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Abstract

We define and test CP-even and CP-odd partial differential widths for the process τ → Kππντ

assuming that an intermediate heavy charged scalar contributes to the decay amplitude. Adopting

a model-independent approach, we use a Monte Carlo simulation in order to study the number of

events needed to recover information on the new physics from these observables. Our analysis of

the CP-odd observables indicates that the magnitude of fHηP , which is related to the new-physics

contribution, can be recovered with an uncertainty smaller than 3% for 3×106 events. This number

of events would also allow one to retrieve certain parameters appearing in the SM amplitude at

the percent level. In addition, we discuss the possibility of using the proposed observables to

study specific models involving two Higgs doublets, such as the aligned two-Higgs-doublet model

(A2HDM). This analysis is undertaken within the context of the upcoming Super B-factories, which

are expected to provide a considerably larger number of events than that which was supplied by

the B-factories. Moreover, a similar set of observables could be employed to study other decay

modes such as τ → πππντ , τ → KKπντ and τ → KKKντ .
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I. INTRODUCTION

With the discovery of a new boson H by the ATLAS [1] and CMS [2] collaborations, it is

now very important to characterize this new particle in order to study the extent to which

its features are in agreement with those predicted for the Higgs scalar within the Standard

Model (SM). In particular, the spin of this new boson and its couplings to other particles

have been carefully analyzed giving rise, with a high degree of confidence, to the conclusion

that it has spin zero and that its couplings to the other particles are linearly correlated with

their masses (see Refs. [3, 4] and references therein). On the other hand, the possibility of

an enlarged scalar spectrum is also being tested. In particular, from the high energy point of

view, many searches for charged Higgs bosons decaying via H → τντ have been performed

by ATLAS and CMS (see, for example, Refs. [5]-[7]). These searches have found the data to

be consistent with the expected SM background and have set limits on the branching ratio

of top quark decays to a b quark and a charged Higgs boson. The effects of the presence

of a charged Higgs boson can also be studied indirectly by means of low energy observables

defined, for example, for leptonic and semileptonic decays involving B,D∗, D,Ds, K and π

mesons [8]. Such decays have been widely studied at the B-factories by the Belle and BaBar

collaborations. Moreover, the fact that no new particle has been observed at the present

time may suggest that the new physics (NP) scale is out of reach for the LHC. Indirect

searches for physics beyond the SM become particularly important within this context.

Among the various processes that can receive contributions from a charged Higgs boson,

the τ lepton decays can be used to derive constraints on the scalar and pseudoscalar couplings

of a charged scalar to fermions. The fact that CP-violating effects are expected to be

negligible within the SM means that a study of CP-odd observables could reveal the presence

of contributions from a charged Higgs boson, should the charged Higgs-fermion couplings

violate CP. Such an analysis has been carried out for the decay τ → Kππντ in Ref. [9], where

the presence of a charged scalar contributing to the corresponding amplitude is assumed and

two types of CP-asymmetries are defined in addition to the usual partial rate asymmetry.

In the present work, which extends the analysis of Ref. [9], we focus on the same decay

τ → Kππντ , with the main goal being to define and test various CP-even and CP-odd

observables, on the one hand, and to study their sensitivity to a NP contribution due to

the presence of a charged scalar, on the other. The decay under consideration, τ → Kππντ ,
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only involves a pseudoscalar coupling of a charged scalar to the up and strange quarks, in

contrast to τ → Kπντ , for instance, which exclusively probes the scalar coupling [10]. It

is also worth noting that the simplest τ decay with ∆S = 1 that probes the contribution

arising from the exchange of a charged scalar is τ → Kντ . In fact, this decay involves exactly

the same pseudoscalar coupling as τ → Kππντ , and then imposes constraints on it.

For the analysis of the observables introduced below we use a large number of Monte

Carlo simulated events. The size of the Monte Carlo sample has been chosen within the

context of the upcoming Super B-factories, which are expected to significantly increase the

luminosity as compared to the B-factories. The aim of this analysis is to provide insight

into the number of events needed to extract information about the NP contribution as well

as about the SM contributions, including the anomalous Wess-Zumino (WZ) term.

Although our primary focus in the present work is on a model-independent treatment of

charged-scalar contributions to τ → Kππντ , it is useful also to consider a specific scenario.

Many models include one additional Higgs doublet, so that a charged Higgs is present. In

particular, in the so-called aligned two-Higgs-doublet model (A2HDM), an alignment in

flavour space of the Yukawa couplings of the two scalar doublets is enforced, leading to the

elimination of flavour-changing neutral currents at tree level. This restrictive choice results

in a highly predictive phenomenology for this model, which has been carefully explored (see

Refs. [11–13]). Of particular interest to us is not only the fact that the A2HDM includes

potential new sources of CP violation but also that it imposes very restrictive constraints due

to the three-family universality of the proportionality constants arising from the alignment

in flavour space. The partial differential widths studied in this work can be considered as

additional observables to test the A2HDM, specifically within the context of the Super B-

factories, in which the possibility of extracting these distributions from the data is more

plausible. In this paper we briefly discuss the usefulness of the proposed observables to

probe the A2HDM.

The remainder of this paper is organized as follows. In Sec. II we write down the expres-

sion for the differential width for the decay τ− → K−π−π+ντ in terms of the corresponding

form factors, including both the NP and SM contributions. By integrating the differential

width weighted by various angular functions, we define partial differential widths in Sec. III.

Section IV introduces a set of CP-even and CP-odd observables derived from the weighted

partial widths. The parameterization for the form factors, along with the set of reference
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values used later for the event simulation, are summarized in Sec. V. The analysis of the

proposed CP-even and CP-odd observables is included in Sec. VI. Finally, in Sec. VII the

decay is considered in the context of the A2HDM and in Sec. VIII some possibilities of test-

ing the different assumptions used during the paper are briefly discussed. We summarize the

main conclusions in Sec. IX. The Appendix contains some details relevant for the statistical

analysis.

II. DIFFERENTIAL WIDTH FOR τ− → K−π−π+ντ

We start with the effective Hamiltonian that accounts for the decay τ− → K−π−π+ντ

within the SM

HSM
eff =

GF√
2

sin θc [ν̄τγµ(1− γ5)τ ] [s̄γµ(1− γ5)u] + h.c., (1)

where GF is the Fermi constant and θc the Cabibbo angle. Possible NP effects due to a new

charged scalar boson contributing to the decay may be included by adding the following

terms to the effective Hamiltonian,

HNP
eff =

GF√
2

sin θc[ηS ν̄τ (1 + γ5)τ s̄u + ηP ν̄τ (1 + γ5)τ s̄γ5u] + h.c., (2)

where ηS and ηP are the scalar and pseudoscalar couplings, respectively. The hadronic matrix

element Jµ ≡ 〈K−(p1)π−(p2)π+(p3)|s̄γµ(1 − γ5)u|0〉 can be conveniently parameterized in

terms of four form factors as follows,

Jµ =
[
F1(Q2, s1, s2)(p1 − p3)ν + F2(Q2, s1, s2)(p2 − p3)ν

]
T µν

+iF3(Q2, s1, s2)εµνρσp1νp2ρp3σ + F4(Q2, s1, s2)Qµ, (3)

where Qµ = (p1 + p2 + p3)µ, T µν = gµν − QµQν/Q2, s1 = (p2 + p3)2 and s2 = (p1 + p3)2

and where we adopt the convention ε0123 = +1, as in Refs. [9, 14]. The functions F1 −

F4 are the form factors that arise from the different possible decay chains. F1 and F2

appear due to the decay chains involving the K1(1270) and K1(1400) resonances, F3 is the

anomalous Wess-Zumino term and F4 is the scalar form factor, which is generally assumed to
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be negligible for this decay since there is no pseudoscalar resonance through which the decay

can proceed [15]. The axial vector form factors F1 and F2 give the dominant contributions,

while the anomalous vector form factor F3 represents a subdominant contribution, as shown

by numerical estimates [10]. The NP contribution coming from a scalar boson can be

incorporated into the amplitude through the shift F4 → F̃4 = F4 + fHηP/mτ [9], where the

pseudoscalar form factor fH is defined as

fH = 〈K−(p1)π−(p2)π+(p3)|s̄γ5u|0〉 . (4)

The starting point for our analysis will be the differential width for the decay obtained from

Eq. (25) in Ref. [9] after integrating over the angle θ. The angle θ is defined in the rest

frame of the tau; it is the angle between the direction of the hadrons (“ ~Q”) in that frame

and the direction of the tau in the laboratory frame. Performing the integration, we obtain

dΓ

dQ2ds1ds2dγd cos β
=
A(Q2)

4π

{[2

3
〈K1〉+ 〈K2〉+

1

3
〈K1〉

(
3 cos2 β − 1

)
/2
](
|B1|2 + |B2|2

)
+

+
[2

3
〈K1〉+ 〈K2〉 −

2

3
〈K1〉

(
3 cos2 β − 1

)
/2
]
|B3|2 + 〈K2〉|B4|2

−1

2
〈K1〉 sin2 β cos 2γ

(
|B1|2 − |B2|2

)
+ 〈K1〉 sin2 β sin 2γ Re(B1B

∗
2)

+2〈K3〉 sin β sin γ Re(B1B
∗
3) + 2〈K2〉 sin β cos γ Re(B1B

∗
4)

+2〈K3〉 sin β cos γ Re(B2B
∗
3)− 2〈K2〉 sin β sin γ Re(B2B

∗
4)

+2〈K3〉 cos β Im(B1B
∗
2) + 〈K1〉 sin 2β cos γ Im(B1B

∗
3)

−〈K1〉 sin 2β sin γ Im(B2B
∗
3) + 2〈K2〉 cos β Im(B3B

∗
4)
}
, (5)

where

A(Q2) =
G2
F sin2 θc

128(2π)5

(m2
τ −Q2)2

m3
τQ

2
, (6)

and

〈Ki〉 ≡
1

2

∫ π

0

Ki sin θdθ (7)

(and similarly for 〈Ki〉); the definitions of the Ki and the Ki may be found in Ref. [9]. As

described in Ref. [9] (the definitions therein are identical to those in Ref. [14]), β and γ are
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Euler angles relating two coordinate systems used to specify the kinematics of the decay.

Moreover, the functions B1 −B4 are linearly related to the form factors as follows,

B1 = [F1(p1 − p3)x + F2(p2 − p3)x] (8)

B2 = (F1 − F2)py1 (9)

B3 = F3

√
Q2 py1p

x
3 (10)

B4 =
√
Q2

[
F4 +

fH
mτ

ηP

]
. (11)

Note that the form factors Fi and fH are potential sources of strong phases, and that the

only possible weak phase comes from the pseudoscalar coupling ηP . For future reference, let

us also define the quantity B4, which is relevant for τ+ decays,

B4 =
√
Q2

[
F4 +

fH
mτ

η∗P

]
. (12)

In fact, the differential width for the CP-conjugate decay τ+ → K+π+π−ντ can be obtained

by replacing B4 by B4 in Eq. (5) since the only source of CP violation appears in B4 through

the coupling ηP . For further details of the quantities involved within this section see Ref. [9].

III. WEIGHTED DIFFERENTIAL WIDTHS

We now define observables that exploit the angular information that is available in the

expression for the differential width. To do so, we employ weighting functions that allow

us to isolate different contributions. Inspection of Eq. (5) reveals that it depends on nine

different functions of the angles β and γ. These functions form an orthogonal set; the

functions, and their normalizations, are shown in Table I.
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TABLE I: Angular weighting factors. The hi(γ, β) functions form an othogonal set. The

normalization factors are given in the third column.

i hi(γ, β)
∫∫

[hi(γ, β)]2 sinβdγdβ

1 1 4π

2 3 cos2 β − 1 16π/5

3 sin2 β cos 2γ 16π/15

4 sin2 β sin 2γ 16π/15

5 sinβ sin γ 4π/3

6 sinβ cos γ 4π/3

7 cosβ 4π/3

8 sin 2β cos γ 16π/15

9 sin 2β sin γ 16π/15

The orthogonality of the functions means that different terms in Eq. (5) can be easily iso-

lated by performing angular integrations of the differential width weighted by these angular

functions. Hence, we can define nine weighted differential widths,

dΓi
dQ2ds1ds2

≡
∫

dΓ

dQ2ds1ds2dγ d cos β
hi(γ, β) sin β dβ dγ, i = 1, ..., 9. (13)

It is straightforward to perform the integrations in Eq. (13) using the information from Table

I. The results for the various weighted differential widths are shown in Table II. The only

weighted differential widths that include NP contributions are those with i = 1, 5, 6 and 7.

Therefore, the remaining observables are clearly CP-even.
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TABLE II: Weighted partial widths for the τ− decay. The related expressions for the CP-

conjugate decay may be obtained by replacing B4 by B4 everywhere it appears.

i (dΓi/dQ
2ds1ds2)/A(Q2)

1
(

2
3〈K1〉+ 〈K2〉

) (
|B1|2 + |B2|2 + |B3|2

)
+ 〈K2〉|B4|2

2 2
15〈K1〉

(
|B1|2 + |B2|2 − 2|B3|2

)
3 − 2

15〈K1〉
(
|B1|2 − |B2|2

)
4 4

15〈K1〉Re(B1B
∗
2)

5 2
3〈K3〉Re(B1B

∗
3)− 2

3〈K2〉Re(B2B
∗
4)

6 2
3〈K3〉Re(B2B

∗
3) + 2

3〈K2〉Re(B1B
∗
4)

7 2
3〈K3〉 Im(B1B

∗
2) + 2

3〈K2〉 Im(B3B
∗
4)

8 4
15〈K1〉 Im(B1B

∗
3)

9 − 4
15〈K1〉 Im(B2B

∗
3)

IV. OBSERVABLES

Since we are assuming that CP is violated via the pseudoscalar coupling, the τ− and τ+

distributions are not expected to be identical. There are in principle two ways to proceed.

The first is to analyze the observables in Table II twice, once for the τ− decay and once for

the τ+ decay. Another possibility is to perform an analysis separately for the sum and the

difference of the distributions. We will follow the latter approach, since it has the advantage

that the difference between the τ− and τ+ distributions is sensitive to the presence of CP

violation. We define then the following distributions

dΓ±i
dQ2ds1ds2

≡ 1

2

(
dΓi

dQ2ds1ds2

± dΓi
dQ2ds1ds2

)
, (14)

where dΓi/dQ
2ds1ds2 is obtained from dΓi/dQ

2ds1ds2 by the replacement B4 → B4 (or,

equivalently, ηP → η∗P ); see Eqs. (11) and (12). We note that the quantities dΓ+
i /dQ

2ds1ds2

and dΓ−i /dQ
2ds1ds2 are, by construction, CP-even and CP-odd, respectively. As was noted
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above, the only non vanishing CP-odd distributions are those with i = 1, 5, 6 and 7, because

the remaining weighted differential widths do not include NP contributions (i.e., they are

independent of B4).

Let us first consider the distributions with i = 1. After projection onto Q2, s1 or s2, the

CP-even distribution with i = 1 gives the CP-average of the invariant mass distributions,

which are the distributions that are usually studied in experimental analyses [10, 16]. The

corresponding expression is obtained from Table II,

dΓ+
1

dQ2ds1ds2

= A(Q2)

(
2

3
〈K1〉+ 〈K2〉

)(
|B1|2 + |B2|2 + |B3|2

)
+
〈K2〉

2
(|B4|2 + |B4|2). (15)

The CP-odd distribution with i = 1 is given by

dΓ−1
dQ2ds1ds2

= A(Q2)
〈K2〉

2
(|B4|2 − |B4|2) = 2A(Q2)〈K2〉

Q2

mτ

|F4fHηP | sin(δ4 − δH) sin(φH),

(16)

where δ4 and δH denote the strong phases arising from the SM scalar form factor F4 and

the pseudoscalar form factor fH , respectively, and φH is the weak phase present in ηP .

The above expression is related to the well known partial rate asymmetry. As was noted in

Ref. [9], the partial rate asymmetry is expected to be doubly suppressed due to the generally

assumed smallness of F4 and ηP . Expressions for the remaining non-zero CP-even and CP-

odd weighted partial differential widths may be found in Table III, where we have made use

of the following definitions,

B
(+)
4 ≡ 1

2
(B4 +B4) =

√
Q2

[
F4 +

fH
mτ

Re(ηP )

]
(17)

B
(−)
4 ≡ 1

2
(B4 −B4) =

√
Q2 ifH
mτ

Im(ηP ). (18)
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TABLE III: CP-even (“+”) and CP-odd (“−”) weighted partial widths. Several of the

CP-odd weighted partial widths are zero; these have been omitted.

i(±) (dΓ±i /dQ
2ds1ds2)/A(Q2)

2(+) 2
15〈K1〉

(
|B1|2 + |B2|2 − 2|B3|2

)
3(+) − 2

15〈K1〉
(
|B1|2 − |B2|2

)
4(+) 4

15〈K1〉Re(B1B
∗
2)

5(+) 2
3〈K3〉Re(B1B

∗
3)− 2

3〈K2〉Re
(
B∗2B

(+)
4

)
6(+) 2

3〈K3〉Re(B2B
∗
3) + 2

3〈K2〉Re
(
B∗1B

(+)
4

)
7(+) 2

3〈K3〉 Im(B1B
∗
2)− 2

3〈K2〉 Im
(
B∗3B

(+)
4

)
8(+) 4

15〈K1〉 Im(B1B
∗
3)

9(+) − 4
15〈K1〉 Im(B2B

∗
3)

5(−) −2
3〈K2〉Re

(
B∗2B

(−)
4

)
6(−) 2

3〈K2〉Re
(
B∗1B

(−)
4

)
7(−) −2

3〈K2〉 Im
(
B∗3B

(−)
4

)

Interestingly, from the definitions in Eqs. (17) and (18) and the results in Table III,

we note that it does not seem to be possible to extract F4 (by itself) from the data when

φH 6= ±π/2. In other words, there will always be an admixture of fHη
R
P ,1 and it will not be

possible to distinguish them. However, if the coupling ηP were purely imaginary, the factor

B
(+)
4 would only depend on the scalar form factor F4 and then the CP-even observables with

i = 5, 6 and 7 would be useful for determining FR,I
4 .

In order to study the observables presented above (Table III), we have made various

assumptions that tend to simplify the analysis, in a manner similar to the approach that

1 From now on, we will use the superscripts R and I to denote the real and imaginary parts of a quantity,

respectively.
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was followed in Ref. [9]. First of all, note that the SM scalar form factor F4 is generally

assumed to be small for τ → Kππντ , since there are no pseudoscalar resonances that mediate

this decay. Therefore, we will neglect this contribution by setting F4 = 0. Furthermore, we

will assume that fH has a flat behaviour over the phase space (no Q2, s1 and s2 dependence)

and does not contain strong phases. Thus, we set f IH = 0. Under these assumptions the 1(−)

distribution is reduced to zero, as can be seen from Eq. (16), while the 1(+) distribution

becomes equal to the usual (unweighted) differential width, as follows from Eqs. (11), (12)

and (15). Finally, in order to simplify and separate the analysis of the CP-even and CP-odd

observables, we perform the analysis with φH = π/2. For this particular value, B
(+)
4 = 0

and the NP contribution is removed from the CP-even observables (see Eqs. (15) and (17),

as well as Table III). To set an input value for the quantity |fHηP |, we follow the approach

adopted in Ref. [9], where it is assumed that the NP contribution to the width is hidden

in the experimental uncertainty of the branching ratio. As shown there, the experimental

uncertainty is saturated for |fHηP | ' 17.9. Thus, we take this value as a reference input. A

few comments are in order at this point.

1. As is noted in Ref. [9], one way to obtain an estimate of the order of magnitude of

fH is to compute F4 within the context of Chiral Perturbation Theory (see Ref. [15])

and then to relate fH to F4 via the quark equations of motion. The latter step yields

fH ∼ Q2F4/ms. A numerical study along these lines, with kinematical variables

sampled appropriately over the relevant phase space, shows that 〈|fH |〉 ∼ 14, with

76% of the values falling within the range 7-21 . Regarding the phase of fH , one

finds 〈arg (fH)〉 ' 0.97 π, so that |〈Im(fH)〉| � |〈Re(fH)〉|. Thus, it appears to be

reasonable to assume that fH is real.

2. The NP parameter |ηP | should scale as m2
W/M

2 due to the charged scalar propagator,

with mW and M being the W and charged scalar masses, respectively. If the charged

scalar has electroweak couplings, it would be reasonable to assume that ηP has a

magnitude not exceeding unity.

3. Combining the estimates from the above two comments, we obtain |fHηP | ∼ 14, which

is similar to our reference value |fHηP | = 17.9. As pointed out in Ref. [9], however,

this estimate may well have large uncertainties due to the use of the quark equations
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of motion; a more realistic assumption would probably be to take |fHηP | to be in the

range 1-10.

4. The decay channel τ− → K−ντ also involves the pseudoscalar coupling ηP , so that this

process can in principle be used to constrain the NP contribution to τ → Kππντ . It

turns out, however, that the constraints derived from τ− → K−ντ are very sensitive to

the values used for the strange quark mass and its uncertainty. By performing a crude

estimate that takes into account the uncertainties of the K− decay constant, fK− , and

makes use of the quark equations of motion, we obtain the constraint |ηIP | < 0.364

(recall our assumption that φH = π/2). We note that this bound was derived by

using the value ms = 0.095 GeV. On the other hand, if the quark mass is replaced

by the meson mass, one finds |ηIP | < 1.878. By combining these constraints with the

assumption that 1 < |fH | < 10, we obtain two different bounds, namely |fHηIP | < 3.64

and |fHηIP | < 18.78. Therefore, the constraints provided by the decay channel τ− →

K−ντ are not conclusive enough to discard our input value.

In much of the analysis that follows, we set |fHηP | = 17.9. With the above comments in

mind, however, we also include some results for fHηP = 1.79 eiπ/4 in Sec. VI.

V. PARAMETERIZATION OF FORM FACTORS

We now introduce the parameterization of the form factors F1 − F3 appearing in the

definitions of the quantities B1−B3 in the expression for the differential width (see Eqs. (5)

and (8)-(10)). We write the form factors in terms of various Breit-Wigner functions in the

following manner,

F1(Q2, s1, s2) = − 2N

3Fπ
[C ·BW1270(Q2) +D ·BW1400(Q2)]BWK∗(s2) (19)

F2(Q2, s1, s2) = − N√
3Fπ

[A ·BW1270(Q2) +B ·BW1400(Q2)]T (1)
ρ (s1) (20)

F3(Q2, s1, s2) =
N3

2
√

2π2F 3
π

BWK∗(Q
2)

[
T

(1)
ρ (s1) + αBWK∗(s2)

1 + α

]
. (21)

The normalized Breit-Wigner propagators for the K1(1270) and the K1(1400) appearing in

the axial vector form factors F1 and F2 are assumed to be [10],

BWK1(Q
2) =

−m2
K1

+ imK1ΓK1

Q2 −m2
K1

+ imK1ΓK1

, (22)
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where mK1 and ΓK1 denote the mass and width for the corresponding K1 state. The

Breit-Wigner propagators for the K∗ and ρ are taken to have energy-dependent widths

(see Refs. [10, 17]),

BWR(s) =
−m2

R

s−m2
R + i

√
sΓR(s)

, (23)

with

ΓR(s) = ΓR
m2
R

s

(
p

pR

)3

, (24)

where

p =
1

2
√
s

√
[s− (m1 +m2)2][s− (m1 −m2)2] (25)

pR =
1

2mR

√
[m2

R − (m1 +m2)2][m2
R − (m1 −m2)2]. (26)

In the above expressions the decay of the resonance R to two particles with masses m1 and

m2 is assumed. For the K∗, a single resonance with an energy-dependent width is assumed

while the expression for the ρ includes two different resonances:

T (1)
ρ (s1) =

BWρ(s1) + βBWρ′(s1)

1 + β
. (27)

To fix the reference values for the parameters A−D in Eqs. (19) and (20) we follow Ref. [10],

where constraints arising from the tabulated branching fractions of the K1 resonances are

imposed. Regarding the parameters N and N3 that regulate the contributions coming from

the axial and anomalous form factors, respectively, we apply the criteria proposed in Ref. [9],

in which 5% of the τ → Kππντ width is ascribed to the F3 term and the remaining 95% to

the F1 and F2 terms. For this computation, we have used the value of the branching ratio

B(τ → Kππντ ) obtained in [18], which is the most precise one at present (see Refs. [16, 19]).

All the reference values related to the form factors F1 − F3 used in our analysis are listed

in Table IV. Among them, those corresponding to the form factors F1 and F2 are based

on Ref. [10]. We note that a more recent and precise value for the mass and the width

of the K1(1270) resonance obtained in Ref. [20] from a signal-region fit for the channel

B+ → J/ψK+π+π− is still in agreement with the input value used here. For the form factor

F3 we follow Ref. [15], whereas for the ρ and ρ′ resonances the input values are guided by

Refs. [21, 22].

13



TABLE IV: Input values for the parameters entering in the form factors F1 − F3. The left

table (a) lists the dimensionless parameters while the right table (b) shows the masses and

widths of the various resonances, along with the pion decay constant (Fπ).

(a)

Parameter Value

α −0.2

β −0.145

A 0.944

B 0

C 0.195

D 0.266

N 1.4088

N3 1.4696

(b)

Parameter Value

Fπ 93.3 MeV

m1270 1.254 GeV

Γ1270 0.26 GeV

m1400 1.463 GeV

Γ1400 0.30 GeV

mK∗ 0.892 GeV

ΓK∗ 0.050 GeV

mρ 0.773 GeV

Γρ 0.145 GeV

mρ′ 1.370 GeV

Γρ′ 0.510 GeV

VI. ANALYSIS

In order to study the proposed observables we have performed two different analyses. In

the first we have tested the SM hypothesis. In this case there are no CP-violating effects

present in this decay and hence the CP-odd observables in Table III are zero. In the second

analysis, we have performed various fits of the distributions arising from all of the observables

in Table III. Both analyses have been implemented by using our own Monte Carlo (MC)

generator to simulate several sets of events with different sizes. The main goal of these two
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analyses is to estimate the number of events needed to detect the presence of NP (in the

case of the SM test) and to extract the NP coupling (in the case of the fit to the CP-odd

observables). Furthermore, the study of the CP-even observables aims to extract information

about the resonant structure of the decay and, in particular, of the anomalous Wess-Zumino

contribution.

We have focused our analysis on a scenario in which the NP parameter is assumed to

be hidden in the experimental uncertainty of the branching ratio. Hence, as mentioned

above, we have set the input value for the NP contribution to be 17.9 eiπ/2. In order to

test the usefulness of the proposed observables when the NP contribution is considerably

reduced, we have also performed an analysis of the CP-odd observables in the case where

fHηP = 1.79 eiπ/4.

A. Monte Carlo Simulation

In order to simulate the distribution in Eq. (5), we have constructed a Monte Carlo

event generator by applying von Neumann’s acceptance-rejection technique. Once a set of

events has been generated that is consistent with the differential decay width, the different

observables can be obtained by using suitable estimators. By employing our own event

generator we are able to include different contributions to the differential decay width and

to choose their parameterization. Various sets of events have been generated for the decay

τ− → K−π+π−ντ and for its CP-conjugate, τ+ → K+π+π−ντ . The maximum number of

events was taken to be 3 × 106 for the case in which the NP parameter fHηP is equal to

17.9 eiπ/2 and 106 for the case with fHηP = 1.79 eiπ/4. Although the total number of events

in these simulations is beyond the scope of the B-factories, it can be regarded as realistic

within the context of the upcoming Super B-factories, which are expected to increase the

design luminosity by approximately two orders of magnitude. In fact, the design luminosity

at SuperKEKB is 8 × 1035 cm−2s−1 and an integrated luminosity of 50 ab−1 is expected

[23]. Guided by the analysis performed in Ref. [16] (which was based on data collected by

the Belle detector at KEKB) and taking into account the expected integrated luminosity

at SuperKEKB, we can estimate the expected number of τ− → K−π−π+ντ events. A

conservative estimate gives ∼ 5 × 106, which is above the maximum number of events we
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have simulated for the present analysis, 3× 106.2

As was noted in Sec. IV, the pseudoscalar form factor has been assumed to be real and

the SM scalar contribution has been neglected; thus, we have taken f IH = F4 = 0 as inputs

for the MC simulation. The input values related to the form factors F1 − F3 are listed in

Table IV. As a test of the consistency of our event generator, the usual differential width

distributions have been extracted from a set of 1 × 105 simulated events. As can be seen

from Fig. 1, the simulated distributions are in agreement with those obtained experimentally

by the CLEO collaboration in Ref. [10] and also with the expected distributions based on

numerical computations [9]. In addition to the contributions involving the form factors F1

and F2, the subdominant contribution from the W-Z term and the possible NP contribution

have been incorporated in the plots.

2 Even though the estimated number of events takes into account the possible backgrounds as well as the

detector effects [23], these have not been considered during the present analysis.
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FIG. 1: Plots of the differential widths dΓ/dM , including the different contributions from

the decay chains along with the simulated data points obtained by using our MC generator.

The |fHηP | curve displays the NP contribution.

B. SM Hypothesis test

The fact that the CP-odd observables 5(−), 6(−) and 7(−) are zero if the NP contribution

is absent (i.e., if fHηP = 0) allows for a test of the SM hypothesis by performing a Pearson’s

χ2-test. To perform this test, we calculate χ2 for a particular observable j(−) and then

compute the quantity Pj, which is the probability that the hypothesis (the SM hypothesis
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in our case) would lead to a χ2 value greater than the one actually obtained,

χ2
j =

Nbins∑
i=1

[
dxΓ

−
j (xi)

σ
(j)
i

]2

, Pj =

∫ ∞
χ2
j

f(z;nd)dz, j = 5, 6, 7. (28)

In the above expressions, dx ≡ d/dx with x ≡ Q2, s1, s2, Nbins is the number of bins,3 f(z;nd)

is the χ2 distribution for nd degrees of freedom and σ
(j)
i denotes the statistical uncertainty

in the i-th bin for the observable j(−) (see App. A). We remark that the values of the

distributions in the numerator of the expression for χ2
j given in Eq. (28) are extracted from

the simulations. It is worth noting that this test is based on the assumption that the SM

contribution only includes strong phases and therefore the only source of CP-violation for the

decay is a weak phase present in the NP contribution. Hence, the test itself does not depend

on the particular value of the NP parameter, even when its robustness actually does (as we

will show later). Tables V and VI show results of the SM hypothesis test performed using

the observables dΓ−5,6,7/dx, with different numbers of events, and taking fHηP = 17.9 eiπ/2.

TABLE V: P -values corresponding to the observables 5(−) and 7(−). The number of events

considered is given in the first column.

P -values

Nev/100, 000 dΓ−5 /dQ
2 dΓ−5 /ds1 dΓ−5 /ds2 dΓ−7 /dQ

2 dΓ−7 /ds1 dΓ−7 /ds2

5 0.933 0.754 0.175 0.0086 0.168 0.057

10 0.675 0.361 0.0018 0.00015 0.044 0.00013

15 0.198 0.062 0.000015 1.15× 10−7 0.00033 4.27× 10−7

20 0.286 0.055 2.73× 10−7 2.78× 10−10 8.14× 10−6 9.76× 10−11

3 For the entire analysis we have used the conservative number of 20 bins (see Ref. [16]).
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TABLE VI: P -values for the observable 6(−). The number of events is shown in the first

column. Note that in this case fewer events were included in the simulations than were used

in the previous table.

P -values

Nev/100, 000 dΓ−6 /dQ
2 dΓ−6 /ds1 dΓ−6 /ds2

1 0.000024 0.0076 0.013

2 1.27× 10−14 1.05× 10−7 1.25× 10−6

3 < 10−17 6.66× 10−16 3.55× 10−15

4 < 10−17 < 10−17 < 10−17

As shown in Table VI, the SM test for the observable 6(−) allows one to reject the SM

hypothesis with as few as 105 events. This is not the case for the other CP-odd observables,

which are not useful for rejecting the null hypothesis unless there are at least 5×105 events.

In fact, one can use this χ2 test to rank the various observables in terms of their sensitivity to

the NP contribution. As is demonstrated by the data in Tables V and VI, the most sensitive

observable appears to be the Q2 projection of 6(−), which yields a P -value of 2.4 × 10−4

for 105 events. Therefore, the CP-odd differential width 6(−) (mainly its Q2 projection)

provides a suitable observable for rejecting the SM, since in the SM no CP violation effect

is expected for this decay. In order to analyze the robustness of the test, we repeat the

procedure with a sample of 106 events for the scenario in which fHηP = 1.79 eiπ/4. In this

case the test seems to loose its capability of rejection, even for the observable 6(−) (see Table

VII). The tiny NP contribution in this case makes all three CP-odd observables compatible

with zero, at least for 106 events. This reveals that a larger set of events (> 1 × 106) is

needed for these observables to be useful when the NP contribution is this small. However,

this test can be regarded as an interesting possibility within the context of the upcoming

Super B-factories, for which a conservative estimate of the expected number of events for

the mode τ− → K−π−π+ντ gives ∼ 5× 106, as was already mentioned in Sec. VI A.
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TABLE VII: P -values corresponding to the observable 6(−) for a NP contribution with

fHηP = 1.79 eiπ/4.

P -values

Nev/100, 000 dΓ−6 /dQ
2 dΓ−6 /ds1 dΓ−6 /ds2

10 0.53 0.93 0.99

C. Fitting Procedure

We have performed several fits of the one-dimensional distributions resulting from the

projections of the observables listed in Table III onto Q2, s1 and s2. Only the parameters

appearing linearly in the expressions for the form factors F1 and F2, namely A,B,C, and D,

along with the NP parameter, fHηP , have been taken into account as possible fit parameters,

although we have also tested the possibility of recovering N3 (which provides information

regarding the Wess-Zumino contribution) from the fits.4 In order to construct the fitting

function needed to apply the least squares method, we write each observable in terms of the

parameters θ = (A,B,C,D,N3, fHη
I
P )5 as follows,

dΓ±i
dQ2ds1ds2

=
∑
j

f
i(±)
j (Q2, s1, s2)ζ

i(±)
j (θ), (29)

where the vectors ζ i(±) depend on the parameters θ and are listed in Table VIII. By pro-

jecting Eq. (29) onto x ≡ Q2, s1, or s2, we obtain the corresponding expected value for the

i-th projected partial differential width evaluated for the k-th bin of x:(
dΓ±i
dx

)
bin k

=
∑
j

c
i(±)
kj ζ

i(±)
j (θ). (30)

4 Although the chosen fitting procedure does not take the masses and widths of the resonances as free

parameters (i.e., these parameters are set to their reference values), we have also performed the fits by

varying the values for the main contributing resonances K1(1270) and K1(1400) within the uncertainties

reported in Ref. [10]. We have observed that these shifts tend to worsen the fits, whereas the uncertainties

do not change significantly.
5 We note that the fitting procedure introduced in this section could also be applied for the case φH 6= π/2

by including the parameter fHη
R
P in θ.
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The matrices ci(±) in the above expression have dimension Nbins×N i(±)
coeff , with Nbins being the

number of bins in the x range and N
i(±)
coeff being the number of functions required to express

the observable i(±) in terms of the parameters θ appearing in Eq. (29).

TABLE VIII: List of the vectors ζ i(±) appearing in Eq. (30) expressed in terms of the

parameters in θ.

i(±) ζ

2(+) (C2, D2, CD,A2, B2, AB,AC,BC,AD,BD,N2
3 )

3(+) (C2, D2, CD,A2, B2, AB,AC,BC,AD,BD)

4(+) (C2, D2, CD,A2, B2, AB,AC,BC,AD,BD)

5(+) (N3C,N3D,N3A,N3B)

6(+) (N3C,N3D,N3A,N3B)

7(+) (CA,CB,DA,DB)

8(+) (N3C,N3D,N3A,N3B)

9(+) (N3C,N3D,N3A,N3B)

5(−) (fHη
I
PC, fHη

I
PD, fHη

I
PA, fHη

I
PB)

6(−) (fHη
I
PC, fHη

I
PD, fHη

I
PA, fHη

I
PB)

7(−) (fHη
I
PN3)

The different matrices ci(±) are obtained by numerical integration of the appropriate

function f
i(±)
j (Q2, s1, s2). With the observables expressed as in Eq. (30), we proceed in

general to minimize the quantity

χ2(θ) =

Nbins∑
j=1

(ysim
j − yexp

j (θ))2

σ2
j

, (31)

where the ysim
j are the values for a given observable extracted from the simulations, the

yexp
j are the corresponding expected values obtained by using the fitting function defined

above, and the σj are the statistical uncertainties associated with the simulation process (see
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App. A). We note that different choices of the parameters in θ with respect to which χ2(θ)

is minimized have been tested. The various resulting fits will be described in the following

sections.

D. Fit Results

We present now the results obtained by fitting the CP-odd as well as the CP-even ob-

servables (see Table III). We consider these two sets of observables separately. In the case

of the CP-odd observables, we regard the NP parameter fHηP as the unique free parameter

and fix the remaining parameters to their input values. In the case of the CP-even observ-

ables we focus on extracting information about the remaining parameters, A,B,C,D and

N3, from our simulated data. This approach is facilitated by the assumptions mentioned in

Sec.IV, namely that F4 = f IH = 0 and φH = π/2. Under these assumptions, the CP-even

observables in Table III do not depend on the NP contribution, and hence the input value

for the parameter fHηP is not involved in the analysis of these observables.6

1. CP-odd observables

In order to recover the NP parameter fHη
I
P from the CP-odd observables we perform

a least squares fit by fixing the parameters A,C and D to their input values and setting

the parameter B to zero. The results obtained for two data sets (with different numbers

of events) for the case fHη
I
P = 17.9 are displayed in Tables IX and X.7 The best fit value

for fHη
I
P is more than 2.5σ away from zero for all of the CP-odd observables, and is more

compatible with the input value than with zero. Moreover, this is the case even when the

number of events in the simulation is 5× 105. As was the case for the SM test proposed in

the previous section, the observable 6(−) appears to be more precise than the other CP-odd

observables (judging by the smaller statistical uncertainty that it yields for the estimated

parameter). As can be seen from the comparison between Tables IX and X, the statistical

6 Note that fHηP is involved in the CP-even observable “1(+)”, which is not included in Table III. Note

also that, in the more general case in which φH 6= π/2, the CP-even observables 5, 6 and 7 contain

NP contributions, but these are added to the dominant SM contribution. By way of contrast, the NP

contributions are dominant for the CP-odd observables in the sense that these observables are zero if

fHηP = 0 (since there is no weak phase in F4).
7 In the tables in this and the next sections, the difference between the best fit value and the input value for

each observable is given in units of its respective statistical uncertainty, although we use the same symbol

σ everywhere.
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uncertainties are reduced by approximately 50% when the number of events in the simulation

is increased from 5× 105 to 3× 106.

TABLE IX: Best fit values for the parameter fHη
I
P obtained from the CP-odd observables

with a set of 5× 105 events. The input value for the NP parameter was set at fHη
I
P = 17.9.

The difference between the best fit value and the input value, |∆(fHη
I
P )| ≡ | ˆfHηIP − fHηIP |,

is included.

Nev = 5× 105

dΓ−i /dQ
2 ˆfHηIP |∆(fHη

I
P )| dΓ−i /ds1

ˆfHηIP |∆(fHη
I
P )| dΓ−i /ds2

ˆfHηIP |∆(fHη
I
P )|

5 28± 11 0.9σ 5 21± 8 0.4σ 5 19± 5 0.2σ

6 17± 1 0.9σ 6 18± 1 0.1σ 6 17± 1 0.9σ

7 20± 4 0.5σ 7 17± 4 0.2σ 7 19± 4 0.3σ

TABLE X: Best fit values for the parameter fHη
I
P obtained from the CP-odd observables

with a set of 3 × 106 simulated events . The difference |∆(fHη
I
P )| ≡ | ˆfHηIP − fHη

I
P | is

included.

Nev = 3× 106

dΓ−i /dQ
2 ˆfHηIP |∆(fHη

I
P )| dΓ−i /ds1

ˆfHηIP |∆(fHη
I
P )| dΓ−i /ds2

ˆfHηIP |∆(fHη
I
P )|

5 18± 5 0.02σ 5 22± 3 1.4σ 5 18± 2 0.05σ

6 17.6± 0.4 0.8σ 6 18.0± 0.5 0.2σ 6 17.4± 0.5 1.0σ

7 17± 2 0.5σ 7 15± 2 1.5σ 7 17± 2 0.5σ

We have also performed a least squares fit using the set of 106 events with fHηP =

1.79 eiπ/4. In this case the best values obtained from the fit to the observables 5(−) and

7(−) become compatible with zero and have large statistical uncertainties, whereas the
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observable 6(−) is still the most precise one, giving best fit values that are more than 2σ

away from zero and that recover the input value fHη
I
P = 1.79 sin(π/4) ' 1.27 even though

the uncertainties are larger than those we obtain with fHηP = 17.9 eiπ/2 using a set of 106

events.8 The results for the three projections of the observable 6(−) are shown in Table XI.

TABLE XI: Best fit values for the parameter fHη
I
P obtained from the observable 6(−)

by using a set of 106 simulated events with an input value fHηP = 1.79 eiπ/4 (so that

fHη
I
P ' 1.27).

Nev = 1× 106

dΓ−i /dQ
2 ˆfHηIP |∆(fHη

I
P )| dΓ−i /ds1

ˆfHηIP |∆(fHη
I
P )| dΓ−i /ds2

ˆfHηIP |∆(fHη
I
P )|

6 1.9± 0.6 1.1σ 6 1.8± 0.8 0.7σ 6 1.7± 0.8 0.5σ

Both the results obtained from the least squares fit and the SM test indicate the utility of

using the observable 6(−) as a tool for investigating CP-odd NP effects. On the one hand,

the SM test shows this observable’s power to reject the SM hypothesis if there is actually

a CP-violating contribution; on the other hand, the least squares fit demonstrates how this

observable can be used to recover the input value of the NP parameter. It is interesting

to consider why the 6(−) observable is so much more sensitive to CP violation than are

the other two CP-odd observables that we have considered. This sensitivity arises from

the dependence of the CP-odd observables on the quantities Bi. As is evident in Table

III, the 7(−) observable is doubly suppressed due to the smallness of the W-Z and the NP

contributions. Similarly, comparison of the 5(−) and 6(−) observables indicates that the

latter exhibits a larger magnitude (and hence greater sensitivity to NP) because it depends

on the quantity B1, whereas the former depends on B2; numerical study has shown that the

magnitude of B1 tends to be larger than that of B2 within the allowed ranges of Q2, s1 and

s2.

The above results are based on the assumption that fH has no Q2, s1 or s2 dependence.

It is important to note, however, that a non-trivial dependence on the kinematical variables

8 For the case with fHηP = 17.9 eiπ/2 we only display results obtained using 5 × 105 and 3 × 106 events,

although we have also performed similar fits using sets of events of different sizes.
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could appear due to the presence of final state interactions. The functional form of fH is

unknown at present. Having said this, it is instructive to adopt a simple functional form for

fH in order to test how the 6(−) distributions are modified. For the purpose of illustration,

let us reconsider the expression for fH derived from the quark equations of motion, fH ∼

(Q2/ms)F4, where F4 is assumed to be a constant. In order to set a reference value for |F4|

the expression derived in Ref. [15] within the context of Chiral Perturbation Theory has been

used. A numerical analysis similar to that discussed in Sec. IV gives 〈|F4|〉 ∼ 0.54 GeV−1 and

O(〈Im(F4)〉) < O(〈Re(F4)〉). We set F4 = 0.54 GeV−1 and add a normalization factor in the

expression for fH , N , so that the experimental uncertainty of the branching ratio is again

saturated by the NP contribution. By taking φH = π/2 we find the value N|ηP | = 1.71.

Hence, |fHηP | = N (Q2/ms)F4|ηP | = 1.71 × 0.54 GeV−1(Q2/ms) = 0.92 GeV−1(Q2/ms).

Figure 2 shows plots of the 6(−) distributions for the case fHη
I
P = 17.9 (blue solid line)

along with the specific case presented above in which fH depends linearly on Q2 (red dashed

25



line).
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FIG. 2: Plots of the distributions obtained from the observable 6(−) for |fHηP | = 17.9

(blue solid line) and |fHηP | = 0.92 GeV−1(Q2/ms) (red dashed line). In the panels (a),(b)

and (c) the projections onto Q2, s1 and s2 are displayed, respectively. The distributions are

normalized to the total width of the τ .
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These distributions have been obtained numerically and normalized to the total width of

the τ (Γtot). As can be seen from the plots, the 6(−) distributions arising from the two

approaches are comparable. On the one hand, the order of magnitude of each projection

remains the same in both cases. On the other hand, the maxima of the distributions do

not change significantly from one approach to the other. Based on these facts, it would

be reasonable to expect that the number of events needed for recovering the NP parameter

from the 6(−) distributions in the case |fHηP | = 17.9 would also be enough for the case

|fHηP | ∝ Q2. In this sense, the presence of a linear Q2 dependence in fH should not spoil

the sensitivity of the 6(−) distributions to the NP contribution with respect to the case in

which |fH | is assumed to be a flat function. Hence, this specific case shows that the proposed

observables could be useful even when there is a non-trivial dependence of |fH | on Q2, s1

and s2.

2. CP-even observables

In this section we focus on CP-even observables. We will discuss the results arising from

the observables 2(+)− 9(+) and then, separately, those arising from the 1(+) distribution,

due to its preferential treatment in previous analyses [10, 16].

In order to test the power of the method, we first performed a fit with the parameters

A,C,D and N3 unconstrained and B set to zero. In this case, we observe that the correlation

between the parameters, as well as the standard deviations, are very large and the outputs

of the fit for the different parameters are far away from the input values. To address these

issues, we have adopted a modified fit procedure, in which the parameters C and D are

constrained by the branching fractions into the K∗π final state from the K1(1270) and

K1(1400), respectively (see Ref. [10]). In addition, we keep the parameters B and N3 fixed

to their input values, B = 0 and N3 = 1.4696, respectively. Accordingly, we have minimized

the distributions only with respect to the parameter A. The results of the fit for 3 × 106

events are tabulated in Table XII.
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TABLE XII: Fit results for the parameter A obtained from the CP-even observables 2(+)−

7(+) using a sample of 3 × 106 simulated events. The input value for the simulation was

taken to be A = 0.944. The difference |∆A| ≡ |Â− A| is also displayed.

Nev = 3× 106

dΓ+
i /dQ

2 Â |∆A| dΓ+
i /ds1 Â |∆A| dΓ+

i /ds2 Â |∆A|

2 0.95± 0.01 0.6σ 2 0.94± 0.01 0.4σ 2 0.94± 0.02 0.2σ

3 0.92± 0.01 2.4σ 3 0.91± 0.01 3.4σ 3 0.91± 0.02 1.7σ

4 0.93± 0.02 0.7σ 4 0.94± 0.01 0.4σ 4 0.94± 0.02 0.2σ

5 0.949± 0.008 0.6σ 5 0.947± 0.006 0.6σ 5 0.942± 0.006 0.3σ

6 0.91± 0.03 1.1σ 6 0.92± 0.02 1.2σ 6 0.92± 0.02 1.2σ

7 0.94± 0.01 0.4σ 7 0.942± 0.008 0.3σ 7 0.948± 0.005 0.8σ

Before we discuss the results in Table XII, we note that the 8(+) and 9(+) distributions

extracted from the set of 3 × 106 simulated events are consistent with zero to within their

statistical uncertainties (which are determined using Eq. (A2)). As a result, no conclusive

information can be obtained from these observables with this number of events. For this

reason we do not include results from these observables in the table. Turning now to the

observables 2(+) − 7(+), we notice that for these observables the input value is recovered

in all cases with uncertainties smaller than 3%; furthermore, the three projections of 5(+)

and the s1,2 projections of 7(+) are the most precise, with uncertainties smaller than 1%.

We turn now to a consideration of the observable 1(+). All of the projections of this

observable are positive distributions that are more than two orders of magnitude larger than

those arising from the other CP-even observables. Since the absolute statistical uncertainties

are similar for all of the CP-even distributions, the 1(+) distributions end up having con-

siderably reduced relative statistical uncertainties compared to those for the other CP-even

distributions. Therefore, we have analyzed this distribution in a different manner, allowing

A,N3 and fHηP to float as free parameters. Although the best fit point obtained from

the fit to the 1(+) distribution is in good agreement with the corresponding input values,
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and the standard deviations are smaller than those associated with the other observables,

there are certain disadvantages in the use of this distribution for extracting the value of

fHηP . First of all, it is important to note that the fact that the distribution appears to be

sensitive to the NP contribution arises exclusively from the input value that we have used

for the NP parameter. More precisely, as outlined above, the NP parameter has been set to

a value such that it saturates the experimental uncertainty, which includes both statistical

and systematic sources. This experimental uncertainty is higher than the uncertainty as-

sociated with extracting the distributions from the simulations, which is purely statistical.

Moreover, the statistical uncertainty that we have used in our analysis is smaller than the

statistical uncertainties in the experiments since we are using a larger number of events

for our simulation. Therefore, in our analysis, the NP contribution exceeds the statistical

uncertainties of the simulated 1(+) distribution, leading to a best fit value for fHηP essen-

tially incompatible with zero. This observation is supported by the fact that when we carry

out the same fit using the set of events simulated with fHηP = 1.79 eiπ/4, we obtain a best

fit value in agreement with zero. Moreover, the computation of the correlation matrix for

both sets of events shows that there are significant correlations between the fit parameters.

Furthermore, the least squares function that we minimize exhibits several local minima that

are not far enough from the global minimum to distinguish them if the precise input values

are not known beforehand. It is worth noting that this sort of problem is absent when we

fit the CP-odd observables in order to obtain the single NP parameter.9 Lastly, note that

under the assumptions used in this work, one would not be able to extract any information

about the NP weak phase from the analysis of the 1(+) distribution because its dependence

on the NP parameter enters as the squared modulus of B4 and B4, which are proportional

to |ηP | under our assumption that F4 = 0 (see Eqs. (11), (12) and (15)). Even if F4 6= 0, the

dependence on the NP parameter would be mixed in a complicated way with the dependence

on the SM scalar form factor F4, preventing their disentanglement. We remark that the

inability to distinguish the NP contribution from the SM contribution is common to all the

CP-even observables, while it is absent in the case of the CP-odd observables.

Several of the CP-even observables are in principle sensitive to the parameter N3 (which

9 This could arise from the fact that, for the observable 1(+), the χ2 is a quartic function of the input

parameters, whereas for the CP-odd observables it is a quadratic function of the NP parameter.
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fixes the contribution of the anomalous Wess-Zumino term). However, as was noted above,

the 8(+) and 9(+) distributions are consistent with zero, even with the maximum number

of events that we have simulated. This spoils the sensitivity of these observables to the

parameterN3. An alternative is to use the observables 5(+) and/or 6(+) with the parameters

A,C and D fixed to their input values. With these parameters fixed in this way, the 5(+) and

6(+) distributions depend only on N3. Of course, when experimental data is used instead

of simulated events, the input values will be unknown. In this case, one could use the other

observables to estimate the parameter A first; then C and D could be obtained by applying

constraints arising from the tabulated branching fractions of the K1 resonances (see Eqs.

(8)-(10) in Ref. [10]). The results for N3 obtained from the 5(+) and 6(+) distributions are

shown in Table XIII for a simulation using 3 × 106 events. Both observables allow one to

recover the parameter N3. The observable 5(+), however, is the more precise of the two;

its uncertainties are smaller than 4%, while those associated with the 6(+) distribution are

of order 15%. Hence, the observable 5(+) appears to be the most appropriate observable

for implementing the proposed strategy to extract information about the anomalous Wess-

Zumino contribution.

TABLE XIII: Results for N3 from fits to the 5(+) and 6(+) distributions with a set of 3×106

simulated events. The fit has been performed by fixing the parameters A,C and D to their

input values. The input value for N3 was 1.4696.

Nev = 3× 106

dΓ+
i /dQ

2 N̂3 |∆N3| dΓ+
i /ds1 N̂3 |∆N3| dΓ+

i /ds2 N̂3 |∆N3|

5 1.45± 0.05 0.4σ 5 1.45± 0.05 0.4σ 5 1.49± 0.05 0.4σ

6 1.3± 0.2 0.9σ 6 1.5± 0.2 0.2σ 6 1.5± 0.2 0.2σ

We conclude this section by summarizing, in Table XIV, the main results obtained for

the 6(−) observable. Of the various observables proposed in this work, the 6(−) distribution

shows the most promise for detecting CP-odd NP effects in τ → Kππντ .
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TABLE XIV: Main results for the 6(−) observable obtained in Sec. VI by using various sets

of simulated events with |fHηP | = 17.9.

Distribution

SM hypothesis test Least Squares fit

Nev P -value Nev Fit value for fHη
I
P

dΓ−6 /dQ
2 105 0.000024 3× 106 17.6± 0.4

dΓ−6 /ds1 105 0.0076 3× 106 18.0± 0.5

dΓ−6 /ds2 105 0.013 3× 106 17.4± 0.5

VII. τ → Kππντ WITHIN THE ALIGNED 2HDM

So far we have analyzed the decay τ → Kππντ in a model-independent framework, in

which the NP effects are incorporated by adding the contribution of a charged scalar boson

that couples to fermions in a “non-standard” manner (i.e., the couplings are not suppressed

by the masses of the light quarks [9]). In this section we consider the proposed analysis in the

context of a particular model of NP. Many NP models extend the SM scalar sector by adding

a second scalar doublet so that the scalar spectrum contains a charged boson. A particular

example of such a model is the so-called aligned two-Higgs-doublet model (A2HDM) [11].

In the A2HDM, an alignment between Yukawa coupling matrices leads to the elimination

of the non-diagonal neutral couplings that would lead to tree-level flavour-changing neutral

currents.

The Yukawa Lagrangian corresponding to the charged Higgs boson in the A2HDM can

be written in terms of the fermion mass eigenstates as [11, 12]

LH±Y = −
√

2

v
H+{u[ςdVMdPR − ςuMuV PL]d+ ςlνMlPRl}+ h.c., (32)

where Mu,d are the diagonal mass matrices, V is the CKM matrix, v is the Higgs vacuum

expectation value and PR,L ≡ 1±γ5
2

are the chirality projection operators. The proportion-
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ality parameters ςf (f = u, d, l) are arbitrary complex numbers and give rise to new sources

of CP violation.

From Eq. (32) we see that within the A2HDM the effective couplings gquqdlL and gquqdlR

appearing in the corresponding effective Hamiltonian are given by [11]

gquqdlL = ςuς
∗
l

mquml

M2
H±

, gquqdlR = −ςdς∗l
mqdml

M2
H±

. (33)

Moreover, given the three-family universality of the proportionality parameters ςf , the fol-

lowing relations are satisfied,

gquqdlL

g
q′uq
′
dl
′

L

=
mquml

mq′uml′
,

gquqdlR

g
q′uq
′
dl
′

R

=
mqdml

mq′d
ml′

. (34)

In our case, the relations between the couplings ηP,S defined in Eq. (2) and those introduced

in Eq. (33) are given by

η∗S + η∗P
2

= gusτL =̇ ςuς
∗
l

mumτ

M2
H±

and
η∗S − η∗P

2
= gusτR =̇− ςdς∗l

msmτ

M2
H±

, (35)

where the last equalities hold only within the A2HDM. Owing to the mu suppression, gusτL

can be neglected and the relations in Eq. (35) reduce to

ηP = −gusτ∗R =̇ ς∗d ςl
msmτ

M2
H±

. (36)

The above expression, along with the second relation in Eq. (34), imply that observables

from other systems involving the couplings gquqdlR will provide constraints for the pseudoscalar

coupling ηP , which can be used in turn to obtain predictions for the observables proposed

in Sec. IV. In this case, the observables we have proposed could be useful for testing the

A2HDM.

Let us now consider an example that will illustrate how outside constraints can be used

to make testable predictions in τ → Kππντ . In this example we will focus on the observable

6(−), which happens to be much more sensitive to CP violation than the other proposed

observables, as was discussed in Sec. VI D 1. The phenomenology derived from the A2HDM

has been studied extensively (see for example Refs. [11, 13]). In particular, the constraints

obtained by combining the information from various semileptonic and leptonic decays have

been discussed in Refs. [11, 12]. Hence, guided by Ref. [12], and assuming that 1 < |fH | < 10

and that f IH = 0, we derive the (model-dependent) constraints −0.01 < fHη
R,I
P < 0.01. It

should be noted that in this case we are considering an arbitrary weak phase φH , in contrast
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with our analysis in Sec. VI, in which the analysis was restricted to φH = π/2, π/4. In order

to test the A2HDM, the 6(−) distributions extracted from the data can be compared to the

corresponding allowed region arising from the very restrictive bound mentioned above. Since

we are using simulated events instead of experimental data, we will make use of the 6(−)

distributions extracted from our simulations. In particular, we will use the distributions

associated with the NP parameter choice fHηP = 1.79 eiπ/4, instead of those associated with

fHηP = 17.9 eiπ/2, since the former parameter choice is closer to the range obtained from the

A2HDM. In addition, we note that this parameter choice is compatible with the constraints

derived in a model-independent manner from the decay τ → Kντ (assuming that f IH = 0 and

that 1 < |fH | < 10), regardless of whether one uses the quark or meson mass to determine

the bound. The projection onto s2 of the observable 6(−) is displayed in Fig. 3 along with

the prediction derived from the A2HDM. We consider only the s2 projection because it tends

to have the largest magnitude for this observable.
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FIG. 3: Projection onto s2 of the observable 6(−) extracted from a set of 106 events along

with the corresponding allowed region within the A2HDM. The data in the simulation

corresponds to the NP parameter choice fHηP = 1.79 eiπ/4. Note that the plot of the

allowed region assumes that the parameters associated with the form factors (A, B, etc.)

have zero uncertainty.

Inspection of Fig. 3 reveals that the distribution lies outside the A2HDM prediction

only in the 3th and 4th bins, with the deviations being smaller than 2σ and almost 1σ,
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respectively. However, as was already shown in Sec.VI D 1, when we perform a least squares

fit to this distribution with fHη
I
P as the unique free parameter, we obtain the value 1.7±0.8

(see Table XI), which is more than 2σ away from the range allowed for this parameter

within the A2HDM (|fHηIP | < 0.01). Although such a deviation would cast doubt on the

A2HDM in an experimental setting, it would not be enough to completely reject the model.

Thus, for a NP parameter fHη
I
P two orders of magnitude above the range predicted by

the A2HDM, more than 106 events would be needed for the observable 6(−) to be useful

in probing this model. A similar observation holds for the case of the SM, since in that

case the 6(−) distribution is simply zero and is thus contained within the range allowed for

the A2HDM. In fact, the situation here is similar to the situation that was considered in

Secs. VI B and VI D 1, where it was noted that more than 106 events were required to use

the 6(−) distribution as a tool for distinguishing between the SM and a NP scenario with

|fHηP | = 1.79.

Finally, we emphasize that the allowed region indicated in Fig. 3 assumes that the pseu-

doscalar form factor fH is a constant function of the phase space variables and that its

imaginary part is zero. In order to perform a more realistic study of the A2HDM within the

context of the observables discussed in this work, these assumptions would need to be tested

carefully. In Sec. VIII we comment on some possibilities for testing these assumptions.

VIII. TEST OF ASSUMPTIONS

As has been mentioned in previous sections, various assumptions have been made while

performing the analysis in this work. Some of these assumptions could in principle be tested

by using the proposed observables. In this section we describe how one could test two

assumptions that have been made regarding the pseudoscalar form factor fH ; namely, that

it is a flat function of Q2, s1 and s2, and that it does not contain strong phases (i.e., that

f IH is zero).

From the observables 5(−) and 6(−) in Table III we have the following relations

dΓ−5
dQ2ds1ds2

=

(
2

3
A(Q2)〈K2〉

√
Q2

mτ

BR
2

)
f IHη

I
P −

(
2

3
A(Q2)〈K2〉

√
Q2

mτ

BI
2

)
fRHη

I
P (37)

dΓ−6
dQ2ds1ds2

= −

(
2

3
A(Q2)〈K2〉

√
Q2

mτ

BR
1

)
f IHη

I
P +

(
2

3
A(Q2)〈K2〉

√
Q2

mτ

BI
1

)
fRHη

I
P , (38)
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where we recall that the quantities B1, B2 and 〈K2〉 depend on the kinematical variables

Q2, s1 and s2. By projecting Eqs. (37) and (38) onto x ≡ Q2, s1, s2 we can form a 2 × 2

matrix equation  dΓ−5 /dx

dΓ−6 /dx

 =

 a1 −b1

−a2 b2

 f IHη
I
P

fRHη
I
P

 , (39)

where the quantities a1 and b1 are the projections onto x of the two functions appearing

inside the parentheses in Eq. (37), while a2 and b2 arise from the two functions in Eq. (38).

Of course, these quantities are functions of x. Also, we note that we need to assume that

fH has no dependence on the kinematical variables other than x in order to derive Eq. (39).

By inverting Eq. (39) we obtain the relations

f IHη
I
P =

1

a1b2 − a2b1

(
b2
dΓ−5
dx

+ b1
dΓ−6
dx

)
(40)

fRHη
I
P =

1

a1b2 − a2b1

(
a2
dΓ−5
dx

+ a1
dΓ−6
dx

)
, (41)

from which we find

f IH
fRH

=
b2 dΓ−5 /dx+ b1 dΓ−6 /dx

a2dΓ−5 /dx+ a1dΓ−6 /dx
. (42)

Since we are assuming that there is no Q2, s1, or s2 dependence in fH , the right hand side of

Eq. (40) as well as of Eq. (41) must be constant over the range of x. Therefore, by extracting

the distributions dxΓ
−
5,6 from the data and obtaining the quantities a1,2, b1,2 numerically for

each bin in the x range, the assumption regarding the flatness of fH (as a function of Q2, s1

and s2) can be tested. On the other hand, under the assumption that fH has no strong

phase, the left hand side of Eq. (42) vanishes, so that the significance of the deviations from

zero of the quantity appearing on the right hand side can be used to test this assumption.

Another possibility arises from the analysis of the zero-crossing points for the various

distributions. Under the assumptions mentioned above, namely that f IH = 0 and that its

functional dependence on the kinematical variables is flat, the zero-crossing points for the

CP-odd distributions are independent of the value of the NP parameter fHηP . Thus, the

numerical prediction of these zero-crossing points and the comparison with the distributions

obtained from the data can also be used to test these two assumptions.10 In order to illustrate

10 Here we are taking the parameters related to the resonance structure of the decay to be fixed to their

input values. In fact, the position of the zero-crossing points depends not only on the two assumptions

we are testing but also on these input values. In this sense, the analysis of the zero-crossing points could

also be useful for studying these parameters. 35



this, let us consider the
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FIG. 4: Projection onto s1 of the observable 6(−), obtained by using a set of 3×106 simulated

events. The zero-crossing point can be clearly extracted from the plot with an uncertainty

given by the size of the bins (s1 = 0.56± 0.03 GeV2).

observable 6(−) (see Fig. 2). Projecting this distribution separately onto Q2, s1 and s2 and

performing a numerical computation of the corresponding zero-crossing points yields the

values Q2 ∼ 1.85609 GeV2, s1 ∼ 0.55633 GeV2 and s2 ∼ 0.85142 GeV2, respectively. On

the other hand, analysis of the distributions associated with a set of 3 × 106 events yields

the following values (see Fig. 4)

Q2 = 1.86± 0.04 GeV2, s1 = 0.56± 0.03 GeV2, s2 = 0.84± 0.04 GeV2, (43)

which are in good agreement with the expected values. Thus, with 3 × 106 events, it

appears that one could use the zero-crossing points of the CP-odd distributions to test the

assumptions regarding fH that were noted above. With fewer than 3× 106 events, however,

the zero-crossing point test would start to lose its effectiveness.

IX. CONCLUSIONS

In this paper we have proposed and tested various CP-even and CP-odd observables for

the decay τ → Kππντ by adding the contribution of a NP charged scalar to the correspond-

ing amplitude within a model-independent approach. The various observables that we have
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proposed are defined in Eq. (14) (see also Tables I and III). These observables are distribu-

tions that have been partially integrated over phase space, using weighting functions to pick

out various terms from the original expression for the differential width (see Eq. (5)). The

resulting distributions are functions of three invariant mass squared variables, Q2, s1 and s2,

and they depend on the NP contribution in different ways. Throughout much of the text, we

have denoted the various distributions by “i(±)” (i = 1, . . . , 9), where the “±” designation

refers to whether the distribution is even (“+”) or odd (“−”) under CP. For the numerical

analysis we have used simulated events generated through our own event generator, with

the maximum number of simulated events being 3× 106.

Among the various observables that we have proposed, the 6(−) distribution is the most

sensitive to the NP contribution. On the one hand, for a sizeable NP contribution (|fHηP | ∼

17.9), we have found that this observable is useful for testing the SM hypothesis, even for

1 × 105 events. On the other hand, the results of the fits show that this observable allows

one to recover the NP parameter with the highest precision, with the uncertainties being

.6 % and .3 % for 5× 105 and 3× 106 simulated events, respectively. More interestingly,

the capability of the observable 6(−) to recover the NP parameter is not spoiled when the

size of the NP contribution is reduced.

Regarding the CP-even observables that we study in this paper, we have found that the

5(+) distribution and the s1,2 projections of the 7(+) distribution show the most promise

for recovering the parameter A, which is related to the weight of the resonant contributions.

Additionally, considering that the 8(+) and 9(+) distributions extracted from the set of

3 × 106 simulated events are consistent with zero to within their statistical uncertainties,

we have shown that the observable 5(+) is the most suitable alternative for extracting

information about the anomalous Wess-Zumino term once the other parameters related to

the various resonances have been measured.

The results involving the CP-odd observables have been derived under the assumptions

that f IH = 0 and that its functional dependence on the kinematical variables is flat. The

same assumptions have been made for the CP-even observables, but in that case, we have

also assumed that F4 = 0. The possibilities for testing some of these assumptions by using

the observables defined in this paper have been discussed in Sec.VIII.

We have also studied the decay τ → Kππντ within the context of the A2HDM and

have found that the observables that we have defined may be used to test this model. In
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particular, we have focused on the s2 projection of the differential width 6(−), comparing

the range allowed by the A2HDM to that predicted by our simulation, adopting the NP

parameter choice |fHηP | = 1.79. Using a simulation with 106 events, we have found that

the best fit value for fHη
I
P obtained from the distribution is in disagreement (by more than

2σ) with the range predicted for the A2HDM. With the NP parameter choice |fHηP | = 17.9

and the same number of events, the disagreement between the two scenarios is much greater

and one would be able to distinguish decisively between them.

We note that a similar set of observables could be defined in order to analyze other decay

modes such as τ− → π−π+π−ντ , τ
− → K−K+π−ντ and τ− → K−K+K−ντ , and their CP-

conjugated decays. In fact, precise measurements of the branching ratios for these decays

have already been obtained at the B-factories (see Refs. [16, 18] for example).

An experimental analysis of the observables we have analyzed in this paper could be useful

not only for extracting information about the resonance structure of the decay τ → Kππντ

but also for obtaining additional constraints on the NP pseudoscalar coupling. Moreover,

with the higher luminosity expected for the upcoming Super B-factories, the number of

events anticipated for the decay τ → Kππντ would be enough to exploit the information

provided by the proposed observables.
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Appendix A: Statistical Uncertainties

In this appendix we summarize some results regarding statistical uncertainties associated

with the distributions considered in this work.

The estimator that we have used to extract the projections onto Q2, s1, and s2 of the
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weighted partial differential widths from the simulated events is given by:

1

Γtot

d̂Γi
dx

(x0) =
N

Nev

h̄i
∆x
Bτ→Kππντ , (A1)

where d̂Γi
dx

(x0) denotes the projection onto x ≡ Q2, s1, s2 of the i-th weighted partial width

evaluated at x0, N is the number of events within the bin (x0−∆x/2, x0 + ∆x/2), h̄i is the

sample mean of the angular function hi(γ, β) (see Table I) in the bin and Nev is the total

number of simulated events. We note that the presence of the branching ratio (Bτ→Kππντ )

arises from the fact that we have normalized the observables to the total decay width (Γtot).

In order to estimate the statistical error associated with dΓi/dx, we use error propagation

in Eq. (A1), taking into account the standard deviations of the number of events in a given

bin, N , and of the sample mean h̄i. The expression that we obtain for the j-th bin is given

by:

σj =
Bτ→Kππντ

∆x

√
Ij√
Nev

(σhi + 〈hi〉
√

1− Ij), (A2)

where σhi =
√
〈h2

i 〉 − 〈hi〉2 is the standard deviation of hi computed for the j-th bin, Ij is

the probability for a given event to lie within that bin and 〈h2
i 〉 and 〈hi〉 denote the mean

values of h2
i and hi, respectively, which are calculated, again, for the j-th bin. In general,

for all the observables the dominant contribution arises from the standard deviation of the

angular function, σhi , while the second term in Eq. (A2) is negligible. The unique exception

is the observable with i = 1, for which σh1 = 0 (due to the fact that h1(α, β) = 1 – see Table

I), so that the second term is the dominant one. Actually, this second term computed for

the observable dΓ1/dx turns out to be comparable to the first contribution obtained for any

of the remaining observables (dΓi/dx, i = 2, . . . , 9). Therefore, the statistical uncertainties

σj are of the same order of magnitude for all of the weighted partial widths (i = 1, . . . , 9).

Of course, the order of magnitude of the uncertainty in Eq. (A2) changes from one bin to

another and from one projection to another (x = Q2, s1 or s2).
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