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The scattering of neutrinos assuming a “secret” interaction at low energy is considered. To
leading order in energy, the two-body potential is a δ-potential, and it is used as a motivation to
study generic short-range elastic interactions between neutrinos. The scattering cross section and
Sommerfeld enhancement depend on two phenomenological parameters deriving from the exact form
of the potential, akin to “renormalized” coupling constants. Repulsive potentials lead to a decrease
in the total cross section, resulting in an enhancement of the neutrino density. For attractive
potentials of the right form, substantial Sommerfeld enhancement can appear.



2

I. INTRODUCTION

In the last twenty years the nature of dark matter, needed to address the missing mass problem, has been extensively
investigated [1]. Specifically, there is a large body of evidence from astronomical observations indicating that there
is more matter than can be associated with the luminous part of galaxies. This problem remains unresolved, and
opens a window to new physics now called astroparticle physics [2]. It is not yet fully understood what kind of
particle dominates the dark matter and what are the mechanisms of production/annihilation for them. Neutrinos
would be one possibility, but presently we know that only a small portion of neutrinos (1%) of the CNB (cosmic
neutrino background) could be considered as dark matter. Specifically, in the CNB the number of neutrinos per cubic
centimeter is about 56 per flavor, and this suggests that a small fraction of the dark matter could be attributable to
neutrinos. Therefore, cosmic neutrinos would be responsible for only a small part of dark halos that would explain
the flatness of galaxy rotation curves [5, 6], i.e. the constant value of the velocity of rotation of a galaxy as a function
of distance rather than decreasing as expected. Even though dark neutrinos are very few, they are nevertheless
important, as their mass bounds are very robust and can be used as phenomenological data for estimating the total
cosmological neutrino flux and cross sections [3, 4].

In the present state of our knowledge the cosmic neutrino background (CNB) is a prediction of the standard
cosmological model. There are, however, known data which, when consistently interpreted, might lead to new insights
beyond the standard model. In this direction, there are several interesting questions; for example, if there are any
enhancement mechanisms for dark halo neutrinos, and how they would affect physical observable processes.

In reference [7] (see also [8]) an enhancement mechanism for weakly interacting particles was proposed, inspired by
the Sommerfeld enhancement effect, and several examples illustrating how this mechanism works were presented. A
thorough treatment of the effective non-relativistic theory of dark matter long-range interactions was also presented
in [9], including their renormalization properties. In spite of the intense interest in this field in the last few years,
however, to our knowledge there is no discussion on the role played by very short-range potentials (invisible at long
distances), nor relevant extensions of the results presented in [7]. This would be especially relevant for low energy
scattering of bosons or fermions with a short-range two-body potential. The dynamics of the CNB neutrinos at very
low energy, in particular, could be considered by modeling the neutrino-neutrino interaction with a contact potential.

The goal of this paper is to provide a justification for the short range potential as stemming from possible “secret”
neutrino interactions, to give a derivation of the scattering amplitude for such short range potentials, and to show
how Sommerfeld enhancement can emerge by computing the corresponding enhancement factor.

This work is organized as follows. In section II we calculate the two-body potential for neutrinos from secret
interaction in inverse powers of the neutrino mass and show that the leading term is a delta potential (contact
interaction). In section III we solve the associated scattering problem for a general short-range potential and show
that physics depends on a set of phenomenological parameters. In section IV we consider the Sommerfeld enhancement
and derive its strength in various domains of the scale of the annihilation processes. In section V we compare and
contrast our approach with standard regularizations procedures for the delta-potential and elucidate its connection to
renormalization in effective potentials, and briefly comment on bound states. In section VI we present our conclusions,
pointing out that the neutrino density can be substantially enhanced if the potential is repulsive, and that there is
Sommerfeld enhancement if the potential is attractive. Several calculations and justifications of approximations valid
for short-range potentials are presented in the appendix.

II. EFFECTIVE TWO-BODY POTENTIAL FOR INTERACTIONS BETWEEN NEUTRINOS

Effective four-fermion interactions between neutrinos with nonstandard coupling (also called “secret” neutrio in-
teractions) have been considered for quite some time [10], as a way to include new classes of matter as the particles
mediating this interaction [11]. Clearly the four-fermion interaction is only a first approximation, capturing the low-
energy physics of an otherwise more general interaction, valid for distances larger than some characteristic scale for
the interaction. (A pure four-fermion interaction would not even be renormalizable.) Its form is taken to be

− α

2M2
(ψ̄aγ

µψa)(ψ̄bγµψb), (1)

where a sum over the three neutrino species is understood, α = ±1 corresponds to an attractive/repulsive potential
and M is a given mass scale. This contact neutrino interaction leads to the Born scattering amplitude for two distinct
neutrinos (see Fig. 1)

Mfi = − α

M2
ū1(p′1)γµu1(p1)ū2(p′2)γµu2(p2),

=
α

M2
w̄α(p′1)w̄β(p′2)Uαβ,γδ wγ(p1)wδ(p2), (2)
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where wα’s denote the positive energy spinors in the non-relativistic limit and Uαβ,γδ is the two-body potential which
will be computed in detail below.

FIG. 1. Contact interaction at the tree level.

To extract the low-energy dynamics, we work in the non-relativistic regime p� m, with m the neutrino mass. For a
free massive fermion, the Foldy-Wouthyusen transformation that diagonalizes the Hamiltonian in the non-relativistic
limit is given by

UFW = exp[
γ · p
2m

θ]

= cos

(
|p|θ
2m

)
+

γ · p
|p|

sin

(
|p|θ
2m

)
, (3)

where

θ =
m

|p|
tan−1

( p

m

)
= 1− 1

3

|p|2

m2
+

1

5

(
|p|
m2

)2

+ · · · , (4)

and

u(p) = UFWw(p), w(p) =

(
w1(p)
w2(p)

)
. (5)

We use the normalization

w∗α(p)wα(p) = 1,

Therefore, to order 1/m2 we have

cos

(
|p|θ
2m

)
= 1− |p|

2

8m2
+ · · · ,

sin

(
|p|θ
2m

)
=
|p|
2m

+ · · · , (6)

and as a consequence

γ · p
|p|

sin

(
|p|θ
2m

)
≈ γ · p

2m
+ · · · . (7)

This leads to

UFW ≈
(

1− |p|
2

8m2

)
+

γ · p
2m
· · · . (8)
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The spinor u(p) can now be expanded up to order 1/m2 as follows

u(p) = UFWw(p)

=

(
1− p2

8m2

)
w +

γ · p
2m

w +O(1/m3). (9)

Thus by restricting to the positive energy spinor space, we have to order 1/m2

ū1(p′1)γ0u1(p1) = u†1(p′1)u1(p1)

= w∗1α(p′1)

[
δαγ

(
1− q2

8m2
1

)
+ i

(σ · (q× p1))αγ
4m2

1

]
w1γ(p1), (10)

where q = p1 − p′1 = −(p2 − p′2) is the transferred momentum. Similarly for the other spinor we have

ū2(p′2)γ0u2(p2) = u†2(p′2)u2(p2)

= w∗2β(p′2)

[
δβδ

(
1− q2

8m2
2

)
− i

(σ · (q× p2))βδ
4m2

1

]
w2δ(p1) (11)

Bilinears involving γi can also be calculated and lead to

ū1(p′1)γiu1(p1) =
1

2m1
w∗1α(p′1)

(
δαβ(−2pi1 + qi) + i(σ × q)iαβ

)
w1β(p1),

ū2(p′2)γiu2(p2) =
1

2m2
w∗2α(p′2)

(
δαβ(2pi2 + qi) + i(σ × q)iαβ

)
w2β(p2), (12)

where the indices 1, 2 correspond to the two particle species and the greek indices α, β, · · · denote spinor components.

Using the identity

p · (σ × q) = σ · (q× p),

the scattering amplitude can now be written as

Mfi = w∗1α(p′1)w∗2β(p′2)Uαβ,γδ(q,p1,p2)w1γ(p1)w2δ(p2), (13)

where the two-body potential has the form

Uαβ,γδ(q,p1,p2) = − α

M2

[
δαγδβδ

(
1− q2

8

(
1

m2
1

+
1

m2
2

))
+ iδβδ

[σ · (q× p1)]αγ
4m2

1

− iδαγ
[σ · (q× p2)]βδ

4m2
2

+ δαγδβδ
(q2 + 2q · (p2 − p1)− 4p1 · p2)

4m1m2
− iδβδ

[σ · (q× p2)]αγ
2m1m2

+ iδαγ
[σ · (q× p1)]βδ

2m1m2

+
(σ · q)αγ(σ · q)βδ

4m1m2
− q2

4m1m2
(σ)αγ · (σ)βγ

]
. (14)

This shows that even though the particles are fermions, at leading order the dominant contribution is a contact
potential given by

U(x) = − α

M2
δ(x), (15)

where x is the relative coordinate x1−x2 and the potential can be repulsive or attractive depending of the sign of α.
Momentum-dependent higher-order corrections in this potential can also be calculated from (14) and are, generically,
spin-dependent.

We can use the above contact interaction as a motivation to consider momentum-independent short-range interac-
tions with a range shorter than the neutrino Compton wavelength. In that regime, the full details of the interaction
potential are expected to become irrelevant and be subsumed in some macroscopic phenomenological parameters.
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III. THREE-DIMENSIONAL SHORT-RANGE POTENTIALS AND THEIR SCATTERING
PROPERTIES

We turn our attention to the scattering properties of short-range potentials of arbitrary form in the regime where
their range is much smaller than the de Broglie wavelength of the incident neutrinos. Such potentials would macro-
scopically look like delta-functions with strength equal to their space integral. Their details, however, will in general
matter for scattering, so that more than one parameter may be relevant

We assume that the neutrinos interact with a central two-body interaction potential of the form V (r) where r is the
distance between the neutrinos, with the property that V (r) is nonzero only within a very short range 0 < r < a. We
are interested in scattering properties for wavenumbers much smaller that a−1. Clearly, not all the details of the form
of V (r) will be relevant. The question is: what are the relevant parameters that fix physics for such wavelengths?

The motion in the above potential is described by the time independent Schrödinger equation for the relative
coordinate wavefunction (

∇2 + k2
)
ψ(x) = 2mV (r)ψ(x). (16)

where k2 = 2mE and m = m1m2

m1+m2
is the reduced mass of scattering neutrinos. The integral scattering equation, in

this case, is

ψ(x) = ϕ(x)− 2m

∫
d3x′ G(x− x′) V (r′) ψ(x′), (17)

where ϕ(x) = eik·x represents the incident plane wave. The retarded (outgoing) Green’s function satisfies(
∇2 + k2

)
G(x− x′) = −δ(x− x′) (18)

and is explicitly given by

G(x) =
1

4π

eikr

r
, (19)

with r = |x|.
In the kinematical regime of interest, only the spherically symmetric s-wave (` = 0) part of the vavefunction will

matter for scattering and Sommerfeld enhancement, since higher-` partial waves vanish at the origin and thus are
much smaller over the range of the potential than the s-wave part. (This assertion is fully justified in the appendix.) In
fact, restricting to the s-wave sector is exact for the calculation of ψ(0) since the integrand in the scattering equation
in that case is spherically symmetric for a central potential V (r) and the higher angular momentum part of ψ(x)
drops out. Specifically, putting x = 0 in (17) we obtain

ψ(0) = 1− m

2π

∫
d3x

eikr

r
V (r)ψ(x) = 1− 2m

∫
dr reikrV (r)ψs(r). (20)

The s-wave part of the wavefunction, ψs(r), satisfies the standard radial fixed-energy Schrödinger equation

ψs(r) =
φ(r)

r
,

(
d2

dr2
+ k2

)
φ(r) = 2mV (r)φ(r). (21)

As usual, φ(r) vanishes at r = 0 and ψ(0) = φ′(0). We write the full wavefunction in terms of a normalized
u(r) = φ(r)/ψ(0) as

ψ(x) = ψ(0)
u(r)

r
+ ψns(x), (22)

where ψns(x) is the non-s-wave part (nonzero angular momentum) of the wavefunction, satisfying ψns(0) = 0, and
the function u(r) is normalized to satisfy

u′′ + k2u = 2mV u , u(0) = 0 , u′(0) = 1, (23)

(primes are r-derivatives). With these initial conditions at r = 0 the solution u(r) is unique. The coefficient ψ(0) is
fixed by matching the solution for ψ(x) to the appropriate boundary conditions at r →∞.
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Plugging the above form of ψs(r) in (20) we obtain

ψ(0) = 1− 2mψ(0)

∫ a

0

dr eikrV u, (24)

where we used the fact that V (r) vanishes for r > a. This fixes ψ(0) as

ψ(0) =
1

1 + 2m
∫ a

0
dr eikrV u

. (25)

Using equation (23) for u and integrating by parts we eventually obtain the exact expression for the wavefunction at
the origin

ψ(0) =
e−ika

u′(a)− iku(a)
. (26)

Similarly, to find the scattering amplitude we put |x| � |x′| in the scattering equation (17) and keep only the s-part
of the wavefunction ψs(r

′) to obtain

ψ(x) = ϕ(x)− eikr

4πr
2m

∫
dr′dθ′dφ′r′2 sin θ′e−ikr

′ cos θ′ V (r′) ψ(0)
u(r′)

r′
, (27)

where θ′ is the polar angle of x′ measured with respect to x. The factor multiplying the outgoing spherical wave
eikr/r is the scattering amplitude f . Performing the angular integral and using (23) and integration by parts as before
we obtain

f = −ψ(0)

(
sin ka

k
u′(a)− cos ka u(a)

)
= −e−ika sin ka u′(a)− k cos ka u(a)

k[u′(a)− iku(a)]
, (28)

from which we obtain the scattering cross-section as

σ = 4π|f |2. (29)

The above expressions are exact. We are interested, however, in the limit ka � 1. In this regime, in general
k2 � 2mV and we can treat k2 as a perturbation parameter. The full solution for u(r) can then be expressed as a
series in k2 in a way analogous to the Lippman-Schwinger expansion. Specifically, we define the unique function u0

satisfying:

u′′0 − 2mV u0 = 0 , u0(0) = 0 , u′0(0) = 1, (30)

and the sequence of functions un, n = 1, 2, . . .

u′′n − 2mV un = un−1 , un(0) = u′n(0) = 0. (31)

Then the full solution for u can be written as

u(r) =

∞∑
n=0

(ik)2nun(r). (32)

The above u satisfies equation (23), and also has the correct boundary conditions at r = 0 due to the boundary
conditions of u0 and un, n ≥ 1. Formally, the un can be written

un =

(
− d2

dr2
+ 2mV

)−n
u0. (33)

The point of the above expansion is that u0 represents the zero mode of the operator − d2

dr2 + 2mV (r). The inverse

operator
(
− d2

dr2 + 2mV
)−1

, however, is defined on the set of states with boundary conditions u(0) = u′(0) = 0, on

which this operator has no zero modes (the unique solution with these boundary conditions is 0), so the inverse exists.
We can now use this expansion in the expressions for ψ(0) and f . We have

1

ψ(0)
= eika

∑
n

[
(ik)2nu′n(a)− (ik)2n+1un(a)

]
. (34)
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The values

λ2n = u′n(a) , λ2n+1 = un(a), (35)

are an (infinite) set of phenomenological parameters that determine the scattering properties of the potential as a
function of k. u0 behaves linearly near r = 0 (u0(r) ∼ r), while un(r) ∼ r2n+1 and u′n(r) ∼ r2n. For a generic
potential such that V a2 � 1

λ2n+1 = un(a) ∼ a2n+1 , λ2n = u′n(a) ∼ a2n. (36)

So the leading term λ0 = 1 +O(a) becomes the only relevant one in the limit a→ 0, the rest being negligible. Such
potentials have no interesting scattering dynamics, leading to |ψ(0)| ' 1 and σ ' 0.

Physically interesting potentials are these that lead to at least the first couple of the above parameters to be of the
same order of magnitude. Achieving this needs potentials whose magnitude scales as a−2 or faster and have nontrivial
profiles. (Examples of such potentials and the scaling of un are given in the appendix.) Keeping only λ0 and λ1 and
assuming all higher λn are negligible in the limit ka� 1, we have for the wavefunction

ψ(0) =
1

λ0 − ikλ1
, (37)

and the scattering amplitude and cross section

f =
λ1

λ0 − ikλ1
, σ =

4πλ2
1

λ2
0 + k2λ2

1

. (38)

IV. SOMMERFELD ENHANCEMENT

For short-range annihilation processes, Sommerfeld enhancement is given by S = |ψ(0)|2. In our case, however, the
elastic interaction potential is also short-range, so the above formula is not automatically true. We have to distinguish
different regimes:

a) If the range of the annihilation process b is much smaller than the range of the potential a, then ψ(0) determines
Sommerfeld enhancement:

b� a : S = |ψ(0)|2 =
1

λ2
0 + k2λ2

1

, (39)

with a maximal value for k = 0

Smax =
1

λ2
0

. (40)

b) If the range of the annihilation process is comparable to the range of the potential a, then the values of
the wavefunction within a range a are relevant. The exact formula would involve an integral of the profile of the
annihilation amplitude over the wavefunction. But as an order of magnitude:

b ∼ a : S ∼ |ψ(a)|2 =

∣∣∣∣ψ(0)
u(a)

a

∣∣∣∣2 =
λ2

1

a2(λ2
0 + k2λ2

1)
=

σ

4πa2
, (41)

with an approximate maximal value for k = 0

Smax ∼
λ2

1

a2λ2
0

. (42)

c) If the range of the annihilation process is much bigger than the range of the potential a, then the values of the
wavefunction outside the range a are relevant. The exact formula would again depend on the exact profile of the
annihilation amplitude, but as an order of magnitude:

b� a : S ∼

∣∣∣∣∣
∫ b

0
ψ(0)u(a)

r 4πr2dr∫ b
0

4πr2dr

∣∣∣∣∣
2

∼ |ψ(0)|2u(a)2

b2
=

λ2
1

b2(λ2
0 + k2λ2

1)
=

σ

4πb2
. (43)

with an approximate maximum value for k = 0

Smax ∼
λ2

1

b2λ2
0

. (44)

We observe that the maximun enhancement is obtained when the range of the annihilation process is comparable to
the range of the interaction.
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V. RENORMALIZATION

The concept of renormalization appears quite often in quantum mechanics in the context of effective interactions or
singular potentials. In the first approach, the unknown UV properties of a potential with known long-range behavior
is parametrized by adding short-range regularization terms and fitting with known physical properties (spectra, phase
shifts etc.) (For a nice pedagogical review see [12], and for recent applications related to our considerations see [9].)
Since the same physical properties can be obtained for various values of the regularization terms, this leads to the
idea of renormalization group.

Renormalization also appears in the context of singular potentials, such as the delta-function potential: they are
regularized with a form of cutoff and their coupling constants are renormalized such that they give finite physical
results. Again, “bare” constants vary with the cutoff parameter such that they give the same physical observables.

In our approach, the issue of renormalization is, a priori, moot: we start with a physical short-range interaction and
we work out the physical effects. There is no need to regularize anything, nor do we need to fit any known physical
data. Nevertheless, there are parallels with renormalization that are worth pointing out.

We found that the effects of a short-range interaction can be effectively described in terms of a set of phenomeno-
logical parameters λn. For generic potentials only λ0 matters; for more interesting potentials λ1 becomes important,
while for potentials with even more nontrivial behavior higher lambdas may become relevant. This is in the spirit
of renormalization: physics is parametrized in terms of a set of macroscopic parameters, with the full details of the
short-range interaction becoming irrelevant.

In fact, in our parameters λ0 and λ1 we see analogs of both coupling constant and wavefunction renormalization:
the long-range properties of the potential, such as the scattering cross-section (38) and the Somerfeld enhancement
for scales much larger than the scale of the potential (43), depend only the ratio λ1/λ0. This ratio can be considered
as a renormalized coupling constant, and is the only one relevant for macroscopic physics. The wavefuction at the
origin (37), however, depends on both λ0 and λ1, thus involving an additional parameter. This can be considered as
a wavefunction renormalization at short ranges.

The three-dimensional δ-potential and its scattering properties have also been examined as an example of regular-
ization and renormalization in quantum mechanics [13]. The scattering equation for an exact delta function potential
of strength g reads

ψ(x) = ϕ(x)− 2mg

∫
d3x′ G(x− x′) δ(x′) ψ(x′),

= ϕ(x)− 2mg G(x) ψ(0). (45)

Putting x = 0 in (45) we find

ψ(0) =
1

1 + 2mgG(0)
, (46)

G(0) is infinite, and we proceed by regularizing it. It has the momentum integral form

G(0) =

∫
d3p

(2π)3

1

p2 − k2 − iε
. (47)

The integral (47) is linearly divergent and can be regularized with a momentum cutoff Λ as in [13, 14], i.e.

G(0) =
1

2π2

∫ Λ

0

dp p2

p2 − k2 − iε

=
Λ

2π2
+
i k

4π
. (48)

Note that we would have obtained essentially the same result if we had, instead, imposed a short-distance regularization
a and defined

G(0)reg = G(a) =
eika

4πa
=

1

4πa
+
ik

4π
, (49)

where we omitted terms of order a or smaller, which identifies Λ = π
2a . So we obtain

ψ(0) =
1

1 + mgΛ
π2 + mg

2π ik
. (50)
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From (45) for large |x| we identify the scattering amplitude as

f = −mg
2π

ψ(0) =
1

− 2π
mg −

2Λ
π − ik

. (51)

We observe that formulae (50) and (51) have the same functional form as our previous formulae (37) and (38) upon
identifying

λ0 = 1 +
mgΛ

π2
, λ1 = −mg

2π
. (52)

Note, however, that there is no choice of scaling of the “bare” parameter g with the cutoff Λ that can make both λ0

and λ1 finite. The best one can do is demand for the long-range physical properties of the system, such as f , to be
finite. Thus we define

2π

mg
+

2Λ

π
=

2π

mg̃
, (53)

which defines a renormalized coupling constant g̃. In terms of the phenomenological variables of last section, g̃ is
essentially their ratio:

g̃ = −2π

m

λ1

λ0
(54)

Written in terms of g̃, f and σ are finite:

f = − mg̃

2π − ikmg̃
, σ =

4πm2g̃2

4π2 + k2m2g̃2
(55)

ψ(0), however, would still diverge as Λ → ∞ and g̃ remains finite. This calls for wavefunction renormalization and
introduces a new parameter into the problem. We define the renormalized wavefunction at the origin

ψ̃(0) = Zψ(0) , Z = − mg
2πλ̃

=
λ1

λ̃
(56)

The above renormalized ψ̃(0) is finite. λ̃ is a new, finite parameter that plays the same role as λ1 in the previous

section. g̃ and λ̃ define the physical parameters of the system, g̃ being relevant for macroscopic quantities and λ̃ for
short-distance ones. The bare parameters g and Z are cutoff-dependent (as manifest in (53) and (56) for fixed g̃ and

λ̃) and go to zero as Λ becomes large.
The moral of the above is that a formal renormalization procedure of a singular delta function potential can

reproduce the physics of a short-range interaction upon proper identification of renormalized parameters. The true
physics of the situation are in the details of the short-range interaction, and its physical content is encoded in the
phenomenological parameters λn that remain relevant for wavelengths much larger than the interaction scale.

If the short-range potential is sufficiently attractive there can be bound states (see [13–15] for a discussion in the
renormalized delta-potential case). These are easily found through our formula (37). For a bound state at E = −B
(B > 0) we put ik = −κ, 2mB = κ2, and look for a resonance in (37) where the denominator vanishes:

λ0 + κλ1 = 0 ⇒ κ = −λ0

λ1
. (57)

In the presence of a bound state, the total cross section can be expressed as

σ =
4π

2mB + k2
. (58)

We see that the bound state energy is determined by the same macroscopic parameter λ1/λ0 that determines the
scattering properties (and defines the renormalized strength in the delta-potential case). This is sensible, as a bound
state energy can be detected macroscopically without the need to probe short-distance physics at the scale of the
potential.
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VI. DISCUSSION AND CONCLUSIONS

In this paper we studied the neutrino scattering problem in the low energy regime by assuming that the interaction
between neutrinos is short range. As in this limit we are considering only tree level processes, the only renormalization
involved is related to the effective physics at long distances as arising from short-range properties of the potential.

We would like to emphasize two important facts. First, for the scattering cross section, a unique “renormalized”
coupling constant is relevant and plays a role analogous to an effective Fermi constant GX . In principle, bounds for
that constant can be found as in [10]. The total cross section has a maximum, as can be seen from

σmax
tot = 4πG2

Xm
2
ν , (59)

where mν represents the reduced neutrino mass. This behavior is independent of the potential being atractive or
repulsive.

Using an appropriate rescaling of the total cross section (σtot/σ
max
tot ) and the energy (k2/B), the energy dependence

of the cross section is as plotted in figure 2.

0.5 1.0 1.5 2.0 2.5 3.0

k

2 mΝ  B¤

0.2

0.4

0.6

0.8

1.0

Σ

Σmax

FIG. 2. Qualitative behavior neutrino-neutrino total cross section.

The second important point is that the Sommerfeld enhancement factor depens on additional short-range properties
of the potential, and can be quite large. So, if dark matter scattering processes occur via the mechanism proposed in
[7], Sommerfeld enhancement could be significant.
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APPENDIX

We first point our that unless the potential scales as a−2, that is, unless 2mV a2 is not of negligible magnitude, it
will have no effect on scattering. We simply rescale the variable in the equation for u(r) to s = r/a, thus expanding
the range of the potential to the interval s ∈ [0, 1], and also define

ū(s) =
1

a
u(as). (60)

In terms of ū(s)

ū′′ + a2(k2 − 2mV )ū = 0 , ū′(0) = 1. (61)

For small a, the effect of the k2−2mV term is negligible and only the zero-order solution ū = s survives, the deviation
from it being of order a2; that is,

ū = s+ a2

∫ s

0

ds′
∫ s′

0

ds′′ [2mV (s′′)− k2] s′′ +O(a4). (62)
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So

u(a) = aū(1) = a+O(a3) , u′(a) = ū′(1) = 1 +O(a2), (63)

leading to negligible scattering effects.
Even a generic potential scaling like a−2 would have limited effect: ū0(s) would be a function of order 1 and we

would get

u0(a) = aū0(1) , u′0(a) = ū′0(1) ( 6= 1). (64)

So, generically, λ1 would still be neglibible, although λ0 would now be different than 1 and thus would produce a
(momentum-independent) Sommerfeld enhancement factor.

The other interesting possibility would arise if ū′0(1) is small (so s = 1 would be near a zero of the function ū′0(s))
and of order a. In that case both λ0 and λ1 are small, but their ratio is of order 1, thus leading to nontrivial
scattering effects but divergent Sommerfeld enhancement. (This is, essentially, what the standard “renormalization”
of the delta-potential [13] achieves.)

Nontrivial potentials where both λ0 and λ1 are finite and non-negligible require a behavior that is stronger than
a−2 for a range of values of r, as well as a change of sign in the range (0, a). To illustrate the possibility, we will
present a “proof of concept” potential, of no particular physical significance. We start by giving the desired u0(r),
from which the appropriate potential 2mV = u′′0/u0 can be obtained. Take

u0(r) = r +
A+ aB

3

( r
a

)3

− A

5

( r
a

)5

. (65)

(The choice of odd powers eliminates a non-essential divergence of V at r = 0.) It is clear that the above u0 satisfies
u0(0) = 0 and u′0(0) = 1. For r = a we have

u0(a) =
2A

15
+
B + 3

3
a , u′0(a) = 1 +B. (66)

For small a, both u0(a) and u′0(a) remain nonzero and finite. The potential corresponding to the above u0 is

V (r) =
1

2m

u′′0(r)

u0(r)
=

1

ma2

(A+ aB)
(
r
a

)
− 2A

(
r
a

)3
r + A+aB

3

(
r
a

)3 − A
5

(
r
a

)5 . (67)

The above potential in nonsingular everywhere, of order a−2 for most of the range 0 < r < a but becoming of order
a−3 as r nears 0. It is positive for r < a/

√
2 +O(a2) and becomes negative for r > a/

√
2 +O(a2). These features are

generic: a purely positive potential cannot produce u0(a) and u′0(a) that are both nonzero and finite in the limit of
small a.

We can also show that un(a) and u′n(a) (n ≥ 1) will go to zero as a→ 0. To start, we point out that higher un can
be expressed recursively in terms of integrals

un(r) = u0(r)

∫ r

0

dr′
1

u2
0(r′)

∫ r′

0

dr′′u0(r′′)un−1(r′′). (68)

The argument for the smallness of higher un is based on the fact that

u0(r) = f0(r/a), (69)

where f0(s) is a function that remains finite in the limit a→ 0. By changing variables r = as in (68) we see that

u1(r) = a2f1(r/a) where f1(s) = f0(s)

∫ s

0

ds′
1

f2
0 (s′)

∫ s′

0

ds′′f0(s′′). (70)

Since f0 remains finite in the limit a → 0, u1 will scale like a2 unless the integrals above develop a singularity as
a→ 0. This, however, is not the case: the only singularity could arise at s′ → 0, where f0 → as′ and the denominator
diverges, but we can check that the s′-integral does not diverge. Therefore, u1(a) ∼ a2. A similar argument shows
that u′1(a) ∼ a, and recursively un(a) ∼ a2n, u′n(a) ∼ a2n−1, so the only survining parameters are u0(a) and u′0(a).
Clearly, to get potentials with nonvanishing u1 or higher, we need to pick u0 that becomes divergent (of order a−1 or
higher) somewhere in the range 0 < r < a. Such behavior is highly unphysical and provides a reason why we do not
expect potentials with nonvanishing higher λn to arise.
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We conclude by showing that for the scattering cross-section higher angular momentum sectors have a negligible
contribution in the limit ka→ 0. (For the Sommerfeld factor their contribution is exactly zero.) The physical reason
is that the radial part of the wavefunction for such sectors satisfies

u′′ + k2u = 2mV u+
`(`+ 1)

r2
u, (71)

the same as for the s-wave sector but with an additional centrifugal potential. The classical inflection point of a
particle with energy k2/2m off the centrifugal potential is at

k2 =
`(`+ 1)

r2
=⇒ rc =

√
`(`+ 1)

k
. (72)

Since ka� 1, rc � a. So the region where the potential V is nonzero is deep inside the classically forbidden region of
the particle. The potential is effectively shielded by the centrifugal barrier, accessible only through tunneling effects.
Only for ` = 0 there is no barrier and the wavefunction can access the potential and feel its effects. In what follows
we will back this intuition with a calculation.

We will define, again, the unique solution of the radial equation (71) with boundary conditions

u ∼ r`+1 as r → 0 , or u(`+1)(0) = (`+ 1)! , u(n)(0) = 0 for n < `+ 1, (73)

(exponents in parenthesis indicate derivatives). Then the radial wavefunction in this sector is

ψ`(r) = A
u(r)

r
, (74)

with A a scale parameter that is fixed by boundary conditions at r →∞. For ` = 0 (the s-wave), A = ψ(0), but for
higher `, A does not contribute to ψ(0).

To determine the bounday conditions at r → ∞ we write the plane wave decomposition in terms of spherical
harmonics and spherical Bessel functions

eikx =
∑
`

i`(2`+ 1)j`(kr)P`(θ), (75)

with θ measured with respect to the axis ~k. So the radial part of this plane wave in the u-parametrization (u = reikx)
in the ` sector is

uplane(r) = i`(2`+ 1)rj`(kr). (76)

To isolate the incoming and outgoing part, we write it in terms of Hankel functions

h` = j` + iy`. (77)

In fact, we define the modified Hankel functions

U`(x) = ixh`(x) = x(−y`(x) + ij`(x)), (78)

in terms of which the radial `-plane wave function is

uplane(r) =
1

k
i`

2`+ 1

2i

(
U`(kr)− Ū`(kr)

)
(79)

In the limit kr � 1 the functions U` behave as

U`(kr)→ (−i)`eikr, (80)

so U` is the outgoing part and Ū` is the incoming part. U` and its conjugate Ū` separately satisfy the free radial
equation

d2U`(kr)

dr2
+ k2U`(kr) =

`(`+ 1)

r2
U`(kr). (81)
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The first few U` are

U0(x) = eix, U1(x) = eix
(

1

x
− i
)
, U2(x) = eix

(
3

x2
− 3i

x
− 1

)
, etc. (82)

Returning to the solution of our problem, the radial wavefunction for r > a (where the potential vanishes) will still
be a superposition of U` and Ū`. The incoming part, proportional to Ū`, must be the same as in the plane wave (79),
while the outgoing part U` will have a different coefficient, due to the existence of the outgoing scattered wave. The
extra scattering part will have the asymptotic form

ψsc ∼ f
eikr

r
so usc ∼ feikr, (83)

as r →∞. From the asymptotic behavior (80) of U` we see that the extra scattering part must be of the form

usc = (−i)`fU`(kr) (84)

so the full wavefunction for r > a is

uout =

(
1

k
i`

2`+ 1

2i
+ (−i)`f

)
U`(kr)−

1

k
i`

2`+ 1

2i
Ū`(kr)

=
1

k
i`

2`+ 1

2i

(
b U`(kr)− Ū`(kr)

)
, (85)

where

b = 1 + (−1)`
2ik

2`+ 1
f. (86)

From unitarity, b must be a pure phase (since incoming and outgoing waves must have equal amplitudes) and it defines
the scattering phase shift, while the above equation relates the scattering amplitude to the scattering phase shift (and
leads, eventually, to the forward-scattering formula for the cross-section).

Solving the full problem for the radial wavefunction amounts to matching the interior solution (74), defined in terms
of the solution u and A, to the exterior solution (85) at r = a. Equating the values of the wavefunctions as well as
their derivatives on either side of r = a we obtain

Bu(a) = b U`(ka)− Ū`(ka),
Bu′(a) = kbU ′`(ka)− kŪ ′`(ka), (87)

where we defined

B = (−i)` 2ik

2`+ 1
A, (88)

from which we obtain

B = k
Ū`U

′
` − Ū ′`U`

U`u′ − kU ′`u
,

b =
Ū`u

′ − kŪ ′`u
U`u′ − kU ′`u

, (89)

where we suppressed the dependence on a or ka to alleviate the form. Since u is real, it is clear that b is a pure phase
since b̄ = b−1. The scattering amplitude f and the coefficient A are determined through their relation with b and B.

As a check, we apply the formulae for ` = 0. In that case, U0 = eikr and A = ψ(0). We obtain

B =
2ik

u′(a)− iku(a)
e−ika ⇒ A = ψ(0) =

e−ika

u′(a)− iku(a)
, (90)

which is our earlier result, while

b = e−2ikau
′(a) + iku(a)

u′(a)− iku(a)
⇒ f = e−ika

1

k

k cos(ka)u(a)− sin(ka)u′(a)

u′(a)− iku(a)
, (91)
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In the limit ka→ 0 this gives

f =
u(a)

u′(a)− iku(a)
, (92)

as before.
We can now tackle the issue of whether higher angular momenta contribute to the scattering amplitude for a very

small. We will work out the case ` = 1, the others being qualitatively similar.
For ` = 1 we can substitute the explicit form of U1 from (82) and obtain for b

b = e−2ika (1 + ika− k2a2)u(a) + a(1 + ika)u′(a)

(1− ika− k2a2)u(a) + a(1− ika)u′(a)
. (93)

So the scattering phase shift is −2ka plus twice the phase of the complex number in the numerator. We observe that
for ka� 1 this phase will be negligible (and in fact of order k3a3) no matter what the scaling of u(a) and u′(a) with
a. So, completely generically, the contribution of the ` = 1 sector to the scattering amplitude is vanishingly small.
The only possibility to get an appreciable phase shift and scattering amplitude is for the real and imaginary parts of
the numerator to be of comparable magnitude. For this to happen we need

au′(a) = −(1− k2a2 + λk3a3)u(a), (94)

for some finite λ. Thus, not only do we need au′(a) to be close to −u(a), but we need it tuned to such a value to an
accuracy of order k3a3 (!). This is a tremendous level of fine-tuning. Moreover, it is k-dependent. So even if it were
to hold for some k, it would stop holding as soon as k moves away from that value by the tiniest amount.

For higher `, a similar pattern emerges: the dominant terms are such that the scattering amplitude vanishes, and
an increasingly accurate fine tuning is required to have an “accidental” scattering resonance that would happen for
only one specific value of k, if at all. The final result is that only the ` = 0 sector contributes.
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