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We discuss the problem of defining a preferred vacuum state at a given time for

a quantized scalar field in Friedmann, Lemâıtre, Robertson Walker (FLRW) space-

time. Among the infinitely many homogeneous, isotropic vacua available in the

theory, we show that there exists at most one for which every Fourier mode makes

vanishing contribution to the adiabatically renormalized energy-momentum tensor at

any given instant. For massive fields such a state exists in the most commonly used

backgrounds in cosmology and, within the adiabatic regularization scheme, provides

a natural candidate for the “ground state” at that instant of time. The extension to

the massless and the conformally coupled case are also discussed.

I. INTRODUCTION

Perhaps the most important lesson we have learned from quantum field theory in ar-

bitrarily curved space-times is the absence of a preferred vacuum state [1–4]. Interesting

phenomena such as particle creation in an expanding universe [5, 6], the Hawking effect in

black hole backgrounds [7], and the Unruh effect in Minkowski space-time [8] rely on this

fact. In highly symmetric space-times like Minkowski or de Sitter space, the underlying

isometries are a powerful tool to single out preferred vacua. One proceeds by requiring two

conditions: i) The vacuum must be invariant under the full group of symmetries of the back-
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ground metric; ii) The vacuum must be ultraviolet (UV) regular, namely the short-distance

or large-frequency structure of the state must approach the behavior found in flat space

at an appropriate rate. The adiabatic regularity condition in homogeneous space-times or

the Hadamard condition in more generic backgrounds are concrete ways of implementing

the second requirement [3, 4]. UV-regularity, among other things, guarantees that com-

posite operators such as the energy-momentum tensor can be satisfactorily renormalized

in the Hilbert space of physical states. In Minkowski and de Sitter space-times these two

requirements are indeed strong enough to uniquely single out a vacuum state, the so called

Minkowski and Bunch-Davies vacuum, respectively.

However, for less symmetric backgrounds one finds infinitely many such states. In partic-

ular, this is the case for the Friedmann, Lemâıtre, Robertson, Walker (FLRW) space-times

with line element ds2 = a(η)2 (−dη2 + d~x2) in the conformal time η. Although they are not

maximally symmetric, these space-times carry three space-translations and three rotations,

significantly simplifying the analysis. Because of the central importance of these space-times

in cosmology, repeated attempts have been made to select preferred vacua for test quantum

fields using these simplifications. However, to our knowledge, a satisfactory solution has not

emerged. Perhaps the simplest idea, that appears compelling at first, is to try to define the

instantaneous vacuum as the ground state of the Hamiltonian operator at that instant of

time. However, as shown in [9], this strategy faces two key difficulties. First, to define the

Hamiltonian, one has to make a choice of canonical variables and this freedom introduces an

ambiguity in the choice of states. Secondly, even after making a specific choice, the resulting

state fails to have the desired UV regularity, except in very specific situations.

The goal of this paper is to propose an alternate strategy which is motivated by the same

physical considerations but which is free of the two limitations. Specifically, we avoid the

ambiguities associated with the choice of canonical variables by working only with space-time

fields and, from the start, we restrict ourselves to states that are UV regular. In essence,

the key idea is to select the instantaneous vacuum |0〉 at η = η0 by demanding that the

expectation value of the stress-energy tensor T̂ab(~x, η0) in |0〉 should vanish: 〈0|T̂ab(~x, η0)|0〉 =

0.

Because it is constructed directly from space-time fields, without reference to canonically

conjugate variables, the energy-momentum tensor is free of the ambiguities appearing in the

Hamiltonian. Furthermore, the expectation value 〈0|T̂ab(~x, η0)|0〉 has fundamental physical
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significance because it is the vehicle through which matter fields source gravity in the semi-

classical approximation, and its conservation law provides rich information already in the

test field approximation. However, the formal expression of this vacuum expectation value

(VEV) is UV-divergent and requires renormalization even in a non-interacting theory. (This

is the generalization of the Minkowskian normal ordering procedure to curved space-times).

In this paper we will use the adiabatic renormalization [5, 6, 10] which is particularly trans-

parent for computations in homogeneous space-times. This scheme takes advantage of the

translational symmetry of the background and renormalizes the energy-momentum tensor by

subtracting suitable counter-terms using Fourier modes. More precisely, the stress-energy

tensor T̂ab(~x, η) is a composite operator. By expanding each field operator φ̂(~x, η) in its

(formal) expression in terms of its Fourier modes, one can express the expectation value of

T̂ab(~x, η) as an integral in the momentum space:

〈0|T̂ab(~x, η0)|0〉 =

∫
d3kTab(

~k, η0) , (1.1)

As explained in section II, the renormalized expression is given by subtracting the appro-

priate counter-term Cab(~k, η) for each ~k:

〈0|T̂ab(~x, η0)|0〉ren =

∫
d3k [Tab(

~k, η)− Cab(~k, η)] , (1.2)

We show that, whenever it is possible to find a homogeneous and isotropic state that satisfies

Tab(
~k, η0) = Cab(~k, η0) for every ~k, that state is unique and UV-regular. In particular,

in this state 〈0|T̂ab(~x, η0)|0〉ren = 0. Note however that, because Tab(
~k, η0) − Cab(~k, η0) is

not necessarily positive, our requirement that it vanish for each ~k is stronger than simply

asking 〈0|T̂ab(~x, η0)|0〉ren = 0: We are excluding the possibility of a cancelation between

contributions from different ~k-modes.

The resulting state is tailored to the time η0 because, generically, 〈0|T̂ab(~x, η)|0〉ren will

be non-zero at any other time η. For this reason we will call it the preferred instantaneous

vacuum, and denote it by |0η0〉, where η0 is the instant to which it refers. Renormaliza-

tion of the energy-momentum tensor can then be understood as “a time-dependent normal

ordering” with respect to the η-family of preferred instantaneous vacua. Furthermore, the

expectation value 〈0η0|T̂ab(~x, η1)|0η0〉ren at another time η1 > η0 can be interpreted as the

energy-momentum transferred to the scalar field by the dynamical background geometry.

These features serve to bring out the physical meaning of our instantaneous vacuum. Note,
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however, that the notion depends on our choice of adiabatic renormalization because of the

mode by mode subtraction involved. One can imagine using a variation of this strategy

tailored to another renormalization scheme and the resulting strategy may well yield a dif-

ferent notion of an instantaneous vacuum. However, one does need renormalization to speak

of composite operators such as energy and momentum density and it is non-trivial that

there exists a scheme which enables one to select instantaneous vacua in a large number of

physically important cosmological situations.

The approach presented here has some similarities with a part of the analysis carried out

out in [11]. In that work, among many other interesting results, adiabatic renormalization

was used to obtain a preferred definition of particles at a given time, and the resulting

definition was applied to discuss the creation of particles by the expansion of the universe.

In the present paper we discuss states that make the VEV of the full renormalized energy-

momentum tensor vanish. No particle interpretation of the field theory is required here.

We will conclude this introduction with a couple of conceptual remarks. An important

tenet of quantum field theory in curved backgrounds is that the renormalization procedure

can only make use of the local properties of the space-time geometry, namely curvature

tensors and its derivatives at a point [3]. But our condition 〈0η0|T̂ab(~x, η0)|0η0〉ren = 0 is

global in space because it is required to hold for all ~x. However, because we require the

states to be spatially homogeneous, satisfaction of this condition at one ~x implies that it

holds for all ~x at η = η0. Thus, while states are ‘global notions’, in our strategy the

spatial aspect of this global character is ensured by asking that the state |0η0〉 be spatially

homogeneous.

The second point concerns the existence of the preferred instantaneous vacuum. General

arguments indicate that it can not exist for arbitrary values of the mass m and coupling to

the curvature ξ. For instance, it is well known that for a conformally coupled scalar field

(m = 0 and ξ = 1
6
) the trace of the renormalized energy-momentum tensor is non zero and

independent of the quantum state of the field. This is the well known trace anomaly [12, 13].

As one would expect, our strategy fails to select a state in these cases (see section IV). Thus,

the strategy succeeds in selecting a preferred state in generic physically interesting situations,

neatly bypassing the special cases in which conceptual obstacles are already known to exist.

The plan of the paper is the following. We work in a spatially flat FLRW space-time

(although we do not envisage significant difficulties in extending the analysis to other ho-
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mogeneous space-times). In section II we summarize the expression for the renormalized

energy-momentum tensor. In section III we analyze the minimally coupled, massive scalar

field and provide a criterion for the existence of the preferred instantaneous vacuum. We

check that the criterion is met in the commonly considered in cosmology, including radiation-

dominated, matter-dominated, FLRW space-times (except very near the big bang singular-

ity), in de Sitter space, and of course, Minkowski space. In section IV we consider the

massless, minimally coupled case and show that the preferred vacuum does not exist. How-

ever, the problem is similar to the one encountered in de Sitter space in the massless limit

of the Bunch-Davies vacuum [14] and one can work around it in the same fashion [15]. In

section V the conformally coupled case is discussed, and it is shown that it is not possible

to find a state with zero expectation value of the energy-momentum tensor, unless a(η) is

very special (e.g. constant). Section VI provides a summary, a discussion of an interpreta-

tion of the instantaneous vacuum in the framework of semi-classical gravity, and some final

comments.

Our conventions: signature is − + ++; curvature tensors are defined as: Rabc
dvd =

2∇[a∇b] vc; Rac = Rabc
b; R = gacRac; and c = ~ = 1.

II. QFT IN K = 0 FLRW BACKGROUNDS AND RENORMALIZED VEV OF

THE ENERGY-MOMENTUM TENSOR

In this section we summarize the expression for the renormalized VEV of the energy-

momentum tensor in adiabatic regularization in spatially flat FLRW. For more details see

[1, 2, 4]. Consider a non-interacting, real scalar field satisfying the Klein-Gordon equation

(� −m2 − ξ R)φ̂(~x, η) = 0, where R = 6a′′/a3 is the scalar curvature of the FLRW metric

ds2 = a(η)2 (−dη2 + d~x2), and prime denotes the derivative with respect to conformal time

η. We analyze here the minimally coupled case ξ = 0 and m 6= 0, leaving the massless

minimally coupled case and conformally coupled case (ξ = 1/6) for sections IV and V,

respectively.

The underlying homogeneity can be used to Fourier-expand the field operator and rep-

resented it as

φ̂(~x, η) =
1

(2π)3

∫
d3k [Â~k ϕ~k(η) + Â†

−~k
ϕ̄−~k(η)] ei

~k·~x , (2.1)
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where ‘bar’ denotes complex conjugation. The basis functions ϕ~k(η) are solutions of the

wave equation

ϕ′′~k(η) + 2
a′

a
ϕ′~k(η) + (k2 +m2a2)ϕ~k(η) = 0 , (2.2)

and if they are chosen to satisfy the normalization conditions ϕ~kϕ̄
′
~k
− ϕ′~kϕ̄~k = i a−2 and

ϕ~kϕ
′
−~k − ϕ

′
~k
ϕ−~k = 0 at some instant of time, then the time-independent operators Â~k and

Â†~k satisfy the algebra of creation and annihilation operators: [Â~k, Â
†
~k′

] = (2π)3δ3(~k − ~k′),

[Â~k , Â~k′ ] = [Â†~k , Â
†
~k′

] = 0. One then defines the vacuum |0〉 as the state annihilated by all

Â~k, and generates the Fock space by repeatedly acting on it with creation operators.

The vacuum defined in this way is tailored to the definition of the operators Â~k. In

turn, these operators are uniquely determined by the specification of a complete set of

mode functions ϕ~k(η) for all ~k: Eq. (2.1) and the normalization condition imply Â~k =

−i
∫

d3x [φ̂(~x, η)
↔
∂ η ϕ̄~k(η) e−i

~k·~x]. Therefore, a complete family of normalized solutions ϕ~k(η)

to equation (2.2) determines a vacuum. But the correspondence is not one-to-one. The sets

{ϕ~k(η)} and {ϕ~k(η) eiθ~k} that only differ by a time-independent phase factor determine the

same vacuum.1

The resulting vacua are all translational invariant, but we can impose an additional

condition on the mode functions ϕ~k(η) to ensure that they are also rotationally symmetric.

This is achieved by demanding that mode functions depend only on the norm of the wave

vector k = |~k|, rather than on its three independent components. As is well known, the

rotational invariance can be demonstrated by writing down the associated two-point function

〈0|φ̂(~x1, η1)φ̂(~x2, η2)|0〉 =

∫
d3k

(2π)3
ϕk(η1)ϕ̄k(η2) e

i~k·(~x1−~x2) , (2.3)

which by inspection display invariance under these symmetries.

To summarize, in FLRW there is a one-to-one correspondence between equivalence

classes of families of solutions {ϕk(η)} which differ by time-independent phase factors eiθ~k

and translationally and rotationally invariant vacuum states.

1 As explained in section V.B of [16], there is a 1-1 correspondence between these equivalence classes of

basis and complex structures J on the space S of real, classical solutions to the field equations, which are

compatible with the natural symplectic structure Ω on S in the sense that (S,Ω, J) is a Kähler space.
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The classical expression for the energy-momentum tensor of a minimally coupled scalar

field is

Tab = ∇aφ∇bφ−
1

2
gabg

cd∇cφ∇dφ−
1

2
m2gabφ

2 . (2.4)

In the quantum theory, the expectation value of the operator T̂ab in a homogeneous and

isotropic vacuum state takes the perfect fluid form

〈0|T̂ab|0〉 = gab〈p̂〉+ (〈p̂〉+ 〈ρ̂〉)uaub , (2.5)

where ua is the unit vector normal to the homogeneous and isotropic hyper-surfaces. In

terms of the modes ϕk(η) defining the vacuum, the formal expressions of the expectation

values of energy density and pressure are

〈ρ̂〉 :=
1

(2π)3

∫
d3k ρ[ϕk] =

1

(2π)3

∫
d3k

1

2a2
(
|ϕ′k|2 + w2|ϕk|2

)
, (2.6)

〈p̂〉 :=
1

(2π)3

∫
d3k p[ϕk] =

1

(2π)3

∫
d3k

1

2a2
(
|ϕ′k|2 −

1

3
(w2 + 2m2)|ϕk|2

)
, (2.7)

where the time-dependent frequency w(η) is given as usual by

w(η) =
√
k2 +m2a(η)2 . (2.8)

The VEV of the trace of the energy-momentum tensor is 〈T̂ 〉 = 3 〈p̂〉−〈ρ̂〉. These expressions

for the components of 〈T̂ab〉 are only formal because they diverge in the k →∞ limit as k4,

regardless of the form of a(η). Regularization and renormalization are required to extract

the finite, physically relevant result. As mentioned in the introduction, in this paper we use

the adiabatic renormalization method developed by Parker and Fulling in [5, 6, 10]. More

recent accounts can be found in [2, 4] and a succinct summary, most closely related to our

present discussion, is given in section IV of [16]. This method removes the UV divergences

by subtracting the adiabatic counter-terms mode-by-mode, under the ~k-integral:

〈ρ̂〉ren =
1

(2π)3

∫
d3k

(
ρ[ϕk]− Cρ(η, k,m)

)
, (2.9)

and,

〈p̂〉ren =
1

(2π)3

∫
d3k

(
p[ϕk]− Cp(η, k,m)

)
. (2.10)

Here Cρ(η, k,m) and Cp(η, k,m) are the rather long expressions (A1) and (A2), given in the

Appendix (see also [17]). They are independent of the state in which the expectation values
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are evaluated, and therefore independent of the choice of modes ϕk. They are functions of

k, constructed entirely from the scale factor a(η) and its four first time derivatives at time

η. Therefore, to renormalize the stress energy tensor using adiabatic renormalization, a(η)

has to be a C4 function.2

As is well-known, [1–4], in order to have a physically satisfactory quantum field theory

one needs to impose restrictions on the allowed quantum states. These are the regularity

conditions mentioned in section I. In the adiabatic approach one restricts physical states

to be of 4th adiabatic order. This requirement is implemented by demanding asymptotic

conditions on the family of solutions ϕk(η) defining the vacuum, in the limit w →∞. One

requires the modes ϕk(η) to approach Minkowski positive frequency solutions (e−iwη/
√

2w)

at the appropriate rate, specified by the following behavior in the k →∞ limit:

|ϕk(η)| = |ϕ(4)
k (η)|

(
1 +O(w−(4+ε))

)
and |∂ηϕk(η)| = |∂ηϕ(4)

k (η)|
(

1 +O(w−(4+ε))
)
, (2.11)

with ε a strictly positive real number and

ϕ
(4)
k (η) =

1

a(η)

√
2W

(4)
k (η)

e−i
∫ ηW (4)

k (η′)dη′ (2.12)

where W
(4)
k (η) = W0 +W2 +W4, with

W0 = w ;

W2 =
3aw′2 − 4w2a′′ − 2aww′′

8aw3
;

W4 =
1

128a3w7
(−297a3w′4 + 32w4a′2a′′ + 80aw3a′w′a′′ + 152a2w2w′2a′′ − 32aw4a′′2 +

+ 396a3ww′2w′′ − 48a2w3a′′w′′ − 52a3w2w′′2 − 32aw4a′a′′′ − 80a2w3w′a′′′ −

− 80a3w2w′w′′′ + 16a2w4a′′′′ + 8a3w3w′′′′) . (2.13)

If conditions (2.11) are satisfied at some time η0, the wave equation (2.2) guarantees they

are satisfied for all η. For further details about the adiabatic expansion see [2, 4]. Mode

functions ϕk(η) satisfying requirements (2.11) are called 4th adiabatic order modes, and the

vacuum |0η0〉 they define is a quantum state of 4th adiabatic order. (Elements of the Hilbert

2 The stress energy tensor is a composite operator of dimension 4. More generally, to regularize and

renormalize an operator product of dimension n one needs adiabatic regularity of order n which requires

a(η) to be Cn.
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space obtained by acting repeatedly by a finite but arbitrarily large number of creation

operators provides a dense subspace of states all of which are of 4th adiabatic order.) Note

that (2.11) imposes only asymptotic restrictions. Therefore there are infinitely many choices

of modes {ϕk} of 4th adiabatic order and hence of vacua |0〉 of 4th adiabatic order.

Remark: In spatially compact space-times, Hilbert spaces constructed from different

adiabatic vacua are unitarily equivalent. In this sense, the adiabatic condition selects a

unique Hilbert space and the associated representation of the quantum theory. This is not

the case if space is non-compact. In that situation inequivalent representations appear, even

if states are adiabatic up to all orders (the same happens for Hadamard states [3]). But

this mathematical inequivalence is considered to be physically spurious, since the resulting

theories are physically indistinguishable when measurements are restricted to a finite region

of space. (See, e.g. section 2.3.2 of [18].)

III. PREFERRED INSTANTANEOUS VACUUM FOR MASSIVE, MINIMALLY

COUPLED SCALAR FIELDS

Let us start only with the (spatial) translational invariance of the background geometry to

perform Fourier transform and incorporate the rotational invariance in a second step. Then,

as described in section II, there is a one-to-one correspondence between equivalence classes

of families of normalized solutions to equation (2.2), {ϕ~k(η)}, that differ only by a time-

independent phase factor, and Fock vacua |0〉. Since equation (2.2) is a second-order O.D.E.,

the modes ϕ~k(η) are uniquely determined by their initial data {ϕ~k(η0), ϕ′~k(η0)} ∈ C2 at any

given time η0. Once the normalization condition and the irrelevant phase factor are taken

into account, two independent real parameters for each ~k are sufficient to unambiguously

determine solutions ϕ~k(η). They can be conveniently chosen as Ω~k(η0) and V~k(η0) ∈ R

satisfying Ω−~k(η0) = Ω~k(η0) and V−~k(η0) = V~k(η0). In terms of these parameters we can set3

ϕ~k(η0) =
1

a(η0)
√

2 Ω~k(η0)
; ϕ′~k(η0) =

(
−iΩ~k(η0) +

V~k(η0)

2
− a′(η0)

a(η0)

)
ϕ~k(η0) . (3.1)

Therefore, a set of such real numbers Ω~k(η0) and V~k(η0) for every ~k is in one-to-one corre-

spondence with the set of homogeneous Fock vacua. We will take advantage of this corre-

3 This parameterization for initial data was already used in [11].
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spondence to find the desired preferred instantaneous vacuum |0η0〉 at time η0. As described

in section I, the strategy is to look for states |0η0〉 satisfying three requirements:

1. The symmetry requirement: |0η0〉 shares the symmetries of the background metric,

namely (spatial) translational and rotational invariance. As discussed in section II,

this is guaranteed if the solutions ϕ~k(η) depend only on the norm k of the wave vector

~k. This is the case if and only if Ω~k(η0) = Ωk(η0) and V~k(η0) = Vk(η0) for all ~k.

2. The regularity requirement: |0η0〉 is a quantum state of 4th adiabatic order. This will

be the case if and only if ϕk(η0) and ϕ′k(η0) satisfy (2.11) – (2.13). This, in turn, is

guaranteed if and only if Ωk(η0) and Vk(η0) satisfy the following asymptotic conditions

as w →∞:

Ωk(η0) = W
(4)
k (η0) +O(w−(4+ε)) ; Vk(η0) =

∂ηW
(4)
k

W
(4)
k

∣∣∣
η0

+O(w−(4+ε)) ,

where W
(4)
k (η) is defined by (2.13) and ε > 0.

3. The ‘instantaneous vacuum’ requirement: For each ~k we require ρ[ϕk(η0)] −

Cρ(η, k,m) = 0 and p[ϕk(η0)] − Cp(η, k,m) = 0 so that the renormalized expecta-

tion value 〈0η0 |T̂ab(η0)|0η0〉ren of the stress tensor vanishes identically, mode by mode.

At first these requirements appear to impose an over-constrained set of conditions on Ωk(η0)

and Vk(η0). Therefore, there is no a priori guarantee that a solution would exist. We now

investigate existence and uniqueness.

The third condition requires ρ[ϕk(η0)] = Cρ(η0, k,m) and p[ϕk(η0)] = Cp(η0, k,m) for all

~k, where ρ[ϕk] and p[ϕk] were defined in equations (2.6) and (2.7), and ϕk(η0) is given by

(3.1). This is a quadratic system of algebraic equations for Ωk(η0) and Vk(η0). The solutions

are

Ωk(η0) = − 2w2(η0) +m2 a2(η0)

6 a4(η0) (Cp(η0, k,m)− Cρ(η0, k,m))
; (3.2)

V
(±)
k (η0) = 2

a′(η0)

a(η0)
∓ 2
√
−w2(η0) + 4 a4(η0)Cρ(η0, k,m)Ωk(η0)− Ω2

k(η0) . (3.3)

Additionally, Ωk(η0) must be positive and both Ωk(η0) and Vk(η0) must be finite and real

for the initial data (3.1) to define normalized solutions. These requirements translate to the

following conditions

∞ > Ωk(η0) > 0 , (3.4)
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∞ > rk(η) := −w2(η0) + 4 a4(η0)Cρ(η0, k,m)Ωk(η0)− Ω2
k(η0) ≥ 0 . (3.5)

If they are satisfied, then Ωk(η0) and V
(±)
k (η0) define vacuum states satisfying conditions i)

and iii) in our list.

But would the resulting vacua meet the regularity condition ii), i.e., are they states of

4th adiabatic order? Note that the only remaining freedom is the choice of sign in (3.3). If

(Ωk(η0), rk(η0)) satisfy (3.4) and (3.5), a detailed examination shows that the vacuum state

constructed from Ωk(η0) and V
(+)
k (η0) is of 4th adiabatic order in an expanding universe

(a′(η) ≥ 0), while Ωk(η0) and V
(−)
k (η0) provide the satisfactory solution in the contracting

case. Therefore if the solution |0η0〉 exists, then it is unique.

To summarize, equations (3.4) and (3.5) provide the necessary and sufficient conditions

for the existence of a Fock vacuum satisfying our three requirements. Assuming existence of

such an Ωk(η0), using the expression (2.3) of the 2-point function, the resulting state |0η0〉

can be shown to be regular both in the infrared limit k → 0 as well as in the UV limit

k →∞ at η = η0. Results of [19, 20] then guarantee that the state remains well-defined at

any other time.

We will conclude this section with a few comments on |0η0〉. First, what is the level of re-

striction imposed by conditions (3.4) and (3.5)? Does the desired instantaneous vacuum exist

in the FLRW solutions that are most commonly used in cosmology, or only for very specific

forms of the scale factor a(η)? As a first exercise it is interesting to examine the situation

in Minkowski space-time, in which a(η) is a constant. In that case the adiabatic subtrac-

tion terms become Cρ(η0, k,m) = w(η0) =
√
k2 +m2 and Cρ(η0, k,m) = k2/(3w(η0)), and

equations (3.2) and (3.3) give Ωk(η0) = w(η0) and Vk(η0) = 0. Thus the solution exists and

defines precisely the standard Minkowski vacuum, just as one would hope.

For time-dependent scale factors a(η) we have checked numerically that the necessary and

sufficient conditions (3.4) and (3.5) are satisfied in the following cosmological space-times:

i) a radiation dominated FLRW universe in which the scale factor has the form a(η) = a0 η;

ii) a matter dominated FLRW universe, for which a(η) = a0 η
2; and de Sitter space-time

with a(η) = −1/(Hη) and H constant. A number of numerical simulations were carried

out. Except at and very near the big bang, we found no values of m, H, k and η at which

conditions (3.4) and (3.5) are not satisfied. We include three illustrative plots (FIG 1 – FIG

3) of the behavior of Ωk(η) and rk(η) (defined in (3.5)), one for each of these space-times, and

for m = H = 10−5 in the natural Planck units with c = GN = ~ = 1. These plots show that
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FIG. 1: FLRW space-time sourced by radiation: The left panel shows the behavior of Ωk(η),

defined in Eq. (3.2) as a function of η and k and the right panel, the behavior of rk(η) defined

in Eq. (3.5). Here we have set m = 10−5 in the natural Planck units. In this model the scale

factor has the form a(η) = a0η whence the singularity occurs at η = 0. For the range of parameters

considered, both functions remain finite and positive except very near the big bang, satisfying the

necessary and sufficient condition (3.4) and (3.5) of the existence of the instantaneous vacuum at

time η.

FIG. 2: FLRW space-time sourced by non-relativistic matter: As in Fig 1, the left panel shows

the behavior of Ωk(η) (defined in (3.2)) and the right panel, the behavior of rk(η) defined in (3.5).

The mass parameter is again m = 10−5 in the natural Planck units. Again, except very near the

big-bang singularity (η = 0), both functions remain finite and positive. Thus for the range of η, k

shown, the existence of the instantaneous vacuum |0η0〉 is ensured.

both functions remain finite and positive for all plotted range of k and η, as it is required by

(3.4) and (3.5). Their qualitative behavior can be understood as follows. Ωk(η) behaves like

Ωk(η) ∼ k + [(terms with two derivatives of a)/k + higher adiabatic order terms] for large

values of k compared to the mass or the curvature. Therefore, except for very small values

of k, we have Ωk(η) ∼ k. The three plots exhibit this η-independence and linear growth in k



13

FIG. 3: De Sitter space-time: Again, the left panel shows the behavior of Ωk(η) and the right

panel, the behavior of rk(η). In this plot we have set m = H = 10−5 in the natural Planck units.

Now, η = 0 corresponds to future infinity which is not part of space-time. For the values of η, k

considered, the functions remain finite and positive, ensuring the existence of the instantaneous

vacuum |0η0〉.

of Ωk(η). Next, consider rk(η). It behaves like rk(η) ∼ a′/a +O(k−2). For values of k that

are large compared to the mass or the curvature, the term a′/a dominates and the plots are

approximately k-independent. But for small k, there is k-dependence. Furthermore since

a′/a ∼ η−2 in all three cases considered, there is a strong growth when approaching η = 0.

This growth may seem to be ‘abrupt’ in the first three figures. But that is an artifact of the

very large scale used in the vertical axis showing values of rk(η). In FIG 4, which zooms in

at small values of rk(η), one sees that the growth is gradual, following the 1/η2 behavior.

Our simulations showed that larger values of the η and k, and other choices of m and

H did not alter the final conclusions: The state |0η〉 continued to exist. However, since the

search was done numerically, it could not been exhaustive. If one is interested in using the

instantaneous vacuum in a specific situation, one has to use the values of η0 and m (and H)

of interest and verify that conditions (3.4) and (3.5) are satisfied.

For those space-times for which the group of isometries is larger than the Euclidian group

(homogeneity and isotropy), one would not expect the preferred instantaneous vacuum to

automatically agree with states singled out by the full symmetry group. This is because

|0η0〉 is constructed using the preferred cosmological foliation: the Euclidean group is tied to

this foliation, and the local geometry used in our construction —the scale factor and its first

four time derivatives— also refers to this foliation. It is not required to be invariant under
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FIG. 4: Growth of rk(η) in de Sitter (left) and radiation filled FLRW (right) space-times: This

figure zooms-in on the region in which rk(η) starts growing as one approaches η = 0. The growth

goes as a′/a ∼ 1/η2. Behavior is similar for the matter-filled FLRW universe.

any additional symmetries. For instance, in de Sitter space-time the cosmological foliation

is not preserved by the full isometry group and our instantaneous vacuum does not agree

with the Bunch-Davies vacuum which is invariant under the full de Sitter group.

It is not difficult to show that although |0η0〉 has vanishing expectation value for the

energy-momentum tensor at time η0, it is not an eigenstate of the operator T̂ab or the energy

operator
∫

d3x a3ρ̂ at that time, unless a(η) is very special. On the other hand, it is also not

difficult to see that if |n~k〉 is an eigenstate of the number operator N
(η0)
~k

= (A
(η0)
~k

)†A
(η0)
~k

with

eigenvalue n~k, where A
(η0)
~k

are the annihilation operators associated with |0η0〉, then the total

energy in the state |nk〉 at time η0 is given by a(η0)
3(2π)−3

(
ρ[ϕk(η0)]− Cρ(η0, k,m)

)
× n~k.

Therefore,
(
ρ[ϕk(η0)]−Cρ(η0, k,m)

)
can be interpreted as the average energy density at η0

per quantum (of N
(η0)
~k

) in a comoving volume in position as well as momentum space.

IV. MINIMALLY COUPLED MASSLESS SCALAR FIELD

The massless limit requires special attention because of the potential infrared divergences.

In the adiabatic approach, a renormalization energy scale µ > 0 needs to be specified for

massless fields to handle these divergences [21]. The introduction of this scale does not

add further ambiguity to the renormalization procedure. This is because different choices

of the scale µ translate to the addition of a term proportional to the geometric tensor H
(1)
ab

(defined in expression (A5) in the Appendix)) to the renormalized energy-momentum tensor,
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and the ambiguity of adding such a term is already present in the axiomatic renormalization

approach [3]. For massless fields this is in fact all the freedom one has in the choice of

renormalization scheme, since H
(1)
ab is the only conserved, geometric tensor with the same

dimensions as Tab available in FLRW. Therefore, one can think of the choice of the scale µ

as encoding all the freedom in the choice of the renormalization scheme.

As in the massive case, the preferred instantaneous vacuum at time η0 is characterized

by two real parameters Ωk(η0) and Vk(η0) that solve the equations

ρ[ϕk(η0)] = C(m=0)
ρ (η0, k, µ) ; p[ϕk(η0)] = C(m=0)

p (η0, k, µ) , (4.1)

where ρ[ϕk(η0)] and p[ϕk(η0)] are given by (2.6) and (2.7) with m = 0. The massless

subtraction terms C
(m=0)
ρ (η0, k, µ) and C

(m=0)
p (η0, k, µ) are given by expressions (A3) and

(A4) with ξ = 0. Solutions to these equations are

Ωk(η0) = − k2

3 a(η0)4 (C
(m=0)
p (η0, k, µ)− C(m=0)

ρ (η0, k, µ))
; (4.2)

V
(±)
k (η0) = 2

a′(η0)

a(η0)
∓ 2

√
−k2 + 4 a(η0)4C

(m=0)
ρ (η0, k, µ) Ωk(η0)− Ω2

k(η0) . (4.3)

Therefore, the preferred instantaneous state exists whenever Ωk(η0) is positive and the rad-

icand of (4.3) is non-negative

∞ > Ωk(η0) > 0 , (4.4)

−k2 + 4 a(η0)
4C(m=0)

ρ (η0, k, µ) Ωk(η0)− Ω2
k(η0) ≥ 0 . (4.5)

As in the massive case, (Ωk(η0), V
(+)
k (η0)) provide a 4th adiabatic order vacuum for a′(η0) ≥

0 and (Ωk(η0) and V
(−)
k (η0), for a′(η0) ≤ 0. One can check that the above conditions (4.4)

and (4.5) are indeed satisfied in the most common FLRW background used in cosmology.

In the constant a(η) limit the resulting state agrees with the Minkowski vacuum.

However, the vacuum state we have just found is not satisfactory: the two-point func-

tion diverges in the infrared limit, k → 0, whence the state fails to satisfy our regularity

requirement. The situation is similar to the well-known problem of the massless limit of the

Bunch-Davies vacuum in de Sitter space [14], and the solution is the same as in that case

[15]. It suffices to change the zero-mode, ϕk=0, to bypass the problem. For the massless

Bunch-Davies vacuum, the resulting quantum state is no longer exactly de Sitter invariant.

However, the deviation from de Sitter invariance appears in a single mode with k = 0. As

a consequence, this state is considered to be physically interesting and is widely used in the
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context of inflation. In our case, the result of modifying the prescription (4.2) and (4.3) for

k = 0 yields a state in which energy-momentum at η0 fails to vanish, but only due to the

contributions of modes with arbitrarily small k.

V. CONFORMALLY COUPLED MASSLESS SCALAR FIELD

In this section we discuss the subtleties that arise in the conformally coupled case, with

m = 0 and ξ = 1/6. The classical expression for the energy-momentum tensor takes the

form

Tab =
2

3
∇aφ∇bφ−

1

6
gab g

cd∇cφ∇dφ−
1

3
φ∇a∇bφ+

1

12
gab�φ+

1

6
(Rab −

1

4
Rgab)φ

2 , (5.1)

where Rab is the Ricci tensor and R its trace. This tensor is manifestly traceless, gabTab = 0.

This vanishing trace is the source of the issue that we now describe.

At the quantum level, the adiabatically renormalized VEV of T̂ab in a homogeneous and

isotropic state takes again the perfect fluid form (2.5), with

〈ρ〉ren =
1

(2π)3

∫
d3k

(
ρ[ϕk]− C(cnf)

ρ (η, k)
)

(5.2)

〈p〉ren :=
1

(2π)3

∫
d3k

(
p[ϕk]− C(cnf)

p (η, k)
)
, (5.3)

where ρ[ϕk] = 1
2a2

(|ϕ′k + a′

a
ϕk|2 + k2|ϕk|2) and p[ϕk] = 1/3 ρ[ϕk]. The adiabatic subtraction

terms for conformal coupling, C
(cnf)
ρ (η, k) and C

(cnf)
p (η, k), can be found in Appendix A

(expressions (A3) and (A4) with ξ = 1/6). The renormalized VEV of the trace is given by

〈T 〉ren = 3 〈p〉ren − 〈ρ〉ren = − 1

(2π)3

∫
d3k

(
3C(cnf)

p (η, k)− C(cnf)
ρ (η, k)

)
=

1

180 (4π)2

(
�R +RabR

ab − 1

3
R2

)
. (5.4)

Notice that, as a consequence of the vanishing classical trace, this VEV is independent of

the mode functions ϕk, i.e., independent of the vacuum in which the expectation value is

evaluated: 〈T 〉ren arises entirely from renormalization subtractions. This is the well-known

trace or conformal anomaly [12, 13] (see also [1]). As a consequence, there is obviously no

state for which the renormalized VEV of the energy-momentum tensor is zero. Therefore,

the preferred instantaneous vacuum does not exist for a massless, conformally coupled scalar
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field in spatially flat FLRW space-time, unless a(η) is very special, e.g. constant. Note also

that this result is not a peculiarity of the adiabatic approach; it extends to any other

regularization scheme. This is because the value of the trace anomaly is non zero in all

renormalization procedure satisfying Wald’s axioms [3]. Only the coefficient multiplying

�R in (5.4) changes from one scheme to the other.

In the absence of a state which makes the VEV of all components of the energy-momentum

tensor equal zero, one could ask if there exist homogeneous and isotropic vacuum states for

which one of the two independent components, the energy density or the pressure, has zero

VEV at a given time. The answer is also in the negative: for a generic a(η), there is no

vacuum of 4th adiabatic order with zero energy density or zero pressure at a given time for

the conformally coupled scalar field.

VI. DISCUSSION

The problem of selecting preferred vacua for quantized fields in cosmological space-times

is interesting not only because of its conceptual importance, but also because the issue is

directly relevant to the computation of primordial cosmic perturbations in the early universe.

In these computations one needs to specify the quantum state for perturbations at some

“initial” time η0. In the inflationary scenario one uses the fact that the background is close

to de Sitter space-time, and selects a vacuum by extending the Bunch-Davies vacuum state

to quasi-de Sitter space-times (see e.g. [22]).4 In loop quantum cosmology [23], matter-

dominated bounces [24] and ekpyrotic cosmologies [25], ‘initial conditions’ are specified in

a phase which is far removed from the slow-roll, de Sitter-like expansion. Can one still

single out a preferred initial state at such initial instants? In the cosmological literature it

is common to choose “Minkowski-like” initial data for modes to select the desired vacuum,

namely ϕk(η0) = 1/
√

2w(η0) and ϕ′k(η0) = −iw(η0)/
√

2w(η0). Although the resulting

state is homogeneous and isotropic by construction, from a physical perspective, it is not

satisfactory because it is fails UV regularity: it is neither adiabatic nor Hadamard. In

particular, there is no known systematic procedure to renormalize the expectation value of

the energy-momentum tensor in such states. In addition, even if one computes the difference

4 Note, however, that from a mathematical physics perspective, there is an infinite dimensional ambiguity

in extending the notion to the near de Sitter situations that feature in the slow roll scenario.
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in energy density between two states defined using these initial data at two different times,

η0 and η1, one finds a divergent result for generic a(η). Another avenue pursued in the early

literature was to try to select a state that would be the ground state of the instantaneous

Hamiltonian operator. At first this strategy seems attractive from a conceptual standpoint.

Indeed, it leads to the standard vacuum state in Minkowski space-time. But, as explained

in section I, in curved space-times it faces two difficulties: dependence on the choice of

canonical variables used in the definition of the Hamiltonian and failure to be ultraviolet

regular [9].

By contrast, the instantaneous vacuum introduced in this paper is free of these limita-

tions. First, by construction, it is regular to 4th adiabatic order. Therefore its ultraviolet

behavior is such that the expectation value of the stress-energy operator to be well-defined.

Second, the construction refers only to 4-dimensional fields; no choice of canonically conju-

gate variables is necessary. Furthermore, the input used in the construction is just the local

geometry, namely the scale factor and its first four time derivatives. Finally, the construc-

tion can be carried out to completion in the most widely used FLRW models. Yet, the state

|0η0〉 it selects has the same intuitive connotations as the ‘ground state of the instantaneous

Hamiltonian’ that was avidly sought in the older literature. In fact, it can be regarded as an

instantaneous ground state in a stronger sense since not only do energy density and pressure

vanish in this state, but they do so mode by mode.

From the perspective of semi-classical gravity, states |0η0〉 have an interesting property.

We will now make a detour to spell it out in some detail. Recall that in semi-classical general

relativity, the space-time metric is classical, the matter fields are quantum, and the stress

energy tensor in the classical Einstein’s equation is replaced by the expectation value of the

stress-energy tensor operator. Let us consider the following perturbative expansion. To the

zeroth order, we have a classical metric g̊ab coupled to classical matter which, for simplicity,

we will take to be a Klein Gordon field φ̊, satisfying

�̊φ̊−m2φ̊ = 0 and G̊ab = 8πGNT̊ab (6.1)

where, as the notation suggests, �̊ and G̊ab refer to g̊ab and T̊ab is the stress-energy tensor

of φ̊ (on the space-time with metric g̊ab). Next, we have a quantum field φ̂(1) satisfying

�̊φ̂(1) −m2φ̂(1) = 0 (6.2)
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which we regard as a first order perturbation. We are interested in calculating the back

reaction on the classical metric due to this perturbation. So we can expand the metric as

gab = g̊ab + g
(1)
ab + g

(2)
ab + . . .

and solve Einstein’s equations order by order. Since the perturbation is order 1 and the

stress energy is quadratic in the field, as is usual in the analysis of back reaction, we will

seek a truncation which is consistent up to second order. In this truncated expansion, the

stress-energy tensor is to be constructed using the matter field φ̊+φ̂(1) (and the metric to the

appropriate order). The right side of Einstein’s equation will feature the expectation value

of this operator in a quantum state. In the final argument we will use the instantaneous

vacuum |0η0〉 but for now let us allow it to be a general vacuum |0〉 that satisfies only the

symmetry and regularity conditions. Then, because 〈0|∇aφ̂
(1)|0〉 = 0, it follows that the

first order metric perturbation satisfies the homogeneous equation:

G
(1)
ab ≡ Θ̊ g

(1)
ab = 0 , (6.3)

where Θ̊ is a second order differential operator constructed from the zeroth order metric

g̊ab.
5 Solutions to the homogeneous equation (6.3) represent tensor modes. Since we are

calculating only the back reaction on the metric created by the scalar field, we are led to

choose the solution g
(1)
ab = 0.

Non-trivial back reaction appears at second order, via the second order Einstein’s equa-

tion. Since g
(1)
ab = 0, this equation reduces to

G
(2)
ab ≡ Θ̊ g

(2)
ab = 〈0|T̂ab|0〉 , (6.4)

where the right side features the renormalized stress-energy tensor, which is quadratic in the

first order perturbations. We can now perform an initial value formulation of this equation

5 That the equation is homogeneous is at first surprising. Had we worked in the classical theory, because

∇aφ
(1) 6= 0, T

(1)
ab would not be zero and would act as a source for first-order scalar perturbations in the

metric. Similarly, if the metric perturbations were operators ĝ
(1)
ab —as φ̂(1) is— the right hand side would

be the operator T̂
(1)
ab which, unlike its expectation value in the state |0〉, is non-zero. By contrast, in the

semi-classical framework, since the metric is classical and the matter field is quantum, Einstein’s equation

necessarily involves expectation values, and the expectation value 〈0|T̂ (1)
ab |0〉 vanishes. Thus, the fact

that g
(1)
ab satisfies a homogeneous equation is a peculiarity of (the perturbative expansion in) semiclassical

gravity. For a more general discussion of unforeseen features, see section VI.D of [16].
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with η = η0 as the initial instant. The resulting scalar and the vector constraints are

inhomogeneous elliptic equations for the linearized 3-metric q
(2)
ab and extrinsic curvature k

(2)
ab ,

with source terms

〈0|T̂ab|0〉 n̊an̊b and 〈0|T̂ab|0〉̊naq̊bc

where n̊a is the unit normal to and q̊ab the intrinsic metric on the surface η = η0, defined

by g̊ab. Now, the main point is that if we were to use |0η0〉 in place of a generic vacuum

|0〉, then the source terms on the right sides of these constraint equations vanish. Therefore

the constraint equations on q
(2)
ab and k

(2)
ab become homogeneous at time η = η0. Therefore,

their solutions provide initial data for transverse traceless modes in g
(2)
ab . Again, because we

are interested in the back reaction only due to the scalar field φ̂(1), we are led to choose the

solution with q
(2)
ab (η = η0) = 0 and k

(2)
ab (η = η0) = 0. This choice provides a natural way to

eliminate the freedom to add a solution of the homogeneous equation to solutions of (6.4),

which is necessary, in any case, to select the physically appropriate solution representing the

back reaction only due to φ̂(1). In this scheme, the pair q
(2)
ab (η), k

(2)
ab (η) captures the leading

order modifications to the background geometry at time η, because of the back reaction due

to the quantum perturbation φ̂(1). This correction vanishes identically at η = η0. In this

precise sense, the state |0η〉 has the property that the back reaction on geometry vanishes at

η = η0. This is interpretation of |0η0〉 within semi-classical gravity we wanted to spell out.

Under evolution, the data q
(2)
ab (η), k

(2)
ab (η) will be necessarily non-zero because 〈0η|T̂ab|0η〉

is non-zero for η 6= η0. Thus, if the scalar field φ̂ is in the state |0η0〉, to second order in

perturbation theory there is a non-trivial back reaction on the geometry at any time η 6= η0.

Because the back reaction vanishes at η = η0, the state |0η〉 can be thought of as the

analog of the standard vacuum in Minkowski space-time, albeit only at a given instant of

time. This preferred instantaneous vacuum has been used in the study of cosmological

perturbation in loop quantum cosmology, where initial conditions are specified at or near

the bounce time [18, 26]. We expect it will be also useful in other scenarios to select ‘initial

conditions’ for cosmological perturbations.

While |0η〉 has several attractive features, as pointed out in section I, our construction

has an important caveat. We will conclude by re-emphasizing this point. In quantum field

theory in curved space-times, a priori, there is freedom to add certain local curvature terms

to the expression of the renormalized stress-energy tensor [3]. In any given renormalization

scheme one obtains a specific expression; the freedom disappears. But different schemes can
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yield different renormalized stress-tensors. The defining property, 〈0η0|T̂ab|0η0〉 = 0, of our

preferred instantaneous vacuum |0η〉 refers to the adiabatic scheme, where one carries out

a mode by mode subtraction. In the FLRW models, the adiabatic scheme gives the same

results as DeWitt-Schwinger point-splitting regularization [27, 28]. But another scheme

could well lead to a different preferred instantaneous vacuum. This is the caveat. The non-

trivial feature of the construction is the existence of a consistent scheme to select a preferred

instantaneous state which succeeds in bypassing the limitations of other procedures, and

which can be used in the most common cosmological models. Moreover, the fundamental

equation of semi-classical gravity, Gab = 8πGN 〈T̂ab〉, is meaningful only within a specific

renormalization scheme that is used to give meaning to the right hand side. Therefore,

in any case, a choice has to be made to analyze issues such as the back reaction. Our

construction uses a scheme that is well-tailored for FLRW space-times and therefore widely

employed in the cosmological literature.
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Appendix A: Adiabatic subtraction terms

In this Appendix we spell out the adiabatic subtraction terms for the energy density and

pressure first for the massive, minimally coupled scalar field, and then for the massless field

(see also [17]):

Cρ(η, k,m) =
w

2a4
+

(2wa′ + aw′)2

16a6w3
+

1

256a7w7
(−24aw2a′w′2 − 120a2wa′w′3 − 45a3w′4 +

+ 64w4a′2a′′ + 112aw3a′w′a′′ + 16a2w2w′2a′′ + 16aw4a′′2 + 16aw3a′2w′′ +

+ 112a2w2a′w′w′′ + 40a3ww′2w′′ + 16a2w3a′′w′′ + 4a3w2w′′2 − 32w4a′a′′′ −

− 16a2w3w′a′′′ − 16a2w3a′w′′′ − 8a3w2w′w′′′) (A1)
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Cp(η, k,m) =
w2 −m2a2

6a4w
+

1

48a6w5
(12w4a′2 + 12aw3a′w′ + 3m2a4w′2 + 9a2w2w′2

− 4m2a3w2a′′ − 8aw4a′′ − 2m2a4ww′′ − 4a2w3w′′ +
1

768a7w9

[
256w6a′2a′′

− 8w4(10w2a′′2 + a′2(9w′2 − 6ww′′) + 2wa′(−31w′a′′ + 10wa′′′))

+ 8m2a4w2(25w′a′′ − 10ww′a′′′ + 2w(−5a′′w′′ + wa′′′′)) + 8a2w3(4m2wa′2a′′

+ a′(−45w′3 + 42ww′w′′ − 6w2w′′′) + 2w(28w′2a′′ − 7wa′′w′′ − 13ww′a′′′

+ 2w2a′′′′)) +m2a5(−315w′4 + 420ww′2w′′ − 60w2w′′2 − 80w2w′w′′′ + 8w3w′′′′) +

+ a3w2(−765w′4 + 960ww′2w′′ + 8ww′(10m2a′a′′ − 23ww′′′)

− 4w2(16m2a′′2 + 27w′′2 + 8m2a′a′′′ − 4ww′′′′))
]

(A2)

C(m=0)
ρ (η, k, µ, ξ) =

k

2a4
+ (1− 6ξ)

a′2

4a6k
+ (1− 6ξ)

1

(k2 + a2µ2)3/2
1

288a2
H

(1)
00 +

+
µ2

128a2(k2 + a2µ2)11/2

[
(16k6(1− 6ξ)− 4k4µ2(−43 + 252ξ)a2 +

+ 24k2µ4a4(3− 2ξ) + 27µ6a′4(−7 + 32ξ)) + 8aa′2a′′(k2 + µ2a2)(12k4(1− 6ξ)2

+ 6k2µ2a2(7− 68ξ + 144ξ2) + µ4a2(37− 264ξ + 432ξ2))−

− 4a2a′′2(k2 + µ2a2)2(4k2(−1 + 6ξ) + µ2a2(−5 + 24ξ)) +

+ 8a2a′a′′′(k2 + µ2a2)2(4k2(−1 + 6ξ) + µ2a2(−5 + 24ξ))
]

(A3)

C(m=0)
p (η, k, µ, ξ) =

k

6a4
− (1− 6ξ)

−3a′2 + 2aa′′

12ka6
− (1− 6ξ)2

1

288a2(k2 + a2µ2)3/2
H(1)
xx +

+
µ2

384a2(k2 + a2µ2)13/2

[
3a′4(−16k8(1− 6ξ) + 4k6µ2a2(−33 + 196ξ) +

+ 8k4µ4a4(−83 + 502ξ) + k2µ6a6(−429 + 1024ξ)− 72µ8a′4(−7 + 32ξ)) +

+ 4aa′2a′′(k2 + µ2a2)(16k6(5− 66ξ + 216ξ2) + 4k4µ2a2(59− 972ξ + 3672ξ2)

+ 8k2µ4a4(85− 996ξ + 2376ξ2) + µ6a6(755− 5136ξ + 7776ξ2))−

− 8a2a′a′′′(k2 + a2µ2)2(4k4(7− 78ξ + 216ξ2) + 3k2µ2a2(31− 288ξ + 576ξ2)

+ µ4a4(79− 552ξ + 864ξ2))− 4a2(k2 + µ2a2)2(a′′2(8k4(4− 51ξ + 162ξ2)

+ 3k2µ2a2(39− 392ξ + 864ξ2) + 2µ4a4(53− 384ξ + 648ξ2)) +

+ 2aa′′′′(k2 + µ2a2)(4k2(−1 + 6ξ) + µa2(−5 + 24ξ)))
]

(A4)
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Where

H
(1)
ab = 2gab�R− 2∇a∇bR + 2RRab −

1

2
gabR

2 , (A5)

and H
(1)
00 = ηaηbH

(1)
ab , H

(1)
xx = xaxbH

(1)
ab are its time-time and x-x components, respectively.
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