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We study a lattice field theory model containing two flavors of massless staggered fermions with
an onsite four-fermion interaction. The model contains a SU(4) symmetry which forbids non-
zero fermion bilinear mass terms, due to which there is a massless fermion phase at weak couplings.
However, even at strong couplings fermion bilinear condensates do not appear in our model, although
fermions do become massive. While the existence of this exotic strongly coupled massive fermion
phase was established long ago, the nature of the transition between the massless and the massive
phase has remained unclear. Using Monte Carlo calculations in three space-time dimensions, we
find evidence for a direct second order transition between the two phases suggesting that the exotic
lattice phase may have a continuum limit at least in three dimensions. A similar exotic second order
critical point was found recently in a bilayer system on a honeycomb lattice.

PACS numbers: 71.10.Fd,02.70.Ss,11.30.Rd,05.30.Rt

I. INTRODUCTION

It is well known that relativistic four-fermion field the-
ories in three dimensions can contain strongly interact-
ing second order fixed points [1, 2]. The search for such
fixed points in four-dimensions has been less successful,
although efforts to find them continue in the context of
Yukawa models [3–6]. One of the motivations for their
search is to understand new dynamical mechanisms for
fermion mass generation that may be realized in nature.
Perturbatively, fermion masses arise from local fermion
bilinear terms in the action. Since four-fermion inter-
actions are perturbatively irrelevant in three and higher
dimensions, we expect a massless fermion phase at small
couplings as long as the interactions are invariant un-
der some subgroup of the chiral symmetry group that
prevents fermion bilinear condensates. However when
these interactions become strong, symmetries that pro-
tect the fermions from becoming massive can break spon-
taneously leading to non-zero fermion bilinear conden-
sates and massive fermions. This traditional mechanism
of mass generation is well known. In this paper we ex-
plore another more exotic mechanism of mass generation
where fermions become massive without fermion bilinear
condensates. As we will explain below, such exotic mech-
anisms of fermion mass generation are known to occur at
strong couplings. In this work we provide evidence that
these lattice phases can be connected to massless fermion
phases by second order phase transitions, suggesting that
the exotic mass generation mechanism may be of interest
even in continuum quantum field theory.
Anomaly matching severely constrains the chiral sym-

metries that can be preserved when fermions become
massive [7, 8]. It is necessary for the full chiral symmetry
group of free fermions to be broken either explicitly or
spontaneously for fermions to become massive. However,
there are chiral symmetry subgroups that can remain un-
broken, which forbid local fermion bilinear condensates,
yet allow for fermions to become massive. Such exotic
mechanisms of fermion mass generation have appeared
in the literature in the context of QCD like theories [9–

11]. In these examples the spontaneous breaking of chiral
symmetry occurs through the formation of four-fermion
condensates which preserve an unbroken chiral symme-
try subgroup that forbids fermion bilinear condensates
[12]. What about four-fermion field theories where the in-
teractions naturally generate the necessary four-fermion
condensates that can make fermions massive, but still
contain symmetries that forbid fermion bilinear conden-
sates? In such theories, there is no need for any further
symmetry breaking in order to make fermions massive,
since the four-fermion coupling already breaks the full
chiral symmetry group to a subgroup that in principle al-
lows for fermions to become massive. On the other hand
since four-fermion interactions are irrelevant perturba-
tively, there will still be a massless fermion phase at weak
couplings. However, as couplings become strong, there
can be a phase transition to a phase where fermions be-
come massive without any spontaneous symmetry break-
ing of the remnant chiral symmetry subgroup. In such
a transition there is no local order parameter that dis-
tinguish the two phases in the strict sense of the word,
although the four-fermion condensate could show a dra-
matic change in the vicinity of the phase transition. In
other words, the remnant chiral symmetry subgroup is
realized in the Wigner-Weyl mode in both the phases
but in different forms: one containing massless fermions
while the other containing massive fermions with some
form of parity doubling [13]. In this paper we study an
explicit example of such an exotic phase transition in
a four-fermion lattice field theory in three dimensions.
Interestingly, this phase transition seems to be second
order.

It is well known that subgroups of the full chiral sym-
metry group can be preserved on the lattice even in the
presence of interactions. A famous example is staggered
fermions, where a U(1) subgroup of the full chiral sym-
metry group prevents fermion mass terms [14–16]. With
more flavors this lattice chiral symmetry group is en-
hanced and it is interesting to explore if there are sub-
groups of this remnant lattice chiral symmetry group that
forbid fermion bilinear expectation values while still al-
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lowing staggered fermions to become massive. Interest-
ingly such an exotic fermion mass generation mechanism
was discovered long ago in studies of staggered lattice
Yukawa models in four-dimensions within a phase called
the strong paramagnetic or PMS phase [17–21]. Many
studies with Wilson fermions followed this discovery in
an attempt to explore if the PMS phase can be used
to formulate the standard model on the lattice [22–26].
While most of these attempts seem to have failed, as far
as we know the rich phase structure that was predicted
within various models was only partially verified with
Monte Carlo calculations. In particular, results in the
intermediate coupling region may not have been reliable
since computational techniques were still in their infancy
at that time. While most of the studies of the PMS
phase focused on four-dimensions, there have been stud-
ies more recently in three space-time dimensions where
similar phase structures were found [27]. Analytic pre-
dictions using mean field theory also emerged at the same
time [28–32]. A review of these early results can be found
in [33].

In this work we revisit a simple lattice four-fermion
model with two flavors of staggered fermions interacting
with an onsite four-fermion coupling. Our model is a lim-
iting case of a lattice Yukawa model studied long ago [20].
Earlier studies were performed in four-dimensions, where
it was established that there is a massless fermion phase
at weak couplings and a PMS phase at strong couplings.
The weak coupling phase was referred to as the weak
paramagnetic or PMW phase. The authors used mean
field theory in the intermediate coupling region and found
that the two phases are separated from each other by a
more conventional massive fermion phase with a non-
zero chiral condensate (referred to as the ferromagnetic
or FM phase). This phase diagram is shown as scenario
A in Fig. 1. On the other hand a different mean field
theory calculation, which becomes exact in the limit of
large dimensions, found a direct first order transition be-
tween the massless and the massive phase [29–32]. This
is shown as scenario B in Fig. 1. As far as we know,
a controlled first principles Monte Carlo calculation has
never been performed. In this work we perform such
a calculation in three space-time dimensions and find a
result consistent with scenario B, but with a second or-
der transition between the PMW and the PMS phase.
This second order critical point cannot be described using
traditional four-fermion field theory that involves sponta-
neous symmetry breaking and the formation of a fermion
bilinear condensate. Interestingly, a very similar second
order transition was recently found in an extended Hub-
bard model on a bilayer-honeycomb lattice, where it was
argued that the exotic critical point is a multi-critical
point where three topology driven second order phase
transition lines meet [34].

Our paper is organized as follows. In the next section
we present our model, its symmetries and the observables
we wish to compute. In section III we discuss how our
model can be viewed as a limit of a lattice Yukawa model

PMSPMW FM
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U = ∞U = 0
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FIG. 1: The two possible phase diagrams for our model based
on previous studies. Our work provides strong evidence in
favor of scenario B with a second order transition between
the PMW phase and the PMS phase.

and argue the presence of the PMW and the PMS phase
at weak and strong couplings respectively. We also re-
view results from the mean field theory calculation that
predicts a direct first order transition between the two
phases. We then discuss the fermion bag approach in IV,
which we use to perform Monte Carlo calculations. Sec-
tion V contains a discussion of the specific Monte Carlo
update procedures we have used in our work. In section
VI we present our numerical results and its analysis that
provides evidence for a single second order transition be-
tween the two phases and in section VII we discuss why
we believe there is no order parameter that distinguishes
the two phases. Finally, section VIII contains our con-
clusions.

II. MODEL AND SYMMETRIES

The model we study contains two flavors of staggered
fermions with an onsite four-fermion interaction. The
Euclidean action of our model is given by

S = S0 − U
∑

x

{

ψx,1ψx,1ψx,2ψx,2

}

, (1)

where S0 is the free massless staggered fermion action

S0 =
∑

i=1,2

∑

x,y

ψx,i Mx,y ψy,i. (2)

Here ψx,i, ψx,i, i = 1, 2 are four independent Grassmann
valued fields, M is the well known staggered fermion ma-
trix given by

Mx,y =
∑

α̂

ηx,α̂
2

[δx,y+α̂ − δx,y−α̂], (3)

x ≡ (x1, x2, x3) denotes a lattice site on a 3 dimensional

cubic lattice and α̂ = 1̂, 2̂, 3̂ represent unit lattice vectors
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in the three directions. The staggered fermion phases
are defined as usual: ηx,1̂ = 1, , ηx,2̂ = (−1)x1, and ηx,3̂ =

(−1)x1+x2 . We study cubical lattices of equal size L in
each direction with anti-periodic boundary conditions.
Since the lattice is cubical we can define a parity for each
site using the sign factor εx = (−1)x1+x2+x3 . If εx = 1
we define the site to be even and otherwise it is odd.
Our model is just one of the many possible lattice Gross-
Neveu models that have been considered in the literature
[2, 35–38], however the PMS phase at strong couplings
is a peculiarity of our model and is not present in most
models. This difference has been pointed out in earlier
work [20].
It is easy to verify that the action given in Eq. (1) is

symmetric under the usual space-time lattice transfor-
mations and internal SU(4) transformations given below
[15, 16]:

(i) Space-time translations:

ψx,i → ξx,α̂ψx+ˆ̂α,i, ψx,i → ξx,α̂ψx+α̂,i, (4)

where ξx,1̂ = (−1)x2+x3 , ξx,2̂ = (−1)x3 , and ξx,3̂ =
1.

(ii) Space-time rotations:

ψx,i → SR(R
−1x)ψR−1x,i, ψx,i → SR(R

−1x)ψR−1x,i,
(5)

where R ≡ R(ρσ), ρ 6= σ is the rotation xρ →
xσ,xσ → −xρ, and xτ → xτ when τ 6=
ρ, σ and SR(x) = 1

2 (1 ± ηρ̂(x)ηx,σ̂ ∓ ξx,ρξx,σ +
ηx,ρ̂ηx,σ̂ξx,ρξx,σ), where the two signs represent the
cases ρ > σ and ρ < σ respectively.

(iii) Axis reversal:

ψx,i → (−1)xρψ(Iρx),i, ψx,i → (−1)xρψ(Iρx),i, (6)

where Iρ(x) is the axis reversal operation on x
which changes xρ → −xρ and xσ → xσ , σ 6= ρ.

(iv) Global SU(4) transformations:
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ψxe,1

ψxe,2
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ψxe,1
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, (7a)
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ψxo,1

ψxo,1

ψxo,2

ψxo,2









, (7b)

where xe and xo refer to even and odd lattice sites
respectively, and V is a SU(4) matrix in the fun-
damental representation.

The free action is invariant under a much bigger sym-
metry group since it describes four flavors of four com-
ponent Dirac fermions. While this enhanced symmetry
can only be understood in the momentum space for-
mulation, the SU(4) symmetry discussed above and the
well known Uχ(1) symmetry of staggered fermions, im-
plemented through the transformations

ψx,i → eiθ εxψx,i, ψx,i → eiθεxψx,i, (8)

are both visible even in position space. In most stag-
gered four-fermion models, it is the Uχ(1) symmetry that
breaks spontaneously when fermions become massive. In
contrast, in our model the interaction term breaks it ex-
plicitly by introducing a four-fermion condensate. On
the other hand the SU(4) symmetry forbids fermion
bilinear condensates. Indeed the six onsite fermion
bilinears φx,1 = ψx,1ψx,1, φx,2 = ψx,2ψx,2, φx,3 =

ψx,1ψx,2, φx,4 = ψx,2ψx,1, φx,5 = ψx,1ψx,2, φx,6 =

ψx,2ψx,1 transform under the sextet representation of
SU(4), and cannot acquire an expectation value unless
the SU(4) symmetry breaks spontaneously. We believe
our model is an example of four-fermion models, dis-
cussed in the introduction, where fermions become mas-
sive due to four-fermion condensates although fermion
bilinear condensates vanish. As discussed in the in-
troduction, since four-fermion interactions are irrelevant
there is still a massless fermion phase at weak couplings.
However, as we will see in the next section, at suffi-
ciently strong couplings fermions become massive with-
out fermion bilinear condensates. As far as we can tell,
no local order parameters exist that distinguish between
the two phases. Thus, fermion mass generation in our
model is a question of dynamics rather than symmetry.
Of course it is possible that the SU(4) symmetry still

breaks spontaneously at some intermediate couplings. In
order to look for such breaking, we can measure corre-
lation functions between the six fermion bilinears. The
SU(4) symmetry can be used to relate all of them to two
independent correlation functions. In this work we com-
pute the corresponding two independent susceptibilities

χ1 =
1

2L3

∑

x,y,x 6=y

〈

φx,1φy,1

〉

, (9a)

χ2 =
1

2L3

∑

x,y,x 6=y

〈

φx,1φy,2

〉

, (9b)

where expectation values are defined as
〈

O
〉

=
1

Z

∫

[dψ dψ] O e−S(ψ,ψ), (10)

with Z being the partition function. The presence of a
condensate can be inferred when these susceptibilities di-
verge as L3 for large values of L. Another observable that
we compute is the local four-point condensate defined by

ρm =
1

L3

∑

x

〈ψx,1ψx,1ψx,2ψx,2〉. (11)



4

We find that this quantity increases rapidly near the
phase transition.

III. CONNECTION TO YUKAWA MODELS

Our model can be obtained from many lattice Yukawa
models, the simplest being the one in which two flavors of
staggered fermions are coupled to an Ising field σx = ±1
and whose action is given by

S = S0 − κ
∑

x,α̂

σxσx+α̂ − Y
∑

i=1,2

∑

x

σxψx,iψx,i. (12)

Here κ is the hopping parameter for the Ising field and Y
is the Yukawa coupling. When κ = 0 it is easy to show
that the partition function of the above model is exactly
the same as the partition function of our model if we
set U = Y 2. Note however that the SU(4) symmetry is
broken in the Yukawa model for general values of κ and
is restored (but hidden) when κ = 0.
The Yukawa model at κ = 0 can be studied in per-

turbation theory for both small and large Y . At small
coupling the fermionic correlation function up to second
order in Y 2 is given by

〈ψx,iψy,j〉 = δij

(

M−1
xy + Y 4(M−1Π(3)M−1)xy

)

, (13)

where Π
(n)
xy ≡ (M−1

xy )
n is a matrix in position space. Us-

ing this expression and the usual power counting rules
of weak coupling perturbation theory that show four-
fermion couplings are irrelevant, it is easy to verify that
fermions remain massless. Similarly, the bosonic correla-
tion function is given by

〈ψx,iψx,i ψy,jψy,j〉 = δij

(

Π(2)
xy + Y 4(Π(2)Π(2)Π(2))xy

)

+Y 2(1− δij)(Π
(2)Π(2))xy, (14)

which goes to zero when x and y are separated far from
each other showing that fermion bilinear condensates
vanish. In the leading large coupling limit the fermionic
correlation function is given by

〈ψx,iψy,j〉 = δij (
1

Y 2
)2ℓ+2Axy, (15)

where 2ℓ+1 is the number of bonds in the shortest path
connecting sites x and y. This number is odd since the
correlation function is non-zero only if x is an even site
and y is an odd site or vice versa. Thus, ℓ = 0, 1, 2, ... is
fixed once x and y are chosen. In general there are many
such paths, each of which we can label with the sites
along the path as P = (x, z1, z2, ...z2ℓ−1, z2ℓ, y). Axy is
then given by a sum over amplitudes for each path,

Axy = −
∑

P

(Mx,z1)
3Mz1,z2(Mz2,z3)

3...Mz2ℓ−1z2ℓ(Mz2ℓ,y)
3.

(16)

Thus, we see that the fermionic correlation function de-
cays as exponentially as exp(−(4ℓ+4) lnY ) proving that
fermions have become massive. Similarly, the bosonic
two point correlation function is given by

〈ψx,iψx,i ψy,jψy,j〉 = δij(
1

Y 2
)2ℓ+2Bxy

+(1− δij)(
1

Y 2
)2ℓ+3Cxy. (17)

If i = j then x and y must have opposite parity like in
the fermionic correlation function. This means the total
number of bonds in the path is odd (2ℓ + 1) as before.
But when i 6= j then x and y must have the same parity
for the correlation function to be non-zero. This means
the total number of bonds in the path is even and is given
by 2ℓ+2. We are excluding the possibility of x = y here.
The corresponding amplitudes are given by

Bxy =
∑

P

(Mx,z1)
2(Mz1,z2)

2...(Mz2ℓ−1z2ℓ)
2(Mz2ℓ,y)

2,

Cxy =
∑

P

(Mx,z1)
2(Mz1,z2)

2...(Mz2ℓ−2z2ℓ−1
)2(Mz2ℓ+1,y)

2.

(18)

Thus, bosonic correlations also decay exponentially,
which means the fermion bilinear condensates again van-
ish. This is the proof that there is a PMS phase at strong
couplings.

The phase diagram of the Yukawa model was ob-
tained in the mean field approximation by various groups
[20, 29, 32]. While each of these calculations yield slightly
different results, they qualitatively agree that the generic
phase diagram at some κ 6= 0 is given by scenario A in
Fig. 1. For Nf flavors of staggered fermions, the calcu-
lation at κ = 0 discussed in [29] finds that the critical
coupling between the PMW and the FM phase is given
by

Y wc =
d

2(Nf − 1)
, (19)

and between the FM and the PMS phase it is given by

Y sc =
d(Nf − 1)

2
. (20)

While Y wc 6= Y sc for most values of Nf , for our model
(Nf = 2) Y wc = Y sc = d/2. This suggests that the
FM phase may be absent for all values of d consistent
with scenario B of Fig. 1. However, the direct transition
between the PMW and the PMS phase is found to be
first order. A first principles Monte Carlo calculation is
clearly necessary to understand what happens at inter-
mediate couplings. In this work we provide evidence for
the presence of a direct second order transition between
the two phases.
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FIG. 2: An example of a monomer configuration [n] showing
free fermion bags on a two dimensional lattice. The filled
circles represent monomers and the connected regions without
monomers form free fermion bags.

IV. FERMION BAG APPROACH

Traditional Monte Carlo methods for studying four-
fermion field theories are based on introducing an aux-
iliary field to convert the four-fermion coupling into a
fermion bilinear term in the action. In this work we
use an alternative Monte Carlo approach introduced a
few years ago, called the fermion bag approach [39]. In-
terestingly, some sign problems that had remained un-
solved with traditional methods, can be solved in the
fermion bag approach [40–42]. The new approach has
also helped in accurately computing the critical expo-
nents with massless fermions [40, 43]. A review of the
fermion bag approach can be found in [44].
In the fermion bag approach, we rewrite the partition

function of our model as a sum over monomer configu-
rations which we denote as [n]. Each monomer configu-
ration is defined through a binary lattice field nx = 0, 1
which denotes the absence or presence of a monomer at
the site x respectively. Figure 2 shows an example of a
monomer configuration on a two dimensional lattice. As
explained in [45], there are two dual viewpoints to define
fermion bags: (1) A strong coupling viewpoint where lat-
tice sites that do not contain monomers are defined as
free fermion bags inside which fermions of both flavors
hop freely. Lattice sites with monomers form point-like
fermion bags where fermions are pinned; (2) A weak cou-
pling viewpoint where all monomer sites form a fermion
bag and fermions of both flavors propagate freely between
the monomer sites. Fermion bags of either viewpoint are
uniquely defined for every monomer configuration. An
interesting feature of the strong coupling viewpoint is
that at sufficiently strong couplings there are many dis-

tinct fermion bags, which we label as B = 1, 2..., and
fermions from one bag cannot hop to a different bag. In
contrast in the weak coupling viewpoint there is a sin-
gle fermion bag containing all monomer sites. Based on
these two viewpoints we can write the partition function
in two different but equivalent ways:

Z =
∑

[n]

UNm

∏

B

(

Det(WB)
)2

, (21a)

Z =
(

Det(M)
)

∑

[n]

UNm

(

Det(G)
)2

, (21b)

whereNm represents the number of monomers in the con-
figuration,M is the free staggered fermion matrix defined
in (2), WB represents the free staggered fermion matrix
connecting the sites within the bag B, and G represents
a Nm×Nm free staggered propagator matrix connecting
monomer sites. The elements of G are given by

Gx,y =
−i
L3

∑

k

eik·(x−y)
∑

α′ ηx,α′ sin kα′

∑

α sin
2 kα

, (22)

where k ≡ (k1, k2, k3) where kα = (2n + 1)π/L, n =
0, 1.., L− 1 due to anti-periodic boundary conditions. At
weak couplings there are very few monomers and the
weak coupling viewpoint becomes more useful for cal-
culations and the Boltzmann weight of each monomer
configuration is nothing but the sum over all Feynman
diagrams. Thus, the weak coupling viewpoint is exactly
identical to the well known diagrammatic determinan-
tal Monte Carlo methods [46–49]. On the other hand at
strong couplings, when the number of monomers becomes
comparable to the volume, the strong coupling view point
becomes useful for calculations since free fermion bags
become small. As we discuss below, it is also easy to
understand some of the strong coupling results of the
previous section intuitively.
Expressions for observables can also be derived eas-

ily in the fermion bag approach. For example, in the
strong coupling viewpoint the two point fermion correla-
tion function is given by

〈ψx,i ψy,i〉 =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

W−1
B;x,y,

(23)
where W−1

B;x,y is the inverse of the Dirac operator within
the free fermion bag B that contains the sites x and y.
It is understood that when either of the sites x or y con-
tains a monomer, that configuration does not contribute
to the correlation function. Further, since fermions can-
not hop from one fermion bag to another, x and y are
also forced to be within the same bag. With this insight
it is easy to see why fermion correlations decay exponen-
tially at strong couplings. Since the lattice is filled with
monomers, large fermion bags are suppressed exponen-
tially and fermions are confined within small regions.
The argument that shows that even bosonic correla-

tions decay exponentially is more subtle. In principle,
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it is possible to have a single insertion of ψi,xψi,x within
special fermion bags that allow a zero mode in the matrix
WB. Clearly, such bags do not contribute to the partition
function since without the insertion of ψi,xψi,x the deter-
minant Det(WB) vanishes. However, with the insertion
of ψi,xψi,x one row and one column are removed from
the matrix and then the determinant no longer vanishes.
This is very similar to the argument of how instantons
can contribute to the chiral condensate in single flavor
QCD. However, since there are two flavors in our model
and ψi,xψi,x only involves the flavor i, the determinant
of the other flavor still vanishes due to the zero mode
in WB of the second flavor. Thus, single insertion of a
fermion bilinear is forbidden in our model. For this rea-
son bosonic correlation functions also get contribution
only when both x and y are within the same bag. For
example the expression for one of the correlation func-
tions is given by

〈ψxψx,i ψy,iψy,i〉 =
1

Z

∑

[n]

UNm

∏

B

(

Det(WB)
)2

×
(

W−1
B;x,y

)2

. (24)

Since x and y are within the bag, it too decays expo-
nentially at sufficiently large coupling as we found in the
previous section.

V. MONTE CARLO ALGORITHMS

We have constructed three different Monte Carlo algo-
rithms to update the monomer configurations [n]. The
first is a block algorithm that creates, destroys and moves
monomers within blocks. The second is a worm algo-
rithm that creates a pair of half-monomers near each
other (i.e., ψx,iψx,i and ψx,jψx,j) and moves one around
until it returns to the vicinity of its pair and detailed bal-
ance allows us to destroy the pair. As the half monomer
moves around it can create or destroy other monomers.
The third is a heat bath sweep algorithm that picks a ran-
dom site along with every other site on the lattice and
performs a heat-bath update on the two sites. Below we
provide more details of the three algorithms.

A. Block Algorithm

In this algorithm a site on the lattice is chosen at ran-
dom and a local block consisting of 63 sites in its vicinity
is chosen to be updated, while the sites outside the block
are held fixed. Since much of the matrix whose deter-
minant is being calculated does not change during the
block update, the computational cost is significantly re-
duced. Each update within the block involves two steps,
adding and removing monomers in pairs followed by mov-
ing individual monomers around. Each of these steps is
performed roughly 100 times during the block update.

The first step of the update that involves adding and
removing monomers in pairs is performed as follows:

1. Choose to either add or remove monomers with
probability half.

2. If the decision is to add monomers, compute kfree,
the number of pairs of free sites (one even and one
odd) within the block in the current configuration
where two monomers can be added. Choose one of
these pairs at random and add monomers to the
sites with probability

P =
Ωfinalkfree
Ωinitialkfilled

. (25)

With probability 1 − P keep the old configura-
tion. In the expression above, kfilled is the num-
ber of pairs of monomer sites (one even and one
odd) within the block in the new configuration from
where monomers can be removed and Ωfinal and
Ωinitial are the Boltzmann weights of the final and
the initial configurations with and without the two
monomers.

3. If the decision is to remove monomers compute
kfilled, the number of pairs of monomer sites (one
even and one odd) within the block in the cur-
rent configuration from where monomers can be re-
moved. Choose one of these pairs at random and
remove monomers from the sites with probability

P =
Ωfinalkfilled
Ωinitialkfree

. (26)

With probability 1− P keep the old configuration.
In the above expression kfree is the number of free
sites (one even and one odd) within the block in the
new configuration where monomers can be added
and Ωinitial and Ωfinal are the Boltzmann weights of
the final and initial configurations with and without
the two monomers.

The calculation of Ωfinal/Ωinitial involves computing a ra-
tio of two determinants with one row and one column
added or subtracted and is the most computationally in-
tensive step in the algorithm.
The second step of the update involves moving

monomers from one site to another site with the same
parity that does not contain a monomer. For high accep-
tance we move monomers only to an allowed neighboring
site but repeat the process many times. The update is
as follows:

1. Pick a monomer site x at random.

2. Pick at random one of the twelve next-to-nearest-
neighbor sites of x with the same parity as x. We
will refer to this site as y. Note that x and y belong
to diagonally opposite pairs of sites of an elemen-
tary square.
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3. If y contains a monomer then the update stops.
Otherwise the monomer located at x is moved to y
with probability

P =
Ωfinal

Ωinitial
. (27)

With probability 1 − P the monomer at x is left
untouched.

Since the move monomer step is repeated many times,
monomers diffuse around within the block.

B. Worm Algorithm

Past experience shows that worm type algorithms are
able to reduce autocorrelation times significantly since
worm updates are based on correlations within the sys-
tem [50]. A worm type algorithm can be designed for
our model as we discuss here. The idea is based on sam-
pling the bosonic correlation function through the worm.
Since a monomer is the presence of a four-point vertex
ψx,1ψx,1ψx,2ψx,2 at the site x, a half monomer is the
presence of a fermion bilinear vertex at the site. Further
when the two half monomers are located at the sites with
the same parity then they are forced to belong to differ-
ent flavors and vice versa. In order to understand this
algorithm it is useful to define a compatibility condition
for two sites x and y. Two sites x and y are defined to be
compatibile if: (1) x and y have different site-parities, but
the same filling i.e either both are free sites or both have
monomers, or (2) x and y have the same site-parity, but
have opposite filling i.e. one is a free site and the other
has a monomer. If x and y are compatible, the head of
the worm can in principle move from x to y or vice-versa.
Whether it really moves depends of course on probabil-
ities that satisfy detailed balance. On the other hand
when x and y are incompatible, the head of the worm
cannot move between the two sites. It is also useful to
define a set of nearby sites for a given site x. The worm
will explore these nearby sites as it proceeds forward. We
will define nearby sites to mean: the 6 nearest-neighbor
sites, the 12 next-to-nearest neighbor sites and 6 sites
that are two lattice spacings away along each direction.
Thus, at each step the worm will explore one of 24 nearby
sites as it moves ahead. Based on these definitions, the
worm update is constructed as follows:

1. Determine all the possible pairs of nearby sites
that satisfy the compatibility conditions described
above. Define kpair as the number of such pairs
and pick one compatible pair at random. Label the
pair of sites randomly as x(tail) and y(head). The
state of the site x, whether it is free or contains a
monomer, is noted.

2. Create worm: Introduce half-monomers at x and y
with probability

P =
Ωfinal

Ωinitial

e kpairs
12 L3

, (28)

where e is an enhancement factor to increase the ac-
ceptance and L3 is the lattice volume. With prob-
ability 1−P the update ends, otherwise proceed to
the next step.

3. Move worm-head: Pick one of 24 nearby sites of y
at random. Call this site as z. If the site z is the
first site x, proceed to the “destroy worm” step.
Otherwise try to move the worm-head from y to z.
There are two possibilities: (1) If y and z are sites
with opposite parity, propose a new configuration
where y has the opposite filling state of z and move
the half-monomer to z, (2) If y and z are sites with
same parity, propose a new configuration where y
has the same filling state of z and move the half-
monomer to z. Both these proposals are accepted
with the Metropolis acceptance probability

P =
Ωfinal

Ωinitial
, (29)

and the worm-head is moved to z from y. If the
proposal is rejected the worm-head remains at y.
The “move worm-head” step is repeated again.

4. Destroy worm: Propose to remove the half-
monomers located at y and x by restoring the site
x to the same state as it was in the first step when
the update started and restoring y to the unique
state that makes it compatible with x. Accept the
proposal with probability

P =
Ωfinal

Ωinitial

12 L3

e kpairs
, (30)

where kpairs is calculated just like the first step
but for the final configuration without the half
monomers. If the proposal is accepted the update
stops. Otherwise the “move worm-head” step is
repeated.

Since configurations with two half monomers can often
have much smaller Boltzmann weights as compared to
those without the half monomers, we have introduced an
enhancement factor e = 10 in the step that creates the
worm. However in order to ensure detailed balance we
also divide by this factor in the step that destroys the
worm.
The worm algorithm can be used to measure χ1 and

χ2 easily. Let no (ns) be the number of y sites generated
during the worm update that have the opposite(same)
parity as x. Then it is easy to argue that

χ1 =
1

e
〈no〉, χ2 =

1

e
〈ns〉. (31)

The re-weighting factor e is necessary since the half-
monomer sector was produced with an enhanced weight.
Thus, the total number of steps during the worm update
is proportional to χ1 + χ2 on an average. Since in our
model we find that the susceptibilities do not grow with
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volume a single worm update only touches a few lattice
sites in the neighborhood of the first site. Hence we have
to repeat the worm update sufficient number of times
starting with different initial sites in order to ensure that
the entire lattice has been updated.

C. Heat-Bath Sweep Algorithm

Although the worm algorithm is normally efficient in
computing χ1 and χ2, we have noticed some rare but
large fluctuations in our data especially for large values
of U . Worm algorithms can in principle generate rare
runaway loops which can cause problems with statistics
and computation of errors. Hence, in order to check our
errors we devised a simple heat-bath sweep algorithm,
which guarantees bounded fluctuations. On the other
hand the heat-bath sweep is not computationally effi-
cient since the algorithm attempts to add and subtract
monomers over long distances. In our work we have only
used it as a method to check the accuracy of our worm
algorithm results on smaller lattices. The algorithm pro-
ceeds as follows:

1. Pick a site at random (say x).

2. Pick every site y on the lattice in a fixed sequence
and perform the following heat bath update. If x
and y are incompatible sites proceed to the next
y. Otherwise propose a new configuration where
both sites x and y are flipped (i.e., monomer sites
are changed to free sites and vice versa). Let Ωnew

and Ωold be the Boltzmann weights of the new and
the old configurations. The proposed new configu-
ration is accepted with the heat bath probability

P =
Ωnew

Ωnew +Ωold
. (32)

With probability 1− P the old configuration is re-
tained and the update moves on to the next site
y.

3. Once all the sites y are visited the update ends.

This algorithm also allows us to compute the two suscep-
tibilities χ1 and χ2 during the heat bath sweep. One can
show that

χi =
1

2

〈

′
∑

y

√
ΩnewΩold

Ωnew +Ωold

〉

, (33)

where prime on the sum indicates that the sites y used
in the sum should: (1) have the opposite parity as x for
χ1 and the same parity as x for χ2 and (2) be compatible
with the x.

D. Equilibration, Auto-correlation and

Parallelization

We have used the block algorithm (or ALG1), the
worm algorithm (or ALG2) and the heat-bath sweep al-
gorithm (or ALG3) as a cross check against each other
to make sure they are free of errors. These tests along
with comparisons with some exact calculations are dis-
cussed in the appendix. In order to study equilibration
and autocorrelations we define the concept of a sweep, as
performing the required number of local updates such
that all lattice sites are stochastically flipped at least
once. For example in the block algorithm we pick roughly
L3/63 random blocks in a sweep. On the other hand since
the worm update involves choosing a site at random and
updating a few sites within its neighborhood, a sweep
consists of repeating the worm update at least a volume
number of times. Each heat bath update on the other
hand is exactly one sweep.

As in previous studies [45] we have observed that worm
algorithms based on the fermion bag approach usually
produce independent equilibrated configurations within a
few sweeps independent of the lattice size. This continues
to be true even in our work. We provide some evidence
for this in Fig. 3 where we show the Monte Carlo time
history of our three observables at L = 20 and U = 0.95
for 900 sweeps (in the inset) and the first 20 sweeps are
shown in the main graph. The solid lines in the main
graphs show the average obtained from the whole data
set. As one can see, the monomer number reaches the
average value in roughly about 5 sweeps and then begins
to fluctuate.

If we make the drastic assumption that once equilibra-
tion is reached, a single sweep is sufficient to produce an-
other independent configuration, then using several hun-
dred computing cores each starting with an equilibrated
configuration but different random number sequences, we
should be able to generate an independent configuration
after a single sweep from each computer core. We can
then average the data from all the cores and propose it
as the final average. We can of course continue the runs
of each of the cores for several sweeps if necessary and
monitor the fluctuations. In Fig. 3 the solid squares rep-
resent such an average over 500 computer cores for 20
sweeps. It is clear that after each sweep the data from
the 500 independent cores produces a number consistent
with the average over 900 sweeps on a single core. This
feature continues to hold at other lattice sizes and cou-
plings, some of which are shown in the appendix. Based
on this result, in our study we use several hundred cores
in parallel and run for 5-10 sweeps, where each core starts
from an equilibrated configuration. The final answer is
obtained as an average over such short runs on hundreds
of cores. While we are confident of our errors, in order
to be conservative we multiply them by a factor of two
uniformly across the board when we analyze our data.
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FIG. 3: Plots of equilibration for the three observables ρm, χ1 and χ2, starting from a configuration with zero monomers at
L = 20, U = 0.95. The insets show the Monte Carlo time history for 900 sweeps using ALG2. The average of the data from
the inset is shown as a solid line in the main plots. The open squares are average data from 500 independent runs after a single
sweep starting from an equilibrated configuration. The plot demonstrates that instead of running a single computer for many
sweeps, one can run many computers for a single sweep and average the data.
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FIG. 4: The variation of the monomer density ρm (a four-
point condensate) as a function of U at L = 8, 12 and 16. The
inset shows the change in ρm as a function of L at U = 1.0, 1.1
and 1.2 where the variation is the maximum. By L = 16 we
find that ρm has reached its thermodynamic limit at all values
of U .

VI. ANALYSIS AND RESULTS

Based on weak and strong coupling analysis we have
already argued in section III that the model contains
at least two phases: A PMW phase at weak couplings
characterized by massless fermions and a PMS phase at
strong couplings characterized by massive fermions with-
out fermion bilinear condensates. While one mean field
analysis suggested a direct first order transition between
the two phases, another analysis found an intermediate
phase with spontaneous symmetry breaking. In this sec-
tion we analyze our Monte Carlo results and argue that
our model in fact contains a single second order phase
transition between the two phases. In table I we tabu-
late all our data.
We first focus on the average monomer density ρm de-

fined in Eq. (11) as a function of U . This is plotted in

Fig. 4 for L = 8, 12 and 16. We find the density to be
a smooth function of U for all values of L and most im-
portantly the thermodynamic limit is reached by L = 16
for all values of U . There is no evidence for a first order
transition. However, since there should at least be one
transition as a function of U , the quick but smooth rise
of the monomer density around U ≈ 1 can be taken to be
a signal for such a second order transition. The lack of
any other feature in ρm as a function of U also provides
evidence that there is only a single phase transition.

Since ρm is not a critical quantity, we need to look at
other observables like the chiral susceptibilities χ1 and χ2

defined in Eq. (9), in order to understand the properties
of the phase transition. These susceptibilities couple to
long wavelength modes of the theory and will diverge at
a second order critical point. Another interesting feature
of the definitions of χ1 and χ2 is that the disconnected
component has not been subtracted. Hence in the pres-
ence of non-zero fermion bilinear condensates we expect
both χ1 and χ2 to diverge as L3. In Fig. (5) we plot
χ1 and χ2 as functions of U for various values of L. In
the inset of Fig. (5) we plot the finite size effects on the
susceptibilities around U ≈ 1 where such effects are max-
imum. We find that for a fixed L both susceptibilities are
smooth functions of U with a clear peak around U ≈ 1
as expected from ρm data. As L increases, the location
of the peak Upeak moves to the left and the value of the

peak χpeak
i increases.

Surprisingly there is no indication whatsoever for the
L3 divergence in the susceptibilities from Fig. (5). As the
inset shows, at both U = 0.8 and U = 1.2 the suscepti-
bilities saturate for large L, while at U = 0.96, both the
susceptibilities do seem to diverge but only linearly. As
we discuss below, this divergence is consistent with the
usual scaling at a second order critical point. Based on
this evidence we conclude that both fermion bilinear con-
densates 〈φx,1〉 and 〈φx,2〉 vanish for all values of U . Due
to the SU(4) symmetry present in the model the same
must be true for all the other condensates discussed in
section II. Finally, we note that both χ1 and χ2 are very
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U L ρm χ1 χ2 U L ρm χ1 χ2

0.200 8 301(7)×10−5 440(9)×10−3 68(1)×10−3 1.050 16 191(2)×10−3 456(9)×10−2 433(9)×10−2

0.400 8 127(1)×10−4 476(5)×10−3 149(2)×10−3 1.080 16 231(2)×10−3 513(6)×10−2 490(6)×10−2

0.600 8 312(2)×10−4 552(4)×10−3 261(2)×10−3 1.100 16 259(2)×10−3 500(6)×10−2 478(6)×10−2

0.800 8 642(4)×10−4 717(5)×10−3 457(3)×10−3 1.120 16 288(2)×10−3 468(6)×10−2 447(6)×10−2

1.000 8 1340(7)×10−4 1198(9)×10−3 967(8)×10−3 1.150 16 338(1)×10−3 393(2)×10−2 372(2)×10−2

1.050 8 1674(10)×10−4 145(1)×10−2 1228(10)×10−3 1.200 16 415(1)×10−3 287(2)×10−2 267(2)×10−2

1.080 8 195(1)×10−3 164(1)×10−2 142(1)×10−2 0.800 20 643(2)×10−4 1026(5)×10−3 753(5)×10−3

1.100 8 217(1)×10−3 178(1)×10−2 157(1)×10−2 0.880 20 857(2)×10−4 1440(9)×10−3 1181(8)×10−3

1.120 8 245(1)×10−3 193(1)×10−2 172(1)×10−2 0.900 20 922(3)×10−4 160(1)×10−2 1351(10)×10−3

1.150 8 290(2)×10−3 2093(10)×10−3 1885(9)×10−3 0.930 20 1038(3)×10−4 199(1)×10−2 174(1)×10−2

1.180 8 341(2)×10−3 2159(8)×10−3 1956(8)×10−3 0.950 20 1133(7)×10−4 239(4)×10−2 214(4)×10−2

1.200 8 377(2)×10−3 2133(8)×10−3 1932(7)×10−3 0.960 20 1180(3)×10−4 262(2)×10−2 238(2)×10−2

1.220 8 412(2)×10−3 2063(8)×10−3 1864(7)×10−3 0.970 20 1239(3)×10−4 295(2)×10−2 271(2)×10−2

1.240 8 447(2)×10−3 1952(8)×10−3 1758(7)×10−3 0.980 20 1294(9)×10−4 325(7)×10−2 301(7)×10−2

0.200 12 302(4)×10−5 470(6)×10−3 78(1)×10−3 1.000 20 1436(9)×10−4 412(8)×10−2 388(8)×10−2

0.400 12 1275(9)×10−5 515(4)×10−3 173(1)×10−3 1.030 20 173(1)×10−3 58(1)×10−1 56(1)×10−1

0.600 12 312(1)×10−4 615(3)×10−3 314(2)×10−3 1.050 20 195(1)×10−3 630(7)×10−2 608(7)×10−2

0.800 12 645(3)×10−4 873(6)×10−3 606(5)×10−3 1.080 20 234(2)×10−3 631(7)×10−2 609(7)×10−2

0.880 12 856(3)×10−4 1107(6)×10−3 852(5)×10−3 1.100 20 2631(8)×10−4 575(4)×10−2 554(3)×10−2

0.900 12 921(3)×10−4 1189(6)×10−3 938(5)×10−3 1.120 20 2928(9)×10−4 507(4)×10−2 489(7)×10−2

0.930 12 1034(3)×10−4 1354(7)×10−3 1107(6)×10−3 1.150 20 335(1)×10−3 414(5)×10−2 394(5)×10−2

0.950 12 1114(10)×10−4 148(3)×10−2 124(2)×10−2 1.200 20 413(1)×10−3 291(4)×10−2 272(4)×10−2

0.960 12 1169(4)×10−4 1580(9)×10−3 1338(9)×10−3 0.880 24 855(2)×10−4 1548(9)×10−3 1290(8)×10−3

0.980 12 127(1)×10−3 179(3)×10−2 155(3)×10−2 0.900 24 920(3)×10−4 175(2)×10−2 149(1)×10−2

1.000 12 139(2)×10−3 199(5)×10−2 175(4)×10−2 0.930 24 1039(2)×10−4 229(2)×10−2 203(2)×10−2

1.030 12 164(2)×10−3 251(7)×10−2 228(6)×10−2 0.950 24 1133(3)×10−4 281(3)×10−2 257(3)×10−2

1.050 12 185(2)×10−3 284(6)×10−2 262(5)×10−2 0.960 24 1182(3)×10−4 316(3)×10−2 292(3)×10−2

1.080 12 222(3)×10−3 337(5)×10−2 315(5)×10−2 0.970 24 1240(3)×10−4 362(3)×10−2 338(3)×10−2

1.100 12 249(3)×10−3 361(5)×10−2 339(5)×10−2 0.980 24 1302(3)×10−4 417(4)×10−2 393(4)×10−2

1.120 12 2817(8)×10−4 366(1)×10−2 345(1)×10−2 1.000 24 1456(3)×10−4 555(3)×10−2 532(3)×10−2

1.150 12 3300(9)×10−4 346(1)×10−2 325(1)×10−2 1.020 24 1637(5)×10−4 690(5)×10−2 667(5)×10−2

1.180 12 3791(9)×10−4 305(1)×10−2 284(1)×10−2 1.030 24 1747(4)×10−4 745(4)×10−2 723(4)×10−2

1.200 12 4104(8)×10−4 2753(9)×10−3 254(2)×10−2 1.050 24 1971(6)×10−4 782(4)×10−2 759(4)×10−2

0.800 16 646(3)×10−4 967(6)×10−3 695(5)×10−3 1.070 24 2226(5)×10−4 736(4)×10−2 72(1)×10−1

0.880 16 860(2)×10−4 1297(7)×10−3 1039(6)×10−3 1.080 24 235(2)×10−3 698(8)×10−2 678(8)×10−2

0.900 16 922(2)×10−4 1419(8)×10−3 1166(7)×10−3 0.900 28 924(2)×10−4 190(1)×10−2 165(1)×10−2

0.930 16 1037(3)×10−4 1689(10)×10−3 1442(9)×10−3 0.930 28 1039(2)×10−4 253(2)×10−2 228(2)×10−2

0.950 16 1126(9)×10−4 195(4)×10−2 170(4)×10−2 0.950 28 1132(2)×10−4 325(2)×10−2 300(2)×10−2

0.960 16 1171(4)×10−4 207(2)×10−2 183(2)×10−2 0.960 28 1186(2)×10−4 379(3)×10−2 354(3)×10−2

0.970 16 1229(2)×10−4 2271(9)×10−3 2031(9)×10−3 0.970 28 1244(3)×10−4 444(4)×10−2 420(4)×10−2

0.980 16 1278(10)×10−4 245(5)×10−2 221(5)×10−2 0.980 28 1308(3)×10−4 522(4)×10−2 498(4)×10−2

1.000 16 143(1)×10−3 301(6)×10−2 278(6)×10−2 1.000 28 1463(3)×10−4 716(6)×10−2 691(5)×10−2

1.030 16 167(2)×10−3 390(8)×10−2 367(8)×10−2

TABLE I: Monte Carlo results for ρm, χ1 and χ2 as a function of U and L. Being conservative, all errors are multiplied by a
factor of two as discussed at the end of section V.

similar for all values of U , except near U = 0 where one
can see from Fig. (5) that χ1 6= 0 but χ2 = 0 as expected.

We next quantify the divergence of χ1 and χ2 around
U ≈ 1 in order to verify that it is consistent with a second

order transition. Defining x = (U − Uc)L
1/ν , near a

second order transition we expect both susceptibilities to
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FIG. 5: Plots of the susceptibilities χ1 (left) and χ2 (right) as a function of the coupling constant U for lattice sizes ranging
from L = 8 to L = 28. The inset shows the finite size scalings in the critical region. There is no sign of the L3 divergence
expected in the presence of a non-zero fermion bilinear condensate. A roughly linear divergence appears in the critical region
consistent with a second order critical scaling.

satisfy the finite size scaling relations,

χi(U,L) = L2−ηfi(x), (34)

where η and ν are the usual critical exponents and fi(x)
are analytic functions for small values of x. In previous
studies it was possible to use Eq. (34) by expanding f(x)
in a power series up to x4, and fit the Monte Carlo data to
it and thus extract the critical coupling and exponents
[43, 51]. Unfortunately, in our current study such an
analysis seems to be quite unstable. It is possible that
the function f(x) cannot easily be approximated with
a few terms in the range of the available data. Hence,
we need to find a way to combine our data in the small
x region with some information from the large x region
using a more elaborate analysis.
Consider χ(U,L) as a function of U for a fixed value

of L. From Fig. 5 we see that this function has a peak at
some value U = Upeak. On the other hand from Eq. (34)
we notice that the peak occurs at the value x = xpeak
where df(x)/dx = 0. Although xpeak will not be small it
will still satisfy the relation

Upeak = Uc +
xpeak
L1/ν

. (35)

Further, the value of χ at U = Upeak will be given by

χpeak
i = L2−ηfi(xpeak). (36)

Thus, if we know the values of Upeak and χpeak we can
combine Eqs. (35) and (36) valid at large values of x
along with Eq. (34) valid at small values of x and try to
perform a combined fit. Such a combined fit seems to be
more stable.
The large x data is shown in Fig. 6 and used to extract

Upeak and χpeak. This is accomplished by approximating

the susceptibilities as a quartic polynomial of the form

χ = χpeak+a(U−Upeak)
2+b(U−Upeak)

3+c(U−Upeak)
4,

(37)
near the location of the peak. Table II gives our fitting
results and the fits are shown as solid lines in Fig. 6. For
the small x data we consider four sets extracted from
table I, using two slightly different lattice sizes and two
slightly different coupling regions. The first two sets con-
sist of 0.93 ≤ U ≤ 1.0 and the latter two sets focus on
0.95 ≤ U ≤ 1.0. In each of these we choose one set con-
taining all L ≥ 16 data while the other contains only
L ≥ 20 data. These ranges are shown in the first column
of table. III.
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FIG. 6: Plots of χ1 as a function of U for various values of
L near the peak. The dashed lines are fits to Eq. (37) given
in the table II. The location of the peaks is shown with open
circles.
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L χ1,peak Upeak a b c χ2/DOF L χ2,peak Upeak a b c χ2/DOF

8 2.16(1) 1.181(2) -67(7) 20(60) 2(1) × 103 0.03705 8 1.95(1) 1.182(2) -67(6) 40(60) 2(1) × 103 0.05666

12 3.66(1) 1.118(1) -210(20) 210(80) 11(3) × 103 0.02933 12 3.45(1) 1.118(1) -210(20) 220(80) 10(3) × 103 0.04093

16 5.12(5) 1.084(4) -460(60) 2(2)× 103 4(3)×104 0.2583 16 4.90(4) 1.084(4) -450(60) 2(2) × 103 4(3) × 104 0.2553

20 6.43(5) 1.065(1) -550(30) - - 0.06176 20 6.21(5) 1.065(1) -550(30) - - 0.02792

24 7.81(4) 1.047(1) -1030(80) 7(4)× 103 - 0.1983 24 7.60(4) 1.048(2) -990(80) 6(5) × 103 - 0.003722

TABLE II: Peak values of χ1 and χ2 and the value of U where the peaks occur. These values are obtained by fitting Monte
Carlo data to Eq. (37). The fits for χ1 are shown in Fig. 6 as an example.

Armed with the knowledge of Upeak and χi,peak
from table II we have performed combined fits of
Eqs. (34,35,36) with each of the four sets of small x data.
Our results are tabulated in table III. In the first two
rows we combine the small x data with only those values
of large x data that have the same range of L. However,
in the third and the fourth rows we combine the small x
data with all the large x data except for L = 8. This is be-
cause the Upeak data fits remarkably well to Eq. (35) as an
individual fit for all values of L ≥ 12. Hence we wanted
to explore if emphasizing that feature in the combined fit
yielded different results. Indeed, as seen from table III,
the critical exponents do change significantly if we em-
phasize the scaling from large x data. The best combined
fit, in terms of the lowest χ2/DOF , is the one where we
allow only lattice sizes L ≥ 20 (second row of the table).
However, if we include the large x data at L = 12, 16 and
drop the data at U = 0.93 the χ2/DOF goes up slightly
but the fit continues to be reasonable (fourth row of the
table). Including the L = 16 data makes the fit worse
but things don’t completely break down. Remarkably,
the critical point is stable among all the fits and we esti-
mate it to be Uc = 0.958(2). In contrast there is a large
systematic error in the critical exponents and they seem
very sensitive to the range of couplings and whether we
emphasize the large x data or not. For these reasons
we can only estimate them in a range at the moment:
η = 0.88 − 0.94 and ν = 0.9 − 1.25. Further cal-
culations on larger lattices along with measurements of
other observables will be necessary to determine them
accurately. This is currently being done and we hope to
accomplish it in the near future.
If our estimate of the critical quantities are meaningful,

all of our data in the critical region including those that
were not used in the analysis must follow the critical
scaling form given in Eq. (34). In Fig. 7 we plot χ/L2−η

as a function of (U−Uc)L1/ν for both χ1 and χ2 using the
values from the two best fits (second and fourth rows of
table III). Using the second row values (top two figures)
we find good scaling in the small x region but the data
becomes scattered in the large x region unless L ≥ 20.
On the other hand with the fourth row values (bottom
two figures), a good scaling is observed in the large x
region, but the data becomes more scattered in the small
x region especially for χ1. Interestingly, we find that χ2

with the fourth row values (bottom right figure) shows
the best scaling (to the eye) if we ignore the L = 8 data.

Based on this we suspect that taking the lowest χ2/DOF
to extract the critical exponents may be a bit premature.
Although, we are unable to give accurate estimates for
the critical exponents in this work, we do believe the
universal plots shown in Fig. (7) provide strong evidence
for a second order transition separating the PMW and
the PMS phase.

VII. LOCAL ORDER PARAMETERS

An interesting aspect of the phase transition we have
uncovered here, is the absence of an obvious local lat-
tice order parameter that distinguishes the two phases.
By definition a local lattice order parameter Ox is made
with Grassmann fields in the vicinity of the lattice site
x. It is zero in one phase for a symmetry reason, but
becomes non-zero in the other phase because the symme-
try is spontaneously broken. A simple intuitive argument
shows that fermion bilinear order parameters cannot ex-
ist. First we note that in a finite volume by definition we
must have 〈Ox〉 = 0 for symmetry reasons. In order to
study whether the symmetry can break spontaneously,
one has to compute the behavior of the two point corre-
lation function of order parameters at large separations,

lim
|x−y|→∞

〈Ox Oy〉. (38)

If the symmetry is spontaneously broken the above ex-
pression becomes non-zero. At weak couplings, since U
couples to an irrelevant operator, the physics is governed
by the U = 0 fixed point where we know that fermion
bilinear order parameters do not exist. At the other ex-
treme, when U is very large, the whole lattice is filled
with monomers and no lattice symmetries of the inter-
acting theory are broken in this trivial state. Further,
if we compute the above two point correlation function,
as discussed in section IV we expect x and y to be in
different free fermion bags and the calculation reduces
to computing 〈Ox〉 and 〈Oy〉 in two distant fermion bags
one containing x and the other containing y. Monomers
fill the remaining lattice sites. Each of these calculation
is very similar to the calculation of 〈Ox〉 in a finite vol-
ume, except that the fermion bag has an arbitrary shape
with Dirichlet boundary conditions. If the boundaries do
not break a symmetry, then we must have 〈Ox〉 = 0. If
the boundaries do break the symmetry we can restore
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Fit Range of U and L η ν Uc xpeak f1(xpeak) f1(xpeak) χ2

U : 0.93 − 1.0, L ≥ 16 0.940(5) 0.93(3) 0.957(1) 2.6(1) 0.28(1) 0.27(1) 2.4

U : 0.93 − 1.0, L ≥ 20 0.940(9) 0.95(5) 0.957(1) 2.5(1) 0.27(3) 0.26(3) 1.1

U : 0.95 − 1.0, L ≥ 16(*) 0.884(1) 1.21(3) 0.959(1) 1.24(5) 0.228(3) 0.217(3) 2.4

U : 0.95 − 1.0, L ≥ 20(*) 0.884(1) 1.24(2) 0.958(1) 1.20(5) 0.228(3) 0.217(3) 1.9

TABLE III: Results for the critical exponents η, ν and the critical coupling Uc from combined fits of four data sets as explained
in the text. The (*) in the last two rows indicate that data in table II at L = 12, 16 were included in the fit, unlike the first
two fits where data in table II from smaller lattice sizes were dropped consistently.
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FIG. 7: Universal scaling plots of χ/L2−η as a function of (U −Uc)L
1/ν using all Monte Carlo data in the critical region. The

top two figures use η = 0.94, ν = 0.95, and Uc = 0.957 while the bottom two figures use η = 0.884, ν = 1.24 and Uc = 0.958.

the symmetry by summing over fermion bag configura-
tions obtained by symmetry transformations. We can do
this because there is only a single fermion bag and the re-
maining lattice sites are filled with monomers. The other
fermion bag containing the site y is far away. This again
implies that 〈Ox〉 = 0. In the above argument we have

assumed that the integration measure remains symmet-
ric under the symmetry transformations. Chiral sym-
metries can be broken by boundary effects, because the
measure becomes non-invariant. However, in our model
the measure remains invariant under the SU(4) symme-
try transformations inside a fermion bag. Hence in our
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model 〈Ox〉 = 0 for all fermion bilinear lattice order pa-
rameter at least for sufficiently large values of U . When
these facts are combined with the assumption that there
is only a single phase transition, we find that there cannot
be a fermion bilinear order parameter that distinguishes
between the phases.
Of course the above arguments do not rule out a four-

fermion order parameter, the simplest being ρm. But it
cannot be an order parameter in the strict sense of the
word since it is non-zero for all values of U except U =
0. However, it does play the role of an order parameter
in the sense that it changes quite rapidly as one passes
through the phase transition. Hence we refer to it as a
pseudo order parameter. Since the small U theory and
the U = ∞ theory seem to have exactly the same lattice
symmetries, we are tempted to conclude that no lattice
symmetries are broken as a function of U . Yet there are
massless particles at weak couplings, which are absent
at strong couplings. The situation seems to be similar
to certain metal insulator transitions where there are no
clear order parameters that govern the phase transition
[52].

VIII. CONCLUSIONS

In this work we have provided strong evidence that a
simple four-fermion model containing two flavors of stag-
gered fermions on a cubic lattice contains a phase where
a non-zero fermion mass arises although all fermion bi-
linear condensates vanish. While such an exotic scenario
of mass generation was known before, previous work had
suggested that the exotic phase was only a lattice artifact
since fermion masses could not be made small compared
to the lattice spacing. In contrast our work shows that
one may indeed be able to make fermions light by tun-
ing close to the second order critical point that exists in
the model. We locate the critical point with an error
of about a percent. Although we were able to perform
calculations up to lattice sizes of L = 28, scaling seems
to set in only for L ≥ 20, unlike other staggered four-
fermion models that were solved recently, where the data
begin to show scaling behavior even for L ≥ 12 [43, 51].
For this reason we were only able to bound the criti-
cal exponents within a range. Our rough estimates are
0.95 ≤ ν ≤ 1.2 and 0.88 ≤ η ≤ 0.94. Larger lattice
calculations along with new observables are necessary to
provide a more complete picture of the critical behav-
ior. This work is currently under progress. We have also
argued that in our model there is no symmetry that dis-
tinguishes the massless phase from the massive phase.
This suggests that fermion mass generation in our model
is related only to dynamics and not to symmetries. The
quantity that comes close to a definition of the order pa-
rameter is the four-fermion condensate or the monomer
density ρm. Although it is non-zero in both the phases

it changes rapidly over a small region of the couplings.

Our work can be extended in different directions. For
example, it is possible to explore if a similar second order
critical point exists in four space-time dimensions. Mean
field theory, which becomes accurate in large number of
dimensions, suggests that the transition would become
first order at sufficiently large number of dimensions. Is
four large enough? We plan to return to this question in a
future publication. Another possible direction is to view
our model within the context of Yukawa models with a
variety of symmetries. From this perspective our criti-
cal point has many relevant and marginal directions that
break a variety of symmetries. It would be interesting to
compute the critical exponents associated with all these
directions. It is also interesting to explore what would
happen if the SU(4) symmetry of our model is gauged.

Finally, the quantum field theoretic description of the
second order critical point that we have found remains
unknown. As we mentioned in the introduction, an exotic
transition very similar to ours was recently discovered in
an extended Hubbard model on a bilayer honeycomb lat-
tice [34]. It was argued that the critical point there could
be viewed as a multi-critical point where three differ-
ent topological transitions meet. Interestingly, both the
models contain the same number of massless fermions
in the weak coupling phase. It is also easy to argue
that a simpler model on the honeycomb lattice with an
SU(4) symmetry, than the one considered by the au-
thors, shows a similar exotic phase transition. Hence, we
believe the two transitions are closely related and per-
haps even belong to the same universality class. If true,
this should mean that our staggered fermion model can
be deformed to introduce topological phase transitions as
in the honeycomb lattice model. Such an extension could
shed further insight into staggered fermions and its con-
nections to honeycomb lattice models, while at the same
time helping us uncover the field theory that governs the
critical point.
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Appendix A: Testing the Monte Carlo Algorithms

In order to test our Monte Carlo algorithms we have
performed a series of checks which we describe here. As
discussed in section V we developed three algorithms
to perform these checks: A block algorithm: (ALG1),
a worm algorithm (ALG2) and a heat-bath sweep al-
gorithm (ALG3). Among these three, the worm algo-
rithm is the most efficient and has been used for our
production runs. However, we can run the worm algo-
rithm in two ways: perform many sweeps on a single
core (ALG2S), or perform a few sweeps on hundreds of
parallel cores each starting from an equilibrated configu-
ration (ALG2P). Clearly, the latter is very efficient and
we show here that it is a reliable approach. Among the
three algorithms, ALG3 is the most time consuming but
has the lowest fluctuations. Also it is the only algorithm
that works on a 23 lattice for technical reasons. Since we
can compute everything analytically on this small lattice
we can test ALG3 against exact results and use it as a
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benchmark algorithm to test others.
In order to compute the exact results on a 23 lattice

we write the partition function as

Z =
∑

[n]

UNm g([n])
(

Det(W ([n]))
)2
, (A1)

where the sum is over a class of monomer configura-
tions [n], not counting configurations with the same num-
ber number of monomers that are obtainable by rota-
tions and (or) reflections. The number of configurations
within a given class (degeneracy) is denoted as g([n]),
each class containsNm monomers and Det(W ([n])) is the
free fermion bag weight for a single staggered fermion re-
stricted to the bag. Table VII gives the various possible
equivalence classes along with their degeneracy factors
g([n]), the fermion bag weight from Det(W ([n])), and
the corresponding Nm values. Using these we find that
the partition function is given by

Z = 6561 + 972U2 + 126U4 + 12U6 + U8. (A2)

The average monomer density can then be easily com-
puted and is given by

ρm =
1

8Z
(1944U2 + 504U4 + 72U6 + 8U8). (A3)

Note that it is zero for small U and approaches one for
large U . In order to compute the two susceptibilities
defined in Eqs. (9), we consider two monomer config-
urations n1 and n2 that are naturally defined for each
flavor through the knowledge of the location of the two
half monomers. We then define Det(W1) and Det(W2) as
the fermion bag weights for the two flavors respectively.
With these definitions we see that

χ1 =
1

2Z

∑

[n1,n2]

UNm g1 Det(W1W2), (A4)

χ2 =
1

2Z

∑

[n1,n2]

UNm g2 Det(W1W2), (A5)

where [n1, n2] refer to a class of configurations of
monomers with two half-monomer insertions which are
shown in table VIII and IX, along with the degeneracy

U L ρm χ1

Exact ALG1 Exact ALG1

0.8 6 0.015236... 0.01523(2) 0.44183... 0.4421(05)

1.0 6 0.016367... 0.01636(4) 0.44489... 0.4450(10)

0.8 8 0.007193... 0.00720(1) 0.45619... 0.4559(02)

TABLE IV: Comparison between a perturbative calculation
containing up to four-monomers (i.e., up to U4) and results
from ALG1 which was also restricted to the same monomer
sectors.

factors g1 and g2 and the fermion bag weights. Substi-
tuting the values in these tables we find

χ1 =
1

2Z
(2187 + 405U2 + 45U4 + 3U6), (A6)

χ2 =
1

2Z
(486U + 72U3 + 6U5). (A7)

Table V gives a comparison of the three observables
computed exactly using the above relations and through
ALG3. Our algorithm accurately reproduces the results
for various values of U .

Another class of checks that we have performed in-
volves calculations of observables exactly on slightly
larger lattices, but in perturbation theory up to order
U4. In this case we were able to study lattices up to
83. It is also easy to restrict the monomer number to
the same order in the algorithms by simply adding a few
lines to the entire code. We used this approach to test
ALG1. Table IV gives a comparison between ALG1 and
exact perturbative results.

Finally we compared all three algorithms at various
couplings at an accuracy of one percent or less. Table VI
gives these comparisons.
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U ρm χ1 χ2

Exact ALG3 Exact ALG3 Exact ALG3

0.1 0.000370... 0.00037(02) 0.166728... 0.16673(01) 0.003703... 0.00369(02)

0.5 0.009517... 0.00952(01) 0.168166... 0.16817(01) 0.018510... 0.01851(02)

0.8 0.025400... 0.02540(04) 0.170310... 0.17032(02) 0.029540... 0.02957(04)

1.0 0.041188... 0.04118(02) 0.172054... 0.17206(01) 0.036757... 0.03675(02)

1.2 0.061937... 0.06192(03) 0.173834... 0.17383(01) 0.043726... 0.04372(02)

1.5 0.104086... 0.10413(04) 0.175961... 0.17598(01) 0.053285... 0.05328(02)

2.0 0.208466... 0.20836(05) 0.174920... 0.17491(01) 0.064497... 0.06448(01)

3.0 0.500000... 0.49996(07) 0.142857... 0.14287(01) 0.059523... 0.05954(01)

5.0 0.838548... 0.83851(05) 0.063477... 0.06348(04) 0.021941... 0.02195(05)

TABLE V: Comparison between exact results and those from Monte Carlo calculations using ALG3, on a 23 lattice for the
three observables ρm, χ1 and χ2.

L U ρm χ1 χ2

ALG1 ALG2S ALG2P ALG3 ALG1 ALG2S ALG2P ALG3 ALG2S ALG2P ALG3

4 0.95 0.0915(4) 0.0922(2) N/A 0.0922(1) 0.4533(7) 0.453(1) N/A 0.4543(3) 0.2386(6) N/A 0.2395(5)

4 1.05 0.1237(6) 0.1236(2) N/A 0.1236(1) 0.4922(9) 0.492(1) N/A 0.4920(3) 0.2857(7) N/A 0.2853(4)

4 1.20 0.1936(9) 0.1939(3) N/A 0.1946(2) 0.567(1) 0.564(1) N/A 0.5662(4) 0.3707(7) N/A 0.3721(4)

8 0.95 0.1097(1) 0.1096(1) 0.1098(1) 0.1098(1) 1.017(1) 1.017(2) 1.017(1) 1.017(2) 0.778(1) 0.7781(4) 0.777(3)

8 1.05 0.1685(4) 0.1680(1) 0.1684(3) 0.1678(3) 1.467(5) 1.458(3) 1.461(3) 1.458(4) 1.234(3) 1.236(3) 1.232(4)

8 1.20 0.3772(8) 0.3751(7) 0.375(1) 0.3769(7) 2.134(6) 2.14(1) 2.128(5) 2.137(3) 1.936(9) 1.928(5) 1.936(3)

12 0.95 0.111(1) 0.1112(4) 0.1114(5) 0.1119(1) 1.46(4) 1.49(1) 1.48(1) 1.497(4) 1.25(1) 1.24(1) 1.254(4)

16 0.95 0.1131(9) 0.1129(3) 0.1126(4) N/A 2.06(7) 1.95(1) 1.95(2) N/A 1.70(1) 1.70(2) N/A

16 1.00 0.142(1) 0.1428(4) 0.1429(6) N/A 2.96(8) 3.00(2) 3.01(3) N/A 2.76(2) 2.78(3) N/A

20 0.95 0.1128(7) 0.1133(4) 0.1133(3) N/A 2.36(6) 2.37(3) 2.39(2) N/A 2.13(3) 2.14(2) N/A

20 1.00 0.143(1) 0.1434(5) 0.1436(4) N/A 4.1(1) 4.08(4) 4.12(4) N/A 3.85(4) 3.88(4) N/A

TABLE VI: Comparison between results from the three different algorithms: the block algorithm (ALG1), the worm algorithm
(ALG2) and a heat-bath sweep algorithm (ALG3). For the worm algorithm we also compare between a single core run with
many sweeps (ALG2S) and a parallel core run on hundreds of cores, but each core only running for a few sweeps (ALG2P).
N/A indicates the comparison is not available.
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[n] g([n]) Det(W ([n])) Nm [n] g([n]) Det(W ([n])) Nm [n] g([n]) Det(W ([n])) Nm

1 81 0 12 9 2 4 0 2

6 4 4 24 1 4 6 1 4

12 1 6 4 0 6 1 1 8

TABLE VII: Configuration classes [n] that contribute to the partition function on a 23 lattice. The degeneracies g([n]), the
fermion bag determinant for each flavor Det(W ([n])) are also given.

[n1, n2] g1 Det(W1W2) Nm [n1, n2] g1 Det(W1W2) Nm [n1, n2] g1 Det(W1W2) Nm

X X

3 729 0

xx

6 36 2

x x

3 9 2

xx

12 9 2

X X

6 4 4

X X

3 1 4

X X

12 1 4

XX

3 1 6

X

X

6 9 2

X

X

6 1 4

X

X

1 0 4

X

X

1 0 6

TABLE VIII: Configuration classes [n1, n2] that contribute to χ1 on a 23 lattice. The degeneracy g1, the fermion bag weight
Det(W1W2) and the total monomer number Nm are also given.
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[n1, n2] g1 Det(W1W2) Nm [n1, n2] g1 Det(W1W2) Nm [n1, n2] g1 Det(W1W2) Nm

X

X
6 81 1

X

X
6 1 3

X

X

12 4 3

X

X

6 1 3
X

X

6 1 3
X

X

6 1 3

X

X
6 1 5

X

X
6 0 5

TABLE IX: Configuration classes [n1, n2] that contribute to χ2 on a 23 lattice. The degeneracy g2, the fermion bag weight
Det(W1W2) and the total monomer number Nm are also given.


