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Abstract

We study flux tubes (strings) on the Higgs branches in supersymmetric
gauge theories. In generic vacua on the Higgs branches strings were shown
to develop long-range “tails” associated with massless fields, a characteristic
feature of the Higgs branch (the only exception is the vacuum at the base
of the Higgs branch). A natural infrared regularization for the above tails is
provided by a finite string length L.

We perform a numerical study of these strings in generic vacua. We
focus on the simplest example of strings in N = 1 supersymmetric QED
with the Fayet-Iliopoulos term. In particular, we examine the accuracy of
a logarithmic approximation (proposed earlier by Evlampiev and Yung) for
the tension of such string solutions. In the Evlampiev-Yung formula the
dependence of tension on the string length is logarithmic and the dependence
on the geodesic length from the base of the Higgs branch is quadratic. We
observe a remarkable agreement of our numerical results for the string tension
with the Evlampiev-Yung analytic expression.



1 Introduction

Supersymmetric gauge theories provide an excellent theoretical laboratory
for understanding strongly coupled non-Abelian dynamics. In particular,
the dual Meissner effect as a mechanism of confinement suggested in the
mid-1970s [1] was first analytically observed in 1994 in the framework of
N = 2 supersymmetric theories [2, 3]. The main feature of this mechanism
is formation of the Abrikosov-Nielsen-Olesen (ANO) [4] flux tubes (confin-
ing strings). If in a given vacuum quarks condense then the conventional
magnetic ANO strings are formed. They confine monopoles. If, instead,
monopoles condense, the electric ANO strings are formed. They confine
quarks [2, 3] (see also [5, 6] for reviews of scenarios with confined monopoles).

Quite often supersymmetric gauge theories have Higgs branches. These
are flat directions of the scalar potential on which charged scalar fields can
develop vacuum expectation values (VEVs) breaking the gauge symmetry. In
many instances this breaking provides topological reasons behind formation
of the ANO strings. The dynamical side of the problem of the confining string
formation in the theories with Higgs branches was addressed in [7, 8, 9]. A
priori it is not clear at all whether or not stable string solutions exist in
this class of theories. The point is that the theories with a Higgs branch
represent a limiting case of type I superconductor, with vanishing Higgs
mass. In particular, it was shown in [7] that infinitely long strings cannot be
formed in this case due to infrared divergences.

Later this problem was studied [8] in a more realistic confinement setup,
namely, the string in question was assumed to have a large but finite length L.
Finite length provides an infrared regularization implying [8] that finite-size
ANO strings still exist on the Higgs branches. They become logarithmically
“thick” due to the presence of massless fields and give a confining potential
for two heavy trial charges of the form

V (L) ∼ L

logL
. (1)

Note that V (L), instead of being linear in separation L is modified by log(LΛ)
in the denominator.

The potential between heavy trial charges provides us with an order pa-
rameter marking distinct phases with different dynamical behaviors. Thus,
we see that theories with the Higgs branches develop a novel confining phase
with logarithmically nonlinear potential (1).
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Formation of strings in more generic theories with non-flat Higgs branches
curved by the presence of the Fayet-Iliopoulos (FI) term was considered later
in [9]. In this case string profile functions can be approximated by an almost
BPS core built from massive fields and a long-range “tail” built from massless
fields. In this approximation the confining potential for the simplest case of
the U(1) N = 1 supersymmetric gauge theory with one flavor of charged
matter was shown to be

V (L) ∼ L

(
1 +

l2

logL

)
, (2)

where l is the length of the geodesic line on the Higgs branch between the
given vacuum and the base point of the Higgs branch.

In this paper our task is to confirm the onset of the regime (2) for suffi-
ciently large L. This will allow us to better understand the limits of applica-
bility of the analytic consideration in [9]. To this end we numerically study
the string solution in N = 1 supersymmetric QED with the FI term. We
find the string profile functions and calculate the string tension. In agree-
ment with the analytic formula (2) we observe that our numeric solution
reproduces (with good accuracy) both features: the logarithmic dependence
of the “tail” tension on L and the quadratic dependence on l.

The paper is organized as follows. In Sec. 2 we briefly review a basic con-
struction of length-L flux tubes on curved Higgs branches in N = 1 SQED.
Then we summarize main results concerning the analytic approximation [9]
for their tension in terms of the distance from the base of the Higgs branch
and L. In Sec. 3 we obtain the full numerical result for the profile functions
of the string solution following the general guidelines of [8]. We then put the
analytical tension formula (2) to test. Our numeric data establishes the onset
of the analytic approximation (2). In Sec. 4 we present some conclusions.

2 Flux tubes on curved Higgs branches

2.1 N = 1 supersymmetric QED

We begin by reviewing the construction of flux tubes on curved Higgs branches
in the Abelian gauge theories [8, 9]. The starting point is N = 1 SQED with
the action

SQED =

∫
d4x

(
1

4g2
F 2
µν + |Dµq|2 + |Dµq̃|2 + V (q, q̃)

)
(3)
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where the covariant derivative is defined as

Dµ = ∂µ −
i

2
Aµ (4)

and the complex scalar fields q and q̃ have opposite charges under the U(1)
gauge symmetry. We assume the charges for the scalar fields ne to be |ne| =
1/2. The scalar potential is

V (q, q̃) =
g2

8

(
|q|2 − |q̃|2 − ξ

)2
. (5)

It is obtained from the Fayet-Iliopoulus (FI) coupling for the U(1) vector
superfield with FI parameter ξ after its auxiliary field D is integrated out.

This model has a rich vacuum structure dictated by the vacuum condition

| 〈q〉 |2 − | 〈q̃〉 |2 − ξ = 0, (6)

which describes a Higgs branch of dimension two: two complex scalars subject
to one constraint after reduction of a gauge phase. As is clear from the
condition (6) in the vacuum the scalar fields develop vacuum expectation
values thus completely breaking the U(1) gauge symmetry. Correspondingly
the photon acquires the mass

mγ =
1

2
g2v2, (7)

where
v2 = | 〈q〉 |2 + | 〈q̃〉 |2. (8)

The scalar mass matrix has three zero eigenvalues corresponding to one
“eaten” combination and two massless scalar components of chiral multiplets
living on the Higgs branch. In addition, the mass matrix has one non-zero
eigenvalue corresponding to a massive scalar field which is the superpartner
of the massive vector supermultiplet, with mass equal to the mass of the
photon mH = mγ.

Consider now the low-energy effective action for the theory (3), see [9].
To integrate out all massive fields in (3), namely, the photon and the heavy
scalar, we use the following parametrization of the Higgs branch:

q =
√
ξ ei(α+β) cosh(ρ) , (9)

¯̃q =
√
ξ ei(α−β) sinh(ρ) , (10)
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where ρ(x), α(x) and β(x) are three real fields parametrizing q and q̃ subject
to condition (6). Once the gauge field is massive at low energies we can
neglect its kinetic term and eliminate Aµ using the algebraic equation

Aµ = −i q̄∂µq − ∂µq̄q + q̃∂µ ¯̃q − ∂µq̃ ¯̃q

|q|2 + |q̃|2
= 2

(
∂µα +

∂µβ

cosh 2ρ

)
. (11)

Substituting this into the action (3) we arrive at

Seff = ξ

∫
d4x cosh 2ρ

{
(∂µρ)2 + (∂µβ)2 tanh2 2ρ

}
. (12)

This is the low energy-action in SQED, see (3), containing only massless fields
on the Higgs branch. The gauge phase α(x) is canceled out as expected.

In the simplest case, at the base of the Higgs branch, the vacuum is

〈q̃〉 = 0, 〈q〉 =
√
ξ . (13)

Far away from the base we can parametrize vacua on the Higgs branch as
follows:

〈q〉 =
√
ξ eiβ0 cosh(ρ0) ,

〈¯̃q〉 =
√
ξ e−iβ0 sinh(ρ0) . (14)

Here ρ0 = ρ(∞) is a real dimensionless parameter describing how far the
given vacuum lies from the base of the Higgs branch at ρ0 = 0, while β0 is
the residual phase which cannot be gauged away. Each vacuum on the Higgs
branch is characterized by two parameters ρ0 and β0.

2.2 String solutions

Consider first the vacuum (13) located on the base of the Higgs branch. This
vacuum admits the standard Abrikosov-Nielsen-Olesen vortices of infinite
length [4] in which the phase of the scalar field q winds while its absolute
value rapidly tends to its vacuum expectation value at spatial infinity. These
strings are BPS saturated, with the tension

TBPS = 2πnξ . (15)

Here n the winding number of the solution. Below we consider elementary
strings with n = 1.
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As was mentioned, in this paper we are interested in the flux tube solu-
tions at a generic point on the Higgs branch. Such solutions can be found
through the procedure of dividing the radial separation from the string center
into two distinct spatial domains suggested in [9].

First, one can safely assume that the photon field and the massive scalar
field will form a BPS core of a finite radius determined by their common
mass, namely,

Rc ∼ 1/g
√
ξ .

This implies that for r ≤ Rc we can look for the solutions in which q̃ ≈ 0. This
domain is described by the standard BPS ANO string for which T = TBPS.

Second, outside the above core, at r ≥ Rc, the photon field vanishes.
However, the massless fields are excited, and their dynamics is determined
by the low-energy action (12). This leads to a long-range logarithmic tail,
contributing both, to the profile functions and the string tension [9].

The above long-range logarithmic tails require an infrared (IR) regulariza-
tion. This statement is equivalent to the well-known result that the infinite-
length strings are not allowed on Higgs branches [7]. We will regularize our
solutions by considering strings of a finite length L.

The finite length IR regularization is physically motivated because it cor-
responds to considering the string in the confinement setup. Namely, we
assume that finite length string is stretched between infinitely heavy trial
monopole and antimonopole at separation L. As we already mentioned the
problem with infinite string arises because at large r outside the string core
scalar fields satisfy free equations of motion and therefore, have logarithmic
behavior in two dimensions. Now for the case of the finite length string scalar
fields also have logarithmic tails for Rc � r � L. However, as r becomes of
order of the string length L the problem becomes three-dimensional rather
then two-dimensional, see [8] for details. In three dimensions solution of the
free equation of motion for the scalar field behaves as 1/|xn| (rather then
log r), where xn, n = 1, 2, 3 are the coordinates in the three-dimensional
space. These solutions can reach their boundary values at infinity dictated
by (14). Thus, 1/L plays the role of the IR regularization for the logarithmic
behavior of scalar fields at large r. In other words the finite length L along
the string axis translates into the IR regularization in the plane orthogonal
to the string axis.

The total tension of the finite-L solutions will be given by

T = TBPS + Ttail , (16)
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where Ttail denotes the contribution to the tension from the long-range tail.
It is given by

Ttail = ξ

∫
d2x cosh 2ρ

[
(∂iρ)2 + (∂iβ)2 tanh2 2ρ

]
, (17)

where we assume that the string is a static solution aligned along the x3

axis, so the string profile functions in (17) depend only on coordinates xi

with i = 1, 2, if r � L.
Although the tail profile function were not found in [9] it was shown that

the tail tension is determined by the universal formula depending on the
length l of the geodesic line from the given vacuum to the base of the Higgs
branch. In our model this length reduces to

l =

∫ ρ0

0

√
cosh(2ρ) dρ , (18)

where the upper limit is the position of the vacuum on the Higgs branch, see
(14). The final result for strings of length L (in the limit L� Rc) is

Ttail ≈
2πξ

log
(
g
√
ξL
) l2 , (19)

see [9] for a detailed derivation. Hence, the expression for the total tension
(16) is

T

2πξ
≈ 1 +

1

log
(
g
√
ξL
) l2 . (20)

Formation of such strings leads to confinement of monopoles with the con-
fining potential (2). It is not strictly linear in L.

Another IR regularization more suitable for numerical calculations is to
lift the Higgs branch giving massless fields a small mass without breaking
N = 1 supersymmetry. One particular way to do this is considered in [9].
One can start from N = 2 QED and deform it with the mass term µ for
the neutral chiral multiplet. This term breaks N = 2 supersymmetry down
to N = 1 and at large masses µ the deformed theory flows to N = 1 QED.
Integrating out the massive neutral multiplet one obtains the scalar potential

V (q, q̃) =
g2

8

(
|q|2 − |q̃|2 − ξ

)2
+

1

4µ2
(|q|2 + |q̃|2)

∣∣∣qq̃ − η

2

∣∣∣2 , (21)
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where η is a new parameter which we take to be real, see [9, 10] for detailes.
We will consider this potential as an IR regularization of the one in (5). The
Higgs branch is now lifted and we have an isolated vacuum with the vacuum
value ρ0 given by

sinh 2ρ0 =
η

ξ
(22)

The light scalar fields ρ and β in the low-energy action (12) are no longer
massless. They acquire the mass

mL =
v2

2µ
, (23)

where v is the VEV given by (8). In terms of parameters of the potential
(21) v can be expressed as

v4 = ξ2 + η2. (24)

The relation between the two IR regularizations introduced above is

mL ∼
1

L
, (25)

and the result (20) for the string tension reads

T

2πξ
≈ 1 +

l2

log
(
g
√
ξ/mL

) . (26)

We use the latter IR regularization for the numerical calculations below.
This regularization allows us to consider infinitely long string and look for
solutions for the string profile functions in (x1, x2) plane.

3 Numerical solutions

In this section we will construct full numerical solutions describing strings
at a generic point on the Higgs branch and, with these solutions in hand,
we can directly verify the validity of the Evlampiev-Yung analytic formula
(26). Our numerical solver involves a second order central finite difference
procedure with accuracy O(10−4). From here on we set

g = 1 .
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It is convenient to define dimensionless quantities as

ρ =
√
ξr , µ̃2 =

µ2

ξ
, η̃ =

η

ξ
. (27)

Then the energy minimization equations, after using the ansatz

A0 = Ar = 0 , Aθ = 2(1− f(ρ)) ,

q =
√
ξq(ρ)eiθ ,

q̃ =
√
ξq̃(ρ)e−iθ , (28)

reduce to

q′′ +
q′

ρ
=

1

ρ2
qf 2 +

1

4

(
q2 − q̃2 − 1

)
q

+
1

4µ̃2

(
qq̃ − η̃

2

)[
q

(
qq̃ − η̃

2

)
+ q̃

(
q2 + q̃2

)]
,

q̃′′ +
q̃′

ρ
=

1

ρ2
q̃f 2 − 1

4

(
q2 − q̃2 − 1

)
q̃

+
1

4µ̃2

(
qq̃ − η̃

2

)[
q̃

(
qq̃ − η̃

2

)
+ q

(
q2 + q̃2

)]
,

f ′′ =
1

2
f
(
q2 + q̃2

)
+
f ′

ρ
, (29)

where prime denotes differentiation with respect to ρ and θ is the polar angle
in (x1, x2) plane.

For large regularization parameter µ̃, far from the base of the Higgs
branch, where f = 0, the solution is basically determined by the Higgs
constraint

q2 − q̃2 − 1 = 0 . (30)

Then, as is easily seen from Eqs. (29), the fields q and q̃ obey the free
equations of motion,

(ρq ′)′ = 0, (ρq̃ ′)′ = 0 , (31)

with the standard logarithmic solutions. Correspondingly, the tension of the
flux tube will be dominated by this large logarithmic tail. Numerically the
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ρ0 l

0.2 0.20
0.4 0.42
0.6 0.67
0.8 0.96
1.0 1.32

(a)

mL/
√
ξ log(

√
ξ/mL) µ̃0.2 µ̃0.3

0.05 2.99 10.81 11.85
0.033 3.40 16.22 17.78
0.025 3.69 21.62 23.71
0.020 3.91 27.03 29.64
0.017 4.09 32.43 35.56

(b)

Figure 1: Numerical values of (a) l and (b) log(
√
ξ/mL) for characteristic param-

eters used in the numerical solutions. We put g = 1. µ̃0.2 and µ̃0.3 show the values
of µ̃ at ρ0 = 0.2 and 0.3 for the values of mL used in the table.

strategy is the following: the IR regularization is implemented as a mass
regularization on the scalar fields, as explained in section 2. Then, once we
fix mL (making sure that mL << mγ) we impose boundary conditions on
the fields at a fixed radial distance R >> 1/mL. In this scheme, in which
we fix R we must ensure that ρ0 is sufficiently small so that the BPS core
approximation holds. If ρ0 becomes too large then the q̃ field will develop in
the core and spoil the theoretical approximation.

We are interested in solutions of (29) with the following boundary condi-
tions:

q(0) = q̃(0) = 0 ,

q(R) = cosh(ρ0), q̃(R) = sinh(ρ0) ,

f(0) = 1, f(R) = 0 . (32)

Figure 1 includes reference tables for the numerical values of the param-
eters l and log(

√
ξ/mL) for characteristic values of ρ0 and mL used below.

Solutions for the field profiles are shown in Figures 2 and 3 for varying values
of mL and ρ0. We fix

√
ξR = 120. Some important expected features can be

seen in these plots: there is a BPS core formed by the photon field and the
field q; in this domain the field q̃ almost vanishes; outside the BPS core the
gauge field vanishes, and the massless scalar fields exhibit large logarithmic
tails.

Figures 4 and 5 show the results of the numerical analysis of the tension
formula (20). As seen from the plots, at larger values of the parameters we
find that for some particular combinations the accuracy of our procedure is
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not enough to find a solution. These points are excluded from the plots. The
results involve the difference between the numerical result for the tension and
its BPS part coming from the core,

∆T

ξ
=
T − TBPS

2πξ
=

1

log
(
g
√
ξ/mL

) l2 . (33)

In particular, Fig. 4 shows a plot of
√

∆T/ξ in which we fix mL and vary l.
We observe a number of important features.

First, the numerical and theoretical results coincide (within numerical ac-
curacy) at ρ0 = 0. This is expected, of course, since at this point we are at the
base of the Higgs branch and the tension coincides with the BPS result. As
we move along the Higgs branch by increasing ρ0 we see an increasing dis-
agreement between the numerical solution and the analytic (approximate)
theoretical prediction. Once again, this is expected as in this domain one
picks up large l effects. Second, we observe that the numerical solution for√

∆T/ξ is a linear function of l, in perfect agreement with the theoretical ex-
pression. A slight deviation in the slope can be explained by the logarithmic
accuracy in the denominator in the theoretical prediction, the log

(√
ξ/mL

)
term in the denominator can be shifted by a constant non logarithmic term
of the order of unity. In fact, this conjecture is supported by the subsequent
plots.

Figure 5 shows similar plots in which we fix ρ0 in order to verify the loga-
rithmic dependence on mL. Once again, by observing the linear dependence
in the plot, we verify that the logarithm dependence up to small values of
mL. Given that the theoretical approximation is for large values of logarithm
in (26) it is not surprising to find a better agreement as mL decreases (and
thus 1/ log(

√
ξ/mL) decreases). Quantitatively we find that at the small-

est value of mL the agreement between the theoretical Ttheir and numerical
Tnumber results, respectively is

Tnumer − Ttheor

Tnumer

× 100 ≈ 10%, (34)

(this value holds for both values of ρ0 investigated). The agreement is quite
satisfactory given the magnitude of the parameters used at this point (see
Fig. 1). Adding a non-logarithmic term in the denominator of the theoretical
expression and fitting it we could have dramatically improved the agreement
(by two orders of magnitude!).
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Indeed, since Eq. (20) is an approximation with logarithmic accuracy we
propose a simple modification of this formula which we can test numerically.
Let us replace (20) by

T

2πξ
≈ 1 +

1

log
(√

ξ/mL

)
− c

l2 , (35)

where c is a constant to be fitted numerically. We find that, for ρ0 = 0.2 and
R = 120

Tnumer − Ttheor

T cnumer

× 100 ≈ 0.4% , (36)

provided that
c ≈ 0.55 .

In other words, the value of the non-logarithmic constant in (35) turns out
to be less than one, a complete success. For values of ρ0 greater than those
used in the plots we find that one cannot ignore the effects of the q̃ field in
the core.

4 Conclusions

In this paper we analyzed magnetic flux tubes (strings) on the Higgs branch
in supersymmetric QED. In generic vacua on the Higgs branches these strings
were previously shown to develop long-range tails due to massless fields ex-
isting on the Higgs branch. A natural infrared regularization for the above
tails can be provided by a finite string length L. Numerically a small super-
symmetry preserving mass regularization was used, the two being related by
mL ∼ 1/L.

We performed a detailed numerical analysis of flux tube solutions at
generic points on the Higgs branch in N = 1 SQED. We found numerical
solutions for the field profile functions defining such strings that (i) contain
a BPS core and (ii) besides the core contain long logarithmic tails due to
the massless scalar fields characteristic to the Higgs branch. Using these
solutions we then analyzed the Evlampiev-Yung analytic formula (26) (pre-
senting the small-mL geodesic approximation for the tail contribution to the
string tension) comparing it to numerical results . We found good agreement
for the predicted functional dependence on mL and l.
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Figure 2: Numerical solutions for field profile functions varying mL, the curve
labels in (a) also apply to plot (b). In (a) we use ρ0 = 0.2 and in (b) we pick
ρ0 = 0.3. The values of mL used are reported in Figure 1.
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Figure 3: Field profiles varying ρ0 at mL = 0.017. The plots correspond to
ρ0 = 0.1, 0.3, 0.4, 0.7.
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Figure 4: Difference between numerical and theoretical tensions ∆T/ξ for varying
l. Solid line corresponds to numerical result, dashed line to theoretical. The values
of ρ0 used are 0.1 to 0.7 in steps of 0.1.
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Figure 5: Difference between numerical and theoretical tensions ∆T for varying
mL. Solid line corresponds to numerical result, dashed line to theoretical. (a)
ρ0 = 0.2. (b) ρ0 = 0.3. The values of mL used are reported in Figure 1, plot
(a) excludes the point in which our numerical procedure could not determine a
solution.
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