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Bât. 210, Université Paris-Sud 11, 91405 Orsay Cedex, France

Roberto Balbinot‡
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I. INTRODUCTION

A major prediction of quantum field theory in curved space is that when a black hole, BH, forms

from the gravitational collapse of a star, particle production occurs and the BH evaporates [1]. If

backreaction effects are neglected then, after a transient which depends on the details of the

collapse, the emission rapidly becomes stationary, is nearly thermal, and depends only on the

geometry exterior to the star and to the event horizon of the BH. The temperature of the radiation

is proportional to the surface gravity κ of the event horizon. The fact that this radiation depends

only on the parameters (conserved charges) characterizing the spacetime exterior to the BH is a

manifestation of the BH no-hair theorem (see for example [2]).

The spectrum of the radiated particles is not exactly thermal because the modes of the quantum

fields propagating from the horizon region to infinity experience the presence of an effective poten-

tial that causes partial reflection back to the horizon. So, the number of particles which propagate

to infinity1 for each mode (in units where kB = ~ = c = 1) is

N (i)
ω =

Γ(i)(ω)

e
2πω
κ − 1

. (1.1)

Here κ is the surface gravity of the event horizon, ω is the frequency of the mode, and i denotes the

other quantum numbers needed to specify the mode. The factor Γ(i)(ω) is the so called ‘gray-body

factor’ which accounts for the backscattering mentioned above. In the literature Γ(i)(ω) is usually

computed analytically by the method of asymptotic matching [3–7]. Since the effective potential

vanishes at the horizon and at infinity (or the cosmological horizon) it is possible to write the

solutions to the mode equation at these locations in terms of plane waves. These are then matched

in the intermediate region. Particular interest lies in the low frequency behavior of Γ(i)(ω) because

the infrared divergence coming from the Planckian factor in (1.1) can be avoided if Γ(i)(ω) vanishes

in the ω → 0 limit. If Γ(i)(ω) approaches a nonzero constant in this limit then an infinite number

of ‘soft’ particles will be emitted.

For asymptotically flat spherically symmetric BHs one has for the ` = 0 mode, which is the

dominant one for BH radiation, a universal behavior at low frequency Γ(`=0)(ω) ∼ AHω2 where AH

is the area of the event horizon [8, 9]. However for BHs in de Sitter space one has Γ(`=0)(ω) ∼ const.

in the low frequency limit for the massless minimally coupled scalar field [10, 11].2 A nonvanishing

Γ(i)(ω) in the ω → 0 limit was also found recently [14] for a class of Bose-Einstein condensate,

1 In the case of a black hole immersed in de Sitter space this is the number of particles that propagate to the

cosmological horizon. See Sec. V B for more details.
2 For nonminimal coupling to the scalar curvature or ` 6= 0 one recovers even for these BHs a vanishing gray-body

factor (see for example [12] and [13]).
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BEC, acoustic BHs which have effectively have one spatial dimension. It is important to stress that

the infrared divergences in the number of created particles found for the Schwarzschild de Sitter

and BEC cases are weak enough that there is no infrared divergence in the combined energies of

these particles.

A possible problem with the asymptotic matching method described above and used in [3–

7, 14] is that the near-horizon and zero frequency limits do not commute for solutions to the

mode equation. The same is true for the zero frequency and infinite distance limits (or in the

Schwarzschild-de Sitter case, the zero frequency limit and the limit in which the cosmological

horizon is approached).

In this paper, we provide rigorous derivations of the zero frequency limits for the scattering

coefficients and gray-body factors for the mode functions of the massless minimally coupled scalar

field in spacetimes containing spherically symmetric black holes and for BEC acoustic black holes.

For spherically symmetric black holes, we restrict our attention to modes with zero angular mo-

mentum, i.e. the s-wave sector. For BEC acoustic black holes we assume that the system can be

approximated as having just one space dimension and thus work in the longitudinal sector. We

also only consider cases in which the velocity v of the condensate is constant and the sound speed

c varies as a function of position. Qualitatively similar results can be obtained for more general

cases in which both c and v vary with position.

To compute the scattering coefficients and gray-body factors we have developed a general ana-

lytic method, based on a linear Volterra integral equation of the second kind [15], for solving the

mode equation. In all cases, we compute the exact (to leading order in ω) scattering coefficients in

the exterior of the black hole and relate them to the horizon boundary values of the appropriate

exact solutions (and their first derivatives) of the zero frequency mode equation.

We use the results to investigate infrared divergences in the symmetric two-point function for

the massless minimally coupled scalar field in the Unruh state [16] in both the BH and BEC cases.

To our knowledge the only prior work in this area is in [14] where it was shown that an infrared

divergence occurs for the two-point function in the BEC case.3 We find that the two-point function

is infrared finite if the gray body factor vanishes in the zero frequency limit. However, it is infrared

divergent if the gray body factor does not vanish in the zero frequency limit. From the relationship

between the two-point function and the point-split stress-energy tensor for a spherically symmetric

black hole or the density-density correlation function for a BEC acoustic black hole, one would

3 There were also results announced in [14] for the two-point functions for spherically symmetric black holes, for the

point-split stress-energy tensor, and the density-density correlation function, but the proofs of these results are

given here.
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guess that infrared divergences in the two-point function would lead to infrared divergences in these

quantities as well. We show that this is not the case and that there are no infrared divergences

in either the point-split stress-energy tensor for the massless minimally coupled scalar field in

Schwarzschild-de Sitter spacetime or the density-density correlation function for the class of BEC

acoustic black holes that we consider.

In Sec. II we find two formal linearly independent solutions to the mode equation in terms

of Volterra integral equations of the second kind. We then find a second set of formal solutions

to the spatial part of the mode equation which are useful near the event horizon. In Sec. III

we use these solutions to derive formal expressions for the scattering coefficients and gray-body

factors at all frequencies. In Sec. IV it is shown that in the low frequency limit the scattering

coefficients and gray-body factor can be written in terms of exact solutions to the zero frequency

mode equation which are evaluated in the limit that the event horizon is approached. The condition

which determines whether the gray-body factor vanishes or approaches a nonzero constant in the

zero frequency limit is given. In Sec. V specific expressions for the low frequency limits of the

scattering coefficients and gray-body factor are derived for Schwarzschild, Reissner-Nordström, and

Schwarzschild-de Sitter spacetimes as well as for the class of BEC acoustic BHs we are considering.

In Sec. VI the question of infrared divergences in the two-point function, the point-split stress-

energy tensor, and the density-density correlation function are investigated. A summary and

discussion of our results is given in Sec. VII. In Appendix A some of the details of the derivations

in Sec. IV are given. In Appendix B exact (in ω) near-horizon solutions to the mode equation are

constructed.

II. VOLTERRA INTEGRAL EQUATION

The Klein-Gordon equation for a massless minimally coupled scalar field

1√
−g

∂µ
(√
−g∂µ φ

)
= 0 (2.1)

arises both for a quantum field in curved space and as a description of the quantized phase fluc-

tuations (phonons) of a BEC in the hydrodynamic limit (details are given, e.g., in [17]). For both

an analog black hole and a gravitational black hole, the class of metrics we shall be interested in

can be written in the form

ds2 = −f(x)dt2 +
dx2

f(x)
+ C2

⊥(x)dx2
⊥ , (2.2)
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where f = 0 (and x = 0) at the horizon, and we have explicitly separated the (1+1) and ‘transverse’

parts. For a spherically symmetric black hole

C2
⊥(x)dx2

⊥ = (x+ rH)2dΩ2 , (2.3)

with rH the radius of the event horizon. The usual radial coordinate is r = x + rH and we use

units such that ~ = c = G = kB = 1. For a BEC it can be shown that the original acoustic metric

can be mapped, via a coordinate transformation, to the form (2.2) with

C2
⊥(x)dx2

⊥ =
n

mc
(dy2 + dz2) , (2.4)

where n is the number density of particles in the condensate and m is the mass of an individual

particle. Here we consider for simplicity only models in which the BEC moves with constant

velocity v < 0 in the x direction, n is a constant, and the sound speed c varies with x (see e. g.

[17]), but our analysis can be easily extended to models in which c, v and n vary with x. In what

follows we ignore the irrelevant constants n and m which is equivalent to choosing units such that

n/m = 1. Further in the gravitational case we consider only the spherically symmetric l = 0 modes

and in the BEC case only the longitudinal ones. Thus in both cases φ = φ(t, x). For stationary

solutions

φ(x, t) = φω(x)e−iωt , (2.5)

and Eq. (2.1) becomes

1

C2
⊥(x)

d

dx

[
C2
⊥(x)f(x)

d

dx

]
φω(x) +

ω2

f(x)
φω(x) = 0 . (2.6)

A useful alternative form for the mode equation can be derived by making the changes of

variable

φ(t, x) =
χ(t, x)

C⊥(x)
, (2.7a)

x∗ ≡
∫ x dx̄

f(x̄)
, (2.7b)

where x∗ is the tortoise coordinate. To determine the behavior of x∗ near the horizon note that

for the cases we consider it is possible to expand the metric coefficient f(x) in (2.2) in powers of x

such that

f(x) =

∞∑
i=1

fix
i . (2.8)
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The definition of the surface gravity is

κ =
1

2

df(x)

dx

∣∣∣∣
x=0

, (2.9)

thus near the horizon

f = 2κx+O(x2) . (2.10)

Substituting into (2.7b) it is easy to see that near the horizon x∗ → −∞ and more precisely that

x = x0e
2κx∗ +O(e4κx∗) , (2.11)

with x0 an arbitrary positive constant. Far from the horizon, if f → const. as x∗ → +∞ then

x∗ ∼ x. If instead there is a cosmological horizon then x∗ → +∞ at the cosmological horizon.

Substituting (2.7) into (2.1) gives

[
−∂2

t + ∂2
x∗ − Veff

]
χ(t, x) = 0 . (2.12)

Here we have introduced the effective potential

Veff =
1

C⊥

d2C⊥
d(x∗)2

=
1

C⊥
f
d

dx

(
f
dC⊥
dx

)
. (2.13)

For stationary solutions χ(x, t) = χωe
−iωt, Eq. (2.12) takes the Schrödinger-like form[
d2

d(x∗)2
+ ω2 − Veff

]
χω = 0 . (2.14)

For the cases we consider Veff vanishes at x∗ = ±∞. Thus the general solution to Eq. (2.14)

will be a linear combination of two solutions χcω and χsω with the asymptotic behaviors

χcω → cosωx∗ , χsω → sinωx∗ , as x∗ →∞ . (2.15)

Formal solutions for χcω and χsω can be obtained in terms of the following linear Volterra integral

equations of the second kind:

χcω(x∗) = cosωx∗ − 1

ω

∫ ∞
x∗

sin[ω(x∗ − y∗)]Veff (y∗)χcω(y∗) , (2.16a)

χsω(x∗) = sinωx∗ − 1

ω

∫ ∞
x∗

sin[ω(x∗ − y∗)]Veff (y∗)χsω(y∗) . (2.16b)

For all x∗ these solutions can also be written in the general form

χcω(x∗) = A(ω, x∗) cosωx∗ +B(ω, x∗) sinωx∗ ,

χsω(x∗) = C(ω, x∗) cosωx∗ +D(ω, x∗) sinωx∗ , (2.17)
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with

A(ω, x∗) = 1 +
1

ω

∫ ∞
x∗

dy∗ sinωy∗ Veff(y∗)χcω(y∗) ,

B(ω, x∗) = − 1

ω

∫ ∞
x∗

dy∗ cosωy∗ Veff(y∗)χcω(y∗) ,

C(ω, x∗) =
1

ω

∫ ∞
x∗

dy∗ sinωy∗ Veff(y∗)χsω(y∗) ,

D(ω, x∗) = 1− 1

ω

∫ ∞
x∗

dy∗ cosωy∗ Veff(y∗)χsω(y∗) . (2.18)

We note that

dχcw
dx∗

= −A(ω, x∗)ω sinωx∗ +B(ω, x∗)ω cosωx∗ ,

dχsw
dx∗

= −C(ω, x∗)ω sinωx∗ +D(ω, x∗)ω cosωx∗ , (2.19)

and that the Wronskian

W = χ∗ω
dχω
dx∗
− dχ∗ω
dx∗

χω , (2.20)

is a constant. For χω = χcω + iχsω it can easily be seen by evaluating (2.20) in the large x∗ limit,

that W = 2iω and thus that

1

ω

[
χcω
dχsω
dx∗
− χsω

dχcω
dx∗

]
= 1 . (2.21)

Using Eqs. (2.17) and (2.19) one finds

A(ω, x∗)D(ω, x∗)−B(ω, x∗)C(ω, x∗) = 1 . (2.22)

III. SCATTERING COEFFICIENTS AND GREY-BODY FACTORS

In the horizon limit, x∗ → −∞, the solutions (2.17) have the asymptotic behaviors

χcω → Aω cosωx∗ +Bω sinωx∗ ,

χsω → Cω cosωx∗ +Dω sinωx∗ , (3.1)

with

Aω ≡ A(ω,−∞) = 1 +
1

ω

∫ ∞
−∞

dy∗ sinωy∗ Veff(y∗)χcω(y∗) ,

Bω ≡ B(ω,−∞) = − 1

ω

∫ ∞
−∞

dy∗ cosωy∗ Veff(y∗)χcω(y∗) ,

Cω ≡ C(ω,−∞) =
1

ω

∫ ∞
−∞

dy∗ sinωy∗ Veff(y∗)χsω(y∗) ,

Dω ≡ D(ω,−∞) = 1− 1

ω

∫ ∞
−∞

dy∗ cosωy∗ Veff(y∗)χsω(y∗) . (3.2)
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We shall now relate the coefficients (3.2) to the scattering coefficients in the exterior of the black

hole (the f > 0 region in (2.2)) [17]. Because of the independence of Hawking radiation from the

details of the collapse producing the BH, when discussing this emission one can consider just the

spacetime exterior to the star, mimicking the effects of the collapse by giving appropriate boundary

conditions on the past horizon of the analytically extended exterior manifold. A complete basis

for the solutions of the mode equation (2.12) is formed by two sets of modes, χI and χH , shown

in Figs. 1, 2 [18]. The modes χI originate at past null infinity I− (x∗ = −∞) and because of the

IïH

I

ï

H ++

FIG. 1. Modes χI , starting at past null infinity (I−), transmitted to the future horizon (H+) and reflected

to future null infinity (I+).

ï
H

I

ï

H ++

I

FIG. 2. Modes χH , starting at the past horizon (H−), transmitted to future null infinity (I+) and reflected

to the future horizon (H+).

potential term in Eq. (2.14) are partially transmitted towards the future horizon H+ (x∗ = +∞)

and partially reflected to future null infinity I+ ( x∗ = +∞). The modes χH originate on the past

horizon H− ( x∗ = −∞). They are partially transmitted to future null infinity I+, and partially
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reflected back to the future horizon H+. More specifically

χI(t, x) =
N√
ω
e−iωtχIω(x) , (3.3a)

χH(t, x) =
N√
ω
e−iωtχHω (x) , (3.3b)

with χIω and χHω solutions to Eq. (2.14). For a 1D BEC acoustic black hole N = 1√
4π

and for a

spherically symmetric black hole N = 1
4π .

It is useful to write χIω and χHω in terms of solutions to the mode equation (2.14) which corre-

spond to outgoing (eiωx
∗
) and incoming (e−iωx

∗
) waves at x∗ =∞. These solutions are

χ∞r = χcω + iχsω , χ∞l = χcω − iχsω . (3.4)

They have both right and left moving parts near the horizon (x∗ → −∞) so that

χ∞r → Ere
iωx∗ + Fre

−iωx∗ ,

χ∞l → Ele
iωx∗ + Fle

−iωx∗ , (3.5)

where, using (3.1),

Er =
1

2
[Aω +Dω − i(Bω − Cω)] ,

Fr =
1

2
[Aω −Dω + i(Bω + Cω)] ,

El =
1

2
[Aω −Dω − i(Bω + Cω)] ,

Fl =
1

2
[Aω +Dω + i(Bω − Cω)] . (3.6)

To construct χIω we consider a mode corresponding to an initial unit amplitude left-moving

wave at x∗ → +∞ which gets partially reflected back to x∗ → +∞ and partially transmitted to

the horizon (x∗ → −∞). Then

χIω = χ∞l +RIχ
∞
r → e−iωx

∗
+RIe

iωx∗ , as x∗ → +∞ , . (3.7)

Near the horizon this solution has the behavior

χIω → TIe
−iwx∗ . (3.8)

We find, from (3.5) and (3.6) that

RI = −El
Er

= −(Aω −Dω − i(Bω + Cω))

(Aω +Dω − i(Bω − Cω))
,

TI = Fl −
ElFr
Er

=
1

Er
=

2

(Aω +Dω − i(Bω − Cω))
, (3.9)
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where in the last equation we have used the Wronskian condition (2.22).

To construct χHω we start with a mode corresponding to a unit amplitude right-moving wave

which originates at the horizon (x∗ → −∞) and is partially reflected back to x∗ → −∞ and

partially transmitted to x∗ → +∞. Thus

χHω = THχ
∞
r → THe

iwx∗ as x∗ → +∞ . (3.10)

Near the horizon this solution has the behavior

χHω → eiωx
∗

+RHe
−iωx∗ . (3.11)

Thus we find, from (3.5) and (3.6) that

RH =
Fr
Er

=
(Aω −Dω + i(Bω + Cω))

(Aω +Dω − i(Bω − Cω))
,

TH =
1

Er
=

2

(Aω +Dω − i(Bω − Cω))
. (3.12)

Finally, the gray-body factor is defined as

Γ ≡ |TH |2 (3.13)

and represents the probability that a mode which originates on the past horizon H− and has unit

norm reaches I+ ( x∗ = +∞). It appears in Eq. (1.1) where it modifies the exact black-body

spectrum for the number of particles which reach I+ at a given frequency ω.

IV. LOW-FREQUENCY LIMIT

In this section we consider the low-frequency limits of the expressions derived in the previous

subsections. Therefore we need to analyze, the behaviors of the integrals (3.2) for small values of

ω. The main difficulty with evaluating these integrals in the limit ω → 0 is that this limit does

not commute with either of the limits x∗ → ±∞ and it is not possible to compute the integrals

analytically for arbitrary values of ω. However, one can break the integrals into three parts so that∫ ∞
−∞

dy∗ →
∫ −Λ

−∞
dy∗ +

∫ Λ

−Λ
dy∗ +

∫ ∞
Λ

dy∗ , (4.1)

and take the limits ω → 0 and Λ→∞ in such a way that ωΛ� 1. Then expansions can be used

near the horizon and at large y∗ for the potential Veff in the first and third integrals which make it

possible to compute these integrals analytically. It is shown in Appendix A that when this is done

these integrals vanish for all values of ω including ω = 0 provided Veff approaches zero fast enough
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at the horizon and at infinity. It is also shown in Appendix A that for the middle integral we can

use Eq. (2.14) to obtain the relation Veff(y∗)χω(y∗) = [∂2
y∗ + ω2]χw(y∗), integrate twice by parts,

and obtain

Aω = 1 + lim
Λ→∞

[(
sin(ωy∗)

ω

d

dy∗
− cos(ωy∗)

)
χcω(y∗)

]Λ

−Λ

,

Bω = − lim
Λ→∞

[(
cos(ωy∗)

ω

d

dy∗
+ sin(ωy∗)

)
χcω(y∗)

]Λ

−Λ

,

Cω = lim
Λ→∞

[(
sin(ωy∗)

ω

d

dy∗
− cos(ωy∗)

)
χsω(y∗)

]Λ

−Λ

,

Dω = 1− lim
Λ→∞

[(
cos(ωy∗)

ω

d

dy∗
+ sin(ωy∗)

)
χsω(y∗)

]Λ

−Λ

. (4.2)

Using the asymptotic behaviors (2.15) it is easy to show that in the limit Λ → ∞ these co-

efficients only depend on the parts of the above expressions which are evaluated at y∗ = −Λ.

Thus

Aω = lim
Λ→∞

[(
cos(ωy∗)− sin(ωy∗)

ω

d

dy∗

)
χcω(y∗)

]
y∗=−Λ

,

Bω = lim
Λ→∞

[(
cos(ωy∗)

ω

d

dy∗
+ sin(ωy∗)

)
χcω(y∗)

]
y∗=−Λ

,

Cω = lim
Λ→∞

[(
cos(ωy∗)− sin(ωy∗)

ω

d

dy∗

)
χsω(y∗)

]
y∗=−Λ

,

Dω = lim
Λ→∞

[(
cos(ωy∗)

ω

d

dy∗
+ sin(ωy∗)

)
χsω(y∗)

]
y∗=−Λ

. (4.3)

Recalling that we take the ω → 0 and Λ → ∞ limits in such a way that ωΛ � 1, we define the

following constants:

A ≡ A0 = lim
ω→0

Λ→∞

[(
cos(ωy∗)− sin(ωy∗)

ω

d

dy∗

)
χcω(y∗)

]
y∗=−Λ

,

B ≡ lim
ω→0

(ωBω) = lim
ω→0

Λ→∞

[(
cos(ωy∗)

ω

d

dy∗
+ sin(ωy∗)

)
ωχcω(y∗)

]
y∗=−Λ

,

C ≡ lim
ω→0

(ω−1Cω) = lim
ω→0

Λ→∞

[(
cos(ωy∗)− sin(ωy∗)

ω

d

dy∗

)
χsω(y∗)

ω

]
y∗=−Λ

,

D ≡ D0 = lim
ω→0

Λ→∞

[(
cos(ωy∗)

ω

d

dy∗
+ sin(ωy∗)

)
χsω(y∗)

]
y∗=−Λ

. (4.4)

Using the Wronskian condition (2.21) it is easy to show that

A D −BC = 1 . (4.5)
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We find4 that for small ω

Aω = A +O(ω2) ,

Bω =
B

ω
+O(ω) ,

Cω = ωC +O(ω3) ,

Dω = D +O(ω2) . (4.6)

To evaluate the expressions in (4.4) we first note that since ωΛ� 1

A = lim
ω→0

Λ→∞

[(
1− y∗ d

dy∗

)
χcω(y∗)

]
y∗=−Λ

,

B = lim
ω→0

Λ→∞

[(
d

dy∗

)
χcω(y∗)

]
y∗=−Λ

,

C = lim
ω→0

Λ→∞

[(
1− y∗ d

dy∗

)
χsω(y∗)

ω

]
y∗=−Λ

,

D = lim
ω→0

Λ→∞

[
d

dy∗
χsω(y∗)

ω

]
y∗=−Λ

. (4.7)

Next we show that both χcω(x∗) and χsω(x∗)
ω and their first derivatives can be evaluated in the limit

ω → 0 with ω|x∗| � 1 by identifying them with solutions to the mode equation when ω = 0.

To do so we consider small values of ω and large values of x∗ with two constraints. One is that

ω2 � Veff(x∗) which means that to leading order χcω = cos(ωx∗) and χsω = sin(ωx∗). The second

is that 0 < ωx∗ � 1 which means that to leading order χcω = 1 and χsω = ωx∗. Examination of

the large x∗ behaviors given in Appendix A for Veff in the cases we are interested in shows that

it is not hard to find values of ω and x∗ that satisfy these two conditions. We want to match χcω

and χsω to solutions to the mode equation (2.14) with ω = 0. We will denote the solution that χcω

matches to as χ
(1)
0 . The situation for χsω is more subtle because χsω ≈ ωx∗ and thus vanishes in

the limit ω → 0. However, χsω
ω ≈ x∗ does not vanish in this limit. Further this quantity obeys the

same mode equation as χsω and in the small ω limit this is just the zero frequency mode equation.

Therefore we can match the large x∗ behavior of χsω
ω with the corresponding behavior of a solution

to the zero frequency mode equation which we will denote by χ
(2)
0 . Thus, in the limit x∗ → ∞

these solutions have the behaviors

χ
(1)
0 (x∗)→ 1 , (4.8a)

χ
(2)
0 (x∗)→ x∗ . (4.8b)

4 The relation for Aω is proved in Appendix A. The proofs of the other relations are straight-forward generalizations

of that proof.
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To finish the matching we need a condition on the derivatives of these solutions. This can be

obtained from the Wronskian condition (2.21) satisfied by χcω and χsω. The corresponding condition

for χ
(1,2)
0 is

χ
(1)
0

dχ
(2)
0

dx∗
− χ(2)

0

dχ
(1)
0

dx∗
= 1 . (4.9)

This fixes the asymptotic behaviors of their derivatives. Then we can write for ω → 0 with

ω|x∗| � 1

lim
ω→0

χcω = χ
(1)
0

lim
ω→0

χsω
ω

= χ
(2)
0 . (4.10)

For future reference we note that therefore

lim
ω→0

χ∞r = χ
(1)
0 + iωχ

(2)
0

lim
ω→0

χ∞` = χ(1) − iωχ(2)
0 . (4.11)

Replacing χcω and χsω/ω with the corresponding solutions χ
(1,2)
0 in Eq. (4.7) gives

A =

[(
1− x∗ d

dx∗

)
χ

(1)
0 (x∗)

]
hor

,

B =

[(
d

dx∗

)
χ

(1)
0 (x∗)

]
hor

,

C =

[(
1− x∗ d

dx∗

)
χ

(2)
0 (x∗)

]
hor

,

D =

[
d

dx∗
χ

(2)
0 (x∗)

]
hor

, (4.12)

where the subscript “hor” means that the quantities inside the square brackets are to be evaluated

on the horizon. Note that the Wronskian condition (4.9) implies that

A D −BC = 1 . (4.13)

Substituting (4.3) into (3.9) and (3.12) and using (4.6) one can see that at low frequency the

coefficient B plays a crucial role. If B 6= 0 then

RI , RH = −1 +O(ω), TI = TH =
2iω

B
+O(ω2), (4.14)

while if B = 0 we have the very different behaviors

RI =
D −A

A + D
+O(ω), RH =

A −D

A + D
+O(ω), TI = TH =

2

A + D
+O(ω) . (4.15)
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Similarly the gray-body factor (3.13) vanishes at low-frequency as

Γ→ 4ω2

B2
(4.16)

when B 6= 0, while it approaches the constant value

Γ =
4

(A + D)2
(4.17)

when B = 0.

From Eq. (4.12) it is clear that B = 0 if dχ
(1)
0 /dx∗ vanishes at the horizon. The mode equa-

tion (2.14) can easily be solved exactly when ω = 0 by going back to Eq. (2.6), setting ω = 0 and

using the relation φ0 = χ0/C⊥. The general solution is

χ0(x) = aC⊥(x) + bC⊥(x)

∫ x dx̄

C2
⊥(x̄) f(x̄)

, (4.18)

with a and b arbitrary constants. Then

dχ0

dx∗
=

1

C⊥

dC⊥
dx

fχ0 +
b

C⊥
. (4.19)

Since for the models we consider, f vanishes at the horizon and C⊥ and its first derivative are

nonzero constants there, it is clear that dχ
(1)
0 /dx∗ can only vanish at the horizon if b = 0. However,

χ
(1)
0 is specified by the condition (4.8a) which can only be satisfied with b = 0 if C⊥ approaches a

constant in the limit x∗ → ∞. As shown below this occurs for Schwarzschild-de Sitter spacetime

and for a 1D BEC acoustic black hole. It does not occur for any spherically symmetric black hole

spacetime that is asymptotically flat.

In cases where the solution χ
(1)
0 has b = 0, it is necessary that Veff changes sign at some finite

value of x∗. To see this note that for the cases we consider near the horizon

C⊥(x) = C⊥(0) +
dC⊥(x)

dx

∣∣∣∣
x=0

x+O(x2) . (4.20)

Using (2.11) it is easy to see that near the horizon dC⊥/dx
∗ and d2C⊥/d(x∗)2 have the same sign.

Thus for C⊥ to approach a constant value as x∗ → ∞ it is necessary that d2C⊥/d(x∗)2 changes

sign. Then Eq. (2.13) shows that Veff must also change sign.

V. SPECIFIC CASES

In the following subsections we provide specific examples of the two different behaviors which

can occur for the scattering coefficients and the gray-body factor in the low frequency limit.



15

FIG. 3. Effective potential in Schwarzschild spacetime (M = 1) plotted as a function of x = r − rH .

A. Schwarzschild and Reissner-Nordström spacetimes

The first, obvious, application is Schwarzschild spacetime, which will allow us to compare the

results of our general procedure with those in the literature [5]. Referring to the generic metric

(2.2), we have with r = x + rH , f = 1 − rH
r = x

x+rH
and C⊥ = r = x + rH . Here rH = 2M

is the horizon radius and M is the mass of the black hole. The tortoise coordinate (2.7b) is

x∗ =
∫
dx
f = x+ rH + rH ln(x/rH).

For this case, Eq. (2.14) is the mode equation for modes in the s-wave sector of a massless

scalar field.5 As illustrated in Fig. 3, the effective potential (2.13)

Veff = (1− rH
r

)
rH
r3

=
x rH

(x+ rH)4
, (5.1)

has the shape of a positive barrier, i.e. it starts from 0 at x = 0 (x∗ = −∞), reaches a maximum

for x = 1
3rH and then goes to 0 asymptotically as x, x∗ → ∞. The fact that it does not change

sign is related to the fact that C⊥ is unbounded in the limit x∗ →∞. From the discussion near the

end of Sec. IV this means that B 6= 0 and thus the gray-body factor vanishes in the limit ω → 0.

To calculate the scattering coefficients and gray-body factor we need to find the solutions χ
(1,2)
0

to the zero frequency mode equation. The general solution to this equation (4.18) in this case is

χ0 = a(x+ rH) + b
(x+ rH)

rH
ln

(
x

x+ rH

)
. (5.2)

5 For both Schwarzschild and Reissner-Nordström spacetimes the scalar curvature R is zero so the mode equation

is independent of the coupling to the scalar curvature.
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The boundary condition (4.8a) for χ
(1)
0 is satisfied if a = 0 and b = −1 so that

χ
(1)
0 = −(x+ rH)

rH
ln

(
x

x+ rH

)
. (5.3)

Thus χ
(1)
0 diverges as − x∗

rH
at the horizon.

For χ
(2)
0 the boundary condition (4.8b) fixes a = 1 but leaves b undetermined so that

χ
(2)
0 = x+ rH + b

(x+ rH)

rH
ln

(
x

x+ rH

)
. (5.4)

Note that the Wronskian condition (4.9) is satisfied for arbitrary values of b. Thus χ
(2)
0 ∼ rH+ b

rH
x∗

near the horizon. We show below that the ambiguity in the value of b does not affect the low-

frequency behaviors of the scattering coefficients.

Using these explicit solutions it is easy to compute the coefficients A , B, ,C , D in (4.12).

The result is

A = 1 , (5.5a)

B = − 1

rH
, (5.5b)

C = rH − b , (5.5c)

D =
b

r0
. (5.5d)

Since B 6= 0, one finds from (4.14) that

RI , RH ∼ −1 +O(ω) , TI = TH ∼ −2irHω +O(ω2) . (5.6)

To leading order the gray-body factor is

Γ ∼ 4r2
Hω

2 , (5.7)

in agreement with the results in [5]. We see immediately the important role played by the gray-body

factor, which prevents waves with frequency ω . 1
2rH

from reaching infinity.

This analysis can be easily extended to Reissner-Nordström spacetimes, where the results are

qualitatively similar to those for Schwarzschild spacetime. In this case

f =

(
1− r+

x+ r+

) (
1− r−

x+ r+

)
, (5.8)

with with Q the electric charge of the black hole, rH = r+ = M +
√
M2 −Q2 the outer (event)

horizon, and r− = M −
√
M2 −Q2 the inner (Cauchy) horizon. The tortoise coordinate (2.7b) is

x∗ = x+ r+ − (r+ + r−) ln(r+ − r−) +
r2

+

(r+ − r−)
ln(x)−

r2
−

r+ − r−
ln(x+ r+ − r−) . (5.9)



17

The general solution (4.18) of the zero frequency mode equation is

χ0 = a(x+ r+) + b

(
x+ r+

r+ − r−

)
ln

(
x

x+ r+ − r−

)
. (5.10)

Imposing the conditions (4.8) one finds that

χ
(1)
0 = − x+ r+

r+ − r−
ln

(
x

x+ r+ − r−

)
,

χ
(2)
0 = x+ r+ + b

x+ r+

r+ − r−
ln

(
x

r − r−

)
. (5.11)

Substituting into (4.12) gives the same expressions for A , B, C , and D as in the Schwarzschild case

except that the event horizon is at rH = r+ and r+ 6= 2M unless Q = 0. Similarly the expressions

for the scattering coefficients and the gray-body factor are the same as for Schwarzschild to leading

order.

B. Schwarzschild-de Sitter spacetime

We next consider a case which differs qualitatively from the previous ones, namely a black

hole immersed in an expanding de Sitter universe and described by the Schwarzschild-de Sitter

solution, with the metric coefficients in (2.2) given by f = 1 − 2M
r −

Λ
3 r

2 and C⊥ = r. Here Λ

is the cosmological constant. For 0 < Λ < 9M2 the space-time has two horizons at r = rH and

r = rC (with rH < rC) which are, respectively, the black hole and cosmological horizons. The

equation f = 0 has an additional negative solution (r = −r0 < 0) which is unphysical. We define

the coordinate x as before so that x = r − rH .

We shall consider the mode equation (2.14) in the region between the two horizons, 0 ≤ x ≤

rC − rH , which is the region where t is timelike and x is spacelike. From Eq. (2.7b) it can be seen

that the tortoise coordinate has the values x∗ = −∞ at the event horizon ( x = 0) and x∗ = +∞ at

the cosmological horizon (x = rC − rH). Veff is plotted in Fig. 4. In addition to the barrier which

was also present in the Schwarzschild case, there is a well outside the barrier in which Veff < 0.

Since C⊥ = rC at x∗ =∞, the gray-body factor does not vanish in the zero frequency limit.

To compute the low-frequency scattering coefficients and gray-body factor in this spacetime we

use (4.18) and (4.8) to find the mode functions χ
(1,2)
0 . Since the term proportional to b in (4.18)

diverges as ln |(x+ rH − rC)/rC |, the boundary condition (4.8a) is satisfied if a = 1
rC

and b = 0, so

that

χ
(1)
0 =

x+ rH
rC

. (5.12)
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FIG. 4. Effective potential in Schwarzschild-de Sitter spacetime (M = 1 and Λ = 3 × 10−3) plotted as a

function of x = r − rH .

At the cosmological horizon the surface gravity is κC = 1
2 |f
′(x)|x=rC−rH and

x∗ → 1

2κC
ln

[
|x− (rC − rH)|

rC

]
, (5.13)

Near the cosmological horizon, the term proportional to b in (4.18) has the leading order behavior

b

2rCκC
ln

[
|x− (rC − rH)|

rC

]
. (5.14)

Thus the condition (4.8b) is satisfied if b = rC and

χ
(2)
0 = a(x+ rH) + rC(x+ rH)

∫
dx

(x+ rH)2f
. (5.15)

Substituting these solutions into Eq. (4.12) we obtain

A =
rH
rC

, (5.16a)

B = 0 , (5.16b)

C = arH , (5.16c)

D =
rC
rH

. (5.16d)

Since B = 0 and A D = 1, the Wronskian condition (4.13) is satisfied. Substituting (5.16)

into (4.15) and (4.17) gives

RI =
r2
C − r2

H

r2
C + r2

H

+O(ω) , RH =
r2
H − r2

C

r2
C + r2

H

+O(ω) , TI = TH =
2rCrH
r2
C + r2

H

+O(ω) (5.17)

and

Γ =
4r2
Cr

2
H

(r2
C + r2

H)2
, (5.18)
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in agreement with the results of [11].

In Sec. IV it was shown that a necessary condition for the gray-body factor to approach a

nonzero constant in the zero frequency limit is that Veff should change sign somewhere between

−∞ < x∗ < ∞. However, this is not a sufficient condition as we show next by considering a

massless scalar field with coupling ξ 6= 0 to the scalar curvature. It was shown in [12] that for the

l = 0 mode in Schwarzschild-de Sitter spacetime Γ ∼ ω2. Using the fact that in Schwarzschild-de

Sitter spacetime R = 4Λ, the Klein-Gordon equation takes the form

1√
−g

∂µ(
√
−g∂µ(φ))− ξ4Λφ = 0 . (5.19)

Transforming to χ = φ/(x + rH) one finds that the effective potential is Veff = f( f ′

(x+rH) + 4ξΛ).

For small enough values of |ξ| its qualitative behavior is the same as in Fig. 4 (see Fig. 1 of [12]).

Because Veff approaches zero when ξ 6= 0 at the horizons in essentially the same way as it does

when ξ = 0, the results in Sec. IV and Appendix A hold. For ξ 6= 0, the zero frequency mode

equation (see (2.6)) is

d

dx

[
(x+ rH)2f

d

dx

(
χ0

x+ rH

)]
− 4ξΛ(x+ rH)χ0 = 0. (5.20)

The crucial feature one loses when considering ξ 6= 0 is the existence of a solution for χ
(1)
0 which is

bounded at x∗ = ±∞ and which, in terms of the original field variable φ = χ/(x+rH), corresponds

to a constant field configuration [10, 19]. This can be seen for small values of ξ by substituting

χ0 = χ
(1)
0 = χ0,0 +ξχ0,1 into (5.20). Then to zeroth order in ξ one finds the general solution (4.18).

If χ
(1)
0 is to be regular at both horizons then χ0,0 and χ0,1 must both be regular at both horizons.

Examination of (4.18) shows that this only occurs for χ0,0 if b = 0 so that χ0,0 = a(x + rH). To

first order in ξ the equation is then

d

dx

[
(x+ rH)2f

d

dx

(
χ0,1

x+ rH

)]
= 4ξΛa(x+ rH)2 . (5.21)

The general solution to (5.21) is

χ0,1 =
4ξΛa

5
(x+ rH)

∫ x

x2

dx′
[

(x′ + rH)

f(x′)
− (x1 + rH)3

(x′ + rH)2f(x′)

]
, (5.22)

with x1 and x2 arbitrary constants. Evaluating the integral near the event horizon (x = 0) one

finds that the solutions are divergent unless x1 = 0. Evaluating near the cosmological horizon

(x = rC − rH) one finds that the solutions are divergent unless x1 = rC − rH . Thus for ξ 6= 0 there

is no solution that is regular at both horizons.



20

C. BEC acoustic black holes

This case has similarities and differences with each of the previous cases. As shown in [17], for

the specific model we consider, in which c = c(x) and n, v are constant, the metric coefficients

in (2.2) are given by f = c2−v2
c and C⊥ = 1√

c
where as stated in Sec. II we are ignoring the irrelevant

constants m and n. The condensate moves with a constant velocity v in the negative x direction

and it is assumed that c > |v| for x > 0 and c < |v| for x < 0 so there is just one horizon at x = 0

where c(0) = |v|. As for Schwarzschild spacetime, the acoustic metric is asymptotically flat since

c approaches the constant c2 > |v| in the limit x → ∞. The crucial difference, however, is in the

behavior of the conformal factor for the transverse part of the line element C⊥. In Schwarzschild

spacetime C⊥ = x+ rH is regular at the horizon but diverges at infinity; here C⊥ = 1√
c

is regular

both at the horizon and at infinity. Thus, as in Schwarzschild-de Sitter spacetime the graybody

factor will approach a nonzero constant in the zero frequency limit. The effective potential is

Veff = − c
2

(1− v2

c2
)2c
′′

+
1

4
(1− v2

c2
)(1− 5v2

c2
)c′2 . (5.23)

It is plotted in Fig. 5 for the profile considered in [17]:

c =

√
c2

1 +
1

2
(c2

2 − c2
1)

[
1 +

2

π
tan−1

(
x+ d

σv

)]
(5.24)

with

d = σv tan

[
π

c2
2 − c2

1

(
v2

0 −
1

2
(c2

1 + c2
2)

)]
. (5.25)

There is a well with Veff < 0 located close to the horizon followed by a barrier. The well is a generic

feature, since near the horizon

Veff ∼ −(1− v2

c2
)c′ 2 < 0 . (5.26)

Thus as expected from the discussion in IV, Veff changes sign in the region outside of the horizon.

We next proceed to determine the low-frequency scattering coefficients and gray-body factor in

this background. The general solution to the zero frequency mode equation (4.18) is

χ0 =
a√
c

+
b√
c

∫ x

dx̄
c2(x̄)

c2(x̄)− v2
. (5.27)

The χ
(1)
0 solution is constructed by noting that as x∗ →∞, the second term on the right in (5.27)

has the leading order behavior b
√
c2 x

∗. Thus for the condition (4.8a) to be satisfied a =
√
c2 and

b = 0 which gives

χ
(1)
0 =

√
c2

c(x)
. (5.28)
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FIG. 5. Effective potential for a 1D BEC acoustic black hole with the sound speed profile (5.24) which was

considered in [17], with σv = 8, |v| = 3
4 , c1 = 1

2 , and c2 = 1.

Unlike (5.3), but similar to (5.12), this solution is finite everywhere and approaches a constant,√
c2/|v|, at the horizon. The condition (4.8b) for χ

(2)
0 is satisfied if b = 1/

√
c2 in which case

χ
(2)
0 =

a√
c(x)

+
1√
c2c(x)

∫
dx

c2

c2 − v2
. (5.29)

This solution diverges as
√
|v|
c2
x∗ at the horizon. Substituting these solutions into Eq. (4.12) we

obtain

A =

√
c2

|v|
, (5.30a)

B = 0 , (5.30b)

C =
a√
|v|

, (5.30c)

D =

√
|v|
c2

. (5.30d)

Since B = 0 and A D = 1, the Wronskian condition (4.13) is satisfied. Substituting (5.30)

into (4.15) and (4.17) gives

RI =
|v| − c2

|v|+ c2
+O(ω) , RH =

c2 − |v|
|v|+ c2

+O(ω) , TI = TH =
2
√
|v|c2

c2 + |v|
+O(ω) . (5.31)

and

Γ =
4|v|c2

(c2 + |v|)2
, (5.32)

in agreement with the result in [14]. Thus Γ approaches a constant nonzero value as ω → 0.
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Examination of the near-horizon dip of the effective potential in Fig. 5 shows that it is possi-

ble that ‘bound states’ could exist. Such states would come from spatially normalized solutions

characterized by a purely imaginary frequency ω = iΛ with Λ > 0, and they would correspond to

classical instabilities (χ ∼ eΛt) which grow exponentially with time. We have found no solutions

of this form for the effective potential (5.23) with the profile (5.24).

To complete this subsection , we point out that for more general models in which c, v and n

vary with x, we get the metric (2.2) in terms of the spatial coordinate x̄ defined by dx̄ = n(x)
m dx,

and f = n
m

(c2−v2)
c , C⊥ =

√
n
mc .

6 For 1D acoustic black holes c, v and n (and thus f and C⊥)

always approach finite constants both at infinity and at the horizon. From the general solution to

the ω = 0 mode equation (4.18) we see that, since C⊥ is asymptotically finite, the solution χ
(1)
0

has b = 0. This implies, from (4.19), that B = 0. Thus even for this general case, the gray-body

factor approaches a nonzero constant in the zero frequency limit.

VI. INFRARED BEHAVIORS OF CORRELATION FUNCTIONS

The method of finding solutions we have developed in Secs. II - IV also allows for a detailed

analysis of the infrared behavior of correlation functions for a BEC acoustic black hole with one

spatial dimension [17] and for a spherically symmetric black hole. In the latter case we consider

only the s-wave (` = 0) contributions to the correlation functions.

The gray-body factor enters in the correlation functions through the scattering coefficients. In

the region outside the event horizon, the symmetrized two-point function for the quantized massless,

minimally coupled scalar field φ̂ in the Unruh state [16] (the state that describes Hawking’s thermal

emission) takes the form [17]

1

2
〈{φ̂(t, x), φ̂(t′, x′)}〉 =

I + J

2C⊥(x)C⊥(x′)
, (6.1)

where

I = N2

∫ ∞
0

dω

[
χHω (x)χHω

∗
(x′)e−iω(t−t′) + c.c.

]
sinh

(
πω
κ

) , (6.2a)

J = N2

∫ ∞
0

dω
[
χIω(x)χIω

∗
(x′)e−iω(t−t′) + c.c.

]
. (6.2b)

Here { , } stands for the anticommutator and the normalization is N = 1√
4π

for a 1D BEC and

N = 1
4π for a spherically symmetric black hole. The mode functions χHω and χIω are defined in

Eqs. (3.3). Their asymptotic behaviors are given in Eqs. (3.7), (3.8), (3.10) and (3.11).

6 By making the substitution n
m
→ ρ, where ρ is the fluid density (see for instance [20]), this applies for other

systems as well, and not just for BECs.
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We wish to study the infrared behaviors of the integrands of I and J . To do so we first use

Eqs. (3.7) and (3.10) to write χIω and χHω in terms of χ∞r and χ∞` . The resulting expressions for

the integrands are

Iint =
1

ω sinh(πω/κ)
|TH(ω)|2

[
χ∞r (x)(χ∞r (x′))∗e−iω(t−t′)

+(χ∞r (x))∗χ∞r (x′)eiω(t−t′)
]
, (6.3a)

Jint = =
1

ω

{
[χ∞` (x) +RI(ω)χ∞r (x)]

[
(χ∞` (x′))∗ +R∗I(ω)(χ∞r (x′))∗

]
e−iω(t−t′)

+ [(χ∞` (x))∗ +R∗I(ω)(χ∞r (x))∗]
[
χ∞` (x′) +RI(ω)χ∞r (x′)

]
eiω(t−t′)

}
. (6.3b)

The operations of integration over the frequency and taking the limits x∗ → ±∞ do not commute.

Thus the integrals must be computed at finite values of x∗ and only then can the limits x∗ → ±∞

be taken. For fixed x∗ and x′∗ in the limit ω → 0 one has ω|x∗| � 1 and ω|x′∗| � 1. Thus we can

use Eqs. (4.11) to write the integrands in terms of χ
(1,2)
0 . The result is

Iint =
2κ

πω2
|TH(ω)|2

[
χ

(1)
0 (x)χ

(1)
0 (x′) +O(ω2)

]
, (6.4a)

Jint =
2

ω

{
χ

(1)
0 (x)χ

(1)
0 (x′)|1 +RI(ω)|2 +O(ω2)

}
. (6.4b)

For Schwarzschild and Reissner-Nordström spacetimes, the low-frequency results for the scat-

tering coefficients (5.6) show that Iint ∼ O(1) and Jint ∼ O(ω) in the low frequency limit. Thus

all sources of infrared divergences have been eliminated in (6.2) including the factor of 1
ω coming

from the normalization of the modes and the additional factor of 1
ω coming from the Planckian

distribution in (6.2a).

Radically different is the situation for both Schwarzschild-de Sitter and BEC acoustic black

holes, where (5.17) and (5.31) show that there are infrared divergences in Iint and Jint, i.e. Iint ∼ 1
ω2

and Jint ∼ 1
ω . 7 One might be concerned that these infrared divergences will persist in other types

of correlation functions, such as the point-split stress-energy tensor in the gravitational case

〈Tab(x, t;x′, t′)〉 =
1

4

[
(gµα′∂α′∂ν + gνα′∂α′∂µ)− gµνgαβ

′
∂αβ′

]
〈{φ̂(t, x), φ̂(t′, x′)}〉 , (6.5)

where gβ
′

α are the bivectors of parallel transport (see e. g. [21]) and the density-density correlation

function in the BEC case (see e. g. [14])

〈n̂1(t, x)n̂1(t′, x′)〉 = A
(
∂t∂t′ − v∂t∂x′ − v∂t′∂x + v2∂x∂x′

)
〈{φ̂(t, x), φ̂(t′, x′)}〉 , (6.6)

7 Note that in the Schwarzschild de Sitter and BEC cases, by combining the first of (3.9) with (4.6), we have

RI = const+ i ∗O(ω), thus the factor of |1 +RI(ω)|2 entering in (6.4b) has the form const.+O(ω2).
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where A ∼ 1
c2(x)c2(x′) . Given the structure of the mode functions, each time derivative will always

bring down one factor of ω, but this is not true for the spatial derivatives due to the factors of 1
C⊥

in

(6.1) which give non vanishing ω independent contributions. Therefore, one would expect that in

(6.5) and (6.6) the terms containing two spatial derivatives will have the same infrared structure as

(6.1) which, in both Schwarzschild-de Sitter and BEC acoustic black holes, has a leading infrared

divergent term
∫
dw
w2 .8 However, as we show next all of the IR divergent terms in (6.5) and (6.6)

cancel leaving these correlation functions infrared finite.9

For large values of ω one has to be careful because the operations of differentiation of (6.1) and

integration over ω do not necessarily commute [17]. However, there is no such problem for small

values of ω. To see what happens to the infrared divergences when spatial derivatives of (6.1) are

taken we first substitute the solutions for χ
(1)
0 in Scharzschild-de Sitter spacetime (5.12) and a BEC

analog black hole (5.28), into (6.4) and then divide by the factor of C⊥(x)C⊥(x′) in (6.1). Noting

that C⊥(x) = x+ rH in Schwarzschild-de Sitter and C⊥(x) = 1/
√
c(x) for the acoustic metric, we

see that in both cases the factors of C⊥ are canceled leaving a generic infrared structure of the

two-point function of the form

〈{φ̂(t, x), φ̂(t′, x′)}〉 = C1

∫
dω

ω2
+ C2

∫
dω

ω
+ IR finite terms , (6.7)

with C1 and C2 constants. It is clear that acting on it with the differential operators in (6.5) and

(6.6) will remove these IR divergences leaving an infrared finite result (in the BEC case this has

been checked numerically [23]).

It is also possible using (6.3) to see that the infrared divergences in (6.1) do not contribute to

divergences in (6.5) and (6.6) near the horizon by examining the behaviors of the modes χ∞r and

χ∞` near the horizon for fixed ω so that one cannot make the assumption that ω|x∗| � 1. Because

of the definitions (3.4) it is sufficient to consider χcω and χsω. From these definitions and Eqs. (6.3)

and (6.1) it is easy to see that for every term in the integrands of (6.1) there is always a factor of

either χcω(x)/C⊥(x) or χsω(x)/C⊥(x) and a second factor of one of these quantities evaluated at x′.

Further in Eqs. (6.5) and (6.6) there is at most one derivative with respect to x and one derivative

with respect to x′ in each term. Thus in the limit that we approach the horizon it is sufficient to

consider an expansion of χcω(x)/C⊥(x) or χsω(x)/C⊥(x) to first order in x.

8 Recall that for a 4D massless minimally coupled scalar field in Schwarzschild-de Sitter spacetime it is the ` = 0

mode that fixes the infrared behavior of the correlation function (the gray-body factor for ` 6= 0 goes to 0 as

ω → 0, see e. g. [13]). Similarly, in the (quasi) 1D BEC case for modes with non vanishing transverse momentum

the mode function φ in (2.1) (and hence also χ) has a factor of the form eik⊥x⊥ . The quantity k⊥ acts as a mass

in the 1D hydrodynamic theory and naturally regulates any infrared divergences [22].
9 This result was so unexpected that it was missed in [17] where it was incorrectly stated that there are infrared

divergent terms in the density-density correlation function.
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For the metrics we consider, near the horizon C⊥has the general form (4.20). In Appendix B it

is shown that near the horizon

χcω = cosωx∗
[
Aω + α1x

κAω − ωBω
4κ(κ2 + ω2)

+O(x2)

]
+ sinωx∗

[
Bω + α1x

κBω + ωAω
4κ(κ2 + ω2)

+O(x2)

]
(6.8a)

χsω = cosωx∗
[
Cω + α1x

κCω − ωDω

4κ(κ2 + ω2)
+O(x2)

]
+ sinωx∗

[
Dω + α1x

κDω + ωCω
4κ(κ2 + ω2)

+O(x2)

]
, (6.8b)

with

α1 = 4κ2C
′
⊥(0)

C⊥(0)
. (6.9)

Note that the expression for χsω can be obtained from that for χcω via the substitutions Aω → Cω

and Bω → Dω. So we focus on χcω/C⊥. Combining (4.20) and (6.8a) and using (6.9) one finds for

all values of ω

χcω(x)

C⊥(x)
=

1

C⊥(0)
{(Aω cosωx∗ +Bω sinωx∗)

[
1−

C ′⊥(0)

C⊥(0)

ω2

κ2 + ω2
x+O(x2)

]
+(Aω sinωx∗ −Bω cosωx∗)

[
C ′⊥(0)

C⊥(0)

κω

κ2 + ω2
x+O(x2)

]
} . (6.10)

Thus terms that after differentiation with respect to x survive in the limit x→ 0 are all multiplied

by at least one factor of ω. So there are no infrared divergences in (6.5) and (6.6) in the near

horizon limit.

For completeness we display expressions for χHω and χIω in the near horizon region in the

Schwarzschild-de Sitter and BEC cases for small values of ω but with no assumptions about

the value of ω|x∗|. For Schwarzschild-de Sitter spacetime C⊥ = x + rH . Using Eqs. (4.6),

(5.16), (5.17), (3.4), (3.8) and (3.11), we find10

χHω (x)

x+ rH
=

1

rH

{
eiωx

∗
[1 +O(ωx)] +RH(ω = 0)e−iωx

∗
[1 +O(ω) +O(ωx)]

}
,

χIω
x+ rH

= TI(ω = 0)
e−iωx

∗

rH
[1 +O(ω) +O(ωx)] . (6.11)

For the BEC acoustic metric C⊥ = 1/
√
c(x). Using Eqs. (4.6), (5.30), (5.31), (3.4), (3.8) and (3.11),

we find

√
cχHω =

√
|v|
{
eiωx

∗
[1 +O(ωx)] +

√
|v|RH(ω = 0)e−iωx

∗
[1 +O(ω) +O(ωx)]

}
,

√
cχIω =

√
|v|TI(ω = 0)e−iωx

∗
[1 +O(ω) +O(ωx)] . (6.12)

10 Note that for Schwarzschild-de Sitter spacetime and the BEC acoustic black hole it is possible to show there are

no terms of O(x2) and higher in these expressions which are not also multiplied by some positive power of ω. This

can be done by first fixing the value of x to be small but nonzero and taking the limit ω → 0 in which case one

finds that χ∞r , χ∞` → limω→0 χ
c
ω = χ

(1)
0 . Next one takes the limit ω → 0 in (6.10) and compares with the exact

expressions for χ
(1)
0 (x)/C⊥(x) using Eq. (5.12) for Schwarzschild de Sitter and (5.28) for the BEC case.
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VII. CONCLUSIONS

In this paper we have developed a rigorous method based on Volterra integral equations of the

second kind (2.16) to determine the low-frequency behaviors of the scattering coefficients and gray-

body factor for a massless minimally coupled scalar field satisfying the Klein-Gordon equation (2.1)

in the static metric (2.2). These are given in (3.9), (3.12) and (3.13), in terms of coefficients (4.6)

and (4.12) that can be expressed as horizon boundary values of the real solutions to the zero

frequency mode equation χ
(1,2)
0 with the asymptotic behaviors (4.8). These results are valid for

the modes of the scalar field which are either in the zero angular momentum or s-wave sector for

a spherically symmetric black hole, or in the longitudinal sector of a BEC acoustic black hole with

effectively one spatial dimension.

From the general analysis of Sec. IV we see that there are two qualitatively different behaviors

for the gray-body factor which depend on the value of the coefficient B in (4.12). If B 6= 0 the

gray-body factor vanishes as ω2. As shown in Sec. V A this occurs for Schwarzschild and Reissner-

Nordström black holes. If B = 0 the gray-body factor approaches a nonzero constant as ω → 0.

As shown in Secs. V B and V C this occurs for Schwarzschild-de Sitter black holes and a 1D BEC

acoustic black hole. It was shown in Secs. IV and V B that a necessary, but not sufficient condition

to have B 6= 0 is for the effective potential, Veff to change sign. It was also shown in Sec. IV that

a necessary condition to have B 6= 0 is that the zero frequency solution χ
(1)
0 be bounded at the

event horizon. By definition (4.8a), χ
(1)
0 is always bounded either at the cosmological horizon or

infinity for the cases we consider.

The results for the scattering coefficients and gray-body factor were used to study infrared

divergences. The constant gray-body factor at small ω for both Schwarzschild-de Sitter and 1D

BEC acoustic black holes implies that Hawking radiation is dominated by an infinite number of

low energy particles as can be seen from Eq. (1.1). As shown in Sec. VI it also implies that the

two-point function (6.1) is infrared divergent with the general form of the divergences given in (6.7).

No such divergences exist in Schwarzschild and Reissner-Nordström spacetimes. Despite this fact,

we proved that, both away from the horizon and close to it, the point-split stress-energy tensor

(6.5) in Schwarzschild-de Sitter spacetime and the density-density correlation function (6.6) for the

1D BEC acoustic black hole are always infrared finite.
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Appendix A: Some results used for the computation of Aω

In this appendix we give several proofs relating to the IR behaviors of the coefficients in (2.18).

Throughout we focus on Aω. The generalization of the proofs to the other coefficients is straight-

forward.

We begin by writing the integral in (2.18) for Aω in the form

Aω = 1 + I1 + I2 + I3

I1 =
1

ω

∫ −Λ

−∞
dy∗ sin(ωy∗)Veff(y∗)χcω(y∗)

I2 =
1

ω

∫ Λ

−Λ
dy∗ sin(ωy∗)Veff(y∗)χcω(y∗)

I3 =
1

ω

∫ ∞
Λ

dy∗ sin(ωy∗)Veff(y∗)χcω(y∗) . (A1)

The first proof involves showing that the first integral vanishes in the limit Λ → ∞ for all ω

including ω = 0 if we take the limits ω → 0 and Λ → ∞ in such a way that ωΛ � 1. Note that

this condition on the limits allows an expansion of the oscillatory functions in the integrand of the

middle integral in powers of ωy∗ and also allows one to expand Veff in the limit of large negative

and large positive y∗ in the first and third integrals respectively.

Since the first integral in (A1) covers the region near the horizon it is useful to rewrite the general

form of the Volterra equations (2.16) for χcω and χsω so that the integration range is −∞ < y∗ ≤ x∗.

This can be done by substituting (2.17) into (2.16) and using (2.18) and (3.2). The result is

χcω = Aω cosωx∗ +Bω sinωx∗ +
1

ω

∫ x∗

−∞
dy∗ sin[ω(x∗ − y∗)]Veff(y∗)χcω(y∗) , (A2a)

χsω = Cw cosωx∗ +Dω sinωx∗ +
1

ω

∫ x∗

−∞
dy∗ sin[ω(x∗ − y∗)]Veff(y∗)χsω(y∗) . (A2b)
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We bound the first integral in (A1) by bounding the integrand so that

|I1| =
∣∣∣∣ 1ω
∫ −Λ

−∞
dy∗ sin(ωy∗)Veff(y∗)χcω(y∗)

∣∣∣∣ ≤ 1

ω

∫ −Λ

−∞
dy∗|Veff(y∗)| |χcω(y∗)| . (A3)

Using (A2) and iterating we find

χcω(x∗) = Aω cosωx∗ +Bω sinωx∗ +
∞∑
n=1

1

ωn

∫ x∗

−∞
dy∗1 ...

∫ y∗n−1

−∞
dy∗n sin[ω(x∗ − y∗1)]

×Veff(y∗1)... sin[ω(y∗n−1 − y∗n)]Veff(y∗n) (Aω cosωy∗n +Bω sinωy∗n) . (A4)

Thus

|χcω(x∗)| ≤ |Aω| + |Bω| +
∞∑
n=1

1

ωn

∫ x∗

−∞
dy∗1 ...

∫ y∗n−1

−∞
dy∗n|Veff(y∗1)|...|Veff(y∗n)| (|Aω| + |Bω|) ,

= (|Aω| + |Bω|)

(
1 +

∞∑
n=1

1

n!ωn

∫ x∗

−∞
dy∗1 ...

∫ x∗

−∞
dy∗n|Veff(y∗1)|...|Veff(y∗n)|

)
,

= (|Aω| + |Bω|) exp

(
1

ω

∫ x∗

−∞
dy∗1|Veff(y∗1)|

)
. (A5)

We want to use this bound in (A3). Since the integrand in (A3) covers the range −Λ ≥ y∗ > −∞

it is possible to make the further bound

|χcω(y∗)| ≤ (|Aω| + |Bω|) exp

(
1

ω

∫ −Λ

−∞
dy∗1|Veff(y∗1)|

)
. (A6)

Then (A3) becomes

|I1| < (|Aω| + |Bω|) exp

(
1

ω

∫ −Λ

−∞
dy∗1|Veff(y∗1)|

)
1

ω

∫ −Λ

−∞
dy∗|Veff(y∗)| . (A7)

This shows that I1 vanishes for all ω > 0 in the limit Λ→∞. For the limit ω → 0 with ωΛ� 1

we can take the limits in such a way that ωΛ1+ε = 1, for some ε > 0. Then a sufficient condition

that I1 should vanish for Λ→∞ is that

Λ1+ε

∫ −Λ

−∞
dy∗|Veff(y∗)| → 0 . (A8)

To go further we need to find a more explicit expression for Veff near the horizon. This can be

done by writing it in terms of a power series in x. Expansions for f and C⊥ in powers of x have

been given in Secs. II and VI respectively. Using (2.13) along with (2.8), (2.10), and (4.20) one

finds

Veff =

∞∑
i=1

αix
i , (A9)



29

with

α1 = 4κ2C
′
⊥(0)

C⊥(0)
. (A10)

Using the definition (2.7b) along with the expansion (2.8) for f one can show by iteration that

near the horizon

x(x∗) =
∞∑
k=1

βke
2kκx∗ . (A11)

Thus it is also possible to write

Veff =
∞∑
j=1

γje
2jκx∗ , (A12)

with

γ1 = α1β1 . (A13)

If we bound each term in this last expansion and substitute into (A8) then it is easy to show that

this condition is satisfied for any ε > 0 so long as the resulting sum converges.11

We next bound the third integral in (A1) by bounding its integrand so that

|I3| =
∣∣∣∣ 1ω
∫ ∞

Λ
dy∗ sin(ωy∗)Veff(y∗)χcω(y∗)

∣∣∣∣ ≤ 1

ω

∫ ∞
Λ

dy∗|Veff(y∗)| |χcω(y∗)| . (A14)

Using Eq. (2.16) and iterating we find that

χcω(x∗) = cos(ωx∗) +
∞∑
n=1

(−1)n

ωn

∫ ∞
x∗

dy∗1...

∫ ∞
y∗n−1

dy∗n sin[ω(x∗ − y∗1)]

×Veff(y∗1) ... sin[ω(y∗n−1 − y∗n)]Veff(yn) cos(ωy∗n) . (A15)

Thus

|χcω(x∗)| ≤ exp

(
1

ω

∫ ∞
x∗

dy∗1|Veff(y∗1)|
)
. (A16)

We want to use this bound in (A14). Since the integrand in (A14) covers the range Λ ≤ y∗ < ∞

it is possible to make the further bound

|χcω(x∗)| ≤ exp

(
1

ω

∫ ∞
Λ

dy∗1|Veff(y∗1)|
)
. (A17)

Substituting into (A14) one finds

|I3| ≤ exp

(
1

ω

∫ ∞
Λ

dy∗1|Veff(y∗1)|
)

1

ω

∫ ∞
Λ

dy|Veff(y∗)| . (A18)

11 Even if the sum is an asymptotic series, each term in this series vanishes in the limit Λ→∞.
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This clearly vanishes for all ω > 0 in the limit Λ→∞. For the limit ω → 0 with ωΛ� 1, as above

we can take the limits in such a way that ωΛ1+ε = 1, for some ε > 0. Then a sufficient condition

that I3 should vanish for Λ→∞ is that

Λ1+ε

∫ ∞
Λ

dy∗|Veff(y∗)| → 0 . (A19)

In this case however there are restrictions on the value of ε which relate to the asymptotic behaviors

of Veff . For Schwarzschild and Reissner-Nordström spacetimes and for a BEC acoustic black hole

with sound speed profile (5.24) it is not difficult to show that for large x, Veff ∼ x−3. In this case

any value of ε in the range 0 < ε < 1 will work. For Schwarzschild-de Sitter spacetime it is not

hard to show that Veff ∼ e−2κCx
∗

with κC the surface gravity of the cosmological horizon. In this

case the only restriction on ε is that it be positive.

Next we show how to manipulate I2 to obtain (4.2). Using the mode equation (2.14) one finds

that

I2 =
1

ω

∫ Λ

−Λ
dy∗ sin(ωy∗)

(
d2χcω(y∗)

(dy∗)2
+ ω2χ2

ω(y∗)

)
. (A20)

Integrating the first term by parts gives

I2 =

[
sin(ωy∗)

ω

dχcω(y∗)

dy∗

]Λ

−Λ

+
1

ω

∫ Λ

−Λ
dy∗

[
−ω cos(ωy∗)

dχcω(y∗)

dy∗
+ ω2 sin(ωy∗)χcω(y∗)

]
. (A21)

Integrating a second time by parts gives

I2 =

[
sin(ωy∗)

ω

dχcω(y∗)

dy∗
− cos(ωy∗)χcω(y∗)

]Λ

−Λ

. (A22)

One can then take the limit Λ→∞ if either ω > 0 or if the limit ω → 0 is taken such that ωΛ� 1.

Finally we argue that A = A + O(ω2). First note that from Eq. (2.13) it is clear that so long

as C⊥ is analytic in x and nonvanishing then Veff is as well. Further, x∗(x) is also analytic except

at x = 0. Thus χcω is analytic both in x∗ and ω since, as can be seen from (A15), the integrand for

the integral over y∗i is analytic in y∗i , y
∗
i−1, and ω. This is correct even in the limit ω → 0. Next

note from (A15) that χcω is an even function of ω. Then from (2.18) it is clear that Aω is also an

analytic function of ω and an even function of ω. Thus Aω = A +O(ω2).

Appendix B: Near-horizon computations of χc
ω and χs

ω

In this appendix we use the Volterra equation to derive the exact near-horizon behaviors of the

solutions χcω and χsω. We begin by substituting the expansion (A12) into (A2a) with the result
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that

χcω(x∗) = Aω cosωx∗ +Bω sinωx∗ +

∞∑
n=1


∞∑
j1=1

...

∞∑
jn=1

γj1 ...γjn
ωn

∫ x∗

−∞
dy∗1 ...

∫ y∗n−1

−∞
dy∗n

× sin[ω(x∗ − y∗1)]... sin[ω(y∗n−1 − y∗n)]e2j1κy∗1 ...e2jnκy∗n

× (Aω cosωy∗n +Bω sinωy∗n)} . (B1)

Examination of (A2b) shows that the corresponding expansion for χsω is obtained with the substi-

tutions Aω → Cω and Bω → Dω.

At this point the integrals can all be computed starting with the integral over y∗n and working

in order to the integral over y∗1. The first integral is∫ y∗n−1

−∞
dy∗n sin[ω(y∗n−1 − y∗n)]e2jnκy∗n (Aω cosωy∗n +Bω sinωy∗n)

= ω exp(2jnκy
∗
n−1)

(
A(1)
ω cosωy∗n−1 +B(1)

ω sinωy∗n−1

)
, (B2)

with

A(1)
ω =

2jnκAω − 2ωBω
(2jnκ)3 + 4(2jnκ)ω2

, (B3a)

B(1)
ω =

2jnκBω + 2ωAω
(2jnκ)3 + 4(2jnκ)ω2

. (B3b)

The next integral is then∫ y∗n−2

−∞
dy∗n−1 sin[ω(y∗n−2 − y∗n−1)]e2(jn−1+jn)κy∗n

(
A(1)
ω cosωy∗n−1 +B(1)

ω sinωy∗n−1

)
=

ω exp(2(jn−1 + jn)κy∗n−2)
(
A(2)
ω cosωy∗n−2 +B(2)

ω sinωy∗n−2

)
, (B4)

with A
(2)
ω and B

(2)
ω obtained by making the substitutions A

(1)
ω → A

(2)
ω and B

(1)
ω → B

(2)
ω in (B3)

followed by Aω → A
(1)
ω and Bω → B

(1)
ω . Clearly the same form holds for all of the integrals and

the result is

χcω = Aω cosωx∗ +Bω sinωx∗ +
∞∑
n=1


∞∑
j1=1

...
∞∑
jn=1

γj1 ...γjn exp(2κ(j1 + ...+ jn)x∗)

×
(
A(n)
ω cosωx∗ +B(n)

ω sinωx∗
)}

, (B5a)

χsω = Cω cosωx∗ +Dω sinωx∗ +
∞∑
n=1


∞∑
j1=1

...
∞∑
jn=1

γj1 ...γjn exp(2κ(j1 + ...+ jn)x∗)

×
(
C(n)
ω cosωx∗ +D(n)

ω sinωx∗
)}

. (B5b)
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If we include terms of O(x) but not higher then using (A11) and (A13)

χcω = Aω cosωx∗ +Bω sinωx∗ + α1x
(
A(1)
ω cosωx∗ +B(1)

ω sinωx∗
)
, (B6a)

χsω = Cω cosωx∗ +Dω sinωx∗ + α1x
(
C(1)
ω cosωx∗ +D(1)

ω sinωx∗
)
. (B6b)
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