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We consider the coordinate-space matrix elements that correspond to fixed-angle scattering am-
plitudes involving partons and Wilson lines in coordinate space, working in Feynman gauge. In
coordinate space, both collinear and short-distance limits produce ultraviolet divergences. We clas-
sify singularities in coordinate space, and identify neighborhoods associated unambiguously with
individual subspaces (pinch surfaces) where the integrals are singular. The set of such regions is fi-
nite for any diagram. Within each of these regions, coordinate-space soft-collinear and hard-collinear
approximations reproduce singular behavior. Based on this classification of regions and approxi-
mations, we develop a series of nested subtraction approximations by analogy to the formalism in
momentum space. This enables us to rewrite each amplitude as a sum of terms to which gauge the-
ory Ward identities can be applied, factorizing them into hard, jet and soft factors, and to confirm
the multiplicative renormalizability of products of lightlike Wilson lines. We study in some detail
the simplest case, the color-singlet cusp linking two Wilson lines, and show that the logarithm of
this amplitude, which is a sum of diagrams known as webs, is closely related to the corresponding
subtracted amplitude order by order in perturbation theory. This enables us to confirm that the
logarithm of the cusp can be written as the integral of an ultraviolet-finite function over a surface.
We study to what extent this result generalizes to amplitudes involving multiple Wilson lines.

I. INTRODUCTION

For many purposes, scattering amplitudes and the expectation values of gauge theory Wilson lines may be studied
in momentum space or in coordinate space, although most fixed-order computations are carried out in momentum
space. At the same time, a coordinate-space perspective may serve as a bridge between scattering amplitudes and
certain observables, often those involving jets [1, 2]. Similarly, analyses in coordinate space have played a central role
in correspondences between gauge theories and gravity [3], and dual conformal symmetries for select supersymmetric
theories make a direct correspondence between choices of momenta for amplitudes and assignments of vertices for
certain polygonal Wilson loops [4, 5]. These considerations suggest that it may be useful to reexamine some of the
all-orders properties of perturbative scattering amplitudes and cross sections that have been derived primarily from
momentum-space analyses [6, 7] in terms of coordinate-space integrals. In this spirit, we argued in Ref. [8] that the
cusp formed by two Wilson lines can be written in a geometrical form to all orders in perturbation theory, as a surface
integral over an ultraviolet-finite function of the running coupling, whose scale varies with position on the surface.
The surface integrand itself is found from the web diagrams of the cusp [9–11], which will play a role in our discussion
below. A more general analysis of partonic amplitudes was undertaken in Ref. [12], which examined the structure of
coordinate-space singularities in massless gauge theories, by analyzing the pinch singularities of Feynman integrals in
coordinate space [13] and developing a power counting procedure to identify leading and nonleading behavior.

In this paper we will apply and extend the results of Ref. [12], where it was found, for example, that in renormalized
matrix elements of the form

Gν(x1, x2) =
〈
0
∣∣T
(
φ(x2) Jν(0)φ†(x1)

)∣∣ 0
〉
, (1)

singularities occur only when the external points are on the light cone with respect to the current Jν(0), that is, only
at x2

I = 0, I = 1, 2, and that divergences in coordinate-space integrals are logarithmic, relative to tree level. It was
also argued that integrals in such “leading regions” factorize into hard, soft, and jet functions, in much the same way
as in the well-known factorizations of momentum space [14, 15].

In coordinate space, collinear and short-distance divergences are both of ultraviolet nature [12], requiring D < 4
in dimensional regularization, while the factorized soft function is finite when the external points are kept at finite
distances from each other. In contrast to short-distance singularities, collinear ultraviolet divergences are by their
very nature nonlocal, and are not removed by the standard renormalization procedures for quantum field theory. It
is natural, however, to expect that they may be treated by analogy to collinear singularities in momentum space,
where they are infrared, requiring D > 4, and are factorized into universal functions [16]. To derive and interpret the
corresponding factorization properties for coordinate-space amplitudes, we will introduce a subtraction procedure that
is similar to constructions in momentum space [7, 14, 15]. The subtractions will enable us to reorganize perturbative
amplitudes for gauge theories in a manner that makes their singularity structure and factorization properties manifest,
after using the Ward identities of the theory.
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We work in Feynman gauge, to preserve Lorentz invariance and causality in the physical space-time structure of the
amplitudes we study. Our construction is for gauge theory amplitudes with the geometry of fixed-angle scattering, and
so must overcome the complication that in gauge theories with massless particles almost any subdiagram may produce
collinear singularities or take part in the underlying short-distance process, in different parts of the integration space.
This is in contrast to lowest-order electroweak processes like Drell-Yan, where the hard scattering is associated only
with subdiagrams including a specific vertex.

Building on the results of Ref. [12], we will study the ultraviolet singularities of multiparton coordinate-space Green
functions in configurations related to fixed-angle scattering,

GN (x1, . . . , xN ) = 〈0|T (φN (xN ) · · · φ1(x1)) |0〉 . (2)

These Green functions, of course, are not gauge invariant, but as we will observe, their leading singularities in
coordinate space have the same gauge-invariance properties as S-matrix amplitudes, as a result of the same Ward
identities.

The arguments that we give below carry over almost without change from coordinate space to momentum space,
and we provide in this way a new all-orders analysis of factorization for scattering amplitudes in massless QCD and
related theories in Feynman gauge. Our work thus complements the momentum-space analyses carried out in physical
gauge long ago in Ref. [17] for scattering amplitudes, and recently in Ref. [18], which uses physical gauges to analyze a
large set of amplitudes and observables involving outgoing jets. Our analysis of field theory perturbative amplitudes,
based on an all-orders subtraction procedure to isolate, organize and cancel singular behavior, can also play a role
in improving and extending existing factorization proofs for electroweak annihilation [14, 15], jet and single-particle
inclusive cross sections in hadron-hadron collisions [19].

We also study the closely-related multieikonal products of path-ordered exponentials or Wilson lines [20, 21], in
representations f ,

Φ
[f ]

ξ̇C
(τf , τi) = P exp

[
−ig

∫ τf

τi

dτ ξ̇C(τ) ·A[f ] (ξC(τ))

]
. (3)

Wilson lines that correspond to partonic amplitudes have constant velocities, ξ̇C = dξC/dτ = βC . A four-Wilson line
multieikonal vertex, for example, is defined by a constant matrix, cM in color space that links the color indices of the
ordered exponentials at a point [17, 22, 23],

Γ
[f]
4,M {rk} (Λ1β1, . . .Λ4β4) =

∑

{di}
〈0|Φ[f4]

β4
(Λ4, 0)r4,d4 Φ

[f3]
β3

(Λ3, 0)r3,d3

× (cM )d4d3,d2d1 Φ
[f2]
β2

(0,−Λ2)d2,r2 Φ
[f1]
β1

(0,−Λ1)d1,r1 |0〉 . (4)

For the eikonal Wilson lines of this expression, which are joined at the origin, constant velocities βI label the curves,
which we can choose to be ξJ(τJ) = βJτJ . They arrive at the vertex from the past, or emerge from the vertex toward
infinity in the future. In momentum space, Wilson lines appear as linear, “eikonal” propagators. The corresponding
coordinate-space propagators are simply step functions, ordering the connections of gluons to the exponential. The
exponentiation properties of these products have received extensive attention over the past few years [24–26], in no
small part for their relevance to phenomenological applications of resummation [27–29].

We begin Sec. II with a review of the sources of ultraviolet poles in the coordinate-space calculation of multi-
eikonal and partonic amplitudes [12, 13]. We go on to define a series of approximation operators [7, 30] adapted to
coordinate integrals. Using these operators, we construct a set of nested subtractions. This is followed by a proof
of the cancellation of coordinate-space overlapping divergences that are analogous to those in momentum space. In
Sec. III we show how the approximation operators match and organize singularities, and enable the renormalization
of multieikonal amplitudes like (4) and the factorization of partonic amplitudes like (2) in appropriate limits, to all
orders in perturbation theory. Section IV deals with the special case of the two-eikonal amplitude, the singlet “cusp”.
We will relate the subtraction procedure of Sec. II directly to the logarithm of the cusp, given by the so-called web
prescription [9–11]. In this context, the ultraviolet finiteness of the web function, and its relation to a surface integral
[8] are confirmed. We then turn in Sec. V to fixed-angle multieikonal amplitudes, and study their exponentiation
properties and geometrical interpretation in the large-Nc limit and the general case. We conclude with a summary
and brief comments on possible applications.

II. THE REGULARIZATION OF COLLINEAR SINGULARITIES IN COORDINATE SPACE

We begin this section with a review of the results of Ref. [12] regarding the coordinate-space singularities of partonic
and eikonal amplitudes that remain after standard perturbative renormalization. We follow this with the construction
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FIG. 1: Leading pinch surfaces represented by soft, jet and hard subdiagrams for (a) cusp and (b) a typical multieikonal or
multi-parton amplitude. Gauge lines represent arbitrary number of connections between the subdiagrams. In (b) the double
line represents either Wilson lines or partonic propagators connected to the external vertices.

integrations over the positions of internal vertices considered as variables in complex coordinate space. This is the

direct analog of pinches in loop momenta [7, 31, 32]. As in momentum space, at each such leading region, the diagram

describes a physical processes with fully-consistent classical propagation for the set of lines that connect vertices

that are lightlike separated. We will refer to a manifold in coordinate space with a definite set of vertices pinched

at lightlike or vanishing separations as a pinch surface (PS). (We use this notation in the same sense as “PSS” in

Ref. [7].)

In Ref. [12] it was shown that at such pinch surfaces, diagrams are characterized by subdiagrams of soft, jet-like

and short-distance (hard) sets of lines, as depicted in Fig. 1, which is similar to the familiar structure of diagrams

at pinch surfaces in momentum space both in direct QCD treatments [7, 14, 15, 32] and in soft-collinear effective

theory [33, 34]. In the case of the massless cusp (Fig. 1(a)), for example, nonlocal ultraviolet subdivergences occur

when subsets of vertices align along the Wilson lines, and these configurations define jet subdiagrams. Other vertices

remain at finite distances from both Wilson lines and the cusp in the soft subdiagram, while the remaining vertices

move to the cusp and form the hard subdiagram [8].

The same factorization into the same types of subdiagrams also occurs for multieikonal vertices with more Wilson

lines and in partonic amplitudes in coordinate space whenever a single point in spacetime (the “hard scattering”)

is related to a set of external positions by lightlike distances, as illustrated in Fig. 1(b). (We assume that no

pair of external vertices is related by a lightlike distance.) To anticipate, at these leading regions or PSs, one can

make the coordinate-space soft-collinear and hard-collinear approximations, as defined in Ref. [12], which lead to the

factorization of these subregions by the application of Ward identities in the same way as in momentum space [14, 15].

We will give the expressions for these approximations for a leading PS below. We use the term “leading” to denote

an ultraviolet logarithm or a pole in the dimensionally regulated case, and where necessary to distinguish PSs that

produce such divergences from those that do not. As we quantify in the next subsection, for partonic amplitudes

at leading PSs in Feynman and other covariant gauges, a single line from each jet carries a physical polarization

(transverse for the gauge particle) into the hard subdiagram. All other gauge lines attached to the hard scattering are

scalar- or longitudinally-polarized [12]. We will use this result extensively below, and will assume that the external
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of a set of nonlocal ultraviolet subtractions, adapted in analogy to the BPHZ momentum-space renormalization
procedure [30], and in the spirit of the all-orders, all-logs treatment of infrared divergences in momentum space in
Ref. [7]. In the subsequent sections we will relate this additive regularization to the renormalization and factorization
properties of eikonal and partonic amplitudes in coordinate space.

A. Leading regions, ultraviolet divergences and gauge invariance

In Ref. [12], the most general regions from which divergences arise in coordinate-space integrals were determined
from their analytic structure and a corresponding power-counting technique. Divergences arise from pinches in the
integrations over the positions of internal vertices considered as variables in complex coordinate space. This is the
direct analog of pinches in loop momenta [7, 31, 32]. As in momentum space, at each such leading region, the diagram
describes a physical processes with fully-consistent classical propagation for the set of lines that connect vertices
that are lightlike separated. We will refer to a manifold in coordinate space with a definite set of vertices pinched
at lightlike or vanishing separations as a pinch surface (PS). (We use this notation in the same sense as “PSS” in
Ref. [7].)

In Ref. [12] it was shown that at such pinch surfaces, diagrams are characterized by subdiagrams of soft, jet-like
and short-distance (hard) sets of lines, as depicted in Fig. 1, which is similar to the familiar structure of diagrams
at pinch surfaces in momentum space both in direct QCD treatments [7, 14, 15, 32] and in soft-collinear effective
theory [33, 34]. In the case of the massless cusp (Fig. 1(a)), for example, nonlocal ultraviolet subdivergences occur
when subsets of vertices align along the Wilson lines, and these configurations define jet subdiagrams. Other vertices
remain at finite distances from both Wilson lines and the cusp in the soft subdiagram, while the remaining vertices
move to the cusp and form the hard subdiagram [8].

The same factorization into the same types of subdiagrams also occurs for multieikonal vertices with more Wilson
lines and in partonic amplitudes in coordinate space whenever a single point in spacetime (the “hard scattering”)
is related to a set of external positions by lightlike distances, as illustrated in Fig. 1(b). (We assume that no
pair of external vertices is related by a lightlike distance.) To anticipate, at these leading regions or PSs, one can
make the coordinate-space soft-collinear and hard-collinear approximations, as defined in Ref. [12], which lead to the
factorization of these subregions by the application of Ward identities in the same way as in momentum space [14, 15].
We will give the expressions for these approximations for a leading PS below. We use the term “leading” to denote
an ultraviolet logarithm or a pole in the dimensionally regulated case, and where necessary to distinguish PSs that
produce such divergences from those that do not. As we quantify in the next subsection, for partonic amplitudes
at leading PSs in Feynman and other covariant gauges, a single line from each jet carries a physical polarization
(transverse for the gauge particle) into the hard subdiagram. All other gauge lines attached to the hard scattering are
scalar- or longitudinally-polarized [12]. We will use this result extensively below, and will assume that the external
gauge fields of partonic amplitudes, Eq. (2) are projected onto transverse polarizations. We note that in physical
gauges, only a single line connects each jet to the hard subdiagram [18, 32].

A complication for amplitudes involving physical processes with both incoming and outgoing external partons or
Wilson lines is that PSs can have disconnected hard subdiagrams, as illustrated by the diagrams of Fig. 2. We
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(a) (b)

FIG. 2: Examples of disconnected hard subdiagrams. The solid lines represent fermion or Wilson lines.

will confirm below, however, that these PSs are not associated with leading behavior. As in momentum space [7],
their suppression follows from the Ward identities of the theory, which require that each jet subdiagram is connected
to every connected component of the hard subdiagram by at least one line that is not a scalar-polarized gauge
propagator. Similar suppressions are described for cross sections in Refs. [35] and [36]. Leading pinch surfaces for
partonic amplitudes involve at most a single, simply-connected hard scattering. Similarly, for multieikonal amplitudes,
the local multieikonal vertex must be part of every hard subdiagram. Nevertheless, we will encounter diagrams like
Fig. 2 in the full classification of leading regions and the elimination of double counting.

Before specifying the approximations, we pause to draw a few consequences of the observation that a physical
picture associated with a pinch surface requires that the “external” propagators, beginning at the positions of fields,
xI in Eq. (2), be on the light cone with respect to the position of the physical hard scattering. The hard scattering may
be mediated, for example, by exchange of a gluon in QCD or by an electroweak current. For multieikonal amplitudes,
we can always set the vertex joining the eikonal lines to the origin. In the case of partonic scattering, with external
fields φI at points xI , as in Eq. (2), we consider 2 → N scattering, where x0

1, x
0
2 are large and negative and all x0

I ,
I > 2 are large and positive. In this case, the requirement of a physical process allows hard scattering at a single,
unique point, which, by translation invariance may also be taken as the origin. A short proof is given in Appendix A.
In this coordinate system, all x2

I = 0 at the pinch surfaces, and we may identify velocity vectors by βµI ∼ xµI /x
0
I for

each external field, with β2
I = 0. These βI fix the directions of jets in the reduced diagrams of Fig. 1(b), for partonic

scattering amplitudes, in the same way that Wilson lines fix jet directions for multieikonal amplitudes. For each such
line we introduce an additional, “complement” vector, β̄I , β̄

2
I = 0, normalized by βI · β̄I = 1. The leading singularity

of the diagram requires that the lightcone singularity of each external propagator remains uncancelled. We may think
of this as the analog of the requirement that the S-matrix is the residue of the leading pole in every external line.

The foregoing considerations on external propagators enable us to argue that the leading behavior in coordinate
space is gauge invariant, once external vector fields are projected onto transverse polarizations. This follows the
same way as in the diagrammatic proof of the gauge invariance of the S-matrix [37]. In momentum space, an
infinitesimal gauge transformation produces a sum of terms in which either external propagators are cancelled, or
vectors are projected onto scalar polarizations, proportional to their own momenta. The Fourier transformations of
these relations are contributions in which an external propagator is replaced by a four dimensional delta function,
fixing its position at an internal vertex, or the divergence is taken of an external vector field, and hence a gradient of
the external propagator. The former case gives a suppression by x2

I relative to leading behavior, while the latter is
eliminated by the same transverse projection that defines the S-matrix.

The general form of a coordinate amplitude can be written as

Ga(x1, x2, . . . , xa) =

a∏

I=1

∫
d4yI G2(xI − yI) Ḡa(y1, y2, . . . , ya) , (5)

where Ḡa is one-particle irreducible in each of the xI -channels. For much of the following analysis, we shall suppress
the self energies, which are factorized topologically, and whose renormalization is already included in the Lagrangian
of the theory. Except where indicated, therefore, our discussion will apply to the perturbative expansion of diagrams
that contribute to Ḡa(y1, . . . , ya), in convolution with lowest-order propagators. In the same way, for multieikonal
amplitudes, our analysis will apply to single-eikonal irreducible diagrams Γ̄a, related to the complete amplitudes by

Γa(Λ1β1,Λ2β2, . . . ,Λaβa) =

a∏

I=1

∫ ΛI

0

dτI Γ2((ΛI − τI)βI) Γ̄a(τ1β1, τ2β2, . . . , τaβa) , (6)
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where τIβI is the position of the outermost vertex on the Ith Wilson line in Γ̄a, and where the Γ2 represent self-
energies of the Wilson lines. Here all τI are taken positive, with the signs of the velocities βµI adjusted as necessary
for incoming lines.

B. Variables, power counting and neighborhoods for pinch surfaces

In the analysis of the pinch singularities of coordinate-space integrals, the soft, jet, and hard regions are specified
by the identification of “intrinsic” and “normal” variables, which parametrize a pinch surface and its normal space,
respectively [6, 7, 12, 32]. At a pinch surface, normal variables are constructed to vanish as a distance scaling factor,
λ→ 0 while intrinsic variables remain finite. In the amplitudes that we discuss, at lowest order in normal variables,
the propagator denominators of jet lines are linear in normal variables, those of the hard lines are quadratic in normal
variables, and the soft lines are of zeroth order in normal variables. (Our specific choices of normal variables for the
amplitudes under consideration will be described shortly.) Power counting can be performed by factoring out the
lowest powers of λ from each factor of the integrand and the integration measure for each normal variable, si,

si ≡ λs′i . (7)

Then, near a pinch surface, the integral for some quantity g(xI), depending on external parameters xI has the
form [12, 32],

g(xI) ∼
∫ d0

0

dλλp−1

∫ ∏

i

ds′i δ

(
1−

∑

i

|s′i|2
)∫ ∏

j

drj

(
Īg(s

′
i, rj , xI) +O(λη)

)
, (8)

where η > 0. The integrals over the intrinsic variables rj of the “homogenous” integrand Īg(s
′
i, rj , xI), found by

keeping only the lowest powers of λ in each factor [12, 32], will either be non-singular or will have pinch surfaces
generated when subsets of the s′i vanish (in our case where a subset of vertices approaches the lightcone or hard
scattering faster than the others). The scale d0, which quantifies the maximum distance from the pinch surface, may
be thought of as arbitrary at this point. The analysis of the homogeneous integrand determines the choice of normal
variables near each PS [12]. As found using the power counting developed in Ref. [12], the leading overall degree of
divergence is p = 0 for pinch surfaces of both eikonal and partonic amplitudes, relative to lowest order, indicating
logarithmic divergences of their integrals in coordinate space. We will review these results shortly, and only note here
that when p > 0, the PS is integrable.

In these terms, leading regions are characterized by gauge vector propagators connecting the soft subdiagram to
jet subdiagrams, with the following properties of the homogeneous integrals [12].

• The polarization tensors of all gauge vector propagators that attach the soft subdiagram to jet subdiagram K
are contracted only to the jet velocity vector, βK .

• The denominators of gauge propagators that attach the soft subdiagram to jet subdiagram K depend on the
positions, z(K)µ of the jet vertices to which they attach only through a vector that depends on a single coordinate:
β̄K · z(K)βµK .

Together, these properties specify the “soft-collinear approximation”, summarized by an operator, sc(K), whose action
is defined in Feynman gauge and dimensional regularization with D = 4− 2ε, by

sc(K)
[
Dµν(x− z(K))

]
Jν(z(K)) = sc(K)

[ − gµν

[−(x− z)2 + iε]1−ε

]
Jν(z(K))

= βµK
− 1

[−2 β̄K · (x− z(K))βK · x+ x2
⊥ + iε]1−ε

β̄νK Jν(z(K)) , (9)

with x the position of a soft vertex, or in the case of a gauge line exchanged between Wilson lines or jets, a point
on the other line or in the other jet. The soft-collinear approximation drops terms that are of order λ1/2 near the
pinch surface, where the denominator is finite. It is then convenient to define coordinates that link the soft and jet
subdiagram in convolution for each vertex position, z(K),

dDz(K) ≡ dτ (K) dD−1z(K) ,

τ (K) = β̄K · z(K) . (10)
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Here, τ (K) and the azimuthal angle of z
(K)
⊥ are intrinsic variables, while βK · z(K) and z

(K)2
⊥ /β̄K · z(K) can be chosen

as normal variables for this jet [12, 15, 32]. For the special case of z(K) a vertex on the Kth Wilson line, we can
identify z(K)µ = τ (K)βµK .

In a similar fashion, we identify approximations that reproduce the homogeneous integral for lines that attach jet
subdiagrams to the hard scattering subdiagram at leading PSs [12].

• Gauge field propagators that attach jet subdiagram JI to the hard subdiagram are either physically-polarized
or are contracted only to the complementary vector, β̄µI .

• The denominators of propagators attaching jet subdiagram I to the hard subdiagram depend on the coordinates
y(I) of the hard vertices to which they attach only through vectors βI · y(I)β̄µI .

These conditions define the “hard-collinear approximation”, represented by an operator hc(I), which acts on scalar-
polarized gauge propagators as

hc(I)
[
Dµν(z − y(I))

]
Hν(y(I)) = hc(I)

[ − gµν

[−(z − y(I))2 + iε]1−ε

]
Hν(y(I))

= β̄µI
− 1

[−2βI · (z − y(I)) β̄I · z + z2
⊥ + iε]1−ε

βνI Hν(y(I)) . (11)

As we have noted above, in the case of partonic amplitudes, a leading PS requires that (exactly) one partonic
propagator attaches each jet subdiagram to the hard scattering with a physical polarization for fermions or vectors.
For these propagators, the corresponding hard-collinear approximation may be represented as

hc(I)
[
∆ωσ(z − y(I))

]
Hσ(y(I)) = ∆ωσ(z − βI · y(I)β̄I) Tσσ

′
Hσ′(y

(I)) , (12)

where Tσσ
′

is an appropriate projection for the leading physical polarizations, with ∆ωσ the corresponding propagator,
depending on the spin of the field. The hard-collinear approximation drops terms that are of order λ3/2 near the
pinch surface in the denominators, whose leading behavior is order λ. Then, similarly to Eq. (10) we define

dDy(I) ≡ dη(I) dD−1y(I) ,

η(I) = βI · y(I) . (13)

In the hard subdiagram, all components of the positions yµ are normal variables. In the generic case, where all
components of yµ appear linearly in the denominators of jet lines shown in Eq. (11), all of these components are
naturally taken to scale linearly in λ. When there are precisely two incoming and two outgoing jets at the pinch
surface hard scattering, however, one spacelike component of yµ, which we may call yout, does not appear in any
factor βI · y, I = 1, . . . , 4. Rather, it appears quadratically in every propagator attached to the vertex at yµ.
This coordinate defines the direction normal to the scattering plane in a center-of-momentum frame of the physical
picture at the pinch surface. In this case, the single variable yout scales as λ1/2, and the integral is correspondingly
enhanced. This enhancement is also a feature of the lowest-order, tree-level scattering, however, and does not change
the logarithmic nature of radiative corrections [12], which are the focus of our discussion.

In summary, for a partonic amplitude with hard scattering at the origin and external points on the light cone

x2
I → 0, all pinch surfaces are specified by lists of vertices {z(K)

µ } that specify jet subdiagrams JK , a list of vertices
{yµ} that specifies the hard subdiagram H, while the remaining vertices {xµ} specify the soft subdiagram S. From
these lists of vertices, we find the normal variables of an arbitrary pinch surface ρ,

{s(ρ)
i } =

{{
βK · z(K),

z
(K)2
⊥

β̄K · z(K)

}
, {yµ}

}
, (14)

that is, the opposite-moving and the square of the perpendicular components normalized by the longitudinal distance
from the origin for each vertex in each jet, and all components of vertices in the hard subdiagram. All other independent
components are intrinsic variables,

{r(ρ)
j } =

{
{xµi } , {β̄K · z(K), φ(zK)}

}
, (15)

with φ(zK) azimuthal angles for the transverse components of jet vertices. We emphasize that the number of pinch
surfaces is finite for any diagram of finite order, which are enumerated simply by the ways of assigning vertices to the
jet, soft and hard subdiagrams.



7

The choice of subdiagrams and hence PSs can be pictured directly in coordinate space. In Fig. 3, each point
represents the projection of the position of an interaction vertex in some very high-order diagram onto the plane
defined by two non-collinear Wilson lines, for example. The closed curves represent the jets and hard scatterings
in a transparent fashion. The normal variables for vertices in either jet are given simply by their distances to the
corresponding lines in this diagram, and normal variables for vertices in the hard function are their distances from the

origin, as in Eq. (14). We denote these subdiagrams by S(ρ), J
(ρ)
I and H(ρ), respectively. We suppress their explicit

orders, which are implicit in the choice of PS ρ. It is clear from the figure that assignments of vertices to jet, hard and
soft subdiagrams are shared by many diagrams, that is, all the perturbative diagrams that are found by connecting
the points in the figure.

We can now quantify the identification of leading regions, as derived in Ref. [12] and illustrated in Fig. 1. It was
shown in Ref. [12] that in massless gauge theories, the scaling power p of Eq. (8) associated with an arbitrary pinch
surface is independent of the order in perturbation theory, and depends only on the numbers of lines connecting the
hard, jet and soft subdiagrams associated with the PS in question, and on the polarizations carried by gauge lines
that connect the jet subdiagrams with the soft and hard subidagram. To be specific, we adopt the following notation:

• Let jfI and jAI be respectively the numbers of fermion jet lines and gauge jet lines that connect jet subdiagram

J
(ρ)
I to the hard subdiagram H(ρ), and let jA+

I ≤ jAI be the number of these gauge lines that carry scalar
polarizations, proportional to βI , the velocity vector associated with jet I. In these numbers, we suppress the
PS label “ρ”, because the result will hold for all PSs [12].

• Let sfI and sAI be, respectively the number of fermion and gauge soft lines attached to jet subdiagram J
(ρ)
I , and

sA+
I ≤ sAI the number of these soft gauge lines that are coupled to the velocity vector associated with jet I, βI .

• Let sfH and sAH be, respectively the number of fermion soft and gauge soft lines that are attached to the hard

subdiagram H(ρ).

In this notation, in Ref. [12] it is shown that the minimum scaling power p in Eq. (8) for an arbitrary PS can be
expressed as a sum over contributions from each jet subdiagram, plus a contribution when the soft subdiagram is
attached to the hard subdiagram directly,

pmin =
∑

jets I

1

2

[(
jAI − jA+

I

)
+ jfI − 1 + sfI +

(
sAI − sA+

I

)]
+

3

2
sfH + sAH . (16)

Since divergences are associated only with p ≤ 0, a PS is nonleading unless there are no direct connections between
the soft and hard subdiagrams,

sfH = sAH = 0 , (17)

and unless for each jet I,

jAI − jA+
I + jfI = 1 , and sfI = 0 =

(
sAI − sA+

I

)
. (18)

The first relation in (18) reflects the Ward identities of the theory, which eliminate the case when all the lines of

a jet that attach to the hard subdiagram are unphysically polarized gauge propagators (jAI = jA+
I , jfI = 0). As a

result, pmin ≥ 0 after gauge-invariant sets of diagrams are combined (in the hard subdiagram, specifically). Each jet
is coupled to the hard subdiagram by at most a single physically-polarized gauge vector or a single jet fermion in
addition to an arbitrary number of scalar-polarized gauge vectors, and the coupling of all jets to the soft subdiagram
is entirely through soft gauge lines with polarizations in the jet direction.

Equation (16) holds for PSs with multiple, disconnected as well as simply-connected hard subdiagrams. This
confirms that, as noted above, any PS with more than one connected hard part is power suppressed relative to leading
behavior. It is also worth noting, however, that in elastic amplitudes for bound-state scattering, where there are more
than one physically-polarized parton in each incoming and outoing particle, PSs with disconnected hard scattering
subdiagrams actually dominate leading behavior [38, 39] because of the tree-level power counting enhancement noted
just after Eq. (13).

By Eq. (18), no soft fermions attach the soft subdiagram to jet subdiagrams at leading PSs. This implies that at
leading PSs, jet functions are diagonal in the flavor of the external partons; that is, for each jet the same quantum
numbers entering the diagram appear at the hard subdiagram.

Taken together, these considerations justify restricting our considerations to PSs with the structure illustrated in
Fig. 1. We note that for the purposes of this discussion, we have varied the notation of Ref. [12] slightly, and include
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S(ρ)

H(ρ)

xKxI

J
(ρ)
KJ

(ρ)
I

FIG. 3: Representation of the arrangement of vertices near a leading pinch surface ρ directly in coordinate space and their

assignments to jet, J
(ρ)
I , hard, H(ρ), and soft, S(ρ) subdiagrams. For every region, the direction of the jet J

(ρ)
I is determined

by the relative position of the external point xI with respect to the position of the hard scattering.

can be seen by considering vertices in each of the subdiagrams associated with an arbitrary PS, ρ. For vertices xµ

in the soft subdiagram, the only approximations are for denominators attached to the jets, for which jet vertices are

set on the lightcones, βI . In neighborhood n[ρ], the xµ stay away from all of the lightcones, and the physical picture

correspondence eliminates PSs involving vertices in S(ρ), just as in the original integral. For vertices z
(K)
µ in jet K, the

integrals are unchanged, except for lines attached directly to the hard scattering, where terms that are nonleading in

the scaling variable are neglected. No approximations are made for lines internal to H(ρ). Pinches of the homogeneous

integral are still controlled by the distances of the external vertices xK of J
(ρ)
K to the relevant lightcone, and these

pinches develop in the same manner in the homogeneous as in the original integral. In the homogeneous integral,

defined as in Eq. (8), however, one or more of the the rescaled normal variables are always order unity. Thus, the

pinch surfaces of the homogeneous integral will involve fewer vanishing denominators than those of the original PSs.

We will use this observation in our construction of nested subtractions.

C. Approximation operators and region-by-region finiteness

We will now employ the approximations identified above to define a new set of approximation operators, denoted

tρ, one for each leading pinch surface ρ. Each operator tρ is defined to act on any diagram γ(n) that possesses

the corresponding PS and to give an expression that corresponds to the leading, singular behavior of γ(n) in the

neighborhood of PS ρ. Of course, this condition defines the operator tρ only up to a finite ambiguity. For our

purposes it will be most useful to construct subtractions similar to those employed in proofs of factorization in

Ref. [7].

We define the action of the approximation operator tργ
(n) as the imposition of the soft-collinear and hard-collinear

approximations given above in Eqs. (9), (11) and (12) on all lines to which they apply at PS ρ of diagram γ(n). This

action can be represented schematically by

tργ
(n) ≡

�

I

�
dτ (I) S

(ρ)
{µI}({τ (I)}) βµI

I β̄I,µ�
I

×
�

dη(I)

�
dD−1z(I) J

(ρ)µ�
Iν

�
I

I (z(I), η(I)) β̄I,ν�
I
βνI

I

�
dD−1y(I) H

(ρ)
{νI}(y

(I)) . (20)

FIG. 3: Representation of the arrangement of vertices near a leading pinch surface ρ directly in coordinate space and their

assignments to jet, J
(ρ)
I , hard, H(ρ), and soft, S(ρ) subdiagrams. For every region, the direction of the jet J

(ρ)
I is determined

by the relative position of the external point xI with respect to the position of the hard scattering.

several terms that are discussed in [12], but not included in the relation analogous to Eq. (16) given there, which is
an inequality, rather than an equality.

To organize integrals in the presence of this large but finite number of pinch surfaces, we define neighborhoods

n[ρ] of pinch surfaces ρ by requirements on normal variables, s
(ρ)
i , given in Eq. (14), and intrinsic variables r

(ρ)
j from

Eq. (15),

∑

i

|s(ρ)
i |2 ≤ d2

0 ,

|r(ρ)
j |2 ≥

(∑

i

|s(ρ)
i |2

)δj
d

2−2δj
0

≥ λ2δj

(∑

i

|s′i(ρ)|2
)δj

d
2−2δj
0 , (19)

for some finite distance scale d0. A power 0 < δj < 1/2 is chosen for each intrinsic variable r
(ρ)
j , where the s

′(ρ)
i

are rescaled normal variables, Eq. (7). The inequalities for power δj ensure that the leading terms involving normal
variables in the soft-collinear and hard-collinear approximations, Eqs. (9) and (11), remain dominant by a power
over the first corrections to these approximations, which are relatively suppressed by λ1/2 in both cases. With this
definition, the soft-collinear and hard-collinear approximations associated with pinch surface ρ remain accurate for
λ→ 0 in Eq. (8) throughout neighborhood n(ρ), in the absence of cancellations between leading terms at pinches of
the homogeneous integral. We can think of Eq. (19) as specifying the closed curves of Fig. 3.

We close this subsection by noting that the homogeneous integrals (8) for PSs with normal variables identified as
in Eq. (14), have lower-order pinches that are precisely the same structure as those in the original diagrams. This
can be seen by considering vertices in each of the subdiagrams associated with an arbitrary PS, ρ. For vertices xµ

in the soft subdiagram, the only approximations are for denominators attached to the jets, for which jet vertices are
set on the lightcones, βI . In neighborhood n[ρ], the xµ stay away from all of the lightcones, and the physical picture

correspondence eliminates PSs involving vertices in S(ρ), just as in the original integral. For vertices z
(K)
µ in jet K, the

integrals are unchanged, except for lines attached directly to the hard scattering, where terms that are nonleading in
the scaling variable are neglected. No approximations are made for lines internal to H(ρ). Pinches of the homogeneous

integral are still controlled by the distances of the external vertices xK of J
(ρ)
K to the relevant lightcone, and these

pinches develop in the same manner in the homogeneous as in the original integral. In the homogeneous integral,
defined as in Eq. (8), however, one or more of the the rescaled normal variables are always order unity. Thus, the
pinch surfaces of the homogeneous integral will involve fewer vanishing denominators than those of the original PSs.
We will use this observation in our construction of nested subtractions.
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C. Approximation operators and region-by-region finiteness

We will now employ the approximations identified above to define a new set of approximation operators, denoted
tρ, one for each leading pinch surface ρ. Each operator tρ is defined to act on any diagram γ(n) that possesses

the corresponding PS and to give an expression that corresponds to the leading, singular behavior of γ(n) in the
neighborhood of PS ρ. Of course, this condition defines the operator tρ only up to a finite ambiguity. For our
purposes it will be most useful to construct subtractions similar to those employed in proofs of factorization in
Ref. [7].

We define the action of the approximation operator tργ
(n) as the imposition of the soft-collinear and hard-collinear

approximations given above in Eqs. (9), (11) and (12) on all lines to which they apply at PS ρ of diagram γ(n). This
action can be represented schematically by

tργ
(n) ≡

∏

I

∫
dτ (I) S

(ρ)
{µI}({τ

(I)}) βµII β̄I,µ′I

×
∫
dη(I)

∫
dD−1z(I) J

(ρ)µ′Iν
′
I

I (z(I), η(I)) β̄I,ν′Iβ
νI
I

∫
dD−1y(I) H

(ρ)
{νI}(y

(I)) . (20)

In this expression, each vector index or vertex position, for example, µI or z(I), respectively, represents arbitrary
numbers of such indices and positions for gluons connecting the subdiagrams specific to this leading region, S(ρ),

J
(ρ)
I and H(ρ). The net effect of tρ is to replace the full integral of diagram γ(n) by the homogeneous integral that

corresponds to PS ρ.
As mentioned above, the soft-collinear and hard-collinear approximations defined for coordinate-space integrals in

[12] are equivalent to approximations with similar names in discussions of factorization in momentum space [15, 40].
In this case, the approximation isolates ultraviolet divergences in the neighborhood of the PS in coordinate space, so
long as the soft-collinear and hard-collinear approximations apply. We represent this result by

tρ γ
(n)
∣∣∣
div n[ρ]

= γ(n)
∣∣∣
div n[ρ]

, (21)

where the subscript “div n[ρ]” represents the divergent UV behavior, from short-distance and/or collinear configu-
rations of PS ρ. This relation is not guaranteed to apply on subsurfaces where the homogeneous integral in tργ

(n)

develops pinches of its own. In the following we will generalize (21) by introducing a system of nested subtractions.
We emphasize first, however, that although the relation (21) refers to the result of an integral over the neighborhood,
n[ρ] of PS ρ, where the approximation is accurate, the definition tργ

(n) refers to the full integral, extended over the full
integration region in coordinate space, including other PSs and regions where tρ no longer gives a good approximation
to the integrand in general [7].

In any multi-loop diagram, multiple ultraviolet divergences can arise from sets of vertices that approach the hard
scattering or the collinear directions in partonic amplitudes, or the cusp and/or the Wilson lines in multieikonal
amplitudes, at different rates, just as loop momenta may go to infinity faster in some subdiagrams than in others.
As for the renormalization of Green functions, we can classify sets of divergences as either nested or overlapping, in
terms of the limiting process in coordinate space.

Nesting in coordinate space can be classified directly in terms of pinch surfaces. We say PS ρ1 is nested in PS ρ2

when a subset of vertices of ρ2, which defines ρ1, approaches the light cone and/or the origin faster than other vertices
in ρ2. The smaller nested PS has larger subdiagrams with vertices near the light cone (jets) or the origin (hard
subdiagram), but it defines a smaller region in coordinate space.

To be specific, for two leading pinch surfaces, ρ1 is a nested subsurface of ρ2, denoted

ρ1 ⊆ ρ2 , (22)

if and only if

H(ρ2) ⊆ H(ρ1) ,

H(ρ2) ∪ J (ρ2)
I ⊆ H(ρ1) ∪ J (ρ1)

I , (23)

for all jets JI . That is, the jet and/or hard subdiagrams grow as the dimension of the pinch surface decreases. The
equality holds only when ρ1 = ρ2, in which case all these relations are equalities. Otherwise, we say that ρ1 is
contained in ρ2. Without specifying their ordering, we say that ρ1 and ρ2 nest. The subsurface, or nesting, relation
of course is transitive,

ρ3 ⊂ ρ2 and ρ2 ⊂ ρ1 ⇒ ρ3 ⊂ ρ1 . (24)
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We note that the smaller the pinch surface in the sense of Eq. (23), the larger the number of its normal variables,
and the smaller the number of its intrinsic variables. Another way of putting this is that smaller pinch surfaces have
larger codimension. We will denote any fully nested set with MN pinch surfaces by N = {σ1 ⊂ σ2 ⊂ · · · ⊂ σMN

}, and
the set of all such nested sets for diagram γ as N [γ].

We now use nesting of pinch surfaces and the definitions of neighborhoods, n[ρ] in Eq. (19) to construct a set
of regions in coordinate space that cover all pinch surfaces, and in each of which an operator, tρ gives a valid
approximation to the singular behavior of the diagram throughout. Starting from the n[ρ], our choice for these
“reduced neighborhoods” is

n̂[ρ] = n[ρ]\ ∪σ⊃ρ (n[ρ] ∩ n[σ]) . (25)

By construction, region n̂[ρ] is n[ρ] less its intersections with the neighborhoods n[σ] of all larger pinch surfaces,
σ ⊃ ρ. As we have argued at the end of the previous subsection, the PSs of the homogeneous integral of region ρ
correspond to PSs σ, at which only a proper subset of the lines that are on the lightcone or at the origin on PSs
ρ remain on the lightcone or at the origin. Such pinch surfaces σ have more intrinsic (and fewer normal) variables
than pinch surface ρ, and one or more of the instrinsic variables of each σ are normal variables of ρ. In addition,
by the construction of Eq. (19), in neighborhood n[σ] the normal variables of ρ that are instrinsic variables of σ do
not vanish rapidly enough to produce a divergence. Correspondingly, the homogeneous integral for PS ρ, Eq. (8)
integrated over the reduced region n̂[ρ] is finite. Note that although the PS ρ itself is a subspace of lower dimension
in surface σ, the neighborhoods n[ρ] and n[σ] are of the same dimension, and ρ ⊂ σ does not imply that n[ρ] ⊂ n[σ].
The neighborhoods n̂[ρ] cover all pinch surfaces.

Not all pairs of regions can satisfy the nesting criterion, Eq. (23). We say two pinch surfaces are overlapping when
ρ 6⊂ σ and σ 6⊂ ρ, which we denote as

ρ : o : σ . (26)

By definition, if ρ : o : σ, then ρ and σ cannot appear in any set N of nested PSs of γ. The overlap relation, “: o :”
has a property analogous to transitivity of nesting, Eq. (24), which also follows easily from the defining properties of
nesting, Eq. (23),

given : σ1 ⊂ σ2 ⊂ σ3 , where σ3 : o : ρ and σ1 : o : ρ

then : σ2 : o : ρ . (27)

Any pair of PSs is either nested or overlapping. Note that the pinch surface where all vertices are in the hard
subdiagram is nested with all other pinch surfaces, so that no pair of pinch surfaces is fully disjoint.

As we have seen, each pinch surface, and corresponding neighborhood is associated with a distinct matching of the
list of vertices to the jet, hard and soft subdiagrams. In these terms, we can give an explicit form for the requirement
of Eq. (21), that the divergences from PS ρ are equal for γ(n) and tργ

(n),

γ(n)
∣∣
div n̂[ρ]

− tργ
(n)
∣∣
divn̂[ρ]

=
∏

I

∫
dτ (I)

∫
dD−1z(I)

∫
dη(I)

∫
dD−1y(I) Θ(n̂[ρ])

×
[
S

(ρ)
{µI}(z

(I)) J
(ρ)µIνI
I (z(I), y(I)) H

(ρ)
{νI}(y

(I))

− S
(ρ)
{µI}(τ

(I)) βµII β̄I,µ′I J
(ρ)µ′Iν

′
I

I (z(I), η(I)) β̄I,ν′Iβ
νI
I H

(ρ)
{νI}(y

(I))
] ∣∣∣

div n̂[ρ]

= 0 , (28)

where Θ(n̂[ρ]) restricts the integration to reduced neighborhood n̂[ρ], Eq. (25). This integral over the reduced
neighborhood converges because of the accuracy of the soft-collinear and hard-collinear approximations in the entire
reduced neighborhood n̂[ρ]. The PSs internal to the original neighborhoods n[ρ] have been removed by construction.

Equation (28) is the main result we will use for applications in the following sections, treating the neighborhood of
each PS separately. As a more general result, however, we will show that all divergent contributions to amplitudes
can be written without restriction to specific regions, in terms of a construction based on nested subtractions [7],
which we now discuss.

D. Nested subtractions

The quantities tργ, Eq. (20), can also be thought of as counterterms for ultraviolet divergences associated with the
limits x2

I → 0 in the partonic matrix elements, Eq. (2) and with multieikonal amplitudes, Eq. (4). We will denote an
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arbitrary n-loop diagram that is one-particle irreducible in the xI -channel as γ(n). Following the momentum-space
procedure of [7], we define a regulated version of γ(n) by

R(n) γ(n) = γ(n) +
∑

N∈N [γ(n)]

∏

ρ∈N

(
− tρ

)
γ(n) , (29)

with N [γ] the set of all non-empty nestings for diagram γ. We will refer to R(n) as the subtraction operator at nth
order. We may then write for the full nth order xI -irreducible partonic amplitude, Eq. (5), Ḡ(n) =

∑
γ(n),

Ḡ(n) =
∑

γ(n)


−

∑

N∈N [γ(n)]

∏

ρ∈N

(
− tρ

)
γ(n) + R(n) γ(n)


 . (30)

The products in Eqs. (29) and (30) are ordered with the larger PSs to the right of smaller PSs. Thus, the first
appoximation operators tρ to act on γ(n) involve the fewest points on the light cones or at short distances. As
in Eq. (20), the approximation operators act on the diagram over the full integration region, not restricted to the
neighborhood of the corresponding pinch surface.

Among the approximation operators that appear in R(n)γ(n), we may identify the smallest, ργ , for which all vertices

approach the origin, that is, for which H(σγ) = γ(n). Now because ργ is the unique smallest PS, it nests with every
other pinch surface. Its approximation operator, which we denote by tuv for any diagram, always appears to the left
of every other operator in Eq. (30). Operator tuv acts only on the external propagators that attach to γ(n). We can
thus separate it in the sum over nestings, and we find

Ḡ(n) =
∑

γ(n)



tuvγ

(n) + (1− tuv)


−

∑

N∈NP [γ(n)]

∏

ρ∈N

(
− tρ

)
γ(n) + R

(n)
P γ(n)





 , (31)

where now NP refers to the set of all proper nestings, not including tuv, and R
(n)
P is the corresponding “proper”

subtraction operation, defined by Eq. (29) with N replaced by NP ,

R
(n)
P γ(n) = γ(n) +

∑

N∈NP [γ(n)]

∏

ρ∈N

(
− tρ

)
γ(n) . (32)

The operator R
(n)
P is related to R(n) by

R(n)γ(n) = (1− tuv) R(n)
P γ(n) . (33)

In the following, we will show that R
(n)
P γ(n) is free of subdivergences.

Specifically, we will show that the nesting, from regions to subregions, eliminates double counting, allowing the
subtractions tρ for each leading PS ρ to be extended from n̂[ρ] to the full space, as in the momentum space discussion
in Ref. [7]. We can also think of individual subtractions acting region by region; the purpose of the nested products
is to cancel the action of subtractions outside their corresponding reduced neighborhoods n̂[ρ]. In summary, we claim

that for each diagram γ(n), the action of the proper subtraction operation, R
(n)
P is to remove divergences from leading

pinch surfaces ρ,

R
(n)
P γ(n)

∣∣
div n̂[ρ]

=


γ(n) +

∑

N∈NP [γ(n)]

∏

ρ∈N

(
− tρ

)
γ(n)



∣∣∣∣
div n̂[ρ]

= 0 , (34)

for any PS ρ with H(ρ) ⊂ γ(n). Assuming this result, the proper-subtracted diagram R
(n)
P γ(n)(y1, . . . , ya) is free of

all subdivergences. In particular, because all collinear singularities have been cancelled, it remains finite when any of
the yµI approach the lightcone, and because all soft subdiagrams are subtracted, it vanishes on dimensional grounds
when the positions of external vertices go to infinity,

lim
{y2I→0}

R
(n)
P γ(n)(y1, . . . , ya) = f (n)

(
yI · yJ , µ2

)
,

lim
{yK ·yL→∞}

f (n)
(
yI · yJ , µ2

)
= 0 , (35)
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in terms of some function f (n) that depends on the inner products yI · yJ and in general on µ2, the renormalization
scale.

This result has important consequences for the full nested set of subtractions, including nestings that include tuv,
acting on the full nth-order amplitude, G(n)(x1 . . . xa), Eq. (5). For this “improper” PS, the soft function in Eq. (28)
is taken as unity and the jet subdiagrams are truncated propagators. The approximation associated with tuv is, by

Eq. (12), to replace yµI by β̄µI y · βI on the external propagators of G
(n)
a . In schematic form, we can then represent the

action of the full set of nested subtractions as

R(n)G(n)
a (x1, . . . , xa) = (1− tuv)

∏

I

∫
d4yI G2(xI − yI)R(n)

P Ḡa ({yI})

=
∏

I

∫
d4yI

(
1 − G2(xI − yI · βI β̄I)

G2(xI − yI)

)
R

(n)
P Ga ({yI}) , (36)

where the fraction represents the matrix inverse for fields with spin. We now recall that poles in x2
I come about only

from pinches in the integrals over the internal vertices of Ga, at configurations associated with physical processes. For
such configurations, xI ·yI ∼ xI · β̄IyI ·βI , and the right-hand side vanishes when the xµI approach the lightcone. Thus,

the full set of nested subtractions acting on the amplitudes, R(n)G
(n)
a lack poles in x2

I , and their Fourier transforms
will not contribute to the S-matrix,

R(n)G(n)
a

∣∣
div

= 0 , (37)

where in this case “div” refers specifically to the leading light-cone singularity in all external coordinates xI . Equiv-
alently, from Eq. (29), we have

γ(n)
∣∣
div

= −
∑

N∈N [γ(n)]

∏

ρ∈N

(
− tρ

)
γ(n)

∣∣
div

. (38)

This conclusion is analogous to the result of Collins in Ref. [7] that the Sudakov form factor is power-suppressed
when subtracted according to the momentum-space procedure on which our approach is based. Here we extend the
reasoning to the general class of multi-parton amplitudes.

Returning to the sum of proper subtractions, we first note that for multieikonal amplitudes, the absence of sub-
divergences, Eq. (34) is easy to prove, because the largest PS for such an amplitude is one in which all non-eikonal
vertices are in the soft subdiagram. As usual the approximation operator, teik for this PS takes the soft-collinear
approximation, Eq. (9) for all external lines of the soft subdiagram, and because all such lines are attached to the
Wilson lines, in this case, teik = 1 when acting on the amplitude. Thus, since this PS can nest with every other PS,
all terms in Eq. (42) cancel pairwise. Indeed, the cancellation is exact, and for multieikonal amplitudes, we have

R
(n)
P γ

(n)
eikonal = 0 , n > 0 , (39)

with no remainder, or, equivalently, for n ≥ 1,

Γ(n) = −
∑

γ
(n)
eikonal

∑

N∈NP [γ(n)]

∏

ρ∈N

(
− tρ

)
γ

(n)
eikonal . (40)

For n = 0, of course, there are no subtractions. This reasoning does not apply to partonic amplitudes, for which the
largest soft approximation is not accurate in general.

Before going to the proof of Eq. (34) for partonic amplitudes, it is worth noting the relationship between the
subtraction approach here and the momentum-space “strategy of regions” [41]. In the latter, approximations tailored
to regions of loop momenta that are the sources of leading behavior are also extended to all of loop momentum space.
We are doing something very similar here; each of the subtraction terms in each nesting is associated with a particular
leading PS, but we extend each such expression over the full coordinate integration space. The list of PSs specifies
the list of regions each of which defines an expansion in kinematic variables. By showing that all double counting is
eliminated in the sum over all nestings, we will verify that the sum of subtractions is an acceptable representation
of the original amplitude, up to well-defined finite corrections. There is also a connection to the organizations of the
various subtraction methods that underly NNLO calculations of amplitudes and cross sections [42].
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E. Proof of the cancellation of subdivergences

To derive Eq. (34) for an arbitrary PS ρ of diagram γ(n), we start by reorganizing the sum over nestings in R
(n)
P γ(n),

Eq. (32), to highlight the role of an individual approximation tρ,

R
(n)
P γ(n) = γ(n) + (−tρ)γ(n) +

∑

Nρ 6=ρ


 ∏

σ∈Nρ

(
− tσ

)
+

∏

σ∈Nρ\ρ

(
− tσ

)

 γ(n)

+
∑

N̄ρ

∏

σ∈N̄ρ

(
− tσ

)
γ(n) .

(41)

In the sum, we have separated those nestings denoted Nρ that include ρ, along with the set Nρ\ρ, in which region
ρ can nest but is excluded, and finally the set of nestings with PSs that overlap with ρ, denoted, N̄ρ, which cannot
include ρ because ρ : o : σ for at least one element σ ∈ N̄ρ.

We now look at the contribution to Eq. (41) from region n̂[ρ], where we wish to verify Eq. (34), that the divergence
from this region should vanish. We already know from Eq. (28) that the divergent parts of the first two terms on the
right-hand side of Eq. (41) cancel in n̂[ρ], so that (34) implies

∑

Nρ 6=ρ


 ∏

σ∈Nρ

(
− tσ

)
+

∏

σ∈Nρ\ρ

(
− tσ

)

 γ(n)

∣∣
div n̂[ρ]

+
∑

N̄ρ

∏

σ∈N̄ρ

(
− tσ

)
γ(n)

∣∣
div n̂[ρ]

= 0 . (42)

We see that for (34) to hold in each neighborhood n̂[ρ], the divergent parts of all subtraction terms except for tργ
(n)

alone must cancel (or vanish) in region n̂[ρ] defined by Eq. (25). To prove the absence of divergences in R
(n)
P G(n) for

an arbitrary n̂[ρ], we must examine all nestings in Eq. (42).
We start with those nestings, Nρ in which ρ appears along with at least one other PS. For all such nestings, in

neighborhood n̂[ρ], the term corresponding to nesting Nρ cancels the nesting, Nρ\ρ. This is because the action of tρ
is equivalent to the identity in region n̂[ρ], so that

∑

Nρ 6=ρ


 ∏

σ∈Nρ

(
− tσ

)
+

∏

σ∈Nρ\ρ

(
− tσ

)

 γ(n)

∣∣∣
div n̂[ρ]

= 0 , (43)

where, as in Eq. (21), the subscript “div n̂[ρ]” refers to the sum of all divergent parts from the integral over n̂[ρ].
This implies that the proof of Eq. (34) reduces to showing that the sum of all overlapping subtractions cancels
independently,

∑

N̄ρ

∏

σ∈N̄ρ

(
− tσ

)
γ(n)

∣∣∣
div n̂[ρ]

= 0 . (44)

Again, nestings N̄ρ cannot include PS ρ because one or more of its PSs σ overlap with ρ. Because we are interested
in singular contributions, we need to treat only those nestings, N̄ρ that are divergent in region ρ, and we will use this
condition below.

Consider, then, an arbitrary nesting N̄ρ that contains some set of PSs σ that overlap with PS ρ. Because of the
transitive properties of nesting, Eqs. (24) and (27), we can partition the PSs σi ∈ N̄ρ into three ordered sets [7]: those
that are larger than ρ, those that are smaller than ρ and those that overlap with ρ,

N̄ρ = NL ∪No ∪NS ,
NL[ρ] = {σj ⊃ ρ} ,
No[ρ] = {σk : o : ρ} ,
NS [ρ] = {σl ⊂ ρ} , (45)

where all σj ⊃ σk ⊃ σl. By Eq. (27), there is only a single subset No[ρ].
In the following, we will identify an “enclosing” PS τenc, which is intermediate between the sets No[ρ] and NL[ρ]

in Eq. (45). This PS, τenc will contain both PS ρ and every element σk ∈ No. It will at the same time be contained
in every element σj ∈ NL[ρ], including the case when it equals the smallest element of NL[ρ]. Specifically, for any
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FIG. 4: Examples of overlapping regions and the enclosing region according to Eqs. (47)–(49).

element σ of No[ρ], the enclosing region, τenc[σ, ρ] will be constructed to act as the identity when combined with
tσγ

(n) in neighborhood n̂[ρ], up to finite corrections, that is,

tσ

(
1− tτenc [σ, ρ]

)
γ(n)

∣∣∣
div n̂(ρ)

= 0 . (46)

This is the basic property we will need.
The appropriate enclosing PS, τenc[σ, ρ] is defined as usual by its hard, jet and soft subdiagrams. These subdiagrams

are determined in turn by the subdiagrams of PSs σ and ρ in the following manner,

S(τenc) = S(σ) ∪ S(ρ) ∪
∏

I,K, I 6=K

(
J

(σ)
I ∩ J (ρ)

K

)
, (47)

J
(τenc)
L = J

(σ)
L ∪ J (ρ)

L

∖
S(τenc) , (48)

H(τenc) = H(σ) ∩ H(ρ)

= γ
∖
(
S(τenc) ∪

∏

L

J
(τenc)
L

)
. (49)

We claim that τenc constructed in this manner satisfies Eq. (46). Equation (46) will hold in region ρ if two sets of
conditions are met by τenc. First, the construction must be self-consistent, which requires that τenc represents a PS
in the class already included in the nestings of Eq. (29). This will be the case if:

1) Whenever tσγ is singular in region ρ, the overlap of H(σ) and H(ρ) is not empty.

2) Whenever tσγ is singular in region ρ, S(τenc) is not connected to H(τenc).

In addition, for Eq. (46) to hold, we must also have:

3) The hard-collinear approximations of Eq. (11), applied by tτenc are accurate at PS ρ.

4) The soft-collinear approximations of Eq. (9), applied by tτenc are accurate at PS ρ.

If all of these conditions are satisfied up to corrections that vanish as a power of one or more of the normal variables
of PS ρ, then Eq. (46) holds, because the overall integral is logarithmically divergent and we have constructed the
reduced neighborhood n̂[ρ], Eq. (25) to remove its subdivergences.

Much of the subtlety in the construction of τenc involves “overlapping jets” in different directions, in which some

subsets of lines shift from one lightcone in σ to another lightcone in ρ. Many such subdiagrams, J
(σ)
I ∩ J (ρ)

K , are
possible, and are defined by the list of PSs of each diagram γ. We make two preliminary observations regarding these
overlaps.

First, lines that carry physical polarization from each jet to the hard part do not contribute to these overlaps. This
is easiest to see for fermionic external lines. The shift of a fermion line of jet I in region σ to jet K in region ρ would
require that the line pass through the soft subdiagram of region ρ, and we have seen in Eq. (18) that fermion lines
cannot connect jet and soft subdiagrams at leading PSs. Similarly, also by Eq. (18), a physically-polarized gauge
propagator of jet I in region σ cannot pass through S(ρ) to jet K if ρ is to remain a leading PS.

Second, in the coordinate-space integrals of tσγ, certain PSs are modified by tσ. Specifically PSs ρ involving

overlaps J
(σ)
I ∩ J (ρ)

K are replaced by PSs where the vertices of J
(σ)
I ∩ J (ρ)

K are either pinched at the origin, or align

only in the direction β̄I , complementary to the direction of J
(σ)
I and independent of the direction βK (that is, of

the precise direction of the jet in region ρ). This is because the soft-collinear, Eq. (9), and hard-collinear, Eq. (11),

approximations that act on the external lines and vertices of J
(σ)
I eliminate dependence on all vectors except for βI

and β̄I .
With these observations in mind, we can now give proofs of conditions 1) – 4) above.
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FIG. 5: An example of disjoint hard subdiagrams.

soft function, S(ρ) of ρ. We will see that when any such vertex is in a jet subdiagram of ρ, then ρ is not a PS for

tσγ. We will then show that when all the external vertices of H(σ) are in S(ρ), then ρ is not a leading PS of tσγ. The

only possibility left is that at least one vertex of H(σ) is also a vertex in H(ρ), so that the hard subdiagrams are not

disjoint.

Consider first Fig. 5, which illustrates the possibility that an external vertex of H(σ) is in a jet subdiagram of PS ρ.

In the figure, we identify the hard scattering H(σ) as the propagator y1 − y2, along with the vertices y1 and y2 which

it connects. In H(σ), y1 → y2 → 0, while y3 and y4 remain at finite distances from each other with (y3−y4)
2 �= 0, and

approach the lightcones defined by x3 and x4, respectively. We then let H(ρ) be defined by y3 − y4 and ρ by the limit

y3 → y4 → 0 while y1 and y2 remain at finite distances with (y1 − y2)
2 �= 0, such that the lines (y1, y3) and (y2, y4)

are in the jet subdiagrams associated with external points x1 and x2, respectively. These two regions clearly cannot

be nested, and their hard subdiagrams are disjoint. Now in the neighborhood of PS ρ, as y3 and y4 approach the

origin, y1 should move to the β1 light cone, which requires a pinch in the y1 integral. Since (y1 − y2)
2 �= 0 at ρ, this

pinch can come from the denominators x1−y1 and y1−y3. The action of tσ, however, partially decouples the internal

integrals of the hard subdiagram (y1, y2) from the σ jet subdiagrams. For the subtracted diagram, tσγ, tσ applies the

hard-collinear approximation hc(1) from Eq. (12) to (x1 − y1)
µ, which is then replaced by a line (x1 − y1 · β1β̄1)

µ.

Similarly, it applies hc(3) to y1 − y3, which is replaced by (y1 · β3β̄3 − y3)
µ. The two lines thus depend on different

components of yµ
1 , and the y1 integrals cannot be pinched at y1 · β1 = 0. The lines x1 − y1 and y1 − y3 are therefore

not pinched in region ρ after the action of tσ.

The feature of the example in Fig. 5 that extends to more general cases is that operator tσ acts on the line y1 − y3

with the hard-collinear approximation hc(3), which eliminates the pinch that fixes vertex y1 in J
(ρ)
1 . In the original

integral, the coordinate y1 · β1 is pinched at the origin between poles from the propagators of x1 − y1 and y1 − y3

when they are in J1. After the action of tσ, however, the propagator associated with line y1 − y3 no longer has a pole

when y1 · β1 = 0 because y1 · β3 �= 0 when y1 ∝ β1. To extend this result to higher orders, we must treat general

hard-scattering subdiagrams, and allow the possibility that more than one external vertex of H(σ) appears in the jet

subdiagrams J
(ρ)
L of PS ρ.

Suppose then, that in the general case more than one external vertices of H(σ) attach to lines in one or more

subdiagram J
(ρ)
L . Now, because H(σ) is connected, and because in region ρ each jet corresponds to physically-

propagating lines, one or more lines in jet J
(ρ)
L must enter subdiagram H(σ) at one of its external vertices, and leave

FIG. 5: An example of disjoint hard subdiagrams.

1. Overlap of hard subdiagrams

The construction of the enclosing PS, τenc using Eq. (49) requires a non-vanishing overlap between the hard sub-
diagrams H(σ) and H(ρ). As we have seen in Sec. II A, for leading regions σ and ρ, the hard subdiagrams H(σ)

and H(ρ) are themselves simply-connected. For the cusp or processes initiated by a single external current, the hard
subdiagrams of all leading regions overlap at the current, as illustrated by Fig. 1(a). For scattering amplitudes,
however, there are many cases where regions σ and ρ have disjoint hard subdiagrams. This happens whenever the

hard subdiagram in σ, H(σ), is entirely contained in the union of soft and jet subdiagrams in ρ, S(ρ) ∪∏L J
(ρ)
L . We

now show that in all such cases, either PS ρ is suppressed, or ρ is actually not a PS of tσγ.
Let us suppose that H(σ) and H(ρ) are disjoint. We then consider the external lines of H(σ), on which the hard-

collinear approximations, Eqs. (11) and (12) have acted. Because the hard subdiagrams are disjoint, none of these
lines can be in H(ρ) nor can the vertices of H(σ) to which they attach. Then, each external vertex of the hard

subdiagram H(σ) either appears as an internal vertex in some jet subdiagram J
(ρ)
L of ρ, or is an internal vertex of the

soft function, S(ρ) of ρ. We will see that when any such vertex is in a jet subdiagram of ρ, then ρ is not a PS for
tσγ. We will then show that when all the external vertices of H(σ) are in S(ρ), then ρ is not a leading PS of tσγ. The
only possibility left is that at least one vertex of H(σ) is also a vertex in H(ρ), so that the hard subdiagrams are not
disjoint.

Consider first Fig. 5, which illustrates the possibility that an external vertex of H(σ) is in a jet subdiagram of PS ρ.
In the figure, we identify the hard scattering H(σ) as the propagator y1 − y2, along with the vertices y1 and y2 which
it connects. In H(σ), y1 → y2 → 0, while y3 and y4 remain at finite distances from each other with (y3−y4)2 6= 0, and
approach the lightcones defined by x3 and x4, respectively. We then let H(ρ) be defined by y3− y4 and ρ by the limit
y3 → y4 → 0 while y1 and y2 remain at finite distances with (y1 − y2)2 6= 0, such that the lines (y1, y3) and (y2, y4)
are in the jet subdiagrams associated with external points x1 and x2, respectively. These two regions clearly cannot
be nested, and their hard subdiagrams are disjoint. Now in the neighborhood of PS ρ, as y3 and y4 approach the
origin, y1 should move to the β1 light cone, which requires a pinch in the y1 integral. Since (y1 − y2)2 6= 0 at ρ, this
pinch can come from the denominators x1−y1 and y1−y3. The action of tσ, however, partially decouples the internal
integrals of the hard subdiagram (y1, y2) from the σ jet subdiagrams. For the subtracted diagram, tσγ, tσ applies the
hard-collinear approximation hc(1) from Eq. (12) to (x1 − y1)µ, which is then replaced by a line (x1 − y1 · β1β̄1)µ.
Similarly, it applies hc(3) to y1 − y3, which is replaced by (y1 · β3β̄3 − y3)µ. The two lines thus depend on different
components of yµ1 , and the y1 integrals cannot be pinched at y1 · β1 = 0. The lines x1 − y1 and y1 − y3 are therefore
not pinched in region ρ after the action of tσ.

The feature of the example in Fig. 5 that extends to more general cases is that operator tσ acts on the line y1 − y3

with the hard-collinear approximation hc(3), which eliminates the pinch that fixes vertex y1 in J
(ρ)
1 . In the original

integral, the coordinate y1 · β1 is pinched at the origin between poles from the propagators of x1 − y1 and y1 − y3

when they are in J
(ρ)
1 . After the action of tσ, however, the propagator associated with line y1 − y3 no longer has a

pole when y1 · β1 = 0 because y1 · β3 6= 0 when y1 ∝ β1. To extend this result to higher orders, we must treat general
hard-scattering subdiagrams, and allow the possibility that more than one external vertex of H(σ) appears in the jet

subdiagrams J
(ρ)
L of PS ρ.

Suppose then, that in the general case more than one external vertex of H(σ) attaches to lines in a subdiagram

J
(ρ)
L . Now, because H(σ) is connected, and because in region ρ each jet corresponds to physically-propagating lines,

one or more lines in jet J
(ρ)
L must enter subdiagram H(σ) at one of its external vertices, and leave at another external
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vertex. Since these lines are external to H(σ), they must be included in jet subdiagrams J
(σ)
K of PS σ. At all such

external vertices, then, the approximation operator tσ will have applied the hard-collinear approximation, Eq. (11)
or (12), appropriate for the directions and polarizations of these external lines of H(σ) in PS σ. As we have observed

above, however, the imposition of the hard-collinear approximation for jet J
(σ)
K , say, by tσ eliminates pinches in that

subdiagram except in the βK and β̄K directions. (We assume for simplicity that no pair of jets satisfies βI = β̄L.).

As a result, no pinch that sets these lines to the lightcone in ρ is possible, unless the overlap of H(σ) with jet J
(ρ)
L

involves only external lines that are also in J
(σ)
L , i.e. in J

(ρ)
L ∩ J (σ)

L . This requires some of the lines of J
(σ)
L to change

direction. At PS σ, the lines in J
(σ)
L all flow in or all flow out of H(σ), but at PS ρ, some would have to flow in and

some out. In the physical picture corresponding to PS ρ, the relevant vertices of H(σ) are all either before H(ρ), or

after. For definiteness, we assume they are before, so that J
(ρ)
L is an incoming jet.

On the other hand, the external lines of jet J
(σ)
L ∩ J (ρ)

L , can carry at most one physical polarization from the

external point xL into subdiagram H(σ). All other lines that attach J
(σ)
L to H(σ) must be scalar-polarized. This

physical polarization is then eliminated by the net action of the hard-collinear approximation in diagram H(σ),

because only one external line of J
(σ)
L can be physically polarized. In the case where the vertex at which the physical

polarization reaches H(σ) is in J
(σ)
L ∩ J (ρ)

L , the physical polarization then cannot reach to the hard subdiagram H(ρ)

(which is by assumption disjoint from H(σ)) because all the otherJ
(ρ)
L lines are scalar-polarized. But then PS ρ is

nonleading. These considerations imply that the jet subdiagrams J
(ρ)
L of PS ρ cannot share lines or vertices with the

hard subdiagram H(σ), unless all the vertices that attach the individual lines that carry physical polarization from

jets J
(σ)
K to H(σ) are in S(ρ). As a result, if H(σ) ∩H(ρ) were to be empty, the “physical” vertices of H(σ) would all

have to be in S(ρ).
We now treat the possibility that the vertices that bring physical polarizations to the hard subdiagram H(σ) in

region σ are entirely in S(ρ), and show that in this case ρ is nonleading. The reason is illustrated by the example of
Fig. 2(a), assuming that the PS σ describes the scattering of (massless) fermions. The alternative physical process
in the figure, with a hard scattering involving gluons, would require the fermions to be in soft subdiagram S(ρ), a
configuration that is always nonleading by Eq. (18), see Eq. (16) and Ref. [12]. This reasoning applies to any order and
diagram: restricting ourselves to fermion-fermion scattering to be specific, at any leading PS, the external fermions
must only appear as jet lines, and as external lines of both hard subdiagrams H(σ) and H(ρ). But then, since the
fermion lines are continuous, the hard subdiagrams must be connected by these jet lines, which must be in different
directions in the two PSs. The definition of Eq. (49) is then guaranteed to give a connected hard subdiagram H(τenc).
In a similar fashion, for external gluons, the role of fermion lines is taken by gluon lines that carry the external
physical polarizations of the gluons. From the general power counting result, Eq. (16), such polarizations cannot be
radiated into soft subdiagrams at leading PSs, and the same conclusion as for external fermions applies.

In summary, H(σ) ∩H(ρ) is never empty.

2. Soft and hard disjoint

The external lines of S(τenc) are either external lines of the soft subdiagrams S(σ) and/or S(ρ) or of the overlaps of

jet subdiagrams
∏
I,K J

(σ)
I ∩ J (ρ)

K . Now the external lines of S(σ) can only attach to the jet subdiagrams of σ, J
(σ)
I

and are hence are separated from H(ρ) ∩H(σ), and similarly for lines in S(ρ).

To verify that lines in J
(σ)
I ∩ J (ρ)

K cannot attach to H(τenc) at leading PSs, we consider a gauge line in the Ith jet

subdiagram, J
(σ)
I , attached at one end to an arbitrary vertex at a point in H(σ), and at the other end to a vertex

that is in subdiagram J
(σ)
I . It is easy to see that if this line is also in

∏
I,K J

(σ)
I ∩ J (ρ)

K , it cannot attach directly to

H(τenc), because tσ acts by hc(I), Eq. (11), on the external lines of J
(σ)
I , and produces a β̄I polarization at H(σ).

This polarization is suppressed when coupled to the lines of J
(σ)
I ∩ J (ρ)

K , which, as we have observed below conditions
1) – 4) for the consistency of the construction of τenc, can have PSs only in the β̄I direction in region ρ. As β̄2

I = 0,

leading contributions are eliminated when J
(σ)
I ∩ J (ρ)

K attaches to H(τenc). Thus, none of the elements of S(τenc) can

attach directly to H(τenc), and the two subdiagrams are disjoint.
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FIG. 6: Example of nested overlapping subdivergences in PSs σ and ρ and their enclosing PS τenc[σ, ρ], where (a) illustrates
the case L �= I and (b) L = I.

is {0, a}, J
(ρ)
K is {0, c, b, d} and S(ρ) is {a, b} and H(ρ) = {0}. For this example, the overlap of the jets is

J
(σ)
I ∩ J

(ρ)
K = {b, c}, a single line. Following Eqs. (47)–(49), PS τenc has all of its gauge lines in its soft

subdiagram, S(τenc) = {a, b, c, d}. Its hard subdiagram is just the vertex at the origin, H(τenc) = {0}, and its

jets are J
(τenc)
I = {0, a} and J

(τenc)
K ={0, c, d}. Clearly, the intersection, J

(σ)
I ∩ J

(ρ)
K = {b, c} of jets from σ and ρ

attaches to jet line L = K.

Turning to the general case, when L �= I, then in PS σ, the vertex at which the line in J
(σ)
I ∩ J

(ρ)
K ∈ S(τenc)

connects to J
(τenc)
L must also connect either a line in J

(σ)
L and a line in J

(ρ)
L ∩H(σ) or to two lines in J

(ρ)
L ∩H(σ),

since in PS σ a line in J
(σ)
I can only be attached to a line from the distinct jet J

(σ)
L at a vertex that is part of the

hard subdiagram H(σ), as in the example. In addition, because one or more lines in J
(ρ)
L ∩ H(σ) attach to the

same vertex as the line in S(τenc), which is in J
(ρ)
K , we must have L = K, again as in the example. Otherwise,

the vertex would connect lines from different jets J
(ρ)
K and J

(ρ)
L , which would force it to be part of H(ρ). Such

a vertex would then be in H(σ) ∩ H(ρ) = H(τenc), contrary to our assumptions.

We are thus restricted to the case J
(σ)
I ∩J

(ρ)
L quite generally. Now, when lines from J

(σ)
I ∩J

(ρ)
L attach to J

(τenc)
L ,

as at vertex c in Fig. 6(a), the hard-collinear approximation, hc(I) is applied by tσ, after the application of

the soft-collinear approximation sc(L) from tτenc in the product tσtτenc . In this case, applying the definitions

of the soft-collinear and hard-collinear approximations, Eqs. (9) and (11), we readily verify that the product of

operations hc(I)(1−sc(L)) produces a nonleading contribution, as an identity of the integrand, so that Eq. (46)
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FIG. 6: Example of nested overlapping subdivergences in PSs σ and ρ and their enclosing PS τenc[σ, ρ], where (a) illustrates
the case L �= I and (b) L = I.

is {0, a}, J
(ρ)
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L at a vertex that is part of the
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3. Hard-collinear

Any line from J
(τenc)
L that is attached to H(τenc) either attaches J

(ρ)
L to H(ρ) or J

(σ)
L to H(σ) (or possibly both). If

the line is from J
(ρ)
L , tτenc

will apply the hard-collinear approximation hc(L), Eq. (11), which is a good approximation

in region ρ. If the line is from J
(σ)
L , both tσ and tτenc apply the hard-collinear approximation, hc(L), whether or not

the line is in J
(ρ)
L , that is, whether or not hc(L) is a good approximation at PS ρ. The result, however, is the same for

tσtτenc
γ or tσγ alone because, as we easily verify from Eq. (11), hc(L)2 = hc(L). Thus, all hard-collinear connections

are consistent with Eq. (46).

4. Soft-collinear

The soft-collinear approximation must work for all external lines of S(τenc). By Eq. (49), these external lines are

either in S(σ) ∪ S(ρ) or in
∏
I,K, I 6=K

(
J

(σ)
I ∩ J (ρ)

K

)
.

The first case, lines in S(σ) ∪ S(ρ), is relatively straightforward. The external lines of S(ρ) attach only to jet lines

from subdiagrams J
(ρ)
L that are also in J

(τenc)
L and those from S(σ) attach only to J

(σ)
L lines that are in J

(τenc)
L .

The operator tτenc applies the soft-collinear approximation to all such lines. Applied to lines in S(ρ), this is a good
approximation in region ρ. For lines in S(σ), both tτenc and tσ apply the soft-collinear approximation sc(L), Eq. (9),
and since sc(L) = sc(L)2, they are consistent with Eq. (46).

The case of S(τenc) lines in
∏
I,K, I 6=K

(
J

(σ)
I ∩ J (ρ)

K

)
is somewhat more complex. The external lines of the intersections

J
(σ)
I ∩ J (ρ)

K ∈ S(τenc), I 6= K are attached to jet lines of subdiagrams J
(τenc)
L of τenc, and will have the soft-collinear

approximation sc(L) applied to them by tτenc . The action of tσ, however, depends on whether: (a) I 6= L or (b)
I = L. We treat these cases in turn, using the examples of Fig. 6 to illustrate the method. The figure represents two
pairs of overlapping PSs, σ and ρ, in a two-loop correction involving two partonic or eikonal lines, labelled I and K
in the figure. We should think of this example as embedded in a larger diagram with any number of external lines,
connected at a hard subdiagram denoted by 0 in the figure.

(a) Figure 6(a) is an example of L 6= I. As indicated by the positions of the vertices in the figure, in PS

σ of Fig. 6(a), J
(σ)
I consists of the lines connecting vertices in the set {a, b, c, 0} except for the line {c, 0}.
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In this notation, jet J
(σ)
K is {c, d}, S(σ) is {b, d}, and the hard subdiagram H(σ) is {0, c}. On PS ρ, J

(ρ)
I

is {0, a}, J (ρ)
K is {0, c, b, d} and S(ρ) is {a, b} and H(ρ) = {0}. For this example, the overlap of the jets is

J
(σ)
I ∩ J (ρ)

K = {b, c}, a single line. Following Eqs. (47)–(49), PS τenc has all of its gauge lines in its soft

subdiagram, S(τenc) = {a, b, c, d}. Its hard subdiagram is just the vertex at the origin, H(τenc) = {0}, and its

jets are J
(τenc)
I = {0, a} and J

(τenc)
K ={0, c, d}. Clearly, the intersection, J

(σ)
I ∩ J (ρ)

K = {b, c} of jets from σ and ρ
attaches to jet line L = K.

Turning to the general case, when L 6= I, then in PS σ, the vertex at which the line in J
(σ)
I ∩ J (ρ)

K ∈ S(τenc)

connects to J
(τenc)
L must also connect either a line in J

(σ)
L and a line in J

(ρ)
L ∩H(σ) or to two lines in J

(ρ)
L ∩H(σ),

since in PS σ a line in J
(σ)
I can only be attached to a line from the distinct jet J

(σ)
L at a vertex that is part of the

hard subdiagram H(σ), as in the example. In addition, because one or more lines in J
(ρ)
L ∩H(σ) attach to the

same vertex as the line in S(τenc), which is in J
(ρ)
K , we must have L = K, again as in the example. Otherwise,

the vertex would connect lines from different jets J
(ρ)
K and J

(ρ)
L , which would force it to be part of H(ρ). Such

a vertex would then be in H(σ) ∩H(ρ) = H(τenc), contrary to our assumptions.

We are thus restricted to the case J
(σ)
I ∩J (ρ)

L quite generally. Now, when lines from J
(σ)
I ∩J (ρ)

L attach to J
(τenc)
L ,

as at vertex c in Fig. 6(a), the hard-collinear approximation, hc(I) is applied by tσ, after the application of
the soft-collinear approximation sc(L) from tτenc in the product tσtτenc . In this case, applying the definitions
of the soft-collinear and hard-collinear approximations, Eqs. (9) and (11), we readily verify that the product of
operations hc(I)(1−sc(L)) produces a nonleading contribution, as an identity of the integrand, so that Eq. (46)
holds.

To be specific, suppose that the vertex where J
(σ)
I ∩ J (ρ)

L attaches to J
(τenc)
L is at point u, and the other end of

the line in J
(ρ)
L is at point w. In the example, u = c and w = b, but in complete generality, if we denote these

vertices by vµ(u) and v′ν(w), respectively, we get

hcσ(I) (1 − scτenc(L)) v′µ(w)
−gµν

(w − u)2
vν(u) = v′(w) · β̄IβIµ

[ −gµν
(w − u · βI β̄I)2

β̄IνβI · v(u)

− −gµν
(w − u · β̄LβL · βI β̄I)2

β̄IνβI · βLβ̄L · v(u)

]
, (50)

where the superscripts in hcσ(I) and scτenc(L) indicate the PS associated with the soft-collinear and hard-
collinear approximations. Note that in the special case of “back-to-back” jets, βI = β̄L, the right-hand side
of (50) vanishes identically. This is the case of the Sudakov form factor. Let us suppose, more generally, that

βI 6= β̄L, or equivalently, βL · β̄I 6= 0. Since line w − u and vertex u are both in jet J
(ρ)
L , the point w may be

in J
(ρ)
L or in the hard scattering subdiagram H(ρ). Let us first treat the case when vertex v′(w) is also in J

(ρ)
L .

Then, up to terms that vanish as a power of the normal variables of PS ρ, we may approximate for both ends
of line w − u,

wµ = βµLβ̄L · w ,
uµ = βµLβ̄L · u . (51)

We consider first the two denominators that represent the line w − u in (50) individually. At PS ρ this line
was originally on the lightcone and the denominator (w − u)2 vanishes linearly in the scaling variable (λ), in
terms of the normal variables introduced in Sec. II B, Eq. (14). Also, the presence of two three-point vertices in
the jet subdiagram would ensure an additional factor of λ in the numerator (see Ref. [12]). After the action of
the soft-collinear and hard-collinear approximations, however, both the denominator corresponding to this line,
and the numerator factor are order λ0 near PS ρ. The net effect is that both terms on the right-hand side of
Eq. (50) are leading power (λ0) at PS ρ. At the same time, using Eq. (51), we find that in neighborhood n̂[ρ],

(w − u · βI β̄I)2 = (w − u · β̄LβL · βI β̄I)2 + O(λ1/2) , (52)

so that the right-hand side of (50) is suppressed by a power of the scaling variable at PS ρ when vertex v(w) is
in jet L.

For the alternative case, the limit that v(w) is in H(ρ), that is, when wµ → 0, the denominators still vanish
on PS ρ even after the approximations, while the leading power behavior corresponds to a finite numerator
involving a scalar-polarized gauge propagator. The denominators still cancel to leading power in the scaling
variable λ, however, and the difference is again subleading.
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(b) Figure 6(b) represents the case L = I, that is, when a line in subdiagram S(τenc) attaches to a line in

subdiagram J
(σ)
I . The assignment of lines and vertices to subdiagrams is almost the same as in 6(a), except

that vertex c is now part of the I jet in σ, and is connected to the K jet on PS ρ.

When L = I, which implies that L 6= K, tσ does not impose the hc(L) approximation because in PS σ at least
two of the lines (lines {a, c} and {b, c} in the example of Fig. 6(b)) that meet at the vertex connecting S(τenc)

to J
(τenc)
I are in J

(σ)
I , so that the remaining line must also be in J

(σ)
I . (This is line {0, c} in Fig. 6(b).) In PS ρ,

we use that the line from S(τenc) is in J
(ρ)
K . (This is line {b, c} in Fig. 6(b).) This line attaches to two lines of

J
(τenc)
I = J

(σ)
I ∪ J (ρ)

I \
∏
I,K, I 6=K(J

(σ)
I ∩ J (ρ)

K ). Now these lines must be in either J
(ρ)
I or H(ρ), and at least one

must be in H(ρ). This is because I 6= K, so that in PS ρ, lines from J
(ρ)
I and J

(ρ)
K can join only at the hard

subdiagram H(ρ). (Again, this is {0, c} in Fig. 6(b).) As a result, in PS ρ, the hard-collinear approximation
hcσ(K) is good, and we may invoke the same analysis as in case (a) above for hcσ(K)(1 − scτenc(I)), K 6= I.
Again the sum of terms is suppressed and all soft-collinear connections are consistent with Eq. (46).

This completes our arguments for conditions 1) – 4) below Eq. (49), which ensure the consistency of the construction
τenc.

5. Cancellation from nesting with the enclosing region

So far, we have shown how to construct the enclosing PS, τenc[σ, ρ] and have confirmed that tσtτencγ is a good
approximation to tσ γ in PS ρ, so that Eq. (46), tσγ

(n)|div = tσtτencγ
(n)|div, is satisfied. We note that showing

Eq. (46) for tσγ implies the same result for tσ′ tσγ for any nested pair, σ′ ⊂ σ, because the approximations of tσ′ do
not modify the list of pinch surfaces or power counting in PS τenc, which was all that was used in the discussion above.
We are now ready show that with this definition of τenc, Eq. (44) is satisfied, that is, that the sum of subtractions
cancels for arbitrary overlapping regions. To proceed, assuming that No[ρ] is not empty, we construct the enclosing
PS for the pair ρ and the largest PS within No[ρ], which we denote by σomax[ρ]. By construction, both ρ and σomax

are smaller in the sense of nesting, Eq. (23), than every element in NL[ρ]. In fact, τenc[σomax, ρ] is also smaller than
all elements of NL[ρ], or equal to the smallest, in the sense of Eq. (23). To confirm this, consider a PS ζ in NL. For
τenc ⊆ ζ, we need

H(ζ) ⊆ H(τenc) ,

S(ζ) ⊇ S(τenc) . (53)

The first of these relations follows immediately from the definition of nesting, Eq. (23) and the construction (47)–(49),
since any vertex in H(ζ) must be in both H(σ) and H(ρ), and therefore in H(τenc). The second relation requires us to
verify that

S(ζ) ⊇ S(σ) ∪ S(ρ) ∪
∏

I 6=K
J

(σ)
I ∩ J (ρ)

K . (54)

To verify this relation, we note that because PS ζ is larger than both σ and ρ, S(ζ) ⊃ S(σ) and S(ζ) ⊃ S(ρ), so that

S(ζ) ⊃ S(σ) ∪ S(ρ). Next, we consider subdiagrams J
(σ)
I ∩ J (ρ)

K . Again, because ζ ⊃ σ, by Eq. (23), any line in J
(σ)
I

must be in either J
(ζ)
I or S(ζ), and similarly, because ζ ⊃ ρ as well, J

(ρ)
K must be in either J

(ζ)
K or S(ζ). The only

possibility for a line in J
(σ)
I ∩ J (ρ)

K is then S(ζ). Equation (54) then follows, and we have

ζ ⊇ τenc . (55)

We conclude that the enclosing PS, τenc is contained by all of the elements of NL[ρ] or is equal to the smallest
element in NL[ρ]. At the same time, τenc itself contains PS σomax, the largest of the regions in No[ρ]. There-
fore, τenc[σomax, ρ] nests with all the elements of N̄ (ρ), and either τenc[σomax, ρ] is already contained in N̄ρ or the

set N̄ρ,τenc ≡ {N̄ρ, τenc[σomax, ρ]} is an acceptable nesting, and is already included in R
(n)
P G(n), Eq. (32). Also,

tσomaxtτenc[σomax,ρ]γ is a good approximation to tσomax γ in region ρ, so that Eq. (46) holds. Then, leading contribu-

tions cancel, either between nesting N̄ρ and N̄ρ\τenc[σomax, ρ] if τenc is already in N̄ρ, or between N̄ρ and N̄ρ,τenc if
it is not. Thus, we have verified the cancellation of the sum over N̄ρ in Eq. (44) and the ultraviolet finiteness of the
subtracted diagram, Eq. (34), which is what we were after.
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III. RENORMALIZATION OF WILSON LINE AMPLITUDES AND FACTORIZATION FOR
PARTONIC AMPLITUDES

In this section, we apply the regularization procedure of the foregoing section to verify the multiplicative renormal-
izability of multieikonal vertices involving massless Wilson lines, thus generalizing the results of Brandt, Neri and Sato
in Ref. [22]. We will also confirm the factorization of partonic amplitudes in coordinate space, corresponding to the
momentum-space factorization of S-matrix amplitudes for fixed-angle scattering shown originally by Sen in Ref. [17].

Our discussion begins by reviewing how the the soft-collinear and hard-collinear approximations in Eqs. (9)–(12)
result in exact scalar polarizations for gauge lines that couple the soft to jet subdiagrams, and for all unphysically-
polarized gluons coupling jets to the hard subdiagrams [12]. We conclude from gauge theory Ward identities that
the approximation operators, tρ, Eq. (20), act to factorize amplitudes into hard, jet and soft subdiagrams at the
level of integrands. We then use these factorization properties and the nested subtractions of Eq. (30) to renormalize
multieikonal vertices coupling massless Wilson lines, and factorize amplitudes for massless partons, when the positions
of all external fields define a physical scattering process.

A. Approximations and Ward identities

We recall that the action of the approximation operator tρ is to perform the soft- and hard-collinear approximations
on gauge propagators that attach the soft subdiagram for PS ρ to the jet subdiagrams and on gauge propagators that
attach the jet subdiagrams to the hard subdiagram of PS ρ, such that the leading singularity of γ in neighborhood n̂[ρ]
is given by Eq. (20). Ref. [12] shows how the soft-jet and jet-hard gluon connections, approximated by their dominant
polarization states as in Eq. (20), may be replaced by scalar polarizations (equivalent to longitudinal polarizations
for massless particles). We begin with a review of the method. Consider first a soft-jet connection, as specified by
Eq. (9). We rewrite the propagator given in Eq. (9) as

Dµν(x− τ (K)βK) =
∂

∂τ (K)

∫ τ(K)

∞
dτKD

µν(x− τKβK) =
∂

∂z(K) · β̄K

∫ z(K)·β̄K

∞
dτKD

µν(x− τKβK) , (56)

where we have used the definition of τ (K) in terms of z(K), which is the position of the vertex in jet subdiagram K
to which this line attaches. We then integrate by parts in β̄K · z(K) in Eq. (20) so that the derivative now acts on
the βK component of the jet function in the soft-collinear approximation. To this, we are free to add derivatives

with respect to the other coordinate components of z
(K)
µ to the integrand, acting on corresponding components of

the jet subdiagram, because these terms are total derivatives and vanish after the integration. The soft-collinear
approximation, Eq. (9), then becomes [12]

sc(K)
[
Dµν(x− z(K))

]
Jν(z(K)) →

∫ z(K)·β̄K

∞
dτK Dµν′(x− τKβK)βK ν′

(
− ∂νJν(z(K))

)
, (57)

where the right-hand side is to be interpreted as the integral over an eikonal line in the jet direction βK , with
parameter τK the position of the attachment of the soft line, x− τKβK to this eikonal, multiplied by the divergence of
the jet function at vertex z(K). This summarizes the soft-collinear approximation defined in [12] for coordinate-space
integrals, and can be carried out independently for each gluon to which we apply the soft-collinear approximation.

Similarly, an unphysical gluon coupling the I-jet to the hard scattering function, as in Eq. (11) is replaced in the
hard-collinear approximation by a convolution in a single component of the gluon propagator with the divergence of
the hard-scattering function,

hc(I)
[
Dµν(z − y(I))

]
Hν(y(I)) →

∫ y(I)·βI

∞
dηID

µν′(z − ηI β̄I)β̄I ν′
(
− ∂νHν(y(I))

)
. (58)

The right-hand sides of Eqs. (57) and (58) are respectively the Fourier transforms of the soft-collinear and hard-
collinear approximations in momentum space. The application of the momentum-space approximations is discussed
extensively in Refs. [14, 15], for example. Replacing the jet-soft connections by scalar-polarized gluon lines that are
associated with the scalar operator ∂µA

µ(x) allows us to apply the gauge theory Ward identities. After the sum over
all diagrams, the Ward identities then ensure the factorization of the soft lines from jet subdiagrams in coordinate
space, in exactly the same way as in momentum space in Refs. [14, 15]. We note that the Ward identity we need for
showing the factorization in the case of multieikonal amplitudes was derived as part of the proof of renormalizability
for smooth Wilson lines in Ref. [43]. The resulting factorization is illustrated in Fig. 7.
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FIG. 7: Factorization in a leading region of a vertex function, illustrating Eq. (60). Each line ending in an arrow represents
arbitrary numbers of gluons in the soft-collinear or hard-collinear approximation defined in the text. As in Fig. 1, the double
lines passing through the jet functions may represent either Wilson lines or partons.
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associated with the scalar operator ∂µAµ(x) allows us to apply the gauge theory Ward identities. After the sum over

all diagrams, the Ward identities then ensure the factorization of the soft lines from jet subdiagrams in coordinate

space, in exactly the same way as in momentum space in Refs. [14, 15]. We note that the Ward identity we need for

showing the factorization in the case of multieikonal amplitudes was derived as part of the proof of renormalizability

for smooth Wilson lines in Ref. [42]. The resulting factorization is illustrated in Fig. 7.

The factorized amplitudes illustrated by Fig. 7 are of course somewhat different in the cases of multieikonal and

partonic amplitudes, and we will begin with the multieikonals. For multieikonal amplitudes the jets are themselves
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which, as indicated by its argument, may be regulated dimensionally. The vectors τIβI are the positions of the

cusps after the application of the Ward identities, but the matrix element must be independent of τI by translation

invariance. In addition, because of the symmetry between velocities βI and β̄I , these jet functions have collinear

singularities in both the βI and β̄I directions if β̄2
I = 0, as in our discussion above. As shown in the previous section,

all β̄I collinear singularities cancel in the sum over nestings, although this is only true for the full amplitude. The
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The factorized amplitudes illustrated by Fig. 7 are of course somewhat different in the cases of multieikonal and
partonic amplitudes, and we will begin with the multieikonals. For multieikonal amplitudes the jets are themselves
singlet cusp operators,

jcusp
I (ε) = ccusp

I (βI , β̄I , ε)

〈
0

∣∣∣∣T
(

Φ
[fI ]
βI

(∞, τIβI) Φ
[fI ]

β̄I

†(∞, τIβI)
)∣∣∣∣ 0

〉
, (59)

which, as indicated by its argument, may be regulated dimensionally. The vectors τIβI are the positions of the
cusps after the application of the Ward identities, but the matrix element must be independent of τI by translation
invariance. In addition, because of the symmetry between velocities βI and β̄I , these jet functions have collinear
singularities in both the βI and β̄I directions if β̄2

I = 0, as in our discussion above. As shown in the previous section,
all β̄I collinear singularities cancel in the sum over nestings, although this is only true for the full amplitude. The
prefactor cI(βI , β̄I , ε) is chosen to eliminate overall divergences associated with the choice of vector β̄I in the factorized
form. As we shall review in the following section, collinear singularities for β̄I occur additively in the logarithm of jI ,
and can therefore be compensated by a multiplicative factor in each of the jets, and correspondingly by the inverse
factor in the remaining soft and hard factors of the amplitude. Collinear singularities associated with β̄I correspond to
the rapidity divergences discussed in direct QCD and Soft-Collinear Effective theory in the references cited in [7, 44],
for example, where specific methods of handling these extra divergences are developed. In general, the factorization
of jet and soft functions requires an additional renormalization, as we introduce composite operators into the matrix
elements for the jet functions, and also in the soft function. We will show below that the renormalization of the soft
function is also multiplicative.

For multieikonal amplitudes, the jet, soft and hard functions are in convolution only with respect to distances τI
from the origin along each of the eikonal velocities, βI . The eikonal jet functions, however, are independent of the
position of their cusps, and we may write

tρ Γ =

[∏

I

jcusp
I,ρ (ε)

∫
dτI λρ({τI})

](n−m)

×
∑

γ(m)

γ(m) ({τIβI}) , (60)

where the product × indicates a product in color space, and where the remaining integrals are over lightcone variables
along the directions βI of the jets. After the sum of diagrams necessary for the Ward identities, the dependence on ρ
of the right-hand side is all in the order, labelled m < n of the sum over possible hard subdiagrams and in the choices
of the individual jet functions jcusp

I and of the soft subdiagram, labelled λρ. Their total order is denoted n−m, for
a specific PS ρ. In the spirit of the notation of Eq. (20) for the approximation operators, the factorized soft and jet
functions may be represented as

λρ({τK}) =
∏

K

c−1
K

∫

τK

duK βµKK S
(ρ)
{µK}({uK}) , (61)

jcusp
I,ρ (ε) = cI

∫

0

dvI J
(ρ) ν′I
I ({vI}, ε) β̄I,ν′I . (62)
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Relative to Eq. (20), the integrals over distances along light-cone directions, uK and vI , corresponding to τ (K) in
Eq. (10) and η(I) in Eq. (13), act only on the soft and jet functions, and are no longer in convolution with the jet
and hard functions, respectively, except through the lower limit τK for the Wilson lines of the soft function, which is
set by the position of the outermost vertex of the hard subdiagram on each eikonal line βK . In both functions, these
integrals are ordered along the relevant eikonals, which we indicate by an overline.

The factorized result, Eq. (60) is by itself suggestive, and also represents the true behavior of the amplitude
in region ρ. We now turn to a more complete derivation, which starts from the nested subtraction forms of the
multieikonal and partonic amplitudes. We will derive a single expression that combines the approximations associated
with all PSs. For multieikonal amplitudes, we will use factorization through Ward identities to construct a soft function
that incorporates the color coherence properties of the amplitude, and which is renormalized multiplicatively. We
will then go on to use this result to show that partonic amplitudes factorize into a form that involves the same soft
function.

B. Factorization and renormalization for multieikonal vertices with massless Wilson lines

So far, all of our integrals are computed using the renormalized gauge theory Lagrangian. As a composite operator,
the multieikonal vertex itself produces ultraviolet divergences, and requires further renormalization. The multipicative
renormalizability of such vertices was proved in Ref. [22] for massive Wilson lines. In this section we confirm that
multipicative renormalization survives the zero-mass limit in Minkowski space, in spite of the presence of nonlocal
ultraviolet collinear singularities. We will find that the latter factor into universal jet functions, depending only
on the color representations of the Wilson lines, which can themselves be renormalized multiplicatively. All color
coherence between different Wilson lines is contained in a standard soft function matrix, which requires multiplicative
renormalization, as shown in momentum space in [17]. The discussion below shows how this renormalization and
factorization can be implemented in covariant gauges for massless lines, and in coordinate space.

Starting from Eq. (30), we consider the sum over nestings of an arbitrary nth-order diagram, γ(n), either partonic or
multieikonal, with external self-energies removed. We isolate within each nesting the smallest PS that corresponds to
the largest, that is, highest-order, hard subdiagram, and denote this PS by σ0[N ]. In general, σ0 is not the smallest PS
in the nesting, because there may also be pinch surfaces with the same hard subdiagram, but larger jet subdiagrams.
These differ from PS σ0 by increasing jet subdiagrams at the expense of soft subdiagrams. Separating the subtractions
smaller and larger than σ0, we rewrite our expression for the n-loop amplitude in terms of approximation operators,
Eq. (30) as

G(n) =
∑

γ(n)

∑

σ0[γ(n)]

∑

Ncoll [σ0]

∏

ω∈Ncoll[σ0]

(−tω) tσ0

∑

N>[σ0]

∏

σ∈N>[σ0]

(
− tσ

)
γ(n) + R(n)G(n) , (63)

where Ncoll[σ0] labels nestings smaller than σ0, which share the same hard subdiagram (after the use of Ward
identities), while N>[σ0] respresents all nestings that have σ0 as their smallest element. At this stage, the symbol
G(n) may refer to a partonic as well as multieikonal amplitude. Each σ0 divides diagram γ(n) into two subdiagrams.

The first, which we will denote by λ(n−m) = S(σ0) ∪∏I J
(σ0)
I is an n−mth-order “outer” subdiagram, consisting of

lines in the soft and jet subdiagrams of σ0. We count in order n −m those factors of the coupling associated with
vertices where jet lines attach to the hard subdiagram of PS σ0. Subdiagram λ(n−m) is connected to the remaining,
hard subdiagram, H(σ0), by jet lines only. The remaining order of H(σ0) is m. The approximation operators tω in
(63) take into account all nestings involving soft-collinear connections in the outer subdiagram.

For notational purposes, we now identify a “reduced” hard subdiagram, which we will denote γ̄(m)[σ0]. This is
the diagram found by deleting unphysically-polarized jet gluons from the hard subdiagram. By construction, γ̄(m) is
irreducible under cuts of the external eikonal lines.

We now claim, following Collins [7], that the Ward identities can be applied to the subtracted inner diagrams just
as for the unsubtracted case. We imagine acting with the approximation operators tσ in Eq. (63) one at a time,
starting with the right-most, that is, the one corresponding to the largest PS in nesting N , which we will refer to as

σ
(N)
max. Summing over diagrams, the application of Ward identities leads to a factorized form, with a soft subdiagram,

S(σ(N)
max) and partonic jets, as in Fig. 7. To this set of diagrams we apply the approximation operator corresponding

to the next largest PS. By the nesting construction, this approximation operator acts only on lines in the jet and soft

subdiagrams of PS σ
(N)
max, leading through the Ward identities to a new set of jet and hard subdiagrams. In this set,

the nesting requirement allows lines from the jets of σ
(N)
max to be absorbed into the hard subdiagram, and lines of the

soft subdiagram of σ
(N)
max to be absorbed into new, fully eikonal jet subdiagrams, which, however, are now disconnected

from the partonic jet subdiagrams that are produced by t
σ
(N)
max

. This procedure can be repeated as many times as
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there are approximation operators in any nesting, and at each stage, the Ward identities can be used. As a result
of the nesting, all lines and vertices of the soft subdiagram corresponding to σ0, the smallest PS that has the hard

subdiagram shared by all smaller PSs in the nesting, are already in a subdiagram of S(σ(N)
max). Similarly, all jet lines

of σ
(N)
max are in the corresponding jet subdiagrams of σ0. The approximation operator, tσ0 acts to separate the lines

of diagrams, λ(n−m) from the remaining diagrams, γ̄(m) as in Fig. 7 and as in the partonic case, Eq. (60), and also
factorizes the soft and jet subdiagrams within λ(n−m). At each stage in this process, the subdiagrams that are left
behind as subdiagram λ(n−m) is factorized are independent of the number of scalar-polarized lines to which we have
applied the Ward identities. The series of diagrams that result from this procedure is thus identical to the diagrams
that would be found by the proper subtractions of diagram γ̄(m). Then, once λ(m−n) is factored, we may replace the
sum over nestings N>[σ0] of γ(n) in Eq. (63) by a sum over the proper nestings of γ̄(m).

All these considerations apply as well to partonic and multieikonal amplitudes, but for now we restrict our discussion
to multieikonal amplitudes, and return to the partonic case in the following subsection. Applied to the multieikonal
case, the Ward identities factorize subdiagram λeikonal from the remainder of the nth-order diagram, giving

Γ(n) =
∏

I

∫
dτI

∑

λ
(n−m)
eikonal

∏

ω∈Ncoll[λ(n−m)
eikonal ]

(−tω) t̂σ0[Ncoll] λ
(n−m)
eikonal ({τIβI}) × H(m)

eikonal ({τIβI}) + R(n)Γ(n) ,

(64)

where the function H(m)
eikonal absorbs the action of all proper subtractions on γ̄

(m)
eikonal. Precisely because γ̄

(m)
eikonal is

eikonal, we have

H(m)
eikonal ({τIβI}) =

∑

γ̄(m)

∑

NP [γ̄
(m)
eikonal]

∏

σ∈NP [γ̄
(m)
eikonal]

(
− tσ

)
γ̄

(m)
eikonal({τIβI})

=
∑

γ̄(n)

R
(n)
P γ̄

(n)
eikonal

= 0 , (65)

where we have used the vanishing of the sum of proper subtractions in the eikonal approximation, Eq. (39). Term by
term, however, the variables τI are the positions of the Ith Wilson line vertices farthest from the multieikonal vertex
in each diagram. These are the only integration variables that link the diagrams λeikonal with those of Heikonal =

H(0)
eikonal =

∏
I δ(τI).

The operator t̂σ0
in (64) represents the remaining action of tσ0

on diagrams λ(n−m), which consists of the union of
the soft and collinear subdiagrams of PSs σ0. In the case where λ(n−m) is entirely soft on PS σ0, we define t̂σ0

= 1.
Summing Eq. (64) over all orders, and using (65), now gives for multieikonal amplitudes,

Γ =

a∏

I=1

∫
dτI Λ ({τIβI}) , (66)

with

Λ ({τIβI}) =

∞∑

i=0

∑

λ(i)

∑

Ncoll[λ(i)]

∏

ω∈Ncoll
(−tω) t̂σ0[Ncoll] λ

(i) ({τIβI}) , (67)

where i = n −m in (64) and λ(i) represents an arbitrary i-loop diagram. This factorization is illustrated by Fig. 8,
with two external lines shown explicitly. After the sum over all proper subtractions, the eikonal lines of the soft
function Λ meet at a point as is Fig. 7.

The action of the Ward identities on any sum of ith-order multieikonal diagrams λ(i) by any tω, including t̂σ0
is

−tω
∑

λ

λ(i) ({λIβI}) =

(
−

a∏

I=1

t̂
(iIω)
I

)∑

λ

λ(i) ({τIβI})

= −
a∏

I=1

j(iIω)(τIβI)
∑

λ

λ(i−∑a
I=1 iIω) ({τIβI}) , (68)

where
∑
λ applies to all diagrams of the same order, and where in the first equality the approximation operator tω

is resolved into independent approximation operators t̂
(iIω)
I , each implementing the soft-collinear approximation on
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=
ηI , τI

ηJ , τJ

FIG. 8: Factorization in a leading region of a multieikonal or partonic amplitude, illustrating Eqs. (64) and (81), at fixed
values of τI , τJ and ηI , ηJ , which are coordinates of the outermost vertices of the hard subdiagram along each external line.
In multieikonal amplitudes, the ηI are all identically zero. Only two external lines are shown, but the result generalizes to any
number. The jet functions are given by the perturbative expansions of the matrix element in Eq. (59). The hard function on
the right contains all proper subtractions and reduces to the lowest-order vertex for multieikonal amplitudes, but retains a full
perturbative expansion in partonic amplitudes.
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λ applies to all diagrams of the same order, and where in the first equality the approximation operator tω

is resolved into independent approximation operators t̂
(iIω)
I , each implementing the soft-collinear approximation on

a subdiagram connected to the Ith Wilson line. Each approximation operator t̂I includes information on the loop

order of this subdiagram, which we denote by iIω. Operator t̂
(iIω)
I factorizes jet subdiagram j(iIω ), and replaces it

by a Wilson lines attached to the remaining soft subdiagram. The jets found this way are, up to a constant, the

order-by-order expansion of the matrix elements of Eq. (59), and are independent of the positions τI of the cusps for

the multieikonal case. This is not, however, the case for the remaining soft subdiagram, which is singular whenever

more than one τI vanishes in general. This procedure can be repeated for each of the jets, and for the action of the

nested (smaller) pinch surfaces.

FIG. 8: Factorization in a leading region of a multieikonal or partonic amplitude, illustrating Eqs. (64) and (81), at fixed
values of τI , τJ and ηI , ηJ , which are coordinates of the outermost vertices of the hard subdiagram along each external line.
In multieikonal amplitudes, the ηI are all identically zero. Only two external lines are shown, but the result generalizes to any
number. The jet functions are given by the perturbative expansions of the matrix element in Eq. (59). The hard function on
the right contains all proper subtractions and reduces to the lowest-order vertex for multieikonal amplitudes, but retains a full
perturbative expansion in partonic amplitudes.

a subdiagram connected to the Ith Wilson line. Each approximation operator t̂I includes information on the loop

order of this subdiagram, which we denote by iIω. Operator t̂
(iIω)
I factorizes jet subdiagram j(iIω ), and replaces it

by a Wilson lines attached to the remaining soft subdiagram. The jets found this way are, up to a constant, the
order-by-order expansion of the matrix elements of Eq. (59), and are independent of the positions τI of the cusps for
the multieikonal case. This is not, however, the case for the remaining soft subdiagram, which is singular whenever
more than one τI vanishes in general. This procedure can be repeated for each of the jets, and for the action of the
nested (smaller) pinch surfaces.

We now define notation for products of jet functions, evaluated at fixed loop order, l. These products depend on
the vectors that define the jets, their endpoints τI , and the number of loops, but not on the relative ordering (labelled
ω above) of the subtraction within the specific nesting,

J (0)
(
{βI , β̄I}

)
= 0 ,

J (l)
(
{βI , β̄I}

)
=

∑

{lI}
δl,

∑
lI

a∏

I=1

j
(lI)
I ({βI , β̄I}) , l > 0 , (69)

where the jet functions j
(lI)
I is the sum of all lI -loop-order diagrams for the jet function. Summing over loop order l,

we find that 1 + J is the product of jet functions,

1 +

∞∑

l=1

J (l) =

a∏

I=1

( ∞∑

lI=0

j
(lI)
I

)

=

a∏

I=1

jI , (70)

In fact, all massless jet functions are equivalent, differing only in multiplicative color factors that depend on the
representation of the Wilson line.

Appling Eqs. (68) and (69) to the right-hand side of the relation (67) that defines Λ, we find

Λ
(
{τI , βI , β̄I}

)
=

∞∑

i=0

i∑

l=0

l∑

nJ=0

l∑

l0=0

· · ·
l∑

lnJ =0

δl−l0,
∑nJ
k=1 lk

(
δl0,0 + J (l0)

(
{βI , β̄I}

))

×
(
δl−l0,0 +

nJ∏

k=1

(
−J (lk)

(
{βI , β̄I}

))
)
λ(i−l) ({τIβI})

= E

∞∑

i′=0

λ(i′) ({τIβI}) , (71)
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FIG. 9: The action of a pair of approximations operators in a given nesting. The resulting subsequent jets are eikonal.

where in the first equality nJ is the number of nontrivial approximation operators t̂I from Eq. (68) that act as we
sum over all nestings, and l0 is the number of loops in the jet functions of σ̂0. The case when the operator t̂σ0 = 1
in Eq. (63) is represented by the product of Kronecker delta terms. In the second equality, we have changed the
summation over the total order, i to one over the order of the function λ that remains after the factorization of all
jet functions, which is i′ = m− l. This factorizes the sums over orders for the jets from the remaining diagram. The
complete sum over jet functions is now represented by

E =

∞∑

l=0

l∑

l0=0

l−l0∑

nJ=0

l−l0∑

l1=0

· · ·
l−l0∑

lnJ =0

δl−l0,
∑nJ
k=1 lk

(
δl0,0 + J (l0)

) (
δl−l0,0 +

nJ∏

k=1

(
−J (lk)

))
.

(72)

Here and below we drop the arguments of the collective jet functions J , leaving their dependence implicit.
In fact, we easily see that E = (1 + J )/(1 + J ) = 1, where J ≡∑l≥1 J (l). In detail, starting from Eq. (72), the

proof is

E =

∞∑

l0=0

(
δl0,0 + J (l0)

)

 1 +

∞∑

nJ=1

∞∑

l1=0

· · ·
∞∑

lnJ =0

nJ∏

k=1

(
−J (lk)

) ∞∑

l′=nJ

δl′,
∑nJ
k=1 lk




=

∞∑

l0=0

(
δl0,0 + J (l0)

)

1 +

∞∑

nJ=1

(
−
∞∑

l=0

J (l)

)nJ


= 1 . (73)

In the first equality, l′ = l− l0 in Eq. (72) is the total order of all the nontrivial jet functions, J , and is always greater
than or equal to nJ by the definitions, Eq. (69). Equation (73) is useful because: first, from Eq. (70), 1+J =

∏
I j

cusp
I

is the product of jet functions, so that we have shown the factorization of jet functions, and second, (1+J )−1
∑
m λ

(m)

is precisely the collinear-subtracted multieikonal amplitude when the limit τI = 0, I = 1, . . . , a is taken. We illustrate
the repeated use of nested approximation operators in Fig. 9.

Back in Eq. (66), we can use Eqs. (70) and (71) to rewrite the full amplitude as

Γ =

a∏

I=1

∫
dτI E ({τIβI})

∞∑

i=0

λ(i) ({τIβI})

=

a∏

I=1

jcusp
I

a∏

I=1

∫
dτI

1∏a
I=1 j

cusp
I

λ ({τIβI})

≡
a∏

I=1

jcusp
I S ({βI}) , (74)

where λ ≡ ∑i λ
(i), and where S is a “soft function”, a matrix in color space that is free of collinear singularities,

but which requires renormalization for its purely short-distance UV divergences. In identifying the products of jet
functions in the numerator and denominator, we multiply and divide by the products of normalization constants cI ,
as in Eq. (59) to properly normalize the jet functions. Here, we have again used the independence of the jet functions
1 + J =

∏
jcusp
I from the positions of their cusps.
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The renormalization of the soft function now follows the standard procedure, as outlined for products of spacelike
eikonal lines in Ref. [22]. We define S(1) as the overall UV divergence of the one-loop soft function, and use the
iterative construction

S(n)
∣∣
div

=

n∑

m=1

S(n−m) S(m)
∣∣
div

, (75)

where, S(m) is the mth-order soft function after multiplicative renormalization up to m − 1 loops. This is possi-
ble because the soft function has only local, UV divergences. The original matrix S can now be renormalized by
defining [22]

Sren({βI · βJ}) = Z−1
S S ⇒ S(n)

ren = Z−1
S

(n) + S(n) +

n−1∑

m=0

S(n−m) Z−1
S

(m) . (76)

The inductive construction of the matrix renormalization constant Z−1
S then follows by choosing Z−1

S
(m) = −S(m)|div

starting with m = 1.
From Eq. (74), the full multieikonal amplitude is renormalized by the same matrix Z−1

S , and is proportional to a
product of jet functions times the renormalized soft matrix,

Γren = Γ × Z−1
S =

∏

I

jI Sren . (77)

This relation is the starting point for investigations of color evolution, for example, in Ref. [23]. In the following sub-
section, we will apply essentially the same procedures to partonic amplitudes, and will find that the same renormalized
soft matrix reappears.

C. Factorization for partonic amplitudes

Proceeding as for Wilson line amplitudes, we have for partonic amplitudes,

G(n) =
∑

γ(n)

∑

σ0[γ(n)]

∑

Ncoll[σ0]

∏

ω∈Ncoll[σ0]

(−tω) tσ0

∏

σ∈Nσ0 [γ(n)]

(
− tσ

)
γ(n) + R(n) Ḡ(n) , (78)

which is the analog of Eq. (64), in terms of partonic diagrams, γ(n). Again, operators tσ are ordered from left to right
in increasing size of PS, or equivalently decreasing jet and hard subdiagrams, and PS σ0 is the smallest PS with the
largest hard subdiagram in the nesting. As for the multieikonal amplitude, the action of approximation operators tσ0

and larger is to factor subdiagrams λ(n−m) from an mth-order short-distance function C(m),

G(n) =
∏

I

∫
dηI

∑

λ(m)

∏

ω∈Ncoll[σ0]

(−tω) t̂σ0 λ
(n−m)

(
{τIβI}, {xI − ηI β̄I}

)
× C(m)

(
{τIβI}, {ηI β̄I}

)

+ R(n)G(n) , (79)

where as in (64), t̂σ0 represents the action of tσ0 restricted to subdiagram λ(n−m). In this expression, the subdiagrams
λ now depend on two sets of variables. As in the multieikonal case, the factorized soft subdiagram depends on the
longitudinal variables τI along the directions of the Ith jet. The factorized jet subdiagrams remain independent of
the τI , but in the partonic case depend on distances ηI along the complementary directions for each jet, ηI β̄I . The
ηI -dependence in partonic jets is due to the variability of the jet functions with the position of the vertex at which the
physical parton line attaches the jet to the hard subdiagram (here at PS σ0), as in Eq. (12). Note that in multieikonal
amplitudes this dependence is absent. In effect the physically-polarized parton is given infinite energy and is replaced
by a Wilson line, on which ηI = 0 identically.

The partonic short-distance function C(m) in Eq. (79) is given by

C(m)
(
{τIβI}, {ηI β̄I}

)
=
∏

I

∫
d4yI δ(yI · βI − ηI) δ(yI · β̄I − τI)

×
∑

γ̄(m)

∑

NP [γ̄(m)]

∏

σ∈NP [γ̄(m)]

(
− tσ

)
γ̄(m)({yI}) , (80)
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here with γ̄(m) the set of diagrams of order m, with external vertices yI , at which physically-polarized partons attach.
As in the multieikonal case, summing Eq. (79) over all orders gives a factorized form

G =

a∏

I=1

∫
dηI

∫
dτI Λpart

(
{τIβI}, {ηI β̄I}

)
× C

(
{τIβI}, {ηI β̄I}

)
, (81)

with a partonic soft-collinear function given by

Λpart
(
{τIβI}, {ηI β̄I}

)
=

∞∑

i=0

∑

L(i)

∑

Ncoll[L(i)]

∏

ω∈Ncoll
(−tω) t̂σ0 L

(i)
(
{τIβI}, {ηI β̄I}

)
, (82)

now in terms of partonic diagrams L(i). The same analysis of the approximation operators in t̂σ0
and the nestings

Ncoll leading to Eq. (71) in the multieikonal case now gives

Λpart
(
{τIβI}, {ηI β̄I}

)
=
∏

I

jpart
I (ηI β̄I)

1∏
I j

cusp
I

∑

m

∑

λ(m)

λ(m)({τIβI}) . (83)

After the factorization of the partonic jet functions (by the operator tσ0
), the functions λ(m) here are again multieikonal

diagrams, the same as in Eq. (67). As in the multieikonal case, the partonic jet functions in the numerator and the
eikonal jet functions in the denominator can be normalized by the same constants cI in Eq. (59). All partonic
information has been factorized into overall jet factors by the action of tσ0 in Eq. (78). These partonic jet functions
are given by vacuum expectation values of partonic fields, φ, recoiling against a Wilson line in the conjugate color
representation,

j
part[fφ]
I (xI , ηI β̄I) = ccusp

I (βI , β̄I)

〈
0

∣∣∣∣T
(
φ(xI)φ

†(ηI β̄I)Φ
[fφ]

β̄I

†(∞, ηI β̄I)
)∣∣∣∣ 0

〉
, (84)

where fφ is the color representation of parton φ, where again β̄I is the complementary lightlike vector defined by xI ,
and where x2

I serves as to regulate collinear singularities in the β̄I direction. The factorization of Eq. (81) is illustrated

in Fig. 8, where now the hard subdiagram is nontrivial. The function C(m) is the set of all proper nested subtractions
of the mth order diagrams γ̄(m), which, by Eq. (42), cancels all subdivergences.

In Eq. (81), we can now use Eq. (83) to rewrite the full amplitude as

G =

a∏

I=1

∫
dηI j

part
I (xI , ηI β̄I)

∫
dτI

1∏
I j

cusp
I

λ
(
{τIβI}, {ηI β̄I}

)
C
(
{τIβI}, {ηI β̄I}

)
, (85)

where the prefactor is now a product of partonic jet functions, which result from the approximation operator tσ0
,

while the denominator is the same product of eikonal jet functions as in the multieikonal case.
There is an additional difference between the partonic and multieikonal amplitudes. For multieikonal amplitudes,

the subtraction of subdivergences at each order organizes ultraviolet singularities, which require renormalization, as in
Eqs. (76) and (77). In contrast, before subtractions, the partonic hard-scattering subdiagram is ultraviolet finite after
taking into account the counterterms of the gauge theory Lagrangian. Correspondingly, at fixed values of the ηI , the
τI integrals of C(m) converge, since all collinear and soft regions have been subtracted. At the same time, when the
τI are much smaller than these scales, the eikonal diagrams λ and C in (79) both develop ultraviolet singularities as a
result of the subtractions, which must cancel, since they result from adding and subtracting singular behavior. This
pattern is familiar from momentum space factorizations [17, 23]. These singularities, however, are removed from the
soft matrix S by the multiplicative renormalization of Eq. (76). We can therefore regularize both the soft and hard
subdiagrams by introducing Z−1

S ZS between λ and C in Eq. (85). Once this is done, the soft subdiagram λ becomes
independent of the τI for τI → 0, and we can treat it as a constant, while integrating the hard subdiagram over the
τI at fixed ηI . The result is now the final coordinate-space factorized form,

G =

a∏

I=1

∫
dηI j

part
I (xI , ηI β̄I) Sren({βI · βJ}) H

(
{ηI β̄I}

)
, (86)

with Sren the same function as in Eq. (76) for the multieikonal amplitudes, and with a short distance coefficient
function given by

H
(
{ηI β̄I}

)
= ZS

∏

I

∫

0

dτI C
(
{τIβI}, {ηI β̄I}

)
. (87)

Taken together, the Fourier transforms of Eqs. (86) and (87) specify factorized amplitudes in momentum space [17, 45].
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IV. WEBS AND REGULARIZATION

In this section we give a detailed treatment of the simplest of the eikonal amplitudes, the “cusp”, defined by
Eq. (59), with a gauge-singlet vertex. Our goal is to relate the regularization procedure developed in Sec. II, where
we exhibited an expression for cusp and other amplitudes in terms of nested approximation operators, Eq. (30), to
the exponentiation properties of the cusp. We first recall the graphical interpretation of exponentiation.

A. Cusp webs and exponentiation

All multi-eikonal amplitudes, of the type of Eqs. (4) and (59) may conveniently be written as exponentials

Γ = exp W , (88)

where W is determined by a set of rules that define the so-called web diagrams, which were first identified and
analyzed for the special case of the cusp matrix element, Eq. (59). In all cases, the exponent W is a sum of
eikonal diagrams with modified color factors. For the special case of the cusp, these diagrams, which we label by
w, are irreducible under cuts of the two Wilson lines [9–11] (thus their name, “webs”). Webs can be used to show
the exponentiation of double logarithms and double poles, and of power corrections related to singularities in the
perturbative running coupling [45–49]. They help organize calculations at two loops and beyond in the cusp and in
closed Wilson loops [8, 50, 51]. The concept of webs can be generalized beyond the color-singlet cusp and can also
serve as a starting point for a beyond-eikonal expansion [52–55].

For the cusp, the exponent can be represented as

W =
∑

webs w

C̄ (w) I (w) , (89)

with I(w) the corresponding diagrammatic integral over the positions of internal vertices of web w. Each web integral
is multiplied by a color factor C̄(w), modified relative to the factor C(w) that would normally be associated with
diagram w. It is possible to give a closed form for C̄(w) [52], but in the following discussion, we will use the recursive
definition [10], given for each diagram by

C̄
(
w(n)

)
= C

(
w(n)

)
−
∑

d∈D

∏

w
(ni)

i ∈d

C̄
(
w

(ni)
i

)
, (90)

where the w
(ni)
i are lower order webs, of order ni, in the decompositions d of the original diagrams w(n) into lower

order webs, with
∑
i ni = n. As usual, we denote the coefficient of (αs/π)n in W as W (n), and similarly for all other

functions.
The sum in Eq. (90) is over all “proper” web decompositions D[w(n)], not including w(n) itself, and the right-hand

side vanishes identically for diagrams γ(n) that are not webs, for which we have [10, 11]

∑

D[γ(n)]

∏

wi∈D[γ(n)]

C̄(wi) = C(γ(n)) . (91)

As a result, the nth-order contribution, W (n), to the sum of all diagrams that contribute to the cusp at the same
order can be written as

W (n) =
∑

γ(n)


 γ(n) − I(γ(n))

∑

D[γ(n)]

∏

w∈D[γ(n)]

C̄(w)


 . (92)

We will use this form below. From now on, all diagrams are eikonal, and we drop subscripts to identify this. The
web prescription for W , the logarithm of the cusp, was originally identified in momentum space [10, 11], but also has
a very simple coordinate-space derivation [53].

Web diagrams for cusps with massive eikonals have only a single, overall ultraviolet (and infrared) divergence [22],
up to multiple poles associated with the running of the coupling. In the massless limit, they develop a double pole
times the cusp anomalous dimension, again with higher-order poles that can be predicted by the running of the
coupling order-by-order [47, 48, 50]. The treatment of vanishing mass in the cusp was developed in [50] in momentum
space, employing physical gauges.
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We now study the fully massless case in Feynman gauge. Each diagram w in Eq. (89) or (92) can be written as an
integral over its “leading” vertices, that is, vertices at the furthest distances from the cusp vertex along each Wilson
line [8],

W =

∫

0

dτdτ̄

τ τ̄
fW (αs(µ

2), µ2τ τ̄ , ε) , (93)

where in the absence of masses, the dependence of the integrand reduces to just a few variables. Standard perturbative
renormalization introduces dependence on renormalization scale µ2 as the positions of vertices are integrated over
at fixed τ and τ̄ . On a diagram-by-diagram basis these integrals have many non-local subdivergences, involving jet
and hard subdiagrams, which show up as logarithmic enhancements, as analyzed in Ref. [12]. We may think of these
integrals as cut off at some large length scale to avoid explicit infrared singularities. The resulting integrand fW is a
renormalization-scale independent function that is the result of all the remaining integrals, as in the two-loop example
treated in detail in Ref. [8]. For the sum of web diagrams we can thus write

W =

∫

0

dτdτ̄

τ τ̄
fW (αs(1/τ τ̄), 1, ε) . (94)

We will refer to the sum over webs at fixed τ and τ̄ as the “web integrand”, and we will show that after a sum over
all diagrams, the full web integrand fW is ultraviolet finite for ε→ 0. Renormalization for the web functions is then
manifestly additive, and associated with the singular τ and/or τ̄ → 0 limits of the integral. The connection between
multiplicative renormalizability and the structure of web functions has been reviewed recently for both color-singlet
cusps and multieikonal vertices in Ref. [54]. In Sec. V, we will use the exponentiation in terms of webs to revisit
factorization for multieikonal amplitudes, and discuss subdivergences in web integrands for these cases. First, however,
we discuss the web construction for the cusp in its own terms. Although the demonstration below of finiteness for
the cusp function is in some ways more elaborate than the general discussion of Sec. V, it is more explicit, and gives
insight into the manner in which perturbative corrections conspire at each order to produce ultraviolet finiteness.

B. Subtractions, webs and decompositions

Consider the n-loop web, W (n) given in Eq. (92). On the right-hand side of this equation, we replace the simple
sum over diagrams by the sum over all their nested proper subtractions, as in Eq. (40),

W (n) = −
∑

γ(n)

∑

NP∈NP [γ(n)]

∏

ρ∈NP

(
− tρ

)
γ(n) −

∑

γ(n)

I(γ(n))


 ∑

D[γ(n)]

∏

w∈D[γ(n)]

C̄(w)


 . (95)

The right-hand side is now the difference between the sum of the proper subtractions for nth order diagrams (equal to
the diagrams themselves) and the subtractions in Eq. (92) that define the webs, also summed over all diagrams. In the
following, we will use this form to show that in every leading region ρ involving a subdivergence, W (n) is integrable.
This in turn implies that the nth order web, Eq. (92), is itself integrable over all subspaces where subdiagrams are
ultraviolet singular. Ultraviolet divergences can arise only when all the vertices of the web approach the origin or the
light cone together, which implies the finiteness of the web integrand fW in Eq. (94).

Let us thus consider W (n) in the form Eq. (95), restricted to the reduced neighborhood n̂[ρ] of PS ρ, which we

denote by W
(n)
ρ . As we have seen in Eq. (28) and the subsequent discussion, in each region ρ the ultraviolet behavior

of the vertex is well-approximated by the single subtraction term, tρΓ
(n), while all other nestings cancel. Then, up to

nonsingular corrections, when restricted to the neighborhood of ρ, Eq. (95) becomes

W (n)
ρ = −

∑

γ(n)

(−tρ)γ(n)
ρ −

∑

γ(n)

I(γ(n)
ρ )

∑

D[γ(n)]

∏

w∈D[γ(n)]

C̄(w) , (96)

where here and below we restrict ourselves to divergent contributions. We will now argue that in region ρ the first
sum on the right-hand side cancels against those web decompositions (D[γ(n)]) in the second sum that “match” the
structure of leading region ρ, and that other, “unmatched” contributions to the sum either cancel or are suppressed in
region ρ. We begin our argument by recalling the action of Ward identities in the first term, as described in Sec. III A.
In this discussion, the integration region is indicated by a subscript and the perturbative order by a superscript.
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For definiteness, we assume that there is a non-trivial soft subdiagram at PS ρ, which we now denote by Sρ, as in
the factorized form, Eq. (60),

tρ
∑

γ(n)

γ(n)
ρ = S(n−mρ)

ρ ×R(mρ)
ρ

=
∑

sρ∈Sρ
s(n−mρ)
ρ ×

∑

rρ∈Rρ
r(mρ)
ρ . (97)

In this rewriting of Eq. (60), the soft function Sρ (S(ρ) in Eq. (61)) multiplies a “remainder” function, Rρ, which (to
avoid clutter) includes sums over the jet and hard subdiagrams at PS ρ. Function Sρ =

∑
sρ is the sum of the soft

subdiagrams, sρ, of each γ(n) in region ρ, connected directly to β and β̄ Wilson lines, and similarly for the remainder
subdiagram Rρ =

∑
rρ. We let mρ be the order of the remainder function in region ρ. In summary, in each leading

region ρ, after a sum over all γ(n), Ward identities factorize the subdiagrams that make up Sρ and Rρ. The sum over

all γ(n) in region ρ can then be replaced by independent sums over soft subdiagrams sρ and remainder subdiagrams
rρ, as in (97).

Next, we separate color and coordinate factors of each s
(n−mρ)
ρ and r

(mρ)
ρ in Eq. (97),

tρ
∑

γ(n)

γ(n)
ρ = S(n−mρ)

ρ ×R(mρ)
ρ

=
∑

sρ∈Sρ
C
(
s(n−mρ)
ρ

)
I
(
s(n−mρ)
ρ

)
×
∑

rρ∈Rρ
C
(
r(mρ)
ρ

)
I
(
r(mρ)
ρ

)
. (98)

This is the form that we will compare to the sum of web subtractions, the second sum in Eq. (95), which becomes

W (n)
ρ =

∑

sρ∈Sρ
C
(
s(n−mρ)
ρ

)
I
(
s(n−mρ)
ρ

) ∑

rρ∈Rρ
C
(
r(mρ)
ρ

)
I
(
r(mρ)
ρ

)
−
∑

γ(n)

I(γ(n)
ρ )

∑

D[γ(n)]

∏

w∈D[γ(n)]

C̄(w) .

(99)

As mentioned below Eq. (96), it is useful to split the set of decompositions, D[γ(n)] into the set of those that
match the factorization of soft and remainder functions in the first term of this expression, and those that do not.
More specifically, matched decompositions of a diagram γ(n) are those in which no web contains lines in both the soft
subdiagram sρ[γ

(n)], and the remainder subdiagram, rρ[γ
(n)]. Correspondingly, in unmatched decompositions, at least

one web contains lines of both the soft subdiagram and the remainder in region ρ. In these terms, every decomposition
of diagram γ(n) is either matched or unmatched in region ρ. We represent this division of decompositions for the
second term on the right-hand side of (99) as

∑

γ(n)

Iρ(γ(n))
∑

D[γ(n)]

∏

w∈D[γ(n)]

C̄(w)

=
∑

γ(n)

Iρ(γ(n))


 ∑

DSρ⊗Rρ [γ(n)]

∏

w∈DSρ⊗Rρ

C̄(w) +
∑

DSρ∩Rρ [γ(n)]

∏

w∈DSρ∩Rρ

C̄(w)




≡ w(n)
ρ [Sρ ⊗Rρ] + w(n)

ρ [Sρ ∩Rρ] , (100)

where the first term on the right of the second equality represents the sum over the set of matched decompositions,
DSρ⊗Rρ and the second is the sum over unmatched decompositions, DSρ∩Rρ .

In the following, we will show that the matched decompositions cancel the factorized subtraction terms of Eq. (98)
and (99) in region ρ,

0 = tρ
∑

γ(n)

γ(n)
ρ − w(n)

ρ [Sρ ⊗Rρ]

= S(n−mρ)
ρ ×R(mρ)

ρ − w(n)
ρ [Sρ ⊗Rρ]

=
∑

sρ∈Sρ
C
(
s(n−mρ)
ρ

)
I
(
s(n−mρ)
ρ

) ∑

rρ∈Rρ
C
(
r(mρ)
ρ

)
I
(
r(mρ)
ρ

)
− w(n)

ρ [Sρ ⊗Rρ] , (101)
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while the unmatched decompositions are suppressed,

w(n)
ρ [Sρ ∩Rρ] = 0 . (102)

Substituted into Eq. (99), these two results show that W
(n)
ρ = 0, so that the web integrand is free of ultraviolet

subdivergences.
Before giving our arguments for the results (101) and (102), we recall that we have assumed that the leading region ρ

has a nontrivial soft subdiagram, S
(n−mρ)
ρ . For the special case of a leading region with no soft subdiagram (mρ = n),

and only jet and hard subdiagrams, we may pick either of the jet subdiagrams to take the place of S
(n−mρ)
ρ , with the

same result. In the following, we shall suppress the orders of S
(n−mρ)
ρ and R

(mρ)
ρ , since these are in principle fixed by

the choice of region ρ.

C. Matched Decompositions

It is clear that the sum over matched decompositions of Eq. (100), DSρ⊗Rρ [γ
(n)] for each diagram γ(n) separates

into two independent sums over the web decompositions of the soft and remainder subdiagrams of γ(n). Among these
decompositions are the choices sρ[γ

(n)] and rρ[γ
(n)], the soft and remainder subdiagrams themselves, which appear

along with all of the webs made of their decompositions. Using the general form for webs, Eq. (92), we can thus
separate the color factors associated with the soft and the remainder subdiagrams,

w(n)
ρ [Sρ ⊗Rρ] =

∑

γ(n)

Iρ(γ(n))


 C̄

(
sρ[γ

(n)]
)

+
∑

D[sρ[γ(n)]]

∏

d∈D[sρ[γ(n)]]

C̄(d)




×


 C̄

(
rρ[γ

(n)]
)

+
∑

D[rρ[γ(n)]]

∏

d′∈D[rρ[γ(n)]]

C̄(d′)




=
∑

γ(n)

Iρ(γ(n)) C
(
sρ[γ

(n)]
)
C
(
rρ[γ

(n)]
)
, (103)

where in the second equality we have used Eq. (90) for web color factors. In effect, after the sum over matched
decompositions, the web color factors of the soft and remainder functions revert to their normal form, the same as in
the subtraction terms of Eq. (99), that is, the first term on the right-hand-side of that equation. As usual, the sum
over D[g] of diagram g refers only to its proper web decompositions. Note that the color identity in (103) extends to
all diagrams, g. For a non-web g′, for which C̄(g′) = 0, we recall Eq. (91).

Having factorized the product of color factors in the sum over matched decompositions, we now turn to the
coordinate integrals. We reexpress the sum over diagrams γ(n) in Eq. (103) as independent sums over soft and
remainder subdiagrams sρ and rρ, and then a sum over all possible connections of these subdiagrams to the eikonal
lines, respecting the relative orderings, O[sρ, rρ] of the connections of the gauge lines that attach sρ to the Wilson
lines and those that connect rρ to the Wilson lines,

∑

γ(n)

Iρ(γ(n)) =
∑

sρ∈Sρ

∑

rρ∈Rρ

∑

eikonal
orderings O

Iρ(O[sρ, rρ]) . (104)

In (103), this gives

w(n)
ρ [Sρ ⊗Rρ] =

∑

sρ∈Sρ

∑

rρ∈Rρ

∑

eikonal
orderings O

I(O[sρ, rρ]) C (sρ) C (rρ) . (105)

To this result we apply the coordinate-space eikonal identity [53], applicable whenever we sum over all connections
of a set of web subdiagrams that are attached to the eikonal lines, respecting the order of gauge lines within each
subdiagram,

∑

eikonal
orderings O

I(O[sρ, rρ, . . . ]) = I(sρ) × I(rρ)× · · · , (106)
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a “shuffle algebra” identity that generalizes to any numbers of subdiagrams and any number of eikonal lines. In
Eq. (105), this gives the desired result,

w(n)
ρ [Sρ ⊗Rρ] =

∑

sρ∈Sρ

∑

rρ∈Rρ
I(sρ) C (sρ) I(rρ) C (rρ)

= Sρ ×Rρ , (107)

which shows that (101) holds for the matched decompositions, that is, that the matched decompositions cancel the
subtractions in region ρ.

D. Unmatched decompositions

We now treat the unmatched decompositions of Eq. (100), whose sum we have denoted by w
(n)
ρ [Sρ ∩ Rρ]. For

any diagram γ(n), this sum consists of decompositions with at least one web that includes one or more lines in the
soft subdiagram sρ[γ

(n)] and one or more lines in rρ[γ
(n)]. For this discussion, we assume that the cancellation of

subdivergences has been proven to order n− 1.
From Eq. (100), we have for the unmatched decompositions

w(n)
ρ [Sρ ∩Rρ] =

∑

γ(n)

Iρ(γ(n))
∑

DSρ∩Rρ [γ(n)]

∏

w∈DSρ∩Rρ [γ(n)]

C̄(w) . (108)

By analogy to our analysis of the matched distributions, we will exchange the sum over diagrams γ(n) for sums over
webs. In every element of the unmatched decompositions D[γ(n)] ∈ {Sρ ∩ Rρ} of diagram γ(n) there is a non-empty

decomposition that includes a subdiagram uρ[γ
(n)] consisting of (one or more) webs, each of which is not all in the

soft subdiagram, and not all in the remainder of γ(n). In general, once subdiagram uρ[γ
(n)] is fixed, there is also a

subdiagram, s′ρ[γ
(n)] whose webs are fully subdiagrams of S′ρ[γ

(n)\uρ], the soft subdiagram found by removing the

unmatched webs of uρ from γ(n), and another subdiagram, r′ρ[γ
(n)], which is fully a subdiagram of the remainder

R′ρ[γ
(n)\uρ]. We can then write for any such decomposition,

γ(n)
ρ → s′ρ[γ

(n)] ∪ r′ρ[γ(n)] ∪ uρ[γ(n)] . (109)

The sum over such unmatched web decompositions of γ(n), then, can be reorganized as a sum over the independent
decompositions of each of these subdiagrams. For decompositions of the soft and remainder subdiagrams, s′ρ and
r′ρ, the diagrams themselves appear in these sums, along with all of their decompositions. For each unmatched

subdiagram, uρ, however, only those decompositions are included that leave uρ[γ
(n)] fully unmatched. For each choice

of uρ, we can sum over all allowed s′ρ and r′ρ, and using the color and eikonal identities, derive the analog of Eq. (107),

w(n)
ρ [Sρ ∩Rρ] =

∑

ms,mr

∑

s′(ms)

∑

r
(mr)
ρ

I(s′(ms)ρ ) C
(
s′(ms)ρ

)
I(r(mr)

ρ ) C
(
r(mr)
ρ

)

×


∑

uρ

I(uρ)


C̄(uρ) +

∑

Dun[uρ]

∏

d∈Dun[uρ]

C̄(d)






(n−ms−mr)

, (110)

where we sum over the orders of the soft and remainder diagrams. In the final sum over diagrams uρ, we group all
fully unmatched decompositions of the unmatched webs uρ of order n−ms −mr. The coordinate factors of all these
terms are the same. Their color factors, however, get contributions only from a subset Dun[uρ] of all decompositions,
Dun[uρ] ⊂ DSρ∩Rρ , those that are fully unmatched. We now consider the difference, D[uρ]\Dun[uρ], between this set
and the full set of decompositions of each uρ .

The set of missing decompositions, D[uρ]\Dun[uρ], for a given uρ includes those that have matched soft and
remainder subdiagrams, which we denote by wρ [S[uρ]⊗R[uρ]], with S[uρ] the soft subdiagram of uρ, and R[uρ]
the corresponding remainder. The set D[uρ]\Dun[uρ] also includes many more decompositions, those that have
decompositions involving partly some matched and partly some unmatched webs of lower order. The inductive
hypothesis, however, assumes Eq. (102) for lower orders, so the sums over unmatched decompositions of lower order
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cancel among themselves. Therefore, by adding and subtracting matched decompositions wρ [S[uρ]⊗R[uρ]] only, we
can derive a factor that consists of the difference between all decompositions of uρ and its matched decompositions,

∑

uρ

I(uρ)
∑

Dun[uρ]

∏

d∈Dun[uρ]

C̄(d) =
∑

uρ

I(uρ)
∑

D[uρ]

∏

d∈D[uρ]

C̄(d) − wρ [S[uρ]⊗R[uρ]] . (111)

Subsituted into Eq. (110), we now have the full color factor for each diagram uρ in the sum, and we can use the web
color identity (90) to confirm that the sum of unmatched decompositions vanishes,

w(n)
ρ [S′ρ ∩R′ρ] =

∑

ms,mr


∑

s′ρ

s′ρ




(ms) 
∑

r′ρ

r′ρ




(mr)
∑

uρ

{
uρ − wρ [S[uρ]⊗R[uρ]]

}



(n−ms−mr)

= 0 . (112)

Again, the first factors on the right-hand side are factorized soft (order ms) and remainder (order mr) subdiagrams,
while the third factor is now a sum of all subdiagrams of order n−ms −mr. The third factor vanishes by Eq. (101),
which states that all subdivergences cancel against those in the sum of matched decompositions, up to order n. Thus,
all unmatched decompositions cancel in region ρ to order n, and we confirm Eq. (102) and hence the absence of
subdivergences, Eq. (101) in the logarithm of the cusp amplitude [8]. As discussed above, this result confirms the
UV-finiteness of the web integrand, fW in Eq. (94).

V. MULTIEIKONAL AMPLITUDES

The arguments of the previous section apply specifically to the cusp, where we have used the inductive construction
of web-color factors, Eq. (90). We go on now to study how these considerations change for amplitudes with multiple
Wilson lines connected at a local vertex, and to explore the relationship of their exponentiation properties to the
factorization demonstrated in Sec. III.

A. Cancellation of web subdivergences for large Nc

For a multieikonal vertex, Γa with a > 3 Wilson lines, and a consequent mixing of color tensors [22], it will be
useful to use an alternative expression for webs, introduced in Ref. [53]. We label each web function with an index E,
which represents a list of the numbers of gauge lines attached to each Wilson line, E ≡ {e1 . . . ea} for a Wilson lines.

We then express the sum of all webs with the same index E, w
(i)
E , as an integral IE of integrand W(i)

E ,

w
(i)
E =

a∏

α=1

eα∏

j=1

∫ ∞

τ
(a)
j−1

dτ
(α)
j W(i)

E

(
{τ (α)
j }

)

≡ IE [W(i)
E ] , (113)

where the τ
(α)
j label the locations of the vertices coupling gauge lines to Wilson line α, ordered as τ

(α)
1 ≤ τ

(α)
2 ≤

· · · ≤ τ
(α)
eα . The functions W(i)

E represent sums over all diagrams with the specified numbers of eikonal connections,

and are symmetric under exchange, including color, of the gauge lines attached at each vertex τ
(α)
j . Summing over

connections, E, we find the complete web, W
(i)
a as a sum of the w

(i)
E , and the amplitude is given by

Γa = exp

[∑

i

W (i)
a

]

= exp

[∑

i

∑

E

IE [W(i)
E ]

]
. (114)

In these terms, we can write an iterative expression for the nth-order web function with a Wilson lines as [53]

W (n)
a =

∑

E

∑

γ
(n)
E

(
γ

(n)
E −

{
exp

[
n−1∑

i=1

∑

E

IE [W(i)
E ]

]}(n) )
, (115)



34

where the superscript on the exponential specifies the nth order in the expansion of the exponential of webs up to

order n− 1. In this expression, the functions W(i)
E are ordered web integrands, whose color factors are matrices that

do not commute in general. In the case of two (or three) Wilson lines, or in the “planar” limit of large Nc, however,
these factors do commute [56], and the sum over orderings is equivalent to the modified color factor C̄(wi) in Eq. (90)
above.

We shall assume that each of the web functions W
(i)
a =

∑
E IE [W(i)

E ] for i < n gets finite contributions only from
regions where all of its vertices are integrated over finite distances from the light cone, and where all of its vertices

move to the light cone together. This is to say, we assume that that all W
(i)
a , i < n are free of subdivergences. We

shall see under what conditions we may infer this result for W
(n)
a .

The regularization discussion of Sec. II applies as well to multieikonal vertices as to the cusp. Similarly, for any

neighborhood n̂[ρ] for the diagrams of W
(n)
a , defined as in Eqs. (19) and (25), we may construct an expression for

W
(n)
a,ρ , by analogy to Eq. (96) above,

W (n)
a,ρ =

∑

E

∑

γ
(n)
E

(−tρ)γ(n)
E −

{
exp

[
n−1∑

i=1

∑

E

IE [W(i)
E ]

]}(n)

ρ

= (−tρ)Γ(n)
a,ρ −

{
exp

[
n−1∑

i=1

W (i)
a

]}(n)

ρ

, (116)

where now the subscript ρ on the exponential term denotes the contribution of the integrals of the expanded exponential

to region ρ, which defines a potential subdivergence of W
(n)
a . In any such region ρ, the remainder function is defined

by some number rρ < n vertices in the union of integrals generated by monomials of webs found from the expansion
of the exponential, which shrink to the origin. Correspondingly, n − rρ vertices are left at finite distances from the
origin, and define a soft function. The webs in Eq. (116), as defined in Eq. (113), are expressed as integrals over the
positions of all vertices, including those that attach to the eikonal lines. As a result, we may separate additively the
contribution to each web function in the exponential from the region where all of its vertices approach the light cone

or the origin. We denote this contribution, which by assumption contains the only divergences in W
(i)
a , i < n, by

W
(i)
a,uv.
For now, let us assume that all webs commute, in addition to the assumption of no subdivergences up to order

n− 1. We may then write the result of this separation as

W (n)
a,ρ = (−tρ)Γ(n)

a,ρ −
{

exp

[
n−1∑

i=1

[W
(i)
a,fin +W (i)

a,uv]

]}(n)

ρ

. (117)

where we define the finite part as

W
(i)
a,fin = W (i)

a − W (i)
a,uv , (118)

which in effect is a regulated version of the ith order web. The factorization of the finite and ultraviolet terms of the
web exponent is trivial when the web functions commute (more generally, it requires the application of the Campbell-
Baker-Hausdorf theorem). The situation is equivalent to that in the renormalization of multieikonal webs outlined in
Ref. [53]. We shall return briefly to this question below, but here we continue with the case in which all web functions
commute, and we find simply,

W (n)
a,ρ = (−tρ)Γ(n)

a,ρ −
{

exp

[
n−1∑

i=1

W
(i)
a,fin

]
exp

[
n−1∑

i=1

W (i)
a,uv

]}(n)

ρ

. (119)

The restriction to region ρ now acts entirely on the exponential of the W
(i)
a,uv and picks out the sum of order-rρ

remainder contributions to the exponential of webs. By definition, this is the full set of diagrams Γ
(rρ)
a restricted to

the neighborhood of the light cone and the origin. Similarly, the exponential of finite parts gives the finite integral of

Γ
(n−rρ)
a , so that

W (n)
a,ρ = (−tρ)Γ(n)

a − Γ
(n−rρ)
a,fin Γ(rρ)

a,uv . (120)
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Given the factorization of the full amplitude in region ρ, we conclude that the two terms on the right cancel, so that
Wa,ρ is finite when integrated over the neighborhood n̂[ρ] of any PS. For large-Nc, then, the full multieikonal web is
free of subdivergences, just as for the cusp. As anticipated above, the arguments we have given in this section, relying
on exponentiation, are somewhat simpler than those based directly on the web construction itself.

B. Collinear factorization and web exponentiation for finite Nc

Relaxing the commutativity of the web functions, we can still rederive an important result for QCD and other
theories beyond the planar limit. For an arbitrary multieikonal amplitude, the soft-jet-hard factorization derived
above ensures that collinear singularities are color diagonal and enter the web function additively. This means that
all subdivergences where some, but not all, vertices approach the light cone are cancelled in multieikonal webs quite

generally. The steps necessary to show this are just the same as when the webs commute; we need only replace W
(i)
a,uv

with W
(i)
a,co, defined as the contribution where all vertices go to one or more of the light cones,

W (n)
a,ρ = (−tρ)Γ(n)

a −
{

exp

[
n−1∑

i=1

[W
(i)
a,central +W (i)

a,co]

]}(n)

ρ

, (121)

where W
(i)
a,central represents the remainder of the web function, where no vertex approaches the light cone, although

in this case subsets of vertices may approach the origin. This additive separation is certainly true for i = 1, because
the collinear singularities arise from different regions of the same integral. In addition, the sum of all i = 1 (one-loop)
collinear singularities for any multieikonal vertex is color diagonal (the sum of Casimir invariants, one for each Wilson
line).

We now assume that W
(i)
a,co, i < n is color diagonal and thus commutes with all W

(j)
a,central. The same steps as for

the case of W
(i)
auv for large-Nc then lead to a result analogous to Eq. (120),

W (n)
a,ρ = (−tρ)Γ(n)

a − Γ
(n−cρ)
a,central Γ(cρ)

a,co , (122)

with cρ the order of the collinear subdiagram. Given this result, all subdivergences involving collinear subdiagrams
of order i < n cancel, and the only remaining collinear divergences are those in which all vertices approach any set
of the light cones. Again, these collinear singularities separate into color-diagonal factors, and we conclude that at
order n the collinear singularities of the web function are additive. Thus, to all orders, collinear singularities factor
into a product in the amplitude,

Γa = exp

[ ∞∑

i=1

(
W

(i)
a,central +W (i)

a,co

)]

= exp

[ ∞∑

i=1

W
(i)
a,central

]
exp

[ ∞∑

i=1

W (i)
a,co

]
, (123)

where W
(i)
a,co is the additive part of the ith order web function that includes its collinear singularities. In principle, we

could define this function up to a constant by introducing an appropriate factorization scale. In the second equality,
we use the color-diagonal nature of the collinear singularities.

We can put the factorized expression Eq. (123) into a standard form, simply by multiplying and dividing by an

appropriate power of a function whose collinear singularities match those of the exponential of W
(i)
a,co. For a jet function

corresponding to direction β, let us denote this function by JI(β, nβ), where nβ is any other vector introduced in the
definiton of JI . As this notation suggests, there is considerable freedom in the choice of JI . An acceptable choice for
JI , however, is to choose nβ = β̄ and the jet function as the square root of the cusp matrix element [45, 57],

Jeik
I (β, nβ) ≡

[〈
0

∣∣∣∣T
(

Φ
[fI ]
βI

(∞, τIβI) Φ
[fI ]

β̄I

†(∞, τIβI)
)∣∣∣∣ 0

〉]1/2

, (124)

corresponding to a choice

ccusp
I =

[〈
0

∣∣∣∣T
(

Φ
[fI ]
βI

(∞, τIβI) Φ
[fI ]

β̄I

†(∞, τIβI)
)∣∣∣∣ 0

〉]−1/2

(125)
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in the definition of the eikonal jet, Eq. (59). The square root reflects the symmetry between the vectors β and β̄,
giving the same collinear singularities associated with both directions in the matrix element, as is manifest in the
exponentiated form Eq. (94) for the logarithm of the cusp as a web integral.

Once we have defined the jet functions, we may reorganize the factorized multieikonal amplitude as

Γa =


exp

[ ∞∑

i=1

W
(i)
a,central

]
exp

[∑∞
i=1 W

(i)
a,co

]

∏a
I=1 J

eik
I




a∏

I=1

Jeik
I

= Sa

a∏

I=1

Jeik
I , (126)

With Sa a collinear-finite soft function, just as in Eq. (74). Because the eikonal jets cancel all collinear singularities
in the ratio, the ratio may be factorized into soft and hard eikonal subdiagrams, which are renormalized locally, in
the same manner as described in Sec. IIIB, and as for massive, or other non-lightlike lines [22, 52, 53].

VI. CONCLUSIONS

We have studied partonic matrix elements along with cusp and multieikonal amplitudes for massless Wilson lines,
in coordinate space and Feynman gauge. In all these amplitudes, ultraviolet collinear and short-distance divergences
arise when integrals over the positions of vertices are pinched in configurations set to fixed lightlike directions or short
distances. We have shown that these divergences are well-approximated by the series of nested subtractions given in
Eq. (30) for partonic matrix elements, and Eq. (40) for multieikonal amplitudes. The subtraction procedure allowed
us to give very general proofs of the multiplicative renormalizability of multieikonal amplitudes and the factorization
of partonic amplitudes in Feynman gauge. These arguments, although presented in coordinate space, apply as well
to the S-matrix in momentum space.

Our discussion confirmed that for the cusp the only sources of divergences are the limits in which all lines approach
the light cones or the origin together [8]. This is the content of Eq. (94), with a function fW that is finite for finite
values of variables τ and τ̄ that define the positions of the eikonal vertices that are furthest from the cusp. For a
conformal theory, this integrand is effectively constant. For QCD and related renormalizable theories, the running
coupling produces nontrivial dependence on the product (τ τ̄), which may be chosen as the inverse of the squared
renormalization mass scale. In the general multieikonal case, due to the non-trivial group structure of the webs the
matching between UV subtraction terms, which factorize, and decompositions of the exponent no longer holds in the
same fashion. For the large-Nc limit of gauge theory, however, the arguments go through, and each web becomes
a sum of terms involving the two-dimensional integrals found in cusps. In this case, as for the cusp, a geometrical
interpretation of the web function applies [8]. Further developments along these lines, and a coordinate-space picture
for the origin of power corrections in infrared safe observables [1] may be possible.

A coordinate-space program building on the techniques developed here would also include revisiting factorization
proofs for electroweak annihilation [14, 15], jet and single-particle inclusive cross sections in hadron-hadron collisions
[19], in which we may look for the cancellation of long-distance dynamics directly from a space-time point of view. In
particular, we may look forward to developing explicit space-time pictures associated with the cancelation and survival
of Glauber [7, 34, 58, 59], non-global [60] and super-leading logarithmic corrections [61], and to the coordinate-space
content of the dynamics to which jet vetos [62] may be sensitive. Each of these examples involves the measurement
of energy flow, directly or indirectly probing its time development. In such cases, we may hope that a space-time
description of dynamics will be complementary to momentum-space analyses.
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Appendix A: Uniqueness of the hard scattering

Here we give a brief discussion of the uniqueness of the position of the hard scattering in amplitudes with four or
more external fields. We suppose that we have already identified a point in space-time, y, which satisfies the Landau
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equations, see [12], for all vertices that connect lines that are on the lightcone. We assume that two lines have y0 > x0
i ,

and the rest have y0 < x0
i . For the vertex y, connecting four jets in particular the Landau equations are

4∑

i=1

αi (xµi − yµ) = 0 , (A1)

for each of the external points, xµi , with all αi ≥ 0 and (xi − y)2 = 0. Without loss of generality, we may translate
the system so that y = 0, giving

4∑

i=1

αix
µ
i = 0 . (A2)

We now seek another point in space-time, y′µ, satisfying these same Landau equations.
At such a pinch surface we must have simultaneously,

x2
i = 0

(xi − y′)2 = 0 . (A3)

This implies that

y′2 = 2xi · y′ . (A4)

Because the xi are all lightlike and noncollinear, it is not possible that all xi · y′ = 0 unless y′ = 0. Thus, if y′ 6= 0,
y′2 6= 0.

We may now search for a solution to Eq. (A4), in terms of a rescaled vector,

zµ ≡ yµ

y′2
, (A5)

in terms of which (A4) becomes

1 = 2xi · z . (A6)

The Landau equations (A2), however, ensure that

det (xµi) = 0 , (A7)

and this implies that that Eq. (A6) has no solution, other than y′ = 0.
To go beyond four external points, xµi , we suppose we have another external vector, xµ5 . Either x5 is a linear

combination of x1, . . . , x4 or x1, . . . , x4 are themselves linearly dependent. In the former case, the Landau equations
can be rewriten entirely in terms of the first four x’s, and in the latter, the first four x’s obey another linear relation
that again ensures that detxµi = 0, with the same result.
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