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In this paper, we study the effects of high-order operators on the non-relativistic Lifshitz holog-
raphy in the framework of the Hořava-Lifshitz (HL) theory of gravity, which naturally contains
high-order operators in order for the theory to be power-counting renormalizble, and provides an
ideal place for such studies. In particular, we show that the Lifshitz space-time is still a solution
of the full theory of the HL gravity. The effects of the high-oder operators on the space-time itself
is simply to shift the Lifshitz dynamical exponent. However, while in the infrared the asymptotic
behavior of a (probe) scalar field near the boundary is similar to that studied in the literature, it gets
dramatically modified in the UV limit, because of the presence of the high-order operators in this
regime. Then, according to the gauge/gravity duality, this in turn affects the two-point correlation
functions.

PACS numbers: 04.70.Bw, 04.60.Kz, 04.60.-m, 05.30.Rt

I. INTRODUCTION

Non-relativistic gauge/gravity duality has attracted
lot of attention recently, as it may provide valuable
tools to study strongly coupling systems encountered in
condensed matter physics [1], which otherwise are not
tractable with our current understanding. If such a du-
ality indeed exists, instead of directly studying those
strongly coupling systems, one can study the correspond-
ing weakly coupling systems of gravity, which are much
easier to handle, and often well within our abilities.
The non-relativistic quantum field theories (NQFT)

are usually assumed to possess either the Schrödinger [2]
or the Lifshitz [3] symmetry. In the latter, the symmetry
algebra consists of the rotationsMij , spatial translations
Pi, time translations H , and dilatations D. These gen-
erators satisfy the standard commutation relations for
Mij , Pk and H [5], while with D the relations read,

[D,Mij ] = 0, [D,Pi] = iPi, [D,H ] = izH, (1.1)

where z denotes the Lifshitz dynamical exponent, and de-
termines the relative scaling between the time and spatial
coordinates [4],

xi → ℓxi, t→ ℓzt. (1.2)

This algebra is often called the Lifshitz algebra, as it
generalizes the symmetry of Lifshitz fixed points [1].
The gauge/gravity duality requires that the space-time

in the gravitational side must possess the same symmetry.
However, the symmetry of a space-time is usually defined

∗The corresponding author
†Electronic address: Anzhong_Wang@baylor.edu

by the existence of Killing vectors ζµ [6], satisfying the
Killing equations,

ζµ;ν + ζν;µ = 0, (1.3)

where a semicolon “;” denotes the covariant derivative
with respect to the spapcetime metric gµν . It was found
that this can be realized in the Lifshitz space-time [3],

ds2 ≡ gµνdx
µdxν = −r2zdt2 + dr2

r2
+ r2d~x2, (1.4)

where d~x2 ≡ ∑d
i=1 dx

idxi. Then, the Killing vectors
ζµ∂µ ≡ (M,P,H,D) of the above space-time, given by,

Mij = −i (xi∂j − xj∂i) , Pi = −i∂i,
H = −i∂t, D = −i

(

zt∂t + xi∂i − r∂r
)

, (1.5)

produce precisely the required Lifshitz algebra, where
xi ≡ δijx

j . The corresponding NQFT lives on the bound-
ary r = ∞.
Note that the metric is invariant under the rescaling

(1.2), provided that r is scaling as r → ℓ−1r. Clearly,
this is non-relativistic for z 6= 1, and to produce such a
space-time in Einstein’s theory of general relativity (GR),
matter fields must be present, in order to create such a
preferred direction. In [3], this was realized by two p-
form gauge fields with p = 1, 2, and was soon generalized
to other cases [7].
On the other hand, to construct a viable theory of

quantum gravity, Hořava [8] recently proposed a the-
ory based on the anisotropic scaling (1.2), the so-called
Hořava-Lifshitz (HL) theory of quantum gravity, and has
attracted a great deal of attention, due to its several re-
markable features [9]. The HL theory is based on the
perspective that Lorentz symmetry should appear as an
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emergent symmetry at long distances, but can be funda-
mentally absent at short ones [10]. In the UV regime,
the system exhibits a strong anisotropic scaling between
space and time, given by Eq.(1.2). To have the theory
be power-counting renormalizable, the Lifshitz dynami-
cal exponent z must be no less than D in the (D + 1)-
dimensional spacetime [8, 11]. At long distances, high-
order curvature corrections become negligible, and the
lowest order terms take over, whereby the Lorentz in-
variance is expected to be “accidentally restored.”

Since in the HL gravity the anisotropic scaling (1.2)
is built in 1, it is natural to expect that the HL gravity
provides a minimal holographic dual for non-relativistic
Lifshitz-type field theories. Indeed, recently it was
showed that the Lifshitz spacetime (1.4) is a vacuum so-
lution of the HL gravity in (2+1) dimensions, and that
the full structure of the z = 2 anisotropic Weyl anomaly
can be reproduced in dual field theories [12], while its
minimal relativistic gravity counterpart yields only one
of two independent central charges in the anomaly. This
speculation has been further confirmed by the existence
of other types of the Lifshitz spacetimes, including Lif-
shitz solitons [13, 14].

In this paper, we study another important issue: the
effects of high-order operators in non-relativistic Lifshitz
holography. Since high-order operators are necessarily
appear in the HL gravity in order to be power-counting
renormalizable, it provides an ideal place to study such
effects. In the framework of GR, this was studied in [15],
and found that these effects only shift the values of z.
In this paper, we shall first show that this is true also in
the HL gravity. Then, we study the effects on a scalar
field and the corresponding two-point correlation func-
tions. We find that, while in the infrared the asymptotic
behavior of a (probe) scalar field near the boundary is
similar to that studied in [3], it gets dramatically modi-
fied in the UV limit, because of the presence of the high-
order operators in this regime. Then, according to the
gauge/gravity duality, this in turn affects the two-point
correlation functions. This is expected, as in the UV the
high-order operators will dominate, and the asymptotic
behavior of the scalar field will be determined by these
high-order operators.

Specifically, the paper is organized as follows: In Sec-
tion II, we shall give a brief introduction to the non-
projectable HL gravity in (2+1)-dimensional spacetimes,
and find out the stability and ghost-free conditions in
terms of the independently coupling constants of the the-
ory. In Section III, we show that the Lifshitz space-time

1 It should be noted that in the HL gravity, all the spatial co-
ordinates

(

r, xi
)

are scaling as xn
→ ℓxn, where n = r, i, (i =

1, 2, 3, ..., d). This is different from that of the metric (1.4), in
which r must be scaling as r → ℓ−1r, in order to keep the metric
invariant. Therefore, in principle the Lifshitz dynamical expo-
nent z appearing in (1.4) is different from that considered in the
HL theory: xn

→ ℓxn, t → ℓzt.

(1.4) is not only a solution of the HL gravity in the IR
limit, but also a solution of the full theory. The only
difference is that the Lifshitz dynamical exponent z is
shifted. In Section IV, we study a scalar field propagat-
ing on the Lifshitz background (1.4). To compare our
results with the ones obtained in [3], in this section (and
also the next) we set z = 2. In Section V, we calculate
the two-point correlation functions, and find their main
properties in the IR as well as in the UV limit. In Section
V, we present our main conclusions.

II. NON-PROJECTABLE HL THEORY IN (2+1)
DIMENSIONS

Because of the anisotropic scaling (1.2) [see also Foot-
note 1], the gauge symmetry of the theory is broken down
to the foliation-preserving diffeomorphism, Diff(M, F),

δt = −f(t), δxi = −ζi(t,x), (2.1)

for which the lapse function N , shift vector N i, and 3-
spatial metric gij , first introduced in the Arnowitt-Deser-
Misner (ADM) decompositions [16], transform as

δN = ζk∇kN + Ṅf +Nḟ,

δNi = Nk∇iζ
k + ζk∇kNi + gik ζ̇

k + Ṅif +Niḟ ,

δgij = ∇iζj +∇jζi + f ġij, (2.2)

where ḟ ≡ df/dt, ∇i denotes the covariant derivative
with respect to gij , Ni = gikN

k, and δgij ≡ g̃ij
(

t, xk
)

−
gij
(

t, xk
)

, etc.
Due to the Diff(M, F) diffeomorphisms (2.1), one

more degree of freedom appears in the gravitational sec-
tor - a spin-0 graviton. Using the gauge freedom (2.1),
without loss of the generality, one can always set

N i = 0, (2.3)

for which the remaining gauge freedom is

t = f̂(t′), xi = ζ̂i(x′). (2.4)

In the rest of this section, we shall leave the gauge choice
open, and in particular not restrict ourselves to the gauge
(2.3).
The Riemann and Ricci tensors Rijkl and Rij of the

2D leaves t = constant are uniquely determined by the
2D Ricci scalar R via the relations [17],

Rijkl =
1

2
(gikgjl − gilgjk)R,

Rij =
1

2
gijR, (i, j = 1, 2). (2.5)

The general action of the HL theory without the pro-
jectability condition in (2+1)-dimensional spacetimes is
given by [13]

S = ζ2
∫

dtd2xN
√
g
(

LK − LV + ζ−2LM

)

, (2.6)
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where g = det(gij), ζ
2 = 1/(16πG), and

LK = KijK
ij − λK2,

LV = γ0ζ
2 + βaia

i + γ1R

+
1

ζ2

[

γ2R
2 + β1

(

aia
i
)2

+ β2
(

ai i
)2

+β3aia
iaj j + β4a

ijaij

+β5a
iaiR + β6a

i
iR
]

, (2.7)

with ∆ ≡ gij∇i∇j , and

Kij =
1

2N
(−ġij +∇iNj +∇jNi) ,

ai =
N,i

N
, aij = ∇iaj . (2.8)

LM is the Lagrangian of matter fields. Then, the corre-
sponding field equations and conservation laws are given
explicitly in [13].

A. Stability and Ghost-free Conditions

It is easy to show that the Minkowski space-time
(

N̄ , N̄ i, ḡij
)

= (1, 0, δij) , (2.9)

is a solution of the above HL gravity with γ0 = 0. Then,
its linear perturbations are given by

δN = n, δNi = ∂iB − Si,

δgij = −2ψδij +
(

∂i∂j − δij∂
2
)

E + 2F(i,j),(2.10)

where F(i,j) ≡ (Fi,j + Fj,i)/2, and

∂iSi = ∂iFi = 0. (2.11)

It is interesting to note that in the decompositions (2.10)
no tensor mode appears in δgij . This is closely related
to the fact that in (2+1)-dimensional spacetimes, spin-2
massless gravitons do not exist.
Then, the infinitesimal gauge transformations (1.4) can

be written as

f = ǫ(t), ζi = ∂iζ + ηi, (∂iη
i = 0), (2.12)

under which the quantities defined in Eq.(2.10) transfer
as,

ñ = n+ ǫ̇, B̃ = B + ζ̇,

Ẽ = E + ζ, ψ̃ = ψ − 1

2
∂2ζ,

S̃i = Si + η̇i, F̃i = Fi + ηi. (2.13)

Thus, from the above we can construct three scalar and
one vector gauge-invariants,

Ψ ≡ ψ +
1

2
∂2E, Φ ≡ B − Ė,

Υ ≡ ∂2n, Φi ≡ Si − Ḟi. (2.14)

Using the above gauge freedom, without loss of the
generality, we can set

E = 0, Fi = 0, (2.15)

which will uniquely fix the gauge freedom represented by
ζ and ηi, while leave ǫ(t) unspecified. To further study
the above linear perturbations, let us consider the scalar
and vector perturbations, separately.

1. Scalar Perturbations

Under the gauge (2.15), the remaining scalars are n, B
and ψ, with which it can be shown that the gravitational
sector of the action to the second-order takes the form,

S(2)
g = ζ2

∫

dtd2x

{

2(1− 2λ)ψ̇2 + 2(1 + 2λ)ψ̇∂2B

+(1− λ)(∂2B)2 + βn∂2n− 2γ1n∂
2ψ

− 1

ζ2
[

4γ2(∂
2ψ)2 + (β2 + β4)(∂

2n)2

+2β6(∂
2n)(∂2ψ)

]

}

. (2.16)

Its variations with respect to ψ,B and n yield, respec-
tively,

ψ̈+
1

2
∂2Ḃ+

γ1
2(1− 2λ)

∂2n+
4γ2∂

4ψ + β6∂
4n

2ζ2(1− 2λ)
= 0, (2.17)

(1− 2λ)ψ̇ + (1− λ)∂2B = 0, (2.18)

βn− γ1ψ − β2 + β4
ζ2

∂2n− β6
ζ2
∂2ψ = 0. (2.19)

From Eq.(2.18) we can find B in terms of ψ, and then
substituting it into (2.16) we obtain,

S(2)
g = ζ2

∫

dtd2x

{

1− 2λ

1− λ
ψ̇2 + βn∂2n− 2γ1n∂

2ψ

− 1

ζ2

[

4γ2(∂
2ψ)2 + (β2 + β4)(∂

2n)2

+2β6(∂
2n)(∂2ψ)

]

}

. (2.20)

Then, the ghost-free condition require

1− 2λ

1− λ
≥ 0, (2.21)

that is,

(i) λ > 1 or (ii) λ ≤ 1

2
. (2.22)
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From Eqs.(2.17)-(2.19), on the other hand, we can get
a master equation for ψ, which in momentum space can
be written in the form

ψ̈k + ω2
kψk = 0, (2.23)

where

ω2
k =

1− λ

1− 2λ

(

4γ2k
4

ζ2
+
(β6k

4

ζ2
− γ1k

2
)

γ1 − β6k
2

ζ2

β + (β2+β4)k2

ζ2

)

=

{

− 1−λ
1−2λ

γ2
1k

2

β , k2/ζ ≪ 1,

1−λ
1−2λ

(

4γ2 − β2
6

β2+β4

)

k4

ζ2 , k2/ζ ≫ 1.
(2.24)

Thus, to have the mode be stable in the infrared (IR),
we must require

β < 0, (2.25)

while its stability condition in the ultraviolet (UV) re-
quires

γ2 ≥ β2
6

4(β2 + β4)
. (2.26)

In the intermediate range, by properly choosing other
free parameters the mode can be made always stable, and
such requirement does not impose any severe constraints.
So, in the following we do not consider it any further, and
simply assume that it is always satisfied.
It should be noted that the conditions (2.22), (2.25)

and (2.26) are valid only for the cases λ 6= 1, for which
Eq.(2.25) tells that β must be strictly negative, and in
particular cannot be zero.
When λ = 1, from Eq.(2.18) we find that

ψ̇ = 0, (2.27)

that is, ψ does not represent a propagative mode, and
we can always set it to zero by properly choosing the
boundary conditions. Then, Eqs.(2.17) and (2.19) reduce
to,

Ḃ − γ1n− β6
ζ2
∂2n = 0, (2.28)

β2 + β4
ζ2

∂2n− βn = 0. (2.29)

From the last equation, we can see that n does not rep-
resent a propagative mode either, and can be set to zero
by properly choosing the boundary conditions. Then,
Eq.(2.28) yields Ḃ = 0, that is, B is also not a propaga-
tive mode.
Therefore, in the case λ = 1 there is no gravitational

propagative mode, similar to the relativistic case [17]. As
a result, all the free parameters in this case are free, as
long as the stability and ghost-free conditions are con-
cerned.
As a corollary, we find that the HL theory with β = 0

is viable only when λ = 1. Otherwise, the corresponding
scalar mode will become unstable, as one can see clearly
from Eq.(2.24).

2. Vector Perturbations

Under the gauge (2.15), the remaining vector is Si,
with which it can be shown that the gravitational sector
of the action to the second-order takes the form,

S(2)
g = −ζ

2

2

∫

dtd2xN
√
g
(

Si∂2Si

)

, (2.30)

from which we find that,

∂2Si = 0. (2.31)

That is, there is no propagative vector mode in the HL
gravity, even the Lorentz symmetry is violated.
In summary, the above analysis shows: (i) In the

case λ 6= 1, only spin-0 gravitons exist in the (2+1)-
dimensional non-projectable HL gravity. Their stability
and ghost-free conditions require the independent cou-
pling constants must satisfy the conditions of Eqs.(2.22),
(2.25) and (2.26). (ii) In the case λ = 1, the gravita-
tional sector of the HL gravity has no free propagation
mode, similar to its relativistic counterpart. Then, all
the free parameters in this case are free, as long as the
stability and ghost-free conditions are concerned.

B. Detailed Balance Condition

To reduce the number of the coupling constants,
Hořava imposed the detailed balance condition [8]. The
main idea is to introduce a superpotential W on the
leaves t = Constant,

W =

∫

d2x
√
gLW (Rij , ak,∇l), (2.32)

so that the potential part of the action is given by

L̂(DB)
V = EijG

ijklEkl, Eij ≡
1√
g

δW

δgij
, (2.33)

where Gijkl denotes the generalized de Witt metric on
the space of metrics, and is given by

Gijkl ≡ 1

2

(

gikgjl + gilgjk
)

− λgijgkl. (2.34)

Power-counting renormalizibility requires that the di-
mension of LW must be greater or equal to 2d, that is,
[LW ] ≥ 2d. Taking the lowest dimension, one can see
that in (2+1)-dimensional space-times, LW in general
can be cast in the form,

LW = w
(

R+ µaia
i − 2ΛW

)

, (2.35)

where w, µ and ΛW are three coupling constants. Plug-
ging the above into Eq.(2.33) and taking Eq.(2.1) into
account, we find that

Eij = w

[

µ

(

aiaj −
1

2
gijaka

k

)

+ ΛW gij

]

,

L̂(DB)
V =

w2

2

[

µ2
(

aia
i
)2

+ 4 (1− 2λ) Λ2
W

]

. (2.36)
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To have a healthy IR limit, the detailed balance con-
dition is frequently allowed to be broken softly [8, 18,
19] by adding all the low dimensional relevant terms,

R, aia
i, Λ, into L̂(DB)

V , so that the potential is finally
given by

L(DB)
V = 2Λ + βaia

i + γ1R+
β1
ζ2
(

aia
i
)2
, (2.37)

where β1 ≡ w2µ2/2 and Λ ≡ γ0ζ
2/2. Comparing it with

LV given by Eq.(2.7), one can see that this is equivalent
to set γ2 = 0 = βn (2 ≤ n ≤ 6).

III. LIFSHITZ SPACETIMES IN
(2+1)-DIMENSIONS

In this section we are going to study static vacuum
spacetimes with the ADM variables given by

N = rzf(r), N i = 0,

gij = diag.

(

g2(r)

r2
, r2
)

, (3.1)

in the coordinates (t, r, x), where z is the dynamical Lif-
shitz exponent. Then, we find that

Rij =
rg′ − g

r2g
δri δ

r
j +

r2 (rg′ − g)

g3
δθi δ

θ
j ,

ai =
(zf + rf ′)

rf
δri , Kij = 0. (3.2)

Inserting the above into the general action (2.6), for the
vacuum case LM = 0, we obtain

Sg = −Vxζ2
∫

dtdrrzfgLV

(

f (n), g(m), r
)

, (3.3)

where Vx ≡
∫

dx, I(n) ≡ dnI(r)/drn, and LV is given by
Eq.(A.2). Then, it can be shown that in the present case
there are only two independent equations, which can be
cast in the forms,

3
∑

n=0

(−1)n
dn

drn

(

δLg

δf (n)

)

= 0, (3.4)

3
∑

n=0

(−1)n
dn

drn

(

δLg

δg(n)

)

= 0, (3.5)

where Lg ≡ rzfgLV . In terms of f, g and their deriva-
tives, these two equations are given by Eqs.(A.3) and
(A.4).
The Lifshitz spacetime corresponds to

f = f0, g = g0, (3.6)

where f0 and g0 are two constant. Then, the correspond-
ing metric can be cast in the form,

ds2 = L2

{

−
(r

ℓ

)2z

dt2 +

(

ℓ

r

)2

dr2 +
(r

ℓ

)2

dx2

}

,

(3.7)

where L ≡ (f0g
z
0)

1/(z+1), ℓ ≡ (g0/f0)
1/(1+z). Inserting

Eq.(3.6) into Eqs.(3.4) and (3.5), we obtain

2ζ2Λg40 − ζ2g20 [z(2 + z)β + 2γ1]− z3(4 + 3z)β1

+ 4γ2 + z
[

z(3 + 2z)β2 + z
(

z2 − 2
)

β3

− (2 + z) (β4 − 2β5 + 2β6)
]

= 0, (3.8)

2ζ2Λg40 − zζ2g20 (zβ + 2γ1)− 4γ2 + 2z (4γ2 + β6)

− z2

{

β2 + 3β4 − 4β5 + 4β6 + z
[

3zβ1 − 2β2

− (z − 2)β3 + 2β5

]

}

= 0. (3.9)

In the IR limit, all the fourth-order terms become neg-
ligible, and the above equations reduce to

2Λg20 − [z(2 + z)β + 2γ1] = 0, (3.10)

2Λg20 − z (zβ + 2γ1) = 0, (3.11)

which have the solutions,

z =
γ1

γ1 − β
, Λ =

γ21(2γ1 − β)

2g20(γ1 − β)2
. (3.12)

These are exactly what were obtained in [12].
When the higher-order operators are not negligible, the

sum of Eqs.(3.8) and (3.9) yields,

Λ =
ζ2
[

zβ + (1− z)γ1
]

∆

{

z4
[

zβ − (1 + 3z)γ1
]

β1

+z2
[

zβ +
(

2z2 + z + 1
)

γ1
]

β2

+z4 [β + (z − 1) γ1]β3

+z2 [z (z + 2)β + (1− z) γ1]β4

+z3 [(z + 2) (z − 1)β + 4γ1]β5

+z
[

z (z + 2) (z + 1)β − 2γ1(z
2 + 1)

]

β6

−4
[

z
(

z2 + z − 1
)

β + (z − 1) γ1
]

γ2

}

, (3.13)

where

∆ = 2

{

2z3β1 − 2z2β2 − z (z − 3)β6

+(1− z)
[

z2β3 + zβ4 − 4γ2
]

−z [2 + z (z − 1)]β5

}2

. (3.14)

The difference of Eqs.(3.8) and (3.9), on the other
hand, yields,

az3 + bz2 + cz + d = 0, (3.15)

where

a = −2β1 + β3 + β5,

b = 2β2 − β3 + β4 − β5 + β6,

c = −α2(β − γ1)− 4γ2 − β4 + 2β5 − 3β6,

d = 4γ2 − α2γ1, α ≡ ζg0, (3.16)
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which can be used to determine the dynamical exponent
z in terms of the coupling constants. In general, it has
three different solutions for any given set of the coupling
constants. On the other hand, Eq.(3.15) can be also used
to determine the integration constant g0 for any given z
and a set of the coupling constants. In this case, we have

g20 =
az3 + bz2 + ĉz + 4γ2
ζ2[γ1 − (γ1 − β)z]

, (3.17)

where ĉ ≡ −4γ2−β4+2β5−3β6. Clearly, for the metric to
have a proper signature, z has to be chosen so that g20 > 0
for any given set of the coupling constants (βi, γj).
When the fourth-order corrections are small, we can

expand z near its IR fixed point, z0, given by Eq.(3.12).
Writing the fourth-order coupling constants in the form
s = s0 + ǫŝ, where ǫ≪ 1, we find that

z = z0 + ǫδz,

a = ǫ(−2β̂1 + β̂3 + β̂5),

b = ǫ(2β̂2 − β̂3 + β̂4 − β̂5 + β̂6),

c = c0 + ǫ(−4γ̂2 − β̂4 + 2β̂5 − 3β̂6),

d = d0 + 4ǫγ̂2, (3.18)

where

z0 =
γ1

γ1 − β
, c0 = −α2(β − γ1), d0 = −α2γ1.

Thus, to the first-order of ǫ Eq.(3.15) yields,

(−2β̂1 + β̂3 + β̂5)z
3
0 + (2β̂2 − β̂3 + β̂4 − β̂5 + β̂6)z

2
0

+(−4γ̂2 − β̂4 + 2β̂5 − 3β̂6)z0 + 4γ̂2 + c0δz = 0,

(3.19)

from which we fin that,

δz =
1

α2(β − γ1)4

{

γ1[β
2 (β4 − 2β5 + 3β6)

−βγ1 (−2β2 + β3 + β4 − 3β5 + 5β6)

+2γ21 (β1 − β2 − β5 + β6)]

+4βγ2 (β − γ1)
2
}

. (3.20)

Note that in writing the above expression, without caus-
ing any confusions, we had dropped hats from all fourth-
order parameters. To study the behavior of z in the UV,
let us consider some particular cases.

A. Solutions with softly-breaking detailed balance
condition

When the softly-breaking detailed balance condition is
imposed, we have γ2 = βi = 0, (i ≥ 2). Then, Eqs.(3.15)
and (3.13) reduce, respectively, to

z3 +
α2

2β1
(β − γ1) z +

α2

2β1
γ1 = 0, (3.21)

Λ =
ζ2

4z2β1
[zβ + (1− z)γ1] [zβ − (1 + 3z)γ1] .

(3.22)

Eq.(3.21) in general has three roots, and depending on
the signature of D, the nature of these roots are different,
where

D ≡ α4

16β2
1

[

γ21 − 2α2 (γ1 − β)
3

27β1

]

. (3.23)

Let us consider the cases D = 0, D > 0 and D < 0,
separately.

1. D = 0

When D = 0, we find that

β1 =
2α2 (γ1 − β)3

27γ21
, (3.24)

and Eq.(3.21) has three real roots, two of which are equal
and given by

z1 =
3γ1

β − γ1
, z2 = z3 = − 3γ1

2 (β − γ1)
. (3.25)

Clearly, by properly choosing β and γ1, they can take
any real values, zi ∈ (−∞,∞).

2. D > 0

In this case, Eq.(3.21) has only one real root, which
can be written as

z = 3

√

D1/2 − q

2
− 3

√

D1/2 +
q

2
, (3.26)

where q ≡ α2γ1/(2β1). In this case it is clear that z can
also take any real values for different choices of (β, γ1, β1).
In particular, it has an extreme at β = γ1, given by
zm = −q1/3.

3. D < 0

In this case, Eq.(3.21) has three real and different
roots, given by

zn =

√

2α2 (γ1 − β)

3β1
cos

(

θ +
2nπ

3

)

, (n = 0, 1, 2),

(3.27)
where θ is defined as

θ =
1

3
arcos

[

α2γ1
4β1

(

6β1
α2(γ1 − β)

)3/2
]

. (3.28)

Again, similar to the last two subcases, by choosing dif-
ferent values of the coupling constants, we can have dif-
ferent values of zn. For example, taking α2 = 4, β =
−1, β1 = 0.00001, γ1 = 1, we obtain z1 ≃ 632.205.
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B. Solutions with LV = F(R)

Another interesting case is the F(R) models [20], for
which we have

LV = F(R), (3.29)

where F(R) can be any function of R (possibly subjected
to some stability and ghost-free conditions). In particu-
lar, one can take the form,

F(R) = 2Λ + γ1R+ βA2 +
γ2
ζ2
R2, (3.30)

which corresponds to the potential given by Eq.(2.7) with
βi = 0, (i = 1, ..., 6), where A2 ≡ aia

i. Note that in
writing the above expression, we had kept the aia

i term,
in order to have a healthy IR limit for any given coupling
constant λ [12, 13].
In this case, Eqs.(3.8) and (3.9) have the solutions,

z = 1− α2β

4γ2 − α2(γ1 − β)
,

Λ =
ζ2

2α4

{

α2 [z(2 + z)β + 2γ1]− 4γ2
}

. (3.31)

C. Solutions with LV = G(A)

Similar to the last case, the function G(A) can take
any form in terms of A. A particular case is the potential
given by Eq.(2.7) with γ1 = γ2 = β5 = β6 = 0, for which
we have

G(A) = 2Λ + βaia
i

+
1

ζ2

[

β1
(

aia
i
)2

+ β2
(

ai i
)2

+β3aia
iaj j + β4a

ijaij

]

. (3.32)

In this case, Eq.(3.15) reduces to

az2 + bz + c = 0, (3.33)

but now with

a = −2β1 + β3,

b = 2β2 − β3 + β4,

c = −α2β − β4. (3.34)

Thus, in general there are two solutions,

z± =
1

2(2β1 − β3)

[

(2β2 − β3 + β4)±
√
D
]

, (3.35)

where D ≡ (2β2 − β3 + β4)
2 + 4(α2β + β4)(β3 − 2β1).

Clearly, for z± to be real, we must assume that D ≥ 0.

IV. SCALAR FIELD IN THE LIFSHITZ
SPACETIME

The action of a scalar field in the HL theory takes the
form,

SM =

∫

dtd2xN
√
g

{

1

2N2
[ϕ̇−N i

▽iϕ]
2

−V (ϕ) − V(2)
φ − 1

M2
∗
V(4)
φ

}

, (4.1)

where V(2)
φ and V(4)

φ are, respectively, the second and
forth order operators, made of Rij , ai, ∇i and φ, where

[Rij ] = 2, [ai] = 1 = [∇i] , [φ] = 0. (4.2)

In general, they take the forms [21, 22],

V(2)
φ =

1

2
[1 + 2V1(ϕ)] (▽iϕ)

2 + ǫ1(φ)ai∇iφ+ ǫ2(φ)aia
i

+ǫ3(φ)R + ...,

V(4)
φ = V2(ϕ)

(

▽
2ϕ
)2

+ V4(ϕ)▽
4ϕ+ δ1(φ)Rij∇iφ∇jφ

+δ2(φ)
(

ai∇iφ
)2

+ δ3(φ)R
2 + ..., (4.3)

where Vi, ǫi and δi are arbitrary functions of φ only, and
the elapsing terms are the mixed ones made of Rij , ai
and ∇iφ. When the background is fixed, these terms
always give rise to low order operators in terms of the
scalar field φ. For example, the term ǫ1(φ)ai∇iφ ap-

pearing in V(2)
φ contributes to the equation of motion of

the scalar field only with the first-order spatial deriva-
tive, ∇i [ǫ1(φ)ai], while the term δ1(φ)Rij∇iφ∇jφ ap-

pearing in V(4)
φ contributes only with the second-order

spatial derivative, ∇j
[

δ1(φ)Rij∇jφ
]

. In addition, the

term δ3(φ)R
2 had contributions of the form, δ′3(φ)R

2,
which acts as a potential term once the background is
fixed. Therefore, when the space-time background is
fixed, the dominant terms in the UV are only the V2
and V4 terms appearing in Eq.(4.3). In the IR, on the
other hand, their contributions must be so that the re-
sulted action is of general covariance, in order to have a
consistent theory with observations [23] 2. Therefore, in
this paper, without loss of the generality, we shall keep
only the underlined Vi(φ) terms appearing in Eq.(4.3)
and absorb the factor M−2

∗ into V2(φ) and V4(φ). Then,
the Variation of the action with respect to ϕ yields,

1√
g
∂t

[√
g

N
(ϕ̇−N i

▽iϕ)

]

= ▽i

[

N i

N
(ϕ̇−Nk

▽kϕ)

]

2 The only possible contributions of these terms are in the interme-
diate energy scales. However, the study of them in these energy
scales in general are very complicated, and are hardly carried out
analytically. Thus, in this paper we shall not consider them.
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+ ▽
i[N(▽iϕ)(1 + 2V1)]− ▽

2[2NV2(▽
2ϕ)]

− ▽
4[NV4]−N [V ′ + V ′

1(▽ϕ)
2

+ V ′
2(▽

2ϕ)2 + V ′
4(▽

4ϕ)]. (4.4)

To compare with the results obtained in [3], we first
set L = ℓ = 1, z = 2 and u = 1/r. Then, the metric
(3.7) becomes,

ds2 = − 1

u4
dt2 +

1

u2
(dx2 + du2). (4.5)

In the probe limit, the backreaction of the scalar field
is neglected. Hence, taking the above space-time as the
background, and choosing

V = m2ϕ2, V1 = a1, V2 =
â2
M2

∗
≡ a2,

V4 =
â4
M2

∗
ϕ ≡ a4ϕ, (4.6)

where an are constants, we find that Eq.(4.4) reduces to,

u2∂2t ϕ = (1 + 2a1)

(

∂2xϕ+ ∂2uϕ− 2

u
∂uϕ

)

− 2

u2
m2ϕ

−a4
[

8∂2xϕ+ 16∂2uϕ− 32

u
∂uϕ+

36ϕ

u2

]

−2u2(a2 + a4)(∂
4
xϕ+ 2∂2x∂

2
uϕ+ ∂4uϕ). (4.7)

At the boundary u = 0, the scalar field takes the
asymptotical form,

ϕ ∼ u△ϕ1(t, x), (4.8)

where △ is one of the real roots of the equation,

(1 + 2a1)(△
2 −3 △)− 2m2 − a4(16 △

2 −48 △ +36)

−2(a2 + a4) △ (△ −1)(△ −2)(△ −3) = 0. (4.9)

From the action (4.1), integrating it by parts and dis-
carding boundary terms, we find that it takes the form,

SM =

∫

dtd2xN
√
g

{

− ϕ

N
√
g
∂t(

√
gϕ̇

2N
)

−m2ϕ2 +
(1 + 2a1)ϕ

2N
▽i(N▽

iϕ)

−a2ϕ
N

▽
2
(

N▽
2ϕ
)

− a4ϕ▽
4ϕ

}

. (4.10)

It can be shown that both actions (4.1) and (4.8) are
finite for

△>3

2
(4.11)

with the asymptotic condition (4.8).
In the IR, the V2 and V4 terms are very small, and can

be set to zero safely. In addition, in this limit the scalar

field should be relativistic, so V1 = 0. Hence, the above
equation reduces to

△
2 −3 △ −2m2 = 0, (4.12)

which has the solutions,

△±=
1

2

(

3±
√

9 + 8m2
)

. (4.13)

For

m2 >− 9

8
, (4.14)

in contrast to the case considered in [3], now only the
solution with ∆ = ∆+,

ϕ(u, t, x) → u△+
(

ϕ(t, x) +O(u2)
)

, (4.15)

leads to a finite action either in the form of Eq.(4.1) or
in the one of Eq.(4.10).
In the UV, on the other hand, the V2 and V4 terms

dominate, and Eq.(4.9) becomes,

(a2 + a4) △
4 −6(a2 + a4) △

3 +(11a2 + 27a4) △
2

−(6a2 + 54a4) △ +36a4 = 0. (4.16)

In the case a4 = 0, the above equation reduces to

△
3 −6 △

2 +11 △ −6 = 0, (a4 = 0), (4.17)

which has solutions

△1 = 1, △2 = 2, △3 = 3, (a4 = 0). (4.18)

If we choose a2 = −a4, Eq.(4.14) has the double root

△ = 6, (a2 = −a4). (4.19)

From the above analysis, one can see that the scalar
field has quite different behaviors at the boundary u = 0
in the two limits, IR and UV.

V. TWO-POINT CORRELATION FUNCTIONS

The bulk field ϕ(u, x) can be written in the form

ϕ(u, t, x) =

∫

d3x′ϕ(0, t′, x′)G(u, t, x; 0, t′, x′). (5.1)

where ϕ(0, t, x) is the scalar field on the boundary and
G(u, t, x; 0, t′, x′) the boundary to bulk propagator. It is
easy to work in the Fourier space due to the translational
invariance in t and x. In the Fourier space, we have

ϕ̃(u, ω, k) = G̃(u, ω, k)ϕ̃(0, ω, k). (5.2)
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A. In the IR

In the IR, we set a1 = a2 = a4 = 0, Eq.(4.7) reduces
to

−u2∂2τϕ = ∂2xϕ+ ∂2uϕ− 2

u
∂uϕ− 2

u2
m2ϕ, (5.3)

and G̃(u, ω, k) in Fourier space satisfies the equation,

∂2uG̃− 2

u
∂uG̃− (ω2u2 + |k|2)G̃ = 0, (5.4)

with the boundary conditions,

(i) G̃(0, ω, k) = 1,

(ii) G̃(∞, ω, k) is finite. (5.5)

Note that in writing down Eq.(5.3), we had set t = iτ .
Then, the above conditions uniquely determine the prop-
agator G̃(u, ω, k),

G̃(u, ω, k) =
2√
π
e−|ω|u2/2Γ

(

k2

4|ω| +
5

4

)

×U
(

k2

4|ω| −
1

4
,−1

2
, |ω|u2

)

, (5.6)

where U(a, b, u) is the confluent hypergeometric function

of the second kind. Near u = 0, G̃ is given by

G̃ = 1− k2

2
u2 +

8Γ
(

k2

4|ω| +
5
4

)

|ω|3/2

3Γ
(

k2

4|ω| − 1
4

) u3 +O
(

u4
)

. (5.7)

In the IR limit and m = 0, the action Eq.(4.1) yields

S∗
M ≡ i

2
SM =

1

2

∫

dτd2xN
√
g
{ 1

N2
ϕ′2 + (▽ϕ)2

}

=
1

2

∫

dτd2x
√

(3)ggµν∂µϕ∂νϕ, (5.8)

where ϕ′ = ∂ϕ
∂τ . Integrating by parts, one can show that

the on-shell bulk action is determined by the values of
the field on the boundary

S∗
M =

∫

dτdx[
√

(3)gguuϕ∂uϕ]
∞
ǫ

=

∫

dωdkϕ̃(0, k, ω)F(k, ω)ϕ̃(0,−k,−ω), (5.9)

where we had cut off the space at u = ǫ to regulate the
bulk action, and the “flux factor” F is defined as

F(k, ω) = [G̃(u, k, ω)
√

(3)gguu∂uG̃(u,−k,−ω)]∞ǫ . (5.10)

Since the propagator G̃ vanishes at u = ∞, F only re-
ceives a contribution from the cutoff at u = ǫ. The mo-
mentum space two-point function for the operator Oϕ

dual to ϕ is given by differentiating Eq.(5.9) twice with
respect to ϕ(0, k, ω):

〈Oϕ(k, ω)Oϕ(−k,−ω)〉 = F(k, ω). (5.11)

Plugging Eq.(5.7) into Eq.(5.10), we pick out the leading
non-polynomial piece in either k or ω. This gives the
correlation function, after taking the limit ǫ→ 0,

〈Oϕ(k, ω)Oϕ(−k,−ω)〉 = −8|ω|3/2Γ(a+ 3
2 )

Γ(a)
, (5.12)

where a ≡ k2

4|ω| − 1
4 . Since Γ(a ≃ 0) → ∞, we find that

〈Oϕ(k, ω)Oϕ(−k,−ω)〉 ≃ 0 as a → 0. When a ≫ 1,
on the other hand, we find 〈Oϕ(k, ω)Oϕ(−k,−ω)〉 ≃
−8|ω|1/2(k2 + |ω|), which gives rise to correlations be-
tween points only with temporal separation.
In general, the divergence arising as ǫ → 0 from the

term proportional to u2 is removed via local boundary
terms [3, 24], and the terms O(u4) and higher vanish as
the cutoff is removed when taking the limit ǫ→ 0.

B. In the UV

In the UV limit, the last term in Eq.(4.7) dominates,
and we find that

∂2τϕ = 2a24(∂
4
xϕ+ 2∂2x∂

2
uϕ+ ∂4uϕ), (5.13)

where a24 ≡ a2 + a4. In the Fourier space, this becomes

∂4uG̃− 2k2∂2uG̃+

(

k4 +
ω2

2a24

)

G̃ = 0, (5.14)

with the same boundary condition as in Eq.(5.5). Then,
we find that

G̃ = c1e
−u

√
ρ(cos θ

2
+i sin θ

2
)

+(1− c1)e
−u

√
ρ(cos θ

2
−i sin θ

2
), (5.15)

where c1 is an integration constant, and

ρ cos θ = k2, ρ sin θ =

√

w2

2a24
. (5.16)

Thus, with m = 0, the action (4.1) gives rise to,

iSM =

∫

dτd2xN
√
g
{ 1

2N2
ϕ′2 + a2(▽

2ϕ)2

+ a4φ∇4φ
}

=

∫

dωdkϕ̃(0, k, ω)

∫ ∞

ǫ

du

×
{ω2

2
G̃(u, k, ω)G̃(u,−k,−ω)

+a24k
4G̃(u, k, ω)G̃(u,−k,−ω)
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−2a24k
2G̃(u, k, ω)∂2uG̃(u,−k,−ω)

+a2∂
2
uG̃(u, k, ω)∂

2
uG̃(u,−k,−ω)

+a4G̃(u, k, ω)∂
4
uG̃(u,−k,−ω)

+
4a4
u

[G̃(u, k, ω)∂3uG̃(u,−k,−ω)

− k2G̃(u, k, ω)∂uG̃(u,−k,−ω)]

+
2a4
u2

[G̃(u, k, ω)∂2uG̃(u,−k,−ω)

− k2G̃(u, k, ω)G̃(u,−k,−ω)]
}

ϕ̃(0,−k,−ω)

=

∫

dωdkϕ̃(0, k, ω)F(k, ω)ϕ̃(0,−k,−ω), (5.17)

where

F(k, ω) =

∫ ∞

ǫ

du
{ω2

2
G̃(u, k, ω)G̃(u,−k,−ω)

+a24k
4G̃(u, k, ω)G̃(u,−k,−ω)

−2a24k
2G̃(u, k, ω)∂2uG̃(u,−k,−ω)

+a2∂
2
uG̃(u, k, ω)∂

2
uG̃(u,−k,−ω)

+a4G̃(u, k, ω)∂
4
uG̃(u,−k,−ω)

+
4a4
u

[G̃(u, k, ω)∂3uG̃(u,−k,−ω)

− k2G̃(u, k, ω)∂uG̃(u,−k,−ω)]

+
2a4
u2

[G̃(u, k, ω)∂2uG̃(u,−k,−ω)

− k2G̃(u, k, ω)G̃(u,−k,−ω)]
}

. (5.18)

Plugging Eq.(5.15) into Eq.(5.18), and taking the limit
ǫ→ 0, we find that

F(k, ω) = 4a2c1(1− c1)ρ
3
2 sin θ sin

θ

2
. (5.19)

VI. CONCLUSIONS

In this paper, we have investigated the effects of high-
order operators on the non-relativistic Lifshitz hologra-
phy in the framework of the Hořava-Lifshitz (HL) theory
of gravity [8], which contains all the required high-order
spatial operators in order to be power-counting renor-
malizble. The unitarity of the theory is also preserved,
because of the absence of the high-order time operators.
In this sense, the HL gravity is an ideal place to study
the effects of high-order operators on the non-relativistic
gauge/gravity duality.
In particular, we have first shown that the Lifshitz

space-time (3.7) is not only a solution of the HL grav-
ity in the IR, as first shown in [12] and later rederived
in [13], but also a solution of the full theory. The effects
of the high-oder operators on the Lifshitz dynamical ex-
ponent z is simply to shift it to different values, as these
high-oder operators become more and more important,

as shown explicitly in Section III. This is similar to the
case studied in [15].
In Section IV, we have studied a scalar field that

has the same symmetry in the UV as the HL grav-
ity, the foliation-preserving diffeomorphism described by
Eq.(1.4). While in the IR the asymptotic behavior of the
scalar field near the boundary is similar to that given
in the 4-dimensional spacetimes [3], its asymptotic be-
havior in the UV gets dramatically changed, so does the
corresponding two-point correlation function, as shown
in Section V. This is expected, because the high-order
operators dominate the behavior of the scalar field in the
UV. Then, according to the holographic correspondence,
this in turn affects the two-point correlation functions.

It would be important to study the effects of high-order
operators on other properties of the non-relativistic Lif-
shitz holography, including phase transitions and super-
conductivity of the corresponding non-relativistic quan-
tum field theories defined on the boundary. In particu-
lar, it has been suggested that inflation may be described
holographically by means of a dual field theory at the fu-
ture boundary [25]. This might provide deep insights to
the Planckian physics in the very early universe, where
(non-perturbative) quantum gravitational effects are ex-
pected to play an important role. Recently, a powerful
analytical approximation method, the so-called uniform
asymptotic approximation, was developed [26, 27], which
is specially designed to study such effects in the very
early universe. With the arrival of the era of the preci-
sion cosmology [28, 29], such effects might be within the
range of the detection of the forthcoming generation of
experiments [30].

Another possible application of these high-order effects
might be to Hawking radiation, where quantum gravita-
tional effects also become important. Previous studies of
such effects showed that the Hawking radiation is robust
with respect to the UV corrections [31]. To study them
in detail, one can equally apply the uniform asymptotic
approximation method developed in [26] to the studies of
Hawking radiation. In particular, in the spherical back-
ground, one can simply identify the radial coordinate r
in the Hawking radiation with the time variable η used in
the inflationary models. In the inflationary models, the
initial conditions are normally the Bunch-Davies vacuum,
but here in the studies of Hawking radiation they should
be the Unruh vacuum.
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Appendix A: Field Equations for Satic Spacetimes

From Eq.(3.2) we find that

R =
2 (rg′ − g)

g3
,

∆R =
2r

g7

[

15r2g′3 − rgg′ (21g′ + 10rg′′) + g2
(

6g′ + r
(

6g′′ + rg(3)
)

)]

,

aij =
f (g (f ′ + rf ′′)− rf ′g′)− rgf ′2 − zf2g′

rf2g
δri δ

r
j +

(

r2 (zf + rf ′)

fg2

)

δθi δ
θ
j ,

aia
i =

(zf + rf ′)2

f2g2
,

ai i =
zf2 (g − rg′)− r2gf ′2 + rf (f ′ (2g − rg′) + rgf ′′)

f2g3
,

aijaij =
1

f4g6

{

f2g2 (zf + rf ′)
2
+ r2

[

rgf ′2 + zf2g′ − f
(

g (f ′ + rf ′′)− rf ′g′
)]2
}

, (A.1)

and

LV = ζ2g0 +
1

g2

{

βz2 − 2γ1 + βr
f ′

f

(

2z + r
f ′

f

)}

+ 2γ1r
g′

g3

+
1

ζ2g4
{

2
(

2γ2 − γ4z
2
)

+ z2
(

β1z
2 + β2 + β3z + β4

)

+
1

f

(

2rz
(

−2γ4 + 2β1z
2 + 2β2 + 2β3z + β4

)

f ′ + r2z (2β2 + β3z) f
′′)

+
1

f2

(

r2
(

−2γ4 + 6β1z
2 + 2 (2− z)β2 + z (5− z)β3 + 2β4

)

(f ′)
2

+2r3 (2β2 + β3z + β4) f
′′f ′ + r4 (β2 + β4) (f

′′)
2
)

+
1

f

(

2rz
(

−2γ4 + 2β1z
2 + 2β2 + 2β3z + β4

)

f ′ + r2z (2β2 + β3z) f
′′)

+
1

f3

(

2r3 (2β1z − 2β2 − (z − 1)β3 − β4) (f
′)
3

−r4 (2β2 − β3 + 2β4) f
′′ (f ′)

2
)

+ r4
(f ′)4

f4
(β1 + β2 − β3 + β4)

}

+
1

ζ2g5

{

(

2r
(

−4γ2 + 6β6 + z2γ4
)

− rz2 (2β2 + zβ3)
)

g′ + 2r2β6

(

6g′′ + rg(3)
)

+
g′

f

(

r2z (4γ4 − 6β2 − 3β3r − 2β4) f
′ − 2r3z (β2 + β4) f

′′)

+
g′

f2

(

r3 (2γ4 + 2 (z − 2)β2 − 3zβ3 + 2 (z − 1)β4) (f
′)
2

−2r4 (β2 + β4) f
′′f ′)+ r4

(f ′)3

f3
(2β2 − β3 + 2β4) g

′
}

+
1

ζ2g6

{

r2
(

2 (2γ2 − 21β6) + z2 (β2 + β4)
)

(g′)
2

−20β6r
3g′′g′ + r3

f ′

f
(g′)

2
(β2 + β4)

(

2z + r
f ′

f

)}

+ 30β6r
3 (g

′)3

ζ2g7
. (A.2)

Then, the field equations (3.4) and (3.5) take the forms,

0 = −rzζ2γ0g +
rz

g

{

2γ1 + rβ

(

2(z + 2) +

[

2z + 4− r
f ′

f

]

f ′

f
+ 2rf ′′

)}

− rz

g2

{

2γ1 + 2βr

(

z + r
f ′

f

)}

g′
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+
rz

ζ2g3
{

−4γ2 − 2z(z + 2)γ4 + z3(3z + 4)β1 − z2(2z + 3)β2 − z2(z2 − 2)β3 + z(z + 2)β4

+
2r

f

([

−2(z + 2)γ4 + 6z2(z + 3)β1 − 2(2z2 + 5z + 2)β2 + 2z(z2 − 2z + 1)β3 − (z2 + 3z + 2)β4
]

f ′

+r
[

−2γ4 + 6β1z
2 − (z2 + 11z + 14)β2 − 2z(z − 1)β3 − (z2 + 8z + 13)β4

]

f ′′

−2r2(4 + z) [β2 + β4] f
(3) − r3 [β2 + β4] f

(4)
)

+
r2

f2

(

2
[

γ4 + 3z(z + 6)β1 + (z2 + 6z + 4)β2 − (z2 + 6z − 3)β3 + (z2 + 6z + 8)β4
]

(f ′)2

+4r [12β1z + 4z(z + 5)β2 − 2(2z − 1)β3 + (2z + 13)β4] f
′′f ′

+4r2 [β2 + β4] f
(3)f ′ + 3r2 [β2 + β4] (f

′′)2
)

− 4r3

f3
([(3z − 4)β1 + (z + 2)β2 − (z − 2)β3 + (z + 3)β4] f

′

−r [3β1 − 2β2 − β3 − 2β4] f
′′) (f ′)2 − 3r4

f4
(3β1 − β2 − β3 − β4) (f

′)4

+
rz

ζ2g4
{(

2r
[

4γ2 − 6β6 − 6β1z
3 + z(z2 + 9z + 6)β2 − z2(3 − 2z)β3 + z(z2 + 4z + 1)β4

]

g′

+2r2 [−6β6 + 2γ4z + 2z(z + 3)β2 + z(2z + 5)β4] g
′′ + 2r3 [−β6 + z(β2 + β4)] g

(3)
)

+
1

f

((

2r2
[

2(6 + z)γ4 − 18β1z
2 + 3(z2 + 9z + 8)β2 + 6z(z − 1)β3 + (3z2 + 17z + 18)β4

]

f ′

+2r3 [2γ4 + 3(10 + 3z)β2 + (29 + 9z)β4] f
′′ + 12r4 [β2 + β4] f

(3)
)

g′

+2r3
(

[2γ4 + 2(2z + 5)β2 + (4z + 9)β4] g
′′ + 2r [β2 + β4] g

(3)
)

f ′

+8r4 [β2 + β4] f
′′g′′
)

+
1

f2

((

−2r3 [γ4 + 18β1z + 6(2 + z)β2 + 3(1− 2z)β3 + 2(8 + 3z)β4] f
′

−18r4 [β2 + β4] f
′′) f ′g′ −4r4 [β2 + β4] (f

′)
2
g′′
)

−4r4

f4
(3β1 − 2β2 − β3 − 2β4) (f

′)
3
g′
}

+
rz

ζ2g5
{(

−r2 [4γ2 − 42β6 + 16γ4z + z(42 + 15z)β2 + z(34 + 15z)β4] g
′

+20r3 [β6 + z(β2 + β4)] g
′′) g′ +

2

f

(

(

−r3 [8γ4 + (36 + 15z)β2 + (32 + 15z)β4] f
′ − 30r4 [β2 + β4] f

′′) (g′)
2

−20r4 [β2 + β4] f
′g′g′′

)

+
15r4

f2
(β2 + β4) (f

′)
2
(g′)

2
}

+
30r3

g6

{

−β6 + [β2 + β4]

(

z + r
f ′

f

)}

(g′)
3
, (A.3)

0 = −rzζ2fγ0 +
rz

g2
f

(

2

[

z +
f ′

f

]

γ1 +

[

z2 + 2zr
f ′

f
+ r2

(f ′)2

f2

]

β

)

+
rz

ζ2g4
{(

4(1− 2z)γ2 − 2z(z2 − 1)β6 + 2z2(z − 2)γ4 + 3β1z
4 + z2(2z − 1)β2 − z3(z − 2)β3 + 3β4z

2
)

f

+2r
([

−4γ2 + 3z(z + 1)β6 + z(3z − 2)γ4 + 6β1z
3 − 4β2z

2 − z2(2z − 3)β3 − z(z − 1)β4
]

f ′

+r [+3(z + 1)β6 + 2γ4z − z(z + 3)β2 + z(z + 4)β4] f
′′ +r2 [β6 − z(β2 + β4)] f

(3)
)

+
r2

f

(

2
[

γ4z + 9β1z
2 + z(z − 2)β2 − 3z(z − 1)β3 + z(z + 2)β4

]

(f ′)
2

+2r3
(

[2γ4 + (z − 2)β2 + (z − 3)β4] f
′′ − r [β2 + β4] f

(3)
)

f ′ +r2 [β2 + β4] (f
′′)

2
)

+
2r3

f2
([−γ4 + 6β1z − (2z − 1)β3 + 2β4] f

′ + r [β2 + β4] f
′′) (f ′)

2

+
r4

f3
[3β1 − β2 − β3 − β4] (f

′)
4
}

+
rz

ζ2g5
{

2r
(

(z + 2)
[

4γ2 − 2zβ6 + z2(β2 + β4)
]

g′

+r
[

4γ2 − 2β6z + z2(β2 + β4)
]

g′′
)

f + 2r2 ([4γ2 − 2(3 + 2z)β6 + 3z(z + 2)(β2 + β4)] f
′

+2r [−β6 + z(β2 + β4)] f
′′) g′ + 4r3 [−β6 + z(β2 + β4)] g

′′f ′



13

+
2r3

f

(

((z + 4) [β2 + β4] f
′ + 2r [β2 + β4] f

′′) f ′g′ +r [β2 + β4] (f
′)
2
g′′
)

− 2r4

f2
[β2 + β4] (f

′)
3
g′
}

+
5r2rz

ζ2g6

{

[

−4γ2 + 2β6z − z2(β2 + β4)
]

− 2r [β6 − z(β2 + β4)] f
′ − r2

f
[β2 + β4] (f

′)
2
}

(g′)
2
. (A.4)
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