearing or the presence of additional missing energy.

The distribution of χt is shown in Fig. 17 for SM top pair events. It peaks at one,

corresponding to events where the top quark mass is reconstructed properly. The distribution

has both positive and negative tails due to the effects that detector resolution and mis-

reconstruction have on E/T and the b-quark jet. There is an additional bump around χt = 1.3

from the kinematic threshold of the lepton and E/T cuts for events where the W boson and

b quark are back-to-back.

tχ
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]
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FIG. 17: Distribution of χt for top pair production and three different stop signal masses after

event selection, all normalized to have the same area, for events passing selection cuts. (Color

online)

For new physics signals, χt is typically negative, equivalent to Eq. 13. This can also

be seen in Fig. 17 which shows that the two stop signal lines also peak at zero, but both

distributions have large tails extending to negative values. Therefore a cut on χt is effective

at removing top pair background, preserving the stop signal. This variable is also useful for

regions of parameter space with large stop masses and small neutralino masses.

D. Other Applications

All of the deconstructed variables defined here will also be relevant in searches for SUSY

at 13 TeV. In particular, with the large datasets expected, tighter selection cuts can be

made, giving access to virtual top quarks far away from the on-shell top mass. A significant
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fraction of the stealth stop and compressed spectra regions can be covered already with

the existing 8 TeV data, and should be completely covered using 13 TeV data with the

techniques described here.

High-mass gluino and other searches that have four top quarks in the final state [60–

62], which will result in multiple sources of missing energy, an ideal playground for decon-

struction, which will then also allow for lower E/T cuts while still controlling backgrounds.

Similarly, vector-like quark decays often have W bosons and multiple neutrinos in the fi-

nal state [63], and deconstruction can improve the signal-background separation in these

searches.

Similarly, allowing top quarks and W bosons to be off-shell in order to access kinematic

ranges not otherwise accessible also applies to other searches. For example stop decays to

charginos don’t have to end their sensitivity at the on-shell chargino mass and can instead

extend below that value by allowing for off-shell chargino decays.

VII. CONCLUSION

We have investigated the pair production of supersymmetric top quark partners, with

subsequent decay to SM top quarks and neutralinos. In particular, we investigated the lep-

ton+jets decay mode of the resultant SM top quark pairs, with a single lepton and neutrino

(missing energy) in the final state. The neutralinos (as dark matter candidates) manifest

as additional missing energy in any detector. To make contact with existing analyses, we

focused on the 8 TeV LHC. We demonstrate that significant gains in sensitivity are avail-

able to ATLAS and CMS beyond the already-published 8 TeV results. We introduced new

deconstructed transverse mass variables which exploit the correlations between the ampli-

tudes and directions of the ~E/T and lepton. We showed how these correlations can be used

to separate the SM background from the SUSY signal, improving significantly upon existing

analyses. We have shown that a hadronic τ veto can be used to reduce the significant tt̄

dilepton background where one lepton is a tau decaying hadronically. We pointed out that

the compressed regions, where the stop mass is less than the sum of top and dark matter

particle mass, should be accessed by shifting the top mass cut window to reflect the off-

shell-nature of the top quark in these events. The stealth top region of light neutralinos

is accessible through single stop production together with deconstructed transverse mass
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variables. While we focused on scalar top partners, an interesting future direction would be

to investigate how well deconstruction applies to fermionic top partners, where spin corre-

lations may be important. Our techniques can be applied to other kinematic variables such

as mega-jet kinematics in hadronic final states and will also be important at future hadron

collider experiments such as the LHC at 13 TeV.
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